Search Results

Search found 44141 results on 1766 pages for 'unix development support'.

Page 507/1766 | < Previous Page | 503 504 505 506 507 508 509 510 511 512 513 514  | Next Page >

  • Follow point of interest by applying torque

    - by azymm
    Given a body with an orientation angle and a point of interest or targetAngle, is there an elegant solution for keeping the body oriented towards the point of interest by applying torque or impulses? I have a naive solution working below, but the effect is pretty 'wobbly', it'll overshoot each time, slowly getting closer to the target angle - undesirable effect in my case. I'd like to find a solution that is more intelligent - that can accelerate to near the target angle then decelerate and stop right at the target angle (or within a small range). If it helps, I'm using box2d and the body is a rectangle. def gameloop(dt): targetAngle = get_target_angle() bodyAngle = get_body_angle() deltaAngle = targetAngle - bodyAngle if deltaAngle > PI: deltaAngle = targetAngle - (bodyAngle + 2.0 * PI) if deltaAngle < -PI: deltaAngle = targetAngle - (bodyAngle - 2.0 * PI) # multiply by 2, for stronger reaction deltaAngle = deltaAngle * 2.0; body.apply_torque(deltaAngle); One other thing, when body has no linear velocity, the above solution works ok. But when the body has some linear velocity, the solution above causes really wonky movement. Not sure why, but would appreciate any hints as to why that might be.

    Read the article

  • Points on lines where the two lines are the closest together

    - by James Bedford
    Hey guys, I'm trying to find the points on two lines where the two lines are the closest. I've implemented the following method (Points and Vectors are as you'd expect, and a Line consists of a Point on the line and a non-normalized direction Vector from that point): void CDClosestPointsOnTwoLines(Line line1, Line line2, Point* closestPoints) { closestPoints[0] = line1.pointOnLine; closestPoints[1] = line2.pointOnLine; Vector d1 = line1.direction; Vector d2 = line2.direction; float a = d1.dot(d1); float b = d1.dot(d2); float e = d2.dot(d2); float d = a*e - b*b; if (d != 0) // If the two lines are not parallel. { Vector r = Vector(line1.pointOnLine) - Vector(line2.pointOnLine); float c = d1.dot(r); float f = d2.dot(r); float s = (b*f - c*e) / d; float t = (a*f - b*c) / d; closestPoints[0] = line1.positionOnLine(s); closestPoints[1] = line2.positionOnLine(t); } else { printf("Lines were parallel.\n"); } } I'm using OpenGL to draw three lines that move around the world, the third of which should be the line that most closely connects the other two lines, the two end points of which are calculated using this function. The problem is that the first point of closestPoints after this function is called will lie on line1, but the second point won't lie on line2, let alone at the closest point on line2! I've checked over the function many times but I can't see where the mistake in my implementation is. I've checked my dot product function, scalar multiplication, subtraction, positionOnLine() etc. etc. So my assumption is that the problem is within this method implementation. If it helps to find the answer, this is function supposed to be an implementation of section 5.1.8 from 'Real-Time Collision Detection' by Christer Ericson. Many thanks for any help!

    Read the article

  • Combining multiple sprites vs separate sprites

    - by david oliver
    I have a character which can hold ten types of weapons. Should I: Create ten sets of animations for the character with each weapon Create animations for each weapon, and programmatically draw them on the character Option 1 is simpler in general, but requires more work on the artist, and results in larger game size. Option 2, to me, is a programming nightmare... Whats the better practice in general? Thanks.

    Read the article

  • Need some advice regarding collision detection with the sprite changing its width and height

    - by Frank Scott
    So I'm messing around with collision detection in my tile-based game and everything works fine and dandy using this method. However, now I am trying to implement sprite sheets so my character can have a walking and jumping animation. For one, I'd like to to be able to have each frame of variable size, I think. I want collision detection to be accurate and during a jumping animation the sprite's height will be shorter (because of the calves meeting the hamstrings). Again, this also works fine at the moment. I can get the character to animate properly each frame and cycle through animations. The problems arise when the width and height of the character change. Often times its position will be corrected by the collision detection system and the character will be rubber-banded to random parts of the map or even go outside the map bounds. For some reason with the linked collision detection algorithm, when the width or height of the sprite is changed on the fly, the entire algorithm breaks down. The solution I found so far is to have a single width and height of the sprite that remains constant, and only adjust the source rectangle for drawing. However, I'm not sure exactly what to set as the sprite's constant bounding box because it varies so much with the different animations. So now I'm not sure what to do. I'm toying with the idea of pixel-perfect collision detection but I'm not sure if it would really be worth it. Does anyone know how Braid does their collision detection? My game is also a 2D sidescroller and I was quite impressed with how it was handled in that game. Thanks for reading.

    Read the article

  • How do I make good guy attacks only hit bad guys and vice versa?

    - by tieTYT
    My game has many different type of good guys and many different type of bad guys. They will all be firing projectiles at each other but I don't want any accidental collateral damage to occur for either alignment. So bad guys should not be able to hit/damage other bad guys and good guys should not be able to hit/damage other good guys. The way I'm thinking of solving this is by making it so that the Unit instance (this is javascript, btw), has an alignment property that can be either good or bad. And I'll only let collision happen if the class Attack boolean didAttackCollideWithTarget(target) return attack.source.alignment != target.alignment and collisionDetected(attack.source, target) This is pseudo-code, of course. But I'm asking this question because I get the sense that there might be a much more elegant way to design this besides adding yet another property to my Unit class.

