Search Results

Search found 44141 results on 1766 pages for 'unix development support'.

Page 507/1766 | < Previous Page | 503 504 505 506 507 508 509 510 511 512 513 514  | Next Page >

  • Should i scrap my own leader board and go for the Facebook built in one?

    - by Magnus Johansson
    Currently I'm rolling my own score and leader board functionality in my FB canvas game. In my game, users can see what score they have, in addition I have a public leader board where everybody can see all scores from all other users.(I also have possibility for each user to set themselves as anonymous in the leader board, if desired) But now I started thinking; why do I have my own leader board system? Facebook has this scores API and I started play around with it. It, of course, integrates well with Facebook, scores and achievement showing up in the ticker and what not. But it seems that I can't let each user see a public leader board in much the same way I currently have it. But it do let the users see their friends score. Let's face it, this is all what FB is all about, right? Friends. So the question is; should i scrap my own leader board and go for the Facebook built in one (and skip the public part of it)? My gut feeling says yes, but I wanted to hear what other thinks.

    Read the article

  • Alpha interpolation in a pixel shader

    - by c4sh
    How does the interpolation in a fragment shader work when it comes to the alpha parameter? I'm programming a shader with SharpDX, DirectX11. My idea is to interpolate 2 3d points of a segment, so that I'll have the position interpolated in between in the pixel shader. But I want to know what happens with the alpha parameter when that position is blocked by another polygon. For instance, if alpha is 1.0 at the left end of my segment and 0.0 at the other one. What is the value of alpha in the middle, 0.5? Or does it depend on the visibility at that point (meaning it could be, for instance, 1.0 OR 0.0 depending on if that part of the segment is hidden by a poolygon?

    Read the article

  • box2D simulation doesn't work

    - by shadow_of__soul
    has been a while since last time i used box2D, and i needed to make some stuff, and i saw that my simulation don't worked (compiles, but do anything). i haven't been able to even have working the examples or this simple example i'm pasting below: package { import flash.display.Sprite; import flash.events.Event; import Box2D.Common.Math.b2Vec2; import Box2D.Dynamics.b2World; import Box2D.Dynamics.b2BodyDef; import Box2D.Dynamics.b2Body; import Box2D.Collision.Shapes.b2CircleShape; import Box2D.Dynamics.b2Fixture; import Box2D.Dynamics.b2FixtureDef; import org.flashdevelop.utils.FlashConnect; import flash.events.TimerEvent; import flash.utils.Timer; public class Main extends Sprite { public var world:b2World; public var wheelBody:b2Body; public var stepTimer:Timer; public function Main():void { if (stage) init(); else addEventListener(Event.ADDED_TO_STAGE, init); } private function init(e:Event = null):void { removeEventListener(Event.ADDED_TO_STAGE, init); var gravity:b2Vec2 = new b2Vec2(0, 10); world = new b2World(gravity, true); var wheelBodyDef:b2BodyDef = new b2BodyDef(); wheelBodyDef.type = b2Body.b2_dynamicBody; wheelBody = world.CreateBody(wheelBodyDef); var circleShape:b2CircleShape = new b2CircleShape(5); var wheelFixtureDef:b2FixtureDef = new b2FixtureDef(); wheelFixtureDef.shape = circleShape; var wheelFixture:b2Fixture = wheelBody.CreateFixture(wheelFixtureDef); stepTimer = new Timer(0.025 * 1000); stepTimer.addEventListener(TimerEvent.TIMER, onTick); FlashConnect.trace(wheelBody.GetPosition().x, wheelBody.GetPosition().y); stepTimer.start(); // entry point } private function onTick(a_event:TimerEvent):void { world.Step(0.025, 10, 10); FlashConnect.trace(wheelBody.GetPosition().x, wheelBody.GetPosition().y); } } } on this, the object should fall down, but the positions reported me by the trace method, are always 0. so is not a display problem, that i see everything freeze, is why the simulation is not working, and i have no idea why :( can anyone point me to the right direction of where i need to look for the problem? my settings are: windows 7 flashdevelop 4.2.1 SDK: 4.6.0 compiling for flash 10, but i tried every target i have available (till flash 11.5) project set at 30fps

    Read the article

  • Spin-off of "Project: Memory++" in Khan academy [on hold]

    - by smraj
    This is the link of the program that I am trying https://www.khanacademy.org/cs/memory-tile-game/5966959895642112 When I am placing the mouse over the block it should change to red colour and when it is released the image should be displayed but my issue is that when i place the mouse over the block it changes its color ,but on release the image is not displayed.I kindly request someone in solving this

    Read the article

  • Implementing a wrapping wire (like the Worms Ninja Rope) in a 2D physics engine

    - by Andrew Russell
    I've been trying out some rope-physics recently, and I've found that the "standard" solution - making a rope from a series of objects strung together with springs or joints - is unsatisfying. Especially when rope swinging is relevant to gameplay. I don't really care about a rope's ability to wrap up or sag (this can be faked for visuals anyway). For gameplay, what is important is the ability for the rope to wrap around the environment and then subsequently unwrap. It doesn't even have to behave like rope - a "wire" made up of straight line segments would do. Here's an illustration: This is very similar to the "Ninja Rope" from the game Worms. Because I'm using a 2D physics engine - my environment is made up of 2D convex polygons. (Specifically I am using SAT in Farseer.) So my question is this: How would you implement the "wrapping" effect? It seems pretty obvious that the wire will be made up of a series of line segments that "split" and "join". And the final (active) segment of that line, where the moving object attaches, will be a fixed-length joint. But what is the maths / algorithm involved for determining when and where the active line segment needs to be split? And when it needs to be joined with the previous segment? (Previously this question also asked about doing this for a dynamic environment - I've decided to split that off into other questions.)