    Read the article

  • Smooth terrain rendering

    - by __dominic
    I'm trying to render a smooth terrain with Direct3D. I've got a 50*50 grid with all y values = 0, and a set of 3D points that indicate the location on the grid and depth or height of the "valley" or "hill". I need to make the y values of the grid vertices higher or lower depending on how close they are to each 3D point. Thus, in the end I should have a smooth terrain renderer. I'm not sure at all what way I can do this. I've tried changing the height of the vertices based on the distance to each point just using this basic formula: dist = a² + b² + c² where a, b and c are the x, y, and z distance from a vertex to a 3D point. The result I get with this is not smooth at all. I'm thinking there is probably a better way. Here is a screenshot of what I've got for the moment: https://dl.dropbox.com/u/2562049/terrain.jpg

    Read the article

  • How can I bend an object in OpenGL?

    - by mindnoise
    Is there a way one could bend an object, like a cylinder or a plane using OpenGL? I'm an OpenGL beginner (I'm using OpenGL ES 2.0, if that matters, although I suspect, math matters most in this case, so it's somehow version independent), I understand the basics: translate, rotate, matrix transformations, etc. I was wondering if there is a technique which allows you to actually change the geometry of your objects (in this case by bending them)? Any links, tutorials or other references are welcomed!

    Read the article

  • Why / how does XNA's right-handed coordinate system effect anything if you can specify near/far Z values?

    - by vargonian
    I am told repeatedly that XNA Game Studio uses a right-handed coordinate system, and I understand the difference between a right-handed and left-handed coordinate system. But given that you can use a method like Matrix.CreateOrthographicOffCenter to create your own custom projection matrix, specifying the left, right, top, bottom, zNear and zFar values, when does XNA's coordinate system come into play? For example, I'm told that in a right-handed coordinate system, increasingly negative Z values go "into" the screen. But I can easily create my projection matrix like this: Matrix.CreateOrthographicOffCenter(left, right, bottom, top, 0.1f, 10000f); I've now specified a lower value for the near Z than the far Z, which, as I understand it, means that positive Z now goes into the screen. I can similarly tweak the values of left/right/top/bottom to achieve similar results. If specifying a lower zNear than zFar value doesn't affect the Z direction of the coordinate system, what does it do? And when is the right-handed coordinate system enforced? The reason I ask is that I'm trying to implement a 2.5D camera that supports zooming and rotation, and I've spent two full days encountering one unexpected result after another.

    Read the article

  • SharePoint OCR image files indexing

    Introduction This article describes how to setup indexing of the image files (including TIFF, PDF, JPEG, BMP...) using OCR technology. The indexing described below utilizes Microsoft IFilter technology and as such is not specific to SharePoint, but can be used with any product that uses Microsoft indexing: Microsoft Search, Desktop search, SQL Server search, and through the plug-ins with Google desktop search. I however use it with Microsoft Windows SharePoint Services 2003. For those other products, the registration may need to be slightly different. Background  One of the projects I was working on required a storage of old documents scanned into PDF files. Then there was a separate team of people responsible for providing a tags for a search engine so those image documents could be found. The whole process was clumsy, labor intensive, and error prone. That was what started me on my exploration path. OCR The first search I fired was for the Open Source OCR products. Pretty quickly, I narrowed it down to TESSERACT (http://code.google.com/p/tesseract-ocr/). Tesseract is an orphaned brain child of HP that worked on it from 1985 to 1995. Then it was moved to the Open Source, and now if I understand it correctly, Google is working on it. With credentials like that, it's no wonder that Tesseract scores one of the highest marks on OCR recognition and accuracy. After downloading and struggling just a bit, I got Tesseract to work. The struggling part was that the home page claims that its base input format is a TIFF file. May be my TIFFs were bad, but I was able to get it to work only for BMP files. Image files conversion So now that I have an OCR that can convert BMP files into text, how do I get text out of the image PDF files? One more search, and I settled down on ImageMagic (http://www.imagemagick.org/). This is another wonderful Open Source utility that can convert any file into image. It did work out of the box, converting any TIFF files into bitmaps, but to get PDF files converted, it requires a GhostScript (http://mirror.cs.wisc.edu/pub/mirrors/ghost/GPL/gs864/gs864w32.exe). Dealing with text PDFs With that utility installed, I was cooking - I can convert any file (in particular PDF and TIFF) into bitmap, and then I can extract the text out of the bitmap. The only consideration was to somehow treat PDF files containing text differently - after all, OCR is very computation intensive and somewhat error prone even with perfect image quality and resolution. So another quick search, and I have a PDFTOTEXT (ftp://ftp.foolabs.com/pub/xpdf/xpdf-3.02pl4-win32.zip) - thank God for Open Source! With these guys, I can pull text out of PDF in an eye blink. However, I would get nothing for pure image PDFs, but I already have a solution for that! Batch process It took another 15 minutes to setup a batch script to automate the process: Check the file extension If file is a PDF file try to extract text out of it if there is more than certain amount of text in the file - done! if there is no text, convert first page into bitmap run OCR on the bitmap For any other file type, convert file into bitmap Run OCR on the bitmap Once you unzip the attached project, check out the bin\OCR.BAT file. It will create a temporary file in the directory where your source file is with the same name + the '.txt' extension.Continue span.fullpost {display:none;}

    Read the article

  • UV texture mapping with perspective correct interpolation

    - by Twodordan
    I am working on a software rasterizer for educational purposes and I am having issues with the texturing. The problem is, only one face of the cube gets correctly textured. The rest are stretched edges: You can see the running program online here. I have used cartesian coordinates, and all I do is interpolate the uv values along the scanlines. The general formula I use for interpolating the uv coordinates is pretty much the one I use for the z-buffering interpolation and looks like this (in this case for horizontal scanlines): u_Slope = (right.u - left.u) / (triangleRight_x - triangleLeft_x); v_Slope = (right.v - left.v) / (triangleRight_x - triangleLeft_x); //[...] new_u = left.u + ((currentX_onScanLine - triangleLeft_x) * u_Slope); new_v = left.v + ((currentX_onScanLine - triangleLeft_x) * v_Slope); Then, when I add each point to the pixel buffer, I restore z and uv: z = (1/z); uv.u = Math.round(uv.u * z *100);//*100 because my texture is 100x100px uv.v = Math.round(uv.v * z *100); Then I turn the u v indexes into one index in order to fetch the correct pixel from the image data (which is a 1 dimensional px array): var index = texture.width * uv.u + uv.v; //and the rest is unimportant imagedata[index].RGBA bla bla The interpolation formula is correct considering the consistency of the texture (including the straight stripes). However, I seem to get quite a lot of 0 values for either u or v. Which is probably why I only get one face right. Furthermore, why is the texture flipped horizontally? (the "1" is flipped) I must get some sleep now, but before I get into further dissecting of every single value to see what goes wrong, Can someone more experienced guess why might this be happening, just by looking at the cube? "I have no idea what I'm doing" (it's my first time implementing a rasterizer). Did I miss an important stage? Thanks for any insight. PS: My UV values are as follows: { u:0, v:0 }, { u:0, v:0.5 }, { u:0.5, v:0.5 }, { u:0.5, v:0 }, { u:0, v:0 }, { u:0, v:0.5 }, { u:0.5, v:0.5 }, { u:0.5, v:0 }

    Read the article

  • Ambient occlusion shader just shows models as all white

    - by dvds414
    Okay so I have this shader for ambient occlusion. It loads to world correctly, but it just shows all the models as being white. I do not know why. I am just running the shader while the model is rendering, is that correct? or do I need to make a render target or something? If so then how? I'm using C++. Here is my shader: float sampleRadius; float distanceScale; float4x4 xProjection; float4x4 xView; float4x4 xWorld; float3 cornerFustrum; struct VS_OUTPUT { float4 pos : POSITION; float2 TexCoord : TEXCOORD0; float3 viewDirection : TEXCOORD1; }; VS_OUTPUT VertexShaderFunction( float4 Position : POSITION, float2 TexCoord : TEXCOORD0) { VS_OUTPUT Out = (VS_OUTPUT)0; float4 WorldPosition = mul(Position, xWorld); float4 ViewPosition = mul(WorldPosition, xView); Out.pos = mul(ViewPosition, xProjection); Position.xy = sign(Position.xy); Out.TexCoord = (float2(Position.x, -Position.y) + float2( 1.0f, 1.0f ) ) * 0.5f; float3 corner = float3(-cornerFustrum.x * Position.x, cornerFustrum.y * Position.y, cornerFustrum.z); Out.viewDirection = corner; return Out; } texture depthTexture; texture randomTexture; sampler2D depthSampler = sampler_state { Texture = <depthTexture>; ADDRESSU = CLAMP; ADDRESSV = CLAMP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; sampler2D RandNormal = sampler_state { Texture = <randomTexture>; ADDRESSU = WRAP; ADDRESSV = WRAP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; float4 PixelShaderFunction(VS_OUTPUT IN) : COLOR0 { float4 samples[16] = { float4(0.355512, -0.709318, -0.102371, 0.0 ), float4(0.534186, 0.71511, -0.115167, 0.0 ), float4(-0.87866, 0.157139, -0.115167, 0.0 ), float4(0.140679, -0.475516, -0.0639818, 0.0 ), float4(-0.0796121, 0.158842, -0.677075, 0.0 ), float4(-0.0759516, -0.101676, -0.483625, 0.0 ), float4(0.12493, -0.0223423, -0.483625, 0.0 ), float4(-0.0720074, 0.243395, -0.967251, 0.0 ), float4(-0.207641, 0.414286, 0.187755, 0.0 ), float4(-0.277332, -0.371262, 0.187755, 0.0 ), float4(0.63864, -0.114214, 0.262857, 0.0 ), float4(-0.184051, 0.622119, 0.262857, 0.0 ), float4(0.110007, -0.219486, 0.435574, 0.0 ), float4(0.235085, 0.314707, 0.696918, 0.0 ), float4(-0.290012, 0.0518654, 0.522688, 0.0 ), float4(0.0975089, -0.329594, 0.609803, 0.0 ) }; IN.TexCoord.x += 1.0/1600.0; IN.TexCoord.y += 1.0/1200.0; normalize (IN.viewDirection); float depth = tex2D(depthSampler, IN.TexCoord).a; float3 se = depth * IN.viewDirection; float3 randNormal = tex2D( RandNormal, IN.TexCoord * 200.0 ).rgb; float3 normal = tex2D(depthSampler, IN.TexCoord).rgb; float finalColor = 0.0f; for (int i = 0; i < 16; i++) { float3 ray = reflect(samples[i].xyz,randNormal) * sampleRadius; //if (dot(ray, normal) < 0) // ray += normal * sampleRadius; float4 sample = float4(se + ray, 1.0f); float4 ss = mul(sample, xProjection); float2 sampleTexCoord = 0.5f * ss.xy/ss.w + float2(0.5f, 0.5f); sampleTexCoord.x += 1.0/1600.0; sampleTexCoord.y += 1.0/1200.0; float sampleDepth = tex2D(depthSampler, sampleTexCoord).a; if (sampleDepth == 1.0) { finalColor ++; } else { float occlusion = distanceScale* max(sampleDepth - depth, 0.0f); finalColor += 1.0f / (1.0f + occlusion * occlusion * 0.1); } } return float4(finalColor/16, finalColor/16, finalColor/16, 1.0f); } technique SSAO { pass P0 { VertexShader = compile vs_3_0 VertexShaderFunction(); PixelShader = compile ps_3_0 PixelShaderFunction(); } }

    Read the article

  • Random Between: using random with the instance_create function in GML

    - by CLockeWork
    Hopefully this should be a simple one; I want to restrict the points that instances enter the screen from so they don't come in at the edges. In Game Maker I'm using the following code instance_create(random(room_width), random(-100) - 50, obj_enemy1); to create the instance off screen (create(x, y, ...)) At the moment I'm just using the room_width to define the max width for the random on x, but ideally I want to find a way of defining a max AND min width for the random. I can't figure out how to restrict the range on the x axis to between say 100 and 350. Any help would be appreciated. Cheers

    Read the article

  • Online scoreboard in Python?