    Read the article

  • Summary of Oracle E-Business Suite Technology Webcasts and Training

    - by BillSawyer
    Last Updated: November 16, 2011We're glad to hear that you've been finding our ATG Live Webcast series to be useful.  If you missed a webcast, you can download the presentation materials and listen to the recordings below. We're collecting other learning-related materials right now.  We'll update this summary with pointers to new training resources on an ongoing basis.  ATG Live Webcast Replays All of the ATG Live Webcasts are hosted by the Oracle University Knowledge Center.  In order to access the replays, you will need a free Oracle.com account. You can register for an Oracle.com account here.If you are a first-time OUKC user, you will have to accept the Terms of Use. Sign-in with your Oracle.com account, or if you don't already have one, use the link provided on the sign-in screen to create an account. After signing in, accept the Terms of Use. Upon completion of these steps, you will be directed to the replay. You only need to accept the Terms of Use once. Your acceptance will be noted on your account for all future OUKC replays and event registrations. 1. E-Business Suite R12 Oracle Application Framework (OAF) Rich User Interface Enhancements (Presentation) Prabodh Ambale (Senior Manager, ATG Development) and Gustavo Jiminez (Development Manager, ATG Development) offer a comprehensive review of the latest user interface enhancements and updates to OA Framework in EBS 12.  The webcast provides a detailed look at new features designed to enhance usability, including new capabilities for personalization and extensions, and features that support the use of dashboards and web services. (January 2011) 2. E-Business Suite R12 Service Oriented Architectures (SOA) Using the E-Business Suite Adapter (Presentation, Viewlet) Neeraj Chauhan (Product Manager, ATG Development) reviews the Service Oriented Architecture (SOA) capabilities within E-Business Suite 12, focussing on using the E-Business Suite Adapter to integrate EBS with third-party applications via web services, and orchestrate services and distributed transactions across disparate applications. (February 2011) 3. Deploying Oracle VM Templates for Oracle E-Business Suite and Oracle PeopleSoft Enterprise Applications Ivo Dujmovic (Director, ATG Development) reviews the latest capabilities for using Oracle VM to deploy virtualized EBS database and application tier instances using prebuilt EBS templates, wire those virtualized instances together using the EBS virtualization kit, and take advantage of live migration of user sessions between failing application tier nodes.  (February 2011) 4. How to Reduce Total Cost of Ownership (TCO) Using Oracle E-Business Suite Management Packs (Presentation) Angelo Rosado (Product Manager, ATG Development) provides an overview of how EBS sysadmins can make their lives easier with the Management Packs for Oracle E-Business Suite Release 12.  This session highlights key features in Application Management Pack (AMP) and Application Change Management Pack) that can automate or streamline system configurations, monitor EBS performance and uptime, keep multiple EBS environments in sync with patches and configurations, and create patches for your own EBS customizations and apply them with Oracle's own patching tools.  (June 2011) 5. Upgrading E-Business Suite 11i Customizations to R12 (Presentation) Sara Woodhull (Principal Product Manager, ATG Development) provides an overview of how E-Business Suite developers can manage and upgrade existing EBS 11i customizations to R12.  Sara covers methods for comparing customizations between Release 11i and 12, managing common customization types, managing deprecated technologies, and more. (July 2011) 6. Tuning All Layers of E-Business Suite (Part 1 of 3) (Presentation) Lester Gutierrez, Senior Architect, and Deepak Bhatnagar, Senior Manager, from the E-Business Suite Application Performance team, lead Tuning All Layers of E-Business Suite (Part 1 of 3). This webcast provides an overview of how Oracle E-Business Suite system administrators, DBAs, developers, and implementers can improve E-Business Suite performance by following a performance tuning framework. Part 1 focuses on the performance triage approach, tuning applications modules, upgrade performance best practices, and tuning the database tier. This ATG Live Webcast is an expansion of the performance sessions at conferences that are perennial favourites with hardcore Apps DBAs. (August 2011)  7. Oracle E-Business Suite Directions: Deployment and System Administration (Presentation) Max Arderius, Manager Applications Technology Group, and Ivo Dujmovic, Director Applications Technology group, lead Oracle E-Business Suite Directions: Deployment and System Administration covering important changes in E-Business Suite R12.2. The changes discussed in this presentation include Oracle E-Business Suite architecture, installation, upgrade, WebLogic Server integration, online patching, and cloning. This webcast provides an overview of how Oracle E-Business Suite system administrators, DBAs, developers, and implementers can prepare themselves for these changes in R12.2 of Oracle E-Business Suite. (October 2011) Oracle University Courses For a general listing of all Oracle University courses related to E-Business Suite Technology, use the Oracle University E-Business Suite Technology course catalog link. Oracle University E-Business Suite Technology Course Catalog 1. R12 Oracle Applications System Administrator Fundamentals In this course students learn concepts and functions that are critical to the System Administrator role in implementing and managing the Oracle E-Business Suite. Topics covered include configuring security and user management, configuring flexfields, managing concurrent processing, and setting up other essential features such as profile options and printing. In addition, configuration and maintenance of an Oracle E-Business Suite through Oracle Applications Manager is discussed. Students also learn the fundamentals of Oracle Workflow including its setup. The System Administrator Fundamentals course provides the foundation needed to effectively control security and ensure smooth operations for an E-Business Suite installation. Demonstrations and hands-on practice reinforce the fundamental concepts of configuring an Oracle E-Business Suite, as well as handling day-to-day system administrator tasks. 2. R12.x Install/Patch/Maintain Oracle E-Business Suite This course will be applicable for customers who have implemented Oracle E-Business Suite Release 12 or Oracle E-Business Suite 12.1. This course explains how to go about installing and maintaining an Oracle E-Business Suite Release 12.x system. Both Standard and Express installation types are covered in detail. Maintenance topics include a detailed examination of the standard tools and utilities, and an in-depth look at patching an Oracle E-Business Suite system. After this course, students will be able to make informed decisions about how to install an Oracle E-Business Suite system that meets their specific requirements, and how to maintain the system afterwards. The extensive hands-on practices include performing an installation on a Linux system, navigating the file system to locate key files, running the standard maintenance tools and utilities, applying patches, and carrying out cloning operations. 3. R12.x Extend Oracle Applications: Building OA Framework Applications This class is a hands-on lab-intensive course that will keep the student busy and active for the duration of the course. While the course covers the fundamentals that support OA Framework-based applications, the course is really an exercise in J2EE programming. Over the duration of the course, the student will create an OA Framework-based application that selects, inserts, updates, and deletes data from a R12 Oracle Applications instance. 4. R12.x Extend Oracle Applications: Customizing OA Framework Applications This course has been significantly changed from the prior version to include additional deployments. The course doesn't teach the specifics of configuration of each product. That is left to the product-specific courses. What the course does cover is the general methods of building, personalizing, and extending OA Framework-based pages within the E-Business Suite. Additionally, the course covers the methods to deploy those types of customizations. The course doesn't include discussion of the Oracle Forms-based pages within the E-Business Suite. 5. R12.x Extend Oracle Applications: OA Framework Personalizations Personalization is the ability within an E-Business Suite instance to make changes to the look and behavior of OA Framework-based pages without programming. And, personalizations are likely to survive patches and upgrades, increasing their utility. This course will systematically walk you through the myriad of personalization options, starting with simple examples and increasing in complexity from there. 6. E-Business Suite: BI Publisher 5.6.3 for Developers Starting with the basic concepts, architecture, and underlying standards of Oracle XML Publisher, this course will lead a student through a progress of exercises building their expertise. By the end of the course, the student should be able to create Oracle XML Publisher RTF templates and data templates. They should also be able to deploy and maintain a BI Publisher report in an E-Business Suite instance. Students will also be introduced to Oracle BI Publisher Enterprise. 7. R12.x Implement Oracle Workflow This course provides an overview of the architecture and features of Oracle Workflow and the benefits of using Oracle Workflow in an e-business environment. You can learn how to design workflow processes to automate and streamline business processes, and how to define event subscriptions to perform processing triggered by business events. Students also learn how to respond to workflow notifications, how to administer and monitor workflow processes, and what setup steps are required for Oracle Workflow. Demonstrations and hands-on practice reinforce the fundamental concepts. 8. R12.x Oracle E-Business Suite Essentials for Implementers Oracle R12.1 E-Business Essentials for Implementers is a course that provides a functional foundation for any E-Business Suite Fundamentals course.

    Read the article

  • How to Enable ActiveX in Chrome?

    - by Jeremiah Morrill
    I read that early builds of Chrome supported ActiveX, but was later restricted to certain MIME types (for support for say Windows Media Player). I then read Google was going to enable ActiveX strictly for the Korean market. How do I (re)enable this in Chrome? Our web based product relies on ActiveX controls from 3rd parties to play custom video. This limits us to IE. We'd love to support Chrome also, but find it impossible w/o ActiveX support.

    Read the article

  • Points on lines where the two lines are the closest together

    - by James Bedford
    Hey guys, I'm trying to find the points on two lines where the two lines are the closest. I've implemented the following method (Points and Vectors are as you'd expect, and a Line consists of a Point on the line and a non-normalized direction Vector from that point): void CDClosestPointsOnTwoLines(Line line1, Line line2, Point* closestPoints) { closestPoints[0] = line1.pointOnLine; closestPoints[1] = line2.pointOnLine; Vector d1 = line1.direction; Vector d2 = line2.direction; float a = d1.dot(d1); float b = d1.dot(d2); float e = d2.dot(d2); float d = a*e - b*b; if (d != 0) // If the two lines are not parallel. { Vector r = Vector(line1.pointOnLine) - Vector(line2.pointOnLine); float c = d1.dot(r); float f = d2.dot(r); float s = (b*f - c*e) / d; float t = (a*f - b*c) / d; closestPoints[0] = line1.positionOnLine(s); closestPoints[1] = line2.positionOnLine(t); } else { printf("Lines were parallel.\n"); } } I'm using OpenGL to draw three lines that move around the world, the third of which should be the line that most closely connects the other two lines, the two end points of which are calculated using this function. The problem is that the first point of closestPoints after this function is called will lie on line1, but the second point won't lie on line2, let alone at the closest point on line2! I've checked over the function many times but I can't see where the mistake in my implementation is. I've checked my dot product function, scalar multiplication, subtraction, positionOnLine() etc. etc. So my assumption is that the problem is within this method implementation. If it helps to find the answer, this is function supposed to be an implementation of section 5.1.8 from 'Real-Time Collision Detection' by Christer Ericson. Many thanks for any help!