    - by CorundumGames
    So my friend and I are working on an arcade-style game in Python and Pygame. We're beginning to look at the feasibility of an online leaderboard, given our current programming backgrounds. Such a leaderboard would have the following requirements/features; The ability to search through demographics like region, country, platform, game mode, recentness ("best scores this month") and difficulty. (e.g. to make it possible for someone to say "I'm the best player in Italy!" or "I'm the best Linux player in South America!") Our game will not have online multiplayer, so no need to worry about that. We don't expect the game to be a million-dollar hit. We want the scores to be accessible both from in-game and the website. We would like some semblance of security to make sure no one plugs fake scores into the system. This is our present situation; Neither I nor my friend have any network programming background. All I really know is that sockets are low-level, HTTP is high-level. I happen to know that the Google App Engine might be useful for something like this, and I'm really thinking about going with that. We're not sure how we would store all the high score data. Our game will be free and open source (though we might keep the components that submit the high scores closed-source). Aside from all of this, we don't really have any idea where to begin. Any thoughts?

    Read the article

  • gl_PointCoord always zero

    - by Jonathan
    I am trying to draw point sprites in OpenGL with a shader but gl_PointCoord is always zero. Here is my code Setup: //Shader creation..(includes glBindAttribLocation(program, ATTRIB_P, "p");) glEnableVertexAttribArray(ATTRIB_P); In the rendering loop: glUseProgram(shader_particles); float vertices[]={0.0f,0.0f,0.0f}; glEnable(GL_TEXTURE_2D); glEnable(GL_POINT_SPRITE); glEnable(GL_VERTEX_PROGRAM_POINT_SIZE); //glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE);(tried with this on/off, doesn't work) glVertexAttribPointer(ATTRIB_P, 3, GL_FLOAT, GL_FALSE, 0, vertices); glDrawArrays(GL_POINTS, 0, 1); Vertex Shader: attribute highp vec4 p; void main() { gl_PointSize = 40.0f; gl_Position = p; } Fragment Shader: void main() { gl_FragColor = vec4(gl_PointCoord.st, 0, 1);//if the coords range from 0-1, this should draw a square with black,red,green,yellow corners } But this only draws a black square with a size of 40. What am I doing wrong? Edit: Point sprites work when i use the fixed function, but I need to use shaders because in the end the code will be for opengl es 2.0 glUseProgram(0); glEnable(GL_TEXTURE_2D); glEnable(GL_POINT_SPRITE); glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE); glPointSize(40); glBegin(GL_POINTS); glVertex3f(0.0f,0.0f,0.0f); glEnd(); Is anyone able to get point sprites working with shader? If so, please share some code.

    Read the article

  • How do multipass shaders work in OpenGL?

    - by Boreal
    In Direct3D, multipass shaders are simple to use because you can literally define passes within a program. In OpenGL, it seems a bit more complex because it is possible to give a shader program as many vertex, geometry, and fragment shaders as you want. A popular example of a multipass shader is a toon shader. One pass does the actual cel-shading effect and the other creates the outline. If I have two vertex shaders, "cel.vert" and "outline.vert", and two fragment shaders, "cel.frag" and "outline.frag" (similar to the way you do it in HLSL), how can I combine them to create the full toon shader? I don't want you saying that a geometry shader can be used for this because I just want to know the theory behind multipass GLSL shaders ;)

    Read the article

  • How can I respond to mouse events in AS3?

    - by Gabriel Meono
    Background: Trying to make a simple "drop the ball" game. The code is located inside the first frame of the timeline. Nothing more is on the stage. Issue: Using QuickBox2D I made a simple If statement that drops and object acording the Mouse-x position: if (MouseEvent.CLICK) { sim.addCircle({x:mouseX, y:1, radius:0.25, density:5}); I imported the MouseEvent library: import flash.events.MouseEvent; Nothing happens if I click, no output errors either. See it in action: http://gabrielmeono.com/download/Lucky_Hit_Alpha.swf http://gabrielmeono.com/download/Lucky_Hit_Alpha.fla Full Code: [SWF(width = 350, height = 600, frameRate = 60)] import com.actionsnippet.qbox.*; import flash.events.MouseEvent; var sim:QuickBox2D = new QuickBox2D(this); sim.createStageWalls(); //var ball:sim.addCircle({x:mouseX, y:1, radius:0.25, density:5}); // // make a heavy circle sim.addCircle({x:3, y:1, radius:0.25, density:5}); sim.addCircle({x:2, y:1, radius:0.25, density:5}); sim.addCircle({x:4, y:1, radius:0.25, density:5}); sim.addCircle({x:5, y:1, radius:0.25, density:5}); sim.addCircle({x:6, y:1, radius:0.25, density:5}); // create a few platforms sim.addBox({x:3, y:2, width:4, height:0.2, density:0, angle:0.1}); // make 26 dominoes for (var i:int = 0; i<7; i++){ //End sim.addCircle({x:1 + i * 1.5, y:16, radius:0.1, density:0}); sim.addCircle({x:2 + i * 1.5, y:15, radius:0.1, density:0}); //Mid end sim.addCircle({x:0 + i * 2, y:14, radius:0.1, density:0}); sim.addCircle({x:0 + i * 2, y:13, radius:0.1, density:0}); sim.addCircle({x:0 + i * 2, y:12, radius:0.1, density:0}); sim.addCircle({x:0 + i * 2, y:11, radius:0.1, density:0}); sim.addCircle({x:0 + i * 2, y:10, radius:0.1, density:0}); //Middle Start sim.addCircle({x:0 + i * 1.5, y:09, radius:0.1, density:0}); sim.addCircle({x:1 + i * 1.5, y:08, radius:0.1, density:0}); sim.addCircle({x:0 + i * 1.5, y:07, radius:0.1, density:0}); sim.addCircle({x:1 + i * 1.5, y:06, radius:0.1, density:0}); } if (MouseEvent.CLICK) { sim.addCircle({x:mouseX, y:1, radius:0.25, density:5}); sim.start(); /*sim.mouseDrag();*/ }