    Read the article

  • Problem rendering VBO

    - by Onno
    I'm developing a game engine using OpenTK. I'm trying to get to grips with the use of VBO's. I've run into some trouble because somehow it doesn't render correctly. Thus far I've used immediate mode to render a test object, a test cube with a texture. namespace SharpEngine.Utility.Mesh { using System; using System.Collections.Generic; using OpenTK; using OpenTK.Graphics; using OpenTK.Graphics.OpenGL; using SharpEngine.Utility; using System.Drawing; public class ImmediateFaceBasedCube : IMesh { private IList<Face> faces = new List<Face>(); public ImmediateFaceBasedCube() { IList<Vector3> allVertices = new List<Vector3>(); //rechtsbovenvoor allVertices.Add(new Vector3(1.0f, 1.0f, 1.0f)); //0 //rechtsbovenachter allVertices.Add(new Vector3(1.0f, 1.0f, -1.0f)); //1 //linksbovenachter allVertices.Add(new Vector3(-1.0f, 1.0f, -1.0f)); //2 //linksbovenvoor allVertices.Add(new Vector3(-1.0f, 1.0f, 1.0f)); //3 //rechtsondervoor allVertices.Add(new Vector3(1.0f, -1.0f, 1.0f)); //4 //rechtsonderachter allVertices.Add(new Vector3(1.0f, -1.0f, -1.0f)); //5 //linksonderachter allVertices.Add(new Vector3(-1.0f, -1.0f, -1.0f)); //6 //linksondervoor allVertices.Add(new Vector3(-1.0f, -1.0f, 1.0f)); //7 IList<Vector2> textureCoordinates = new List<Vector2>(); textureCoordinates.Add(new Vector2(0, 0)); //AA - 0 textureCoordinates.Add(new Vector2(0, 0.3333333f)); //AB - 1 textureCoordinates.Add(new Vector2(0, 0.6666666f)); //AC - 2 textureCoordinates.Add(new Vector2(0, 1)); //AD - 3 textureCoordinates.Add(new Vector2(0.3333333f, 0)); //BA - 4 textureCoordinates.Add(new Vector2(0.3333333f, 0.3333333f)); //BB - 5 textureCoordinates.Add(new Vector2(0.3333333f, 0.6666666f)); //BC - 6 textureCoordinates.Add(new Vector2(0.3333333f, 1)); //BD - 7 textureCoordinates.Add(new Vector2(0.6666666f, 0)); //CA - 8 textureCoordinates.Add(new Vector2(0.6666666f, 0.3333333f)); //CB - 9 textureCoordinates.Add(new Vector2(0.6666666f, 0.6666666f)); //CC -10 textureCoordinates.Add(new Vector2(0.6666666f, 1)); //CD -11 textureCoordinates.Add(new Vector2(1, 0)); //DA -12 textureCoordinates.Add(new Vector2(1, 0.3333333f)); //DB -13 textureCoordinates.Add(new Vector2(1, 0.6666666f)); //DC -14 textureCoordinates.Add(new Vector2(1, 1)); //DD -15 Vector3 copy1 = new Vector3(-2.0f, -2.5f, -3.5f); IList<Vector3> normals = new List<Vector3>(); normals.Add(new Vector3(0, 1.0f, 0)); //0 normals.Add(new Vector3(0, 0, 1.0f)); //1 normals.Add(new Vector3(1.0f, 0, 0)); //2 normals.Add(new Vector3(0, 0, -1.0f)); //3 normals.Add(new Vector3(-1.0f, 0, 0)); //4 normals.Add(new Vector3(0, -1.0f, 0)); //5 //todo: move vertex normal and texture data to datastructure //todo: VBO based rendering //top face //1 IList<VertexData> verticesT1 = new List<VertexData>(); VertexData T1a = new VertexData(); T1a.Normal = normals[0]; T1a.TexCoord = textureCoordinates[5]; T1a.Position = allVertices[3]; verticesT1.Add(T1a); VertexData T1b = new VertexData(); T1b.Normal = normals[0]; T1b.TexCoord = textureCoordinates[9]; T1b.Position = allVertices[0]; verticesT1.Add(T1b); VertexData T1c = new VertexData(); T1c.Normal = normals[0]; T1c.TexCoord = textureCoordinates[10]; T1c.Position = allVertices[1]; verticesT1.Add(T1c); Face F1 = new Face(verticesT1); faces.Add(F1); //2 IList<VertexData> verticesT2 = new List<VertexData>(); VertexData T2a = new VertexData(); T2a.Normal = normals[0]; T2a.TexCoord = textureCoordinates[10]; T2a.Position = allVertices[1]; verticesT2.Add(T2a); VertexData T2b = new VertexData(); T2b.Normal = normals[0]; T2b.TexCoord = textureCoordinates[6]; T2b.Position = allVertices[2]; verticesT2.Add(T2b); VertexData T2c = new VertexData(); T2c.Normal = normals[0]; T2c.TexCoord = textureCoordinates[5]; T2c.Position = allVertices[3]; verticesT2.Add(T2c); Face F2 = new Face(verticesT2); faces.Add(F2); //front face //3 IList<VertexData> verticesT3 = new List<VertexData>(); VertexData T3a = new VertexData(); T3a.Normal = normals[1]; T3a.TexCoord = textureCoordinates[1]; T3a.Position = allVertices[3]; verticesT3.Add(T3a); VertexData T3b = new VertexData(); T3b.Normal = normals[1]; T3b.TexCoord = textureCoordinates[0]; T3b.Position = allVertices[7]; verticesT3.Add(T3b); VertexData T3c = new VertexData(); T3c.Normal = normals[1]; T3c.TexCoord = textureCoordinates[5]; T3c.Position = allVertices[0]; verticesT3.Add(T3c); Face F3 = new Face(verticesT3); faces.Add(F3); //4 IList<VertexData> verticesT4 = new List<VertexData>(); VertexData T4a = new VertexData(); T4a.Normal = normals[1]; T4a.TexCoord = textureCoordinates[5]; T4a.Position = allVertices[0]; verticesT4.Add(T4a); VertexData T4b = new VertexData(); T4b.Normal = normals[1]; T4b.TexCoord = textureCoordinates[0]; T4b.Position = allVertices[7]; verticesT4.Add(T4b); VertexData T4c = new VertexData(); T4c.Normal = normals[1]; T4c.TexCoord = textureCoordinates[4]; T4c.Position = allVertices[4]; verticesT4.Add(T4c); Face F4 = new Face(verticesT4); faces.Add(F4); //right face //5 IList<VertexData> verticesT5 = new List<VertexData>(); VertexData T5a = new VertexData(); T5a.Normal = normals[2]; T5a.TexCoord = textureCoordinates[2]; T5a.Position = allVertices[0]; verticesT5.Add(T5a); VertexData T5b = new VertexData(); T5b.Normal = normals[2]; T5b.TexCoord = textureCoordinates[1]; T5b.Position = allVertices[4]; verticesT5.Add(T5b); VertexData T5c = new VertexData(); T5c.Normal = normals[2]; T5c.TexCoord = textureCoordinates[6]; T5c.Position = allVertices[1]; verticesT5.Add(T5c); Face F5 = new Face(verticesT5); faces.Add(F5); //6 IList<VertexData> verticesT6 = new List<VertexData>(); VertexData T6a = new VertexData(); T6a.Normal = normals[2]; T6a.TexCoord = textureCoordinates[1]; T6a.Position = allVertices[4]; verticesT6.Add(T6a); VertexData T6b = new VertexData(); T6b.Normal = normals[2]; T6b.TexCoord = textureCoordinates[5]; T6b.Position = allVertices[5]; verticesT6.Add(T6b); VertexData T6c = new VertexData(); T6c.Normal = normals[2]; T6c.TexCoord = textureCoordinates[6]; T6c.Position = allVertices[1]; verticesT6.Add(T6c); Face F6 = new Face(verticesT6); faces.Add(F6); //back face //7 IList<VertexData> verticesT7 = new List<VertexData>(); VertexData T7a = new VertexData(); T7a.Normal = normals[3]; T7a.TexCoord = textureCoordinates[4]; T7a.Position = allVertices[5]; verticesT7.Add(T7a); VertexData T7b = new VertexData(); T7b.Normal = normals[3]; T7b.TexCoord = textureCoordinates[9]; T7b.Position = allVertices[2]; verticesT7.Add(T7b); VertexData T7c = new VertexData(); T7c.Normal = normals[3]; T7c.TexCoord = textureCoordinates[5]; T7c.Position = allVertices[1]; verticesT7.Add(T7c); Face F7 = new Face(verticesT7); faces.Add(F7); //8 IList<VertexData> verticesT8 = new List<VertexData>(); VertexData T8a = new VertexData(); T8a.Normal = normals[3]; T8a.TexCoord = textureCoordinates[9]; T8a.Position = allVertices[2]; verticesT8.Add(T8a); VertexData T8b = new VertexData(); T8b.Normal = normals[3]; T8b.TexCoord = textureCoordinates[4]; T8b.Position = allVertices[5]; verticesT8.Add(T8b); VertexData T8c = new VertexData(); T8c.Normal = normals[3]; T8c.TexCoord = textureCoordinates[8]; T8c.Position = allVertices[6]; verticesT8.Add(T8c); Face F8 = new Face(verticesT8); faces.Add(F8); //left face //9 IList<VertexData> verticesT9 = new List<VertexData>(); VertexData T9a = new VertexData(); T9a.Normal = normals[4]; T9a.TexCoord = textureCoordinates[8]; T9a.Position = allVertices[6]; verticesT9.Add(T9a); VertexData T9b = new VertexData(); T9b.Normal = normals[4]; T9b.TexCoord = textureCoordinates[13]; T9b.Position = allVertices[3]; verticesT9.Add(T9b); VertexData T9c = new VertexData(); T9c.Normal = normals[4]; T9c.TexCoord = textureCoordinates[9]; T9c.Position = allVertices[2]; verticesT9.Add(T9c); Face F9 = new Face(verticesT9); faces.Add(F9); //10 IList<VertexData> verticesT10 = new List<VertexData>(); VertexData T10a = new VertexData(); T10a.Normal = normals[4]; T10a.TexCoord = textureCoordinates[8]; T10a.Position = allVertices[6]; verticesT10.Add(T10a); VertexData T10b = new VertexData(); T10b.Normal = normals[4]; T10b.TexCoord = textureCoordinates[12]; T10b.Position = allVertices[7]; verticesT10.Add(T10b); VertexData T10c = new VertexData(); T10c.Normal = normals[4]; T10c.TexCoord = textureCoordinates[13]; T10c.Position = allVertices[3]; verticesT10.Add(T10c); Face F10 = new Face(verticesT10); faces.Add(F10); //bottom face //11 IList<VertexData> verticesT11 = new List<VertexData>(); VertexData T11a = new VertexData(); T11a.Normal = normals[5]; T11a.TexCoord = textureCoordinates[10]; T11a.Position = allVertices[7]; verticesT11.Add(T11a); VertexData T11b = new VertexData(); T11b.Normal = normals[5]; T11b.TexCoord = textureCoordinates[9]; T11b.Position = allVertices[6]; verticesT11.Add(T11b); VertexData T11c = new VertexData(); T11c.Normal = normals[5]; T11c.TexCoord = textureCoordinates[14]; T11c.Position = allVertices[4]; verticesT11.Add(T11c); Face F11 = new Face(verticesT11); faces.Add(F11); //12 IList<VertexData> verticesT12 = new List<VertexData>(); VertexData T12a = new VertexData(); T12a.Normal = normals[5]; T12a.TexCoord = textureCoordinates[13]; T12a.Position = allVertices[5]; verticesT12.Add(T12a); VertexData T12b = new VertexData(); T12b.Normal = normals[5]; T12b.TexCoord = textureCoordinates[14]; T12b.Position = allVertices[4]; verticesT12.Add(T12b); VertexData T12c = new VertexData(); T12c.Normal = normals[5]; T12c.TexCoord = textureCoordinates[9]; T12c.Position = allVertices[6]; verticesT12.Add(T12c); Face F12 = new Face(verticesT12); faces.Add(F12); } public void draw() { GL.Begin(BeginMode.Triangles); foreach (Face face in faces) { foreach (VertexData datapoint in face.verticesWithTexCoords) { GL.Normal3(datapoint.Normal); GL.TexCoord2(datapoint.TexCoord); GL.Vertex3(datapoint.Position); } } GL.End(); } } } Gets me this very nice picture: The immediate mode cube renders nicely and taught me a bit on how to use OpenGL, but VBO's are the way to go. Since I read on the OpenTK forums that OpenTK has problems doing VA's or DL's, I decided to skip using those. Now, I've tried to change this cube to a VBO by using the same vertex, normal and tc collections, and making float arrays from them by using the coordinates in combination with uint arrays which contain the index numbers from the immediate cube. (see the private functions at end of the code sample) Somehow this only renders two triangles namespace SharpEngine.Utility.Mesh { using System; using System.Collections.Generic; using OpenTK; using OpenTK.Graphics; using OpenTK.Graphics.OpenGL; using SharpEngine.Utility; using System.Drawing; public class VBOFaceBasedCube : IMesh { private int VerticesVBOID; private int VerticesVBOStride; private int VertexCount; private int ELementBufferObjectID; private int textureCoordinateVBOID; private int textureCoordinateVBOStride; //private int textureCoordinateArraySize; private int normalVBOID; private int normalVBOStride; public VBOFaceBasedCube() { IList<Vector3> allVertices = new List<Vector3>(); //rechtsbovenvoor allVertices.Add(new Vector3(1.0f, 1.0f, 1.0f)); //0 //rechtsbovenachter allVertices.Add(new Vector3(1.0f, 1.0f, -1.0f)); //1 //linksbovenachter allVertices.Add(new Vector3(-1.0f, 1.0f, -1.0f)); //2 //linksbovenvoor allVertices.Add(new Vector3(-1.0f, 1.0f, 1.0f)); //3 //rechtsondervoor allVertices.Add(new Vector3(1.0f, -1.0f, 1.0f)); //4 //rechtsonderachter allVertices.Add(new Vector3(1.0f, -1.0f, -1.0f)); //5 //linksonderachter allVertices.Add(new Vector3(-1.0f, -1.0f, -1.0f)); //6 //linksondervoor allVertices.Add(new Vector3(-1.0f, -1.0f, 1.0f)); //7 IList<Vector2> textureCoordinates = new List<Vector2>(); textureCoordinates.Add(new Vector2(0, 0)); //AA - 0 textureCoordinates.Add(new Vector2(0, 0.3333333f)); //AB - 1 textureCoordinates.Add(new Vector2(0, 0.6666666f)); //AC - 2 textureCoordinates.Add(new Vector2(0, 1)); //AD - 3 textureCoordinates.Add(new Vector2(0.3333333f, 0)); //BA - 4 textureCoordinates.Add(new Vector2(0.3333333f, 0.3333333f)); //BB - 5 textureCoordinates.Add(new Vector2(0.3333333f, 0.6666666f)); //BC - 6 textureCoordinates.Add(new Vector2(0.3333333f, 1)); //BD - 7 textureCoordinates.Add(new Vector2(0.6666666f, 0)); //CA - 8 textureCoordinates.Add(new Vector2(0.6666666f, 0.3333333f)); //CB - 9 textureCoordinates.Add(new Vector2(0.6666666f, 0.6666666f)); //CC -10 textureCoordinates.Add(new Vector2(0.6666666f, 1)); //CD -11 textureCoordinates.Add(new Vector2(1, 0)); //DA -12 textureCoordinates.Add(new Vector2(1, 0.3333333f)); //DB -13 textureCoordinates.Add(new Vector2(1, 0.6666666f)); //DC -14 textureCoordinates.Add(new Vector2(1, 1)); //DD -15 Vector3 copy1 = new Vector3(-2.0f, -2.5f, -3.5f); IList<Vector3> normals = new List<Vector3>(); normals.Add(new Vector3(0, 1.0f, 0)); //0 normals.Add(new Vector3(0, 0, 1.0f)); //1 normals.Add(new Vector3(1.0f, 0, 0)); //2 normals.Add(new Vector3(0, 0, -1.0f)); //3 normals.Add(new Vector3(-1.0f, 0, 0)); //4 normals.Add(new Vector3(0, -1.0f, 0)); //5 //todo: VBO based rendering uint[] vertexElements = { 3,0,1, //01 1,2,3, //02 3,7,0, //03 0,7,4, //04 0,4,1, //05 4,5,1, //06 5,2,1, //07 2,5,6, //08 6,3,2, //09 6,7,5, //10 7,6,4, //11 5,4,6 //12 }; VertexCount = vertexElements.Length; IList<uint> vertexElementList = new List<uint>(vertexElements); uint[] normalElements = { 0,0,0, 0,0,0, 1,1,1, 1,1,1, 2,2,2, 2,2,2, 