    Read the article

  • Get vertex colors from fbx (OpenGL, FBX SDK)

    - by instancedName
    I'm kinda stuck with this one. I managed to get vertex positions, indices, normals, but I don't quite understand how te get vertex colors. I need them to fill my buffer. I tried funcion mesh-GetElementVertexColorCount() and then to iterate trough all of them, but it returns zero. I alse tried to get layer, and then use layer-GetVertexColors(), but it returns NULL pointer. Can anyone help me with this one?

    Read the article

  • Textures on top of other textures when using VBOs

    - by GameDev-er
    I'm currently making a cube style game. With chunks being drawn with VBOs. I'd like to know if there is a way to create an overlay texture on top of the existing texture without the need to rebuild the VBO. This is required to show activity in a cube (think of Minecraft when destroying a block and the little cracks start spreading). I believe these are called "decals" but I've not found how to use them with VBOs. So how do I draw decals on OpenGL VBO drawn cubes?

    Read the article

  • set TouchEvent to every particle in SpriteParticleSystem in andEngine livewallpaper

    - by Girish Bhutiya
    All I have working on andEngine Live wallpaper and I have use SpriteParticleSystem. I want to add touch event to every Sprite of SpriteParticleSystem and remove that sprite from scene. I have use below code for create particle system. final SpriteParticleSystem particleSystem = new SpriteParticleSystem(new PointParticleEmitter(mParticleX, mParticleY),mParticleMinRate, mParticleMaxRate, mParticleMax,this.mFlowerTextureRegion, this.getVertexBufferObjectManager()); //particleSystem.addParticleInitializer(new BlendFunctionParticleInitializer<Sprite>(GLES20.GL_SRC_ALPHA, GLES20.GL_ONE)); particleSystem.addParticleInitializer(new VelocityParticleInitializer<Sprite>(-90, 0, 0, 0)); particleSystem.addParticleInitializer(new AccelerationParticleInitializer<Sprite>(8, -11)); particleSystem.addParticleInitializer(new RotationParticleInitializer<Sprite>(0.0f, 360.0f)); //particleSystem.addParticleInitializer(new ColorParticleInitializer<Sprite>(1.0f, 1.0f, 0.0f)); particleSystem.addParticleInitializer(new ExpireParticleInitializer<Sprite>(15.5f)); particleSystem.addParticleModifier(new ScaleParticleModifier<Sprite>(0, 5, 0.5f, 2.0f)); background = new Sprite(0, 0, backgroundTextureRegion, mEngine.getVertexBufferObjectManager()); background.setPosition((CAMERA_WIDTH - background.getWidth()) * 0.5f, (CAMERA_HEIGHT - background.getHeight()) * 0.5f); //background.setScale(1.5f); //SpriteBackground bg = new SpriteBackground(background); //mScene.setBackground(bg); this.mScene.attachChild(background); this.mScene.attachChild(particleSystem); <br> Thanks in advance.

    Read the article

  • Texture switching with a entity system

    - by GameDev-er
    I'm using thinking of using an entity system in my game. So far I've been using Artemis with success. However, I have a question about texture switching. I read that switching textures too often is bad. So I load all the textures when the game loads like so: import org.newdawn.slick.opengl.TextureLoader; ... public HashMap<String, Texture> Textures; ... Then for each texture I do this: Texture tex = TextureLoader.getTexture("PNG", this.getClass().getResourceAsStream(texturePath)); Textures.put(textureName, tex); Then when drawing entities I do this: drawEntity() { glBindTexture(GL_TEXTURE_2D, Textures.get(entityTexture).getTextureID()); ... } Say I have 50 entities, using 10 different 3D models, each with their own texture. When the drawEntity system runs, it doesn't group by which entities use which texture. So I could be switching textures before drawing each entity! Is there a more efficient way to switch textures between entities? Or is glBindTexture() a good option?