3,3,3, 3,3,3, 4,4,4, 4,4,4, 5,5,5, 5,5,5 }; IList<uint> normalElementList = new List<uint>(normalElements); uint[] textureIndexArray = { 5,9,10, 10,6,5, 1,0,5, 5,0,4, 2,1,6, 1,5,6, 4,9,5, 9,4,8, 8,13,9, 8,12,13, 10,9,14, 13,14,9 }; //textureCoordinateArraySize = textureIndexArray.Length; IList<uint> textureIndexList = new List<uint>(textureIndexArray); LoadVBO(allVertices, normals, textureCoordinates, vertexElements, normalElementList, textureIndexList); } public void draw() { //bind vertices //bind elements //bind normals //bind texture coordinates GL.EnableClientState(ArrayCap.VertexArray); GL.EnableClientState(ArrayCap.NormalArray); GL.EnableClientState(ArrayCap.TextureCoordArray); GL.BindBuffer(BufferTarget.ArrayBuffer, VerticesVBOID); GL.VertexPointer(3, VertexPointerType.Float, VerticesVBOStride, 0); GL.BindBuffer(BufferTarget.ArrayBuffer, normalVBOID); GL.NormalPointer(NormalPointerType.Float, normalVBOStride, 0); GL.BindBuffer(BufferTarget.ArrayBuffer, textureCoordinateVBOID); GL.TexCoordPointer(2, TexCoordPointerType.Float, textureCoordinateVBOStride, 0); GL.BindBuffer(BufferTarget.ElementArrayBuffer, ELementBufferObjectID); GL.DrawElements(BeginMode.Polygon, VertexCount, DrawElementsType.UnsignedShort, 0); } //loads a static VBO void LoadVBO(IList<Vector3> vertices, IList<Vector3> normals, IList<Vector2> texcoords, uint[] elements, IList<uint> normalIndices, IList<uint> texCoordIndices) { int size; //todo // To create a VBO: // 1) Generate the buffer handles for the vertex and element buffers. // 2) Bind the vertex buffer handle and upload your vertex data. Check that the buffer was uploaded correctly. // 3) Bind the element buffer handle and upload your element data. Check that the buffer was uploaded correctly. float[] verticesArray = convertVector3fListToFloatArray(vertices); float[] normalsArray = createFloatArrayFromListOfVector3ElementsAndIndices(normals, normalIndices); float[] textureCoordinateArray = createFloatArrayFromListOfVector2ElementsAndIndices(texcoords, texCoordIndices); GL.GenBuffers(1, out VerticesVBOID); GL.BindBuffer(BufferTarget.ArrayBuffer, VerticesVBOID); Console.WriteLine("load 1 - vertices"); VerticesVBOStride = BlittableValueType.StrideOf(verticesArray); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(verticesArray.Length * sizeof(float)), verticesArray, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ArrayBuffer, BufferParameterName.BufferSize, out size); if (verticesArray.Length * BlittableValueType.StrideOf(verticesArray) != size) { throw new ApplicationException("Vertex data not uploaded correctly"); } else { Console.WriteLine("load 1 finished ok"); size = 0; } Console.WriteLine("load 2 - elements"); GL.GenBuffers(1, out ELementBufferObjectID); GL.BindBuffer(BufferTarget.ElementArrayBuffer, ELementBufferObjectID); GL.BufferData(BufferTarget.ElementArrayBuffer, (IntPtr)(elements.Length * sizeof(uint)), elements, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ElementArrayBuffer, BufferParameterName.BufferSize, out size); if (elements.Length * sizeof(uint) != size) { throw new ApplicationException("Element data not uploaded correctly"); } else { size = 0; Console.WriteLine("load 2 finished ok"); } GL.GenBuffers(1, out normalVBOID); GL.BindBuffer(BufferTarget.ArrayBuffer, normalVBOID); Console.WriteLine("load 3 - normals"); normalVBOStride = BlittableValueType.StrideOf(normalsArray); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(normalsArray.Length * sizeof(float)), normalsArray, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ArrayBuffer, BufferParameterName.BufferSize, out size); Console.WriteLine("load 3 - pre check"); if (normalsArray.Length * BlittableValueType.StrideOf(normalsArray) != size) { throw new ApplicationException("Normal data not uploaded correctly"); } else { Console.WriteLine("load 3 finished ok"); size = 0; } GL.GenBuffers(1, out textureCoordinateVBOID); GL.BindBuffer(BufferTarget.ArrayBuffer, textureCoordinateVBOID); Console.WriteLine("load 4- texture coordinates"); textureCoordinateVBOStride = BlittableValueType.StrideOf(textureCoordinateArray); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(textureCoordinateArray.Length * textureCoordinateVBOStride), textureCoordinateArray, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ArrayBuffer, BufferParameterName.BufferSize, out size); if (textureCoordinateArray.Length * BlittableValueType.StrideOf(textureCoordinateArray) != size) { throw new ApplicationException("texture coordinate data not uploaded correctly"); } else { Console.WriteLine("load 3 finished ok"); size = 0; } } //used to convert vertex arrayss for use with VBO's private float[] convertVector3fListToFloatArray(IList<Vector3> input) { int arrayElementCount = input.Count * 3; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (Vector3 v in input) { output[fillCount] = v.X; output[fillCount + 1] = v.Y; output[fillCount + 2] = v.Z; fillCount += 3; } return output; } //used for converting texture coordinate arrays for use with VBO's private float[] convertVector2List_to_floatArray(IList<Vector2> input) { int arrayElementCount = input.Count * 2; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (Vector2 v in input) { output[fillCount] = v.X; output[fillCount + 1] = v.Y; fillCount += 2; } return output; } //used to create an array of floats from private float[] createFloatArrayFromListOfVector3ElementsAndIndices(IList<Vector3> inputVectors, IList<uint> indices) { int arrayElementCount = inputVectors.Count * indices.Count * 3; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (int i in indices) { output[fillCount] = inputVectors[i].X; output[fillCount + 1] = inputVectors[i].Y; output[fillCount + 2] = inputVectors[i].Z; fillCount += 3; } return output; } private float[] createFloatArrayFromListOfVector2ElementsAndIndices(IList<Vector2> inputVectors, IList<uint> indices) { int arrayElementCount = inputVectors.Count * indices.Count * 2; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (int i in indices) { output[fillCount] = inputVectors[i].X; output[fillCount + 1] = inputVectors[i].Y; fillCount += 2; } return output; } } } This code will only render two triangles and they're nothing like I had in mind: I've done some searching. In some other questions I read that, if I did something wrong, I'd get no rendering at all. Clearly, something gets sent to the GFX card, but it might be that I'm not sending the right data. I've tried altering the sequence in which the triangles are rendered by swapping some of the index numbers in the vert, tc and normal index arrays, but this doesn't seem to be of any effect. I'm slightly lost here. What am I doing wrong here?

    Read the article

  • Why / how does XNA's right-handed coordinate system effect anything if you can specify near/far Z values?

    - by vargonian
    I am told repeatedly that XNA Game Studio uses a right-handed coordinate system, and I understand the difference between a right-handed and left-handed coordinate system. But given that you can use a method like Matrix.CreateOrthographicOffCenter to create your own custom projection matrix, specifying the left, right, top, bottom, zNear and zFar values, when does XNA's coordinate system come into play? For example, I'm told that in a right-handed coordinate system, increasingly negative Z values go "into" the screen. But I can easily create my projection matrix like this: Matrix.CreateOrthographicOffCenter(left, right, bottom, top, 0.1f, 10000f); I've now specified a lower value for the near Z than the far Z, which, as I understand it, means that positive Z now goes into the screen. I can similarly tweak the values of left/right/top/bottom to achieve similar results. If specifying a lower zNear than zFar value doesn't affect the Z direction of the coordinate system, what does it do? And when is the right-handed coordinate system enforced? The reason I ask is that I'm trying to implement a 2.5D camera that supports zooming and rotation, and I've spent two full days encountering one unexpected result after another.

    Read the article

  • How can I bend an object in OpenGL?

    - by mindnoise
    Is there a way one could bend an object, like a cylinder or a plane using OpenGL? I'm an OpenGL beginner (I'm using OpenGL ES 2.0, if that matters, although I suspect, math matters most in this case, so it's somehow version independent), I understand the basics: translate, rotate, matrix transformations, etc. I was wondering if there is a technique which allows you to actually change the geometry of your objects (in this case by bending them)? Any links, tutorials or other references are welcomed!

    Read the article

  • How was your experience working as a game tester?

    - by MrDatabase
    I'm currently an independent game developer. I'm open to the idea of working on a team in the game industry. I'm under the impression that being a "game tester" is a relatively easy way to get a job... however that job may be somewhat undesirable. So how was your experience working as a tester in the game industry? Some interesting experiences could include: Did the game tester position lead to other more desirable positions? How were the relationships between testers and developers? Did you write any code? (test "frameworks", unit tests etc) If bugs made it into production was any (potentially unfair) blame put on the testers?

    Read the article

  • cocos2d-x and handling touch events

    - by Jason
    I have my sprites on screen and I have a vector that stores each sprite. Can a CCSprite* handle a touch event? Or just the CCLayer*? What is the best way to decide what sprite was touched? Should I store the coordinates of where the sprite is (in the sprite class) and when I get the event, see if where the user touched is where the sprite is by looking through the vector and getting each sprites current coordinates? UPDATE: I subclass CCSprite: class Field : public cocos2d::CCSprite, public cocos2d::CCTargetedTouchDelegate and I implement functions: cocos2d::CCRect rect(); virtual void onEnter(); virtual void onExit(); bool containsTouchLocation(cocos2d::CCTouch* touch); virtual bool ccTouchBegan(cocos2d::CCTouch* touch, cocos2d::CCEvent* event); virtual void ccTouchMoved(cocos2d::CCTouch* touch, cocos2d::CCEvent* event); virtual void ccTouchEnded(cocos2d::CCTouch* touch, cocos2d::CCEvent* event); virtual void touchDelegateRetain(); virtual void touchDelegateRelease(); I put CCLOG statements in each one and I dont hit them! When I touch the CCLayer this sprite is on though I do hit those in the class that implements the Layer and puts these sprites on the layer.

    Read the article

  • Implementing algorithms via compute shaders vs. pipeline shaders

    - by TravisG
    With the availability of compute shaders for both DirectX and OpenGL it's now possible to implement many algorithms without going through the rasterization pipeline and instead use general purpose computing on the GPU to solve the problem. For some algorithms this seems to become the intuitive canonical solution because they're inherently not rasterization based, and rasterization-based shaders seemed to be a workaround to harness GPU power (simple example: creating a noise texture. No quad needs to be rasterized here). Given an algorithm that can be implemented both ways, are there general (potential) performance benefits over using compute shaders vs. going the normal route? Are there drawbacks that we should watch out for (for example, is there some kind of unusual overhead to switching from/to compute shaders at runtime)? Are there perhaps other benefits or drawbacks to consider when choosing between the two?

    Read the article

  • Online scoreboard in Python?

    - by CorundumGames
    So my friend and I are working on an arcade-style game in Python and Pygame. We're beginning to look at the feasibility of an online leaderboard, given our current programming backgrounds. Such a leaderboard would have the following requirements/features; The ability to search through demographics like region, country, platform, game mode, recentness ("best scores this month") and difficulty. (e.g. to make it possible for someone to say "I'm the best player in Italy!" or "I'm the best Linux player in South America!") Our game will not have online multiplayer, so no need to worry about that. We don't expect the game to be a million-dollar hit. We want the scores to be accessible both from in-game and the website. We would like some semblance of security to make sure no one plugs fake scores into the system. This is our present situation; Neither I nor my friend have any network programming background. All I really know is that sockets are low-level, HTTP is high-level. I happen to know that the Google App Engine might be useful for something like this, and I'm really thinking about going with that. We're not sure how we would store all the high score data. Our game will be free and open source (though we might keep the components that submit the high scores closed-source). Aside from all of this, we don't really have any idea where to begin. Any thoughts?