    Read the article

  • exporting bind and keyframe bone poses from blender to use in OpenGL

    - by SaldaVonSchwartz
    I'm having a hard time trying to understand how exactly Blender's concept of bone transforms maps to the usual math of skinning (which I'm implementing in an OpenGL-based engine of sorts). Or I'm missing out something in the math.. It's gonna be long, but here's as much background as I can think of. First, a few notes and assumptions: I'm using column-major order and multiply from right to left. So for instance, vertex v transformed by matrix A and then further transformed by matrix B would be: v' = BAv. This also means whenever I export a matrix from blender through python, I export it (in text format) in 4 lines, each representing a column. This is so I can then I can read them back into my engine like this: if (fscanf(fileHandle, "%f %f %f %f", &skeleton.joints[currentJointIndex].inverseBindTransform.m[0], &skeleton.joints[currentJointIndex].inverseBindTransform.m[1], &skeleton.joints[currentJointIndex].inverseBindTransform.m[2], &skeleton.joints[currentJointIndex].inverseBindTransform.m[3])) { if (fscanf(fileHandle, "%f %f %f %f", &skeleton.joints[currentJointIndex].inverseBindTransform.m[4], &skeleton.joints[currentJointIndex].inverseBindTransform.m[5], &skeleton.joints[currentJointIndex].inverseBindTransform.m[6], &skeleton.joints[currentJointIndex].inverseBindTransform.m[7])) { if (fscanf(fileHandle, "%f %f %f %f", &skeleton.joints[currentJointIndex].inverseBindTransform.m[8], &skeleton.joints[currentJointIndex].inverseBindTransform.m[9], &skeleton.joints[currentJointIndex].inverseBindTransform.m[10], &skeleton.joints[currentJointIndex].inverseBindTransform.m[11])) { if (fscanf(fileHandle, "%f %f %f %f", &skeleton.joints[currentJointIndex].inverseBindTransform.m[12], &skeleton.joints[currentJointIndex].inverseBindTransform.m[13], &skeleton.joints[currentJointIndex].inverseBindTransform.m[14], &skeleton.joints[currentJointIndex].inverseBindTransform.m[15])) { I'm simplifying the code I show because otherwise it would make things unnecessarily harder (in the context of my question) to explain / follow. Please refrain from making remarks related to optimizations. This is not final code. Having said that, if I understand correctly, the basic idea of skinning/animation is: I have a a mesh made up of vertices I have the mesh model-world transform W I have my joints, which are really just transforms from each joint's space to its parent's space. I'll call these transforms Bj meaning matrix which takes from joint j's bind pose to joint j-1's bind pose. For each of these, I actually import their inverse to the engine, Bj^-1. I have keyframes each containing a set of current poses Cj for each joint J. These are initially imported to my engine in TQS format but after (S)LERPING them I compose them into Cj matrices which are equivalent to the Bjs (not the Bj^-1 ones) only that for the current spacial configurations of each joint at that frame. Given the above, the "skeletal animation algorithm is" On each frame: check how much time has elpased and compute the resulting current time in the animation, from 0 meaning frame 0 to 1, meaning the end of the animation. (Oh and I'm looping forever so the time is mod(total duration)) for each joint: 1 -calculate its world inverse bind pose, that is Bj_w^-1 = Bj^-1 Bj-1^-1 ... B0^-1 2 -use the current animation time to LERP the componets of the TQS and come up with an interpolated current pose matrix Cj which should transform from the joints current configuration space to world space. Similar to what I did to get the world version of the inverse bind poses, I come up with the joint's world current pose, Cj_w = C0 C1 ... Cj 3 -now that I have world versions of Bj and Cj, I store this joint's world- skinning matrix K_wj = Cj_w Bj_w^-1. The above is roughly implemented like so: - (void)update:(NSTimeInterval)elapsedTime { static double time = 0; time = fmod((time + elapsedTime),1.); uint16_t LERPKeyframeNumber = 60 * time; uint16_t lkeyframeNumber = 0; uint16_t lkeyframeIndex = 0; uint16_t rkeyframeNumber = 0; uint16_t rkeyframeIndex = 0; for (int i = 0; i < aClip.keyframesCount; i++) { uint16_t keyframeNumber = aClip.keyframes[i].number; if (keyframeNumber <= LERPKeyframeNumber) { lkeyframeIndex = i; lkeyframeNumber = keyframeNumber; } else { rkeyframeIndex = i; rkeyframeNumber = keyframeNumber; break; } } double lTime = lkeyframeNumber / 60.; double rTime = rkeyframeNumber / 60.; double blendFactor = (time - lTime) / (rTime - lTime); GLKMatrix4 bindPosePalette[aSkeleton.jointsCount]; GLKMatrix4 currentPosePalette[aSkeleton.jointsCount]; for (int i = 0; i < aSkeleton.jointsCount; i++) { F3DETQSType& lPose = aClip.keyframes[lkeyframeIndex].skeletonPose.jointPoses[i]; F3DETQSType& rPose = aClip.keyframes[rkeyframeIndex].skeletonPose.jointPoses[i]; GLKVector3 LERPTranslation = GLKVector3Lerp(lPose.t, rPose.t, blendFactor); GLKQuaternion SLERPRotation = GLKQuaternionSlerp(lPose.q, rPose.q, blendFactor); GLKVector3 LERPScaling = GLKVector3Lerp(lPose.s, rPose.s, blendFactor); GLKMatrix4 currentTransform = GLKMatrix4MakeWithQuaternion(SLERPRotation); currentTransform = GLKMatrix4Multiply(currentTransform, GLKMatrix4MakeTranslation(LERPTranslation.x, LERPTranslation.y, LERPTranslation.z)); currentTransform = GLKMatrix4Multiply(currentTransform, GLKMatrix4MakeScale(LERPScaling.x, LERPScaling.y, LERPScaling.z)); if (aSkeleton.joints[i].parentIndex == -1) { bindPosePalette[i] = aSkeleton.joints[i].inverseBindTransform; currentPosePalette[i] = currentTransform; } else { bindPosePalette[i] = GLKMatrix4Multiply(aSkeleton.joints[i].inverseBindTransform, bindPosePalette[aSkeleton.joints[i].parentIndex]); currentPosePalette[i] = GLKMatrix4Multiply(currentPosePalette[aSkeleton.joints[i].parentIndex], currentTransform); } aSkeleton.skinningPalette[i] = GLKMatrix4Multiply(currentPosePalette[i], bindPosePalette[i]); } } At this point, I should have my skinning palette. So on each frame in my vertex shader, I do: uniform mat4 modelMatrix; uniform mat4 projectionMatrix; uniform mat3 normalMatrix; uniform mat4 skinningPalette[6]; attribute vec4 position; attribute vec3 normal; attribute vec2 tCoordinates; attribute vec4 jointsWeights; attribute vec4 jointsIndices; varying highp vec2 tCoordinatesVarying; varying highp float lIntensity; void main() { vec3 eyeNormal = normalize(normalMatrix * normal); vec3 lightPosition = vec3(0., 0., 2.); lIntensity = max(0.0, dot(eyeNormal, normalize(lightPosition))); tCoordinatesVarying = tCoordinates; vec4 skinnedVertexPosition = vec4(0.); for (int i = 0; i < 4; i++) { skinnedVertexPosition += jointsWeights[i] * skinningPalette[int(jointsIndices[i])] * position; } gl_Position = projectionMatrix * modelMatrix * skinnedVertexPosition; } The result: The mesh parts that are supposed to animate do animate and follow the expected motion, however, the rotations are messed up in terms of orientations. That is, the mesh is not translated somewhere else or scaled in any way, but the orientations of rotations seem to be off. So a few observations: In the above shader notice I actually did not multiply the vertices by the mesh modelMatrix (the one which would take them to model or world or global space, whichever you prefer, since there is no parent to the mesh itself other than "the world") until after skinning. This is contrary to what I implied in the theory: if my skinning matrix takes vertices from model to joint and back to model space, I'd think the vertices should already be premultiplied by the mesh transform. But if I do so, I just get a black screen. As far as exporting the joints from Blender, my python script exports for each armature bone in bind pose, it's matrix in this way: def DFSJointTraversal(file, skeleton, jointList): for joint in jointList: poseJoint = skeleton.pose.bones[joint.name] jointTransform = poseJoint.matrix.inverted() file.write('Joint ' + joint.name + ' Transform {\n') for col in jointTransform.col: file.write('{:9f} {:9f} {:9f} {:9f}\n'.format(col[0], col[1], col[2], col[3])) DFSJointTraversal(file, skeleton, joint.children) file.write('}\n') And for current / keyframe poses (assuming I'm in the right keyframe): def exportAnimations(filepath): # Only one skeleton per scene objList = [object for object in bpy.context.scene.objects if object.type == 'ARMATURE'] if len(objList) == 0: return elif len(objList) > 1: return #raise exception? dialog box? skeleton = objList[0] jointNames = [bone.name for bone in skeleton.data.bones] for action in bpy.data.actions: # One animation clip per action in Blender, named as the action animationClipFilePath = filepath[0 : filepath.rindex('/') + 1] + action.name + ".aClip" file = open(animationClipFilePath, 'w') file.write('target skeleton: ' + skeleton.name + '\n') file.write('joints count: {:d}'.format(len(jointNames)) + '\n') skeleton.animation_data.action = action keyframeNum = max([len(fcurve.keyframe_points) for fcurve in action.fcurves]) keyframes = [] for fcurve in action.fcurves: for keyframe in fcurve.keyframe_points: keyframes.append(keyframe.co[0]) keyframes = set(keyframes) keyframes = [kf for kf in keyframes] keyframes.sort() file.write('keyframes count: {:d}'.format(len(keyframes)) + '\n') for kfIndex in keyframes: bpy.context.scene.frame_set(kfIndex) file.write('keyframe: {:d}\n'.format(int(kfIndex))) for i in range(0, len(skeleton.data.bones)): file.write('joint: {:d}\n'.format(i)) joint = skeleton.pose.bones[i] jointCurrentPoseTransform = joint.matrix translationV = jointCurrentPoseTransform.to_translation() rotationQ = jointCurrentPoseTransform.to_3x3().to_quaternion() scaleV = jointCurrentPoseTransform.to_scale() file.write('T {:9f} {:9f} {:9f}\n'.format(translationV[0], translationV[1], translationV[2])) file.write('Q {:9f} {:9f} {:9f} {:9f}\n'.format(rotationQ[1], rotationQ[2], rotationQ[3], rotationQ[0])) file.write('S {:9f} {:9f} {:9f}\n'.format(scaleV[0], scaleV[1], scaleV[2])) file.write('\n') file.close() Which I believe follow the theory explained at the beginning of my question. But then I checked out Blender's directX .x exporter for reference.. and what threw me off was that in the .x script they are exporting bind poses like so (transcribed using the same variable names I used so you can compare): if joint.parent: jointTransform = poseJoint.parent.matrix.inverted() else: jointTransform = Matrix() jointTransform *= poseJoint.matrix and exporting current keyframe poses like this: if joint.parent: jointCurrentPoseTransform = joint.parent.matrix.inverted() else: jointCurrentPoseTransform = Matrix() jointCurrentPoseTransform *= joint.matrix why are they using the parent's transform instead of the joint in question's? isn't the join transform assumed to exist in the context of a parent transform since after all it transforms from this joint's space to its parent's? Why are they concatenating in the same order for both bind poses and keyframe poses? If these two are then supposed to be concatenated with each other to cancel out the change of basis? Anyway, any ideas are appreciated.

    Read the article

  • OpenGL's matrix stack vs Hand multiplying

    - by deft_code
    Which is more efficient using OpenGL's transformation stack or applying the transformations by hand. I've often heard that you should minimize the number of state transitions in your graphics pipeline. Pushing and popping translation matrices seem like a big change. However, I wonder if the graphics card might be able to more than make up for pipeline hiccup by using its parallel execution hardware to bulk multiply the vertices. My specific case. I have font rendered to a sprite sheet. The coordinates of each character or a string are calculated and added to a vertex buffer. Now I need to move that string. Would it be better to iterate through the vertex buffer and adjust each of the vertices by hand or temporarily push a new translation matrix?

    Read the article

  • Collision detection with multiple polygons simultaneously

    - by Craig Innes
    I've written a collision system which detects/resolves collisions between a rectangular player and a convex polygon world using the Separating Axis Theorem. This scheme works fine when the player is colliding with a single polygon, but when I try to create a level made up of combinations of these shapes, the player gets "stuck" between shapes when trying to move from one polygon to the other. The reason for this seems to be that collisions are detected after the player has been pushed through the shape by its movement or gravity. When the system resolves the collision, it resolves them in an order that doesn't make sense (for example, when the player is moving from one flat rectangle to another, gravity pushes them below the ground, but the collision with the left hand side of the second block is resolved before the collision with the top of the block, meaning the player is pushed back left before being pushed back up). Other similar posts have resolved this problem by having a strict rule on which axes to resolve first. For example, always resolve the collision on the y axis, then if the object is still colliding with things, resolve on the x axis. This solution only works in the case of a completely axis oriented box world, and doesn't solve the problem if the player is stuck moving along a series of angled shapes or sliding down a wall. Does any one have any ideas of how I could alter my collision system to prevent these situations from happening?

    Read the article

  • Cocos2d-x CCFollow Zooming issue

    - by blakey87
    Hi I am currently building a cocos2d-x game which incorporates pinch zoom using CCLayerPanZoom class which can be found here The problem is basically when using CCFollow and zooming and out, it does'nt zoom on the actually followed node, so the camera appears to zoom towards the bottom left corner of the screen, when I would rather it zoom centrally on the followed node. If I could resolve this I would pretty darn happy. I converted a fix from the cocos2d objective C version in the CCfollow class to cocos2d-x which improved the issue,but if you look at the post in latter link you will see the guy is having the exact same problem, he gave up on fixing it sadly. I think its close but I don't really know what going on, hopefully someone out there has already faced and fixed this problem. My converted code is below. CCPoint p1 = ccpMult(m_obHalfScreenSize, m_pTarget->getScale() ); CCPoint p2 = ccpMult(m_pobFollowedNode->getPosition(), m_pTarget->getScale() ); CCPoint offect = ccpMult(ccpSub(p1, m_obHalfScreenSize), 0.5f); CCPoint tempPos = ccpAdd(ccpSub(p1, p2), offect); m_pTarget->setPosition(ccp(clampf(tempPos.x,m_fLeftBoundary,m_fRightBoundary), clampf(tempPos.y,m_fBottomBoundary,m_fTopBoundary))); I have attached before and after to hopefully make things more clear.

    Read the article

  • Can static methods be called using object/instance in .NET

    Ans is Yes and No   Yes in C++, Java and VB.NET No in C#   This is only compiler restriction in c#. You might see in some websites that we can break this restriction using reflection and delegates, but we can’t, according to my little research J I shall try to explain you…   Following is code sample to break this rule using reflection, it seems that it is possible to call a static method using an object, p1 using System; namespace T {     class Program     {         static void Main()         {             var p1 = new Person() { Name = "Smith" };             typeof(Person).GetMethod("TestStatMethod").Invoke(p1, new object[] { });                     }         class Person         {             public string Name { get; set; }             public static void TestStatMethod()             {                 Console.WriteLine("Hello");             }         }     } } but I do not think so this method is being called using p1 rather Type Name “Person”. I shall try to prove this… look at another example…  Test2 has been inherited from Test1. Let’s see various scenarios… Scenario1 using System; namespace T {     class Program     {         static void Main()         {             Test1 t = new Test1();            typeof(Test2).GetMethod("Method1").Invoke(t,                                  new object[] { });         }     }     class Test1     {         public static void Method1()         {             Console.WriteLine("At test1::Method1");         }     }       class Test2 : Test1     {         public static void Method1()         {             Console.WriteLine("At test1::Method2");         }     } } Output:   At test1::Method2 Scenario2         static void Main()         {             Test2 t = new Test2();            typeof(Test2).GetMethod("Method1").Invoke(t,                                          new object[] { });         }   Output:   At test1::Method2   Scenario3         static void Main()         {             Test1 t = new Test2();            typeof(Test2).GetMethod("Method1").Invoke(t,                             new object[] { });         }   Output: At test1::Method2 In all above scenarios output is same, that means, Reflection also not considering the object what you pass to Invoke method in case of static methods. It is always considering the type which you specify in typeof(). So, what is the use passing instance to “Invoke”. Let see below sample using System; namespace T {     class Program     {         static void Main()         {            typeof(Test2).GetMethod("Method1").                Invoke(null, new object[] { });         }     }       class Test1     {         public static void Method1()         {             Console.WriteLine("At test1::Method1");         }     }     class Test2 : Test1     {         public static void Method1()         {             Console.WriteLine("At test1::Method2");         }     } }   Output is   At test1::Method2   I was able to call Invoke “Method1” of Test2 without any object.  Yes, there no wonder here as Method1 is static. So we may conclude that static methods cannot be called using instances (only in c#) Why Microsoft has restricted it in C#? Ans: Really there Is no use calling static methods using objects because static methods are stateless. but still Java and C++ latest compilers allow calling static methods using instances. Java sample class Test {      public static void main(String str[])      {            Person p = new Person();            System.out.println(p.GetCount());      } }   class Person {   public static int GetCount()   {      return 100;   } }   Output          100 span.fullpost {display:none;}

    Read the article

< Previous Page | 503 504 505 506 507 508 509 510 511 512 513 514  | Next Page >