    Read the article

  • UV texture mapping with perspective correct interpolation

    - by Twodordan
    I am working on a software rasterizer for educational purposes and I am having issues with the texturing. The problem is, only one face of the cube gets correctly textured. The rest are stretched edges: You can see the running program online here. I have used cartesian coordinates, and all I do is interpolate the uv values along the scanlines. The general formula I use for interpolating the uv coordinates is pretty much the one I use for the z-buffering interpolation and looks like this (in this case for horizontal scanlines): u_Slope = (right.u - left.u) / (triangleRight_x - triangleLeft_x); v_Slope = (right.v - left.v) / (triangleRight_x - triangleLeft_x); //[...] new_u = left.u + ((currentX_onScanLine - triangleLeft_x) * u_Slope); new_v = left.v + ((currentX_onScanLine - triangleLeft_x) * v_Slope); Then, when I add each point to the pixel buffer, I restore z and uv: z = (1/z); uv.u = Math.round(uv.u * z *100);//*100 because my texture is 100x100px uv.v = Math.round(uv.v * z *100); Then I turn the u v indexes into one index in order to fetch the correct pixel from the image data (which is a 1 dimensional px array): var index = texture.width * uv.u + uv.v; //and the rest is unimportant imagedata[index].RGBA bla bla The interpolation formula is correct considering the consistency of the texture (including the straight stripes). However, I seem to get quite a lot of 0 values for either u or v. Which is probably why I only get one face right. Furthermore, why is the texture flipped horizontally? (the "1" is flipped) I must get some sleep now, but before I get into further dissecting of every single value to see what goes wrong, Can someone more experienced guess why might this be happening, just by looking at the cube? "I have no idea what I'm doing" (it's my first time implementing a rasterizer). Did I miss an important stage? Thanks for any insight. PS: My UV values are as follows: { u:0, v:0 }, { u:0, v:0.5 }, { u:0.5, v:0.5 }, { u:0.5, v:0 }, { u:0, v:0 }, { u:0, v:0.5 }, { u:0.5, v:0.5 }, { u:0.5, v:0 }

    Read the article

  • Follow point of interest by applying torque

    - by azymm
    Given a body with an orientation angle and a point of interest or targetAngle, is there an elegant solution for keeping the body oriented towards the point of interest by applying torque or impulses? I have a naive solution working below, but the effect is pretty 'wobbly', it'll overshoot each time, slowly getting closer to the target angle - undesirable effect in my case. I'd like to find a solution that is more intelligent - that can accelerate to near the target angle then decelerate and stop right at the target angle (or within a small range). If it helps, I'm using box2d and the body is a rectangle. def gameloop(dt): targetAngle = get_target_angle() bodyAngle = get_body_angle() deltaAngle = targetAngle - bodyAngle if deltaAngle > PI: deltaAngle = targetAngle - (bodyAngle + 2.0 * PI) if deltaAngle < -PI: deltaAngle = targetAngle - (bodyAngle - 2.0 * PI) # multiply by 2, for stronger reaction deltaAngle = deltaAngle * 2.0; body.apply_torque(deltaAngle); One other thing, when body has no linear velocity, the above solution works ok. But when the body has some linear velocity, the solution above causes really wonky movement. Not sure why, but would appreciate any hints as to why that might be.

    Read the article

  • Smooth terrain rendering

    - by __dominic
    I'm trying to render a smooth terrain with Direct3D. I've got a 50*50 grid with all y values = 0, and a set of 3D points that indicate the location on the grid and depth or height of the "valley" or "hill". I need to make the y values of the grid vertices higher or lower depending on how close they are to each 3D point. Thus, in the end I should have a smooth terrain renderer. I'm not sure at all what way I can do this. I've tried changing the height of the vertices based on the distance to each point just using this basic formula: dist = a² + b² + c² where a, b and c are the x, y, and z distance from a vertex to a 3D point. The result I get with this is not smooth at all. I'm thinking there is probably a better way. Here is a screenshot of what I've got for the moment: https://dl.dropbox.com/u/2562049/terrain.jpg

    Read the article

  • exporting bind and keyframe bone poses from blender to use in OpenGL

    - by SaldaVonSchwartz
    I'm having a hard time trying to understand how exactly Blender's concept of bone transforms maps to the usual math of skinning (which I'm implementing in an OpenGL-based engine of sorts). Or I'm missing out something in the math.. It's gonna be long, but here's as much background as I can think of. First, a few notes and assumptions: I'm using column-major order and multiply from right to left. So for instance, vertex v transformed by matrix A and then further transformed by matrix B would be: v' = BAv. This also means whenever I export a matrix from blender through python, I export it (in text format) in 4 lines, each representing a column. This is so I can then I can read them back into my engine like this: if (fscanf(fileHandle, "%f %f %f %f", &skeleton.joints[currentJointIndex].inverseBindTransform.m[0], &skeleton.joints[currentJointIndex].inverseBindTransform.m[1], &skeleton.joints[currentJointIndex].inverseBindTransform.m[2], &skeleton.joints[currentJointIndex].inverseBindTransform.m[3])) { if (fscanf(fileHandle, "%f %f %f %f", &skeleton.joints[currentJointIndex].inverseBindTransform.m[4], &skeleton.joints[currentJointIndex].inverseBindTransform.m[5], &skeleton.joints[currentJointIndex].inverseBindTransform.m[6], &skeleton.joints[currentJointIndex].inverseBindTransform.m[7])) { if (fscanf(fileHandle, "%f %f %f %f", &skeleton.joints[currentJointIndex].inverseBindTransform.m[8], &skeleton.joints[currentJointIndex].inverseBindTransform.m[9], &skeleton.joints[currentJointIndex].inverseBindTransform.m[10], &skeleton.joints[currentJointIndex].inverseBindTransform.m[11])) { if (fscanf(fileHandle, "%f %f %f %f", &skeleton.joints[currentJointIndex].inverseBindTransform.m[12], &skeleton.joints[currentJointIndex].inverseBindTransform.m[13], &skeleton.joints[currentJointIndex].inverseBindTransform.m[14], &skeleton.joints[currentJointIndex].inverseBindTransform.m[15])) { I'm simplifying the code I show because otherwise it would make things unnecessarily harder (in the context of my question) to explain / follow. Please refrain from making remarks related to optimizations. This is not final code. Having said that, if I understand correctly, the basic idea of skinning/animation is: I have a a mesh made up of vertices I have the mesh model-world transform W I have my joints, which are really just transforms from each joint's space to its parent's space. I'll call these transforms Bj meaning matrix which takes from joint j's bind pose to joint j-1's bind pose. For each of these, I actually import their inverse to the engine, Bj^-1. I have keyframes each containing a set of current poses Cj for each joint J. These are initially imported to my engine in TQS format but after (S)LERPING them I compose them into Cj matrices which are equivalent to the Bjs (not the Bj^-1 ones) only that for the current spacial configurations of each joint at that frame. Given the above, the "skeletal animation algorithm is" On each frame: check how much time has elpased and compute the resulting current time in the animation, from 0 meaning frame 0 to 1, meaning the end of the animation. (Oh and I'm looping forever so the time is mod(total duration)) for each joint: 1 -calculate its world inverse bind pose, that is Bj_w^-1 = Bj^-1 Bj-1^-1 ... B0^-1 2 -use the current animation time to LERP the componets of the TQS and come up with an interpolated current pose matrix Cj which should transform from the joints current configuration space to world space. Similar to what I did to get the world version of the inverse bind poses, I come up with the joint's world current pose, Cj_w = C0 C1 ... Cj 3 -now that I have world versions of Bj and Cj, I store this joint's world- skinning matrix K_wj = Cj_w Bj_w^-1. The above is roughly implemented like so: - (void)update:(NSTimeInterval)elapsedTime { static double time = 0; time = fmod((time + elapsedTime),1.); uint16_t LERPKeyframeNumber = 60 * time; uint16_t lkeyframeNumber = 0; uint16_t lkeyframeIndex = 0; uint16_t rkeyframeNumber = 0; uint16_t rkeyframeIndex = 0; for (int i = 0; i < aClip.keyframesCount; i++) { uint16_t keyframeNumber = aClip.keyframes[i].number; if (keyframeNumber <= LERPKeyframeNumber) { lkeyframeIndex = i; lkeyframeNumber = keyframeNumber; } else { rkeyframeIndex = i; rkeyframeNumber = keyframeNumber; break; } } double lTime = lkeyframeNumber / 60.; double rTime = rkeyframeNumber / 60.; double blendFactor = (time - lTime) / (rTime - lTime); GLKMatrix4 bindPosePalette[aSkeleton.jointsCount]; GLKMatrix4 currentPosePalette[aSkeleton.jointsCount]; for (int i = 0; i < aSkeleton.jointsCount; i++) { F3DETQSType& lPose = aClip.keyframes[lkeyframeIndex].skeletonPose.jointPoses[i]; F3DETQSType& rPose = aClip.keyframes[rkeyframeIndex].skeletonPose.jointPoses[i]; GLKVector3 LERPTranslation = GLKVector3Lerp(lPose.t, rPose.t, blendFactor); GLKQuaternion SLERPRotation = GLKQuaternionSlerp(lPose.q, rPose.q, blendFactor); GLKVector3 LERPScaling = GLKVector3Lerp(lPose.s, rPose.s, blendFactor); GLKMatrix4 currentTransform = GLKMatrix4MakeWithQuaternion(SLERPRotation); currentTransform = GLKMatrix4Multiply(currentTransform, GLKMatrix4MakeTranslation(LERPTranslation.x, LERPTranslation.y, LERPTranslation.z)); currentTransform = GLKMatrix4Multiply(currentTransform, GLKMatrix4MakeScale(LERPScaling.x, LERPScaling.y, LERPScaling.z)); if (aSkeleton.joints[i].parentIndex == -1) { bindPosePalette[i] = aSkeleton.joints[i].inverseBindTransform; currentPosePalette[i] = currentTransform; } else { bindPosePalette[i] = GLKMatrix4Multiply(aSkeleton.joints[i].inverseBindTransform, bindPosePalette[aSkeleton.joints[i].parentIndex]); currentPosePalette[i] = GLKMatrix4Multiply(currentPosePalette[aSkeleton.joints[i].parentIndex], currentTransform); } aSkeleton.skinningPalette[i] = GLKMatrix4Multiply(currentPosePalette[i], bindPosePalette[i]); } } At this point, I should have my skinning palette. So on each frame in my vertex shader, I do: uniform mat4 modelMatrix; uniform mat4 projectionMatrix; uniform mat3 normalMatrix; uniform mat4 skinningPalette[6]; attribute vec4 position; attribute vec3 normal; attribute vec2 tCoordinates; attribute vec4 jointsWeights; attribute vec4 jointsIndices; varying highp vec2 tCoordinatesVarying; varying highp float lIntensity; void main() { vec3 eyeNormal = normalize(normalMatrix * normal); vec3 lightPosition = vec3(0., 0., 2.); lIntensity = max(0.0, dot(eyeNormal, normalize(lightPosition))); tCoordinatesVarying = tCoordinates; vec4 skinnedVertexPosition = vec4(0.); for (int i = 0; i < 4; i++) { skinnedVertexPosition += jointsWeights[i] * skinningPalette[int(jointsIndices[i])] * position; } gl_Position = projectionMatrix * modelMatrix * skinnedVertexPosition; } The result: The mesh parts that are supposed to animate do animate and follow the expected motion, however, the rotations are messed up in terms of orientations. That is, the mesh is not translated somewhere else or scaled in any way, but the orientations of rotations seem to be off. So a few observations: In the above shader notice I actually did not multiply the vertices by the mesh modelMatrix (the one which would take them to model or world or global space, whichever you prefer, since there is no parent to the mesh itself other than "the world") until after skinning. This is contrary to what I implied in the theory: if my skinning matrix takes vertices from model to joint and back to model space, I'd think the vertices should already be premultiplied by the mesh transform. But if I do so, I just get a black screen. As far as exporting the joints from Blender, my python script exports for each armature bone in bind pose, it's matrix in this way: def DFSJointTraversal(file, skeleton, jointList): for joint in jointList: poseJoint = skeleton.pose.bones[joint.name] jointTransform = poseJoint.matrix.inverted() file.write('Joint ' + joint.name + ' Transform {\n') for col in jointTransform.col: file.write('{:9f} {:9f} {:9f} {:9f}\n'.format(col[0], col[1], col[2], col[3])) DFSJointTraversal(file, skeleton, joint.children) file.write('}\n') And for current / keyframe poses (assuming I'm in the right keyframe): def exportAnimations(filepath): # Only one skeleton per scene objList = [object for object in bpy.context.scene.objects if object.type == 'ARMATURE'] if len(objList) == 0: return elif len(objList) > 1: return #raise exception? dialog box? skeleton = objList[0] jointNames = [bone.name for bone in skeleton.data.bones] for action in bpy.data.actions: # One animation clip per action in Blender, named as the action animationClipFilePath = filepath[0 : filepath.rindex('/') + 1] + action.name + ".aClip" file = open(animationClipFilePath, 'w') file.write('target skeleton: ' + skeleton.name + '\n') file.write('joints count: {:d}'.format(len(jointNames)) + '\n') skeleton.animation_data.action = action keyframeNum = max([len(fcurve.keyframe_points) for fcurve in action.fcurves]) keyframes = [] for fcurve in action.fcurves: for keyframe in fcurve.keyframe_points: keyframes.append(keyframe.co[0]) keyframes = set(keyframes) keyframes = [kf for kf in keyframes] keyframes.sort() file.write('keyframes count: {:d}'.format(len(keyframes)) + '\n') for kfIndex in keyframes: bpy.context.scene.frame_set(kfIndex) file.write('keyframe: {:d}\n'.format(int(kfIndex))) for i in range(0, len(skeleton.data.bones)): file.write('joint: {:d}\n'.format(i)) joint = skeleton.pose.bones[i] jointCurrentPoseTransform = joint.matrix translationV = jointCurrentPoseTransform.to_translation() rotationQ = jointCurrentPoseTransform.to_3x3().to_quaternion() scaleV = jointCurrentPoseTransform.to_scale() file.write('T {:9f} {:9f} {:9f}\n'.format(translationV[0], translationV[1], translationV[2])) file.write('Q {:9f} {:9f} {:9f} {:9f}\n'.format(rotationQ[1], rotationQ[2], rotationQ[3], rotationQ[0])) file.write('S {:9f} {:9f} {:9f}\n'.format(scaleV[0], scaleV[1], scaleV[2])) file.write('\n') file.close() Which I believe follow the theory explained at the beginning of my question. But then I checked out Blender's directX .x exporter for reference.. and what threw me off was that in the .x script they are exporting bind poses like so (transcribed using the same variable names I used so you can compare): if joint.parent: jointTransform = poseJoint.parent.matrix.inverted() else: jointTransform = Matrix() jointTransform *= poseJoint.matrix and exporting current keyframe poses like this: if joint.parent: jointCurrentPoseTransform = joint.parent.matrix.inverted() else: jointCurrentPoseTransform = Matrix() jointCurrentPoseTransform *= joint.matrix why are they using the parent's transform instead of the joint in question's? isn't the join transform assumed to exist in the context of a parent transform since after all it transforms from this joint's space to its parent's? Why are they concatenating in the same order for both bind poses and keyframe poses? If these two are then supposed to be concatenated with each other to cancel out the change of basis? Anyway, any ideas are appreciated.

    Read the article

  • WebGL First Person Camera - Matrix issues

    - by Ryan Welsh
    I have been trying to make a WebGL FPS camera.I have all the inputs working correctly (I think) but when it comes to applying the position and rotation data to the view matrix I am a little lost. The results can be viewed here http://thistlestaffing.net/masters/camera/index.html and the code here var camera = { yaw: 0.0, pitch: 0.0, moveVelocity: 1.0, position: [0.0, 0.0, -70.0] }; var viewMatrix = mat4.create(); var rotSpeed = 0.1; camera.init = function(canvas){ var ratio = canvas.clientWidth / canvas.clientHeight; var left = -1; var right = 1; var bottom = -1.0; var top = 1.0; var near = 1.0; var far = 1000.0; mat4.frustum(projectionMatrix, left, right, bottom, top, near, far); viewMatrix = mat4.create(); mat4.rotateY(viewMatrix, viewMatrix, camera.yaw); mat4.rotateX(viewMatrix, viewMatrix, camera.pitch); mat4.translate(viewMatrix, viewMatrix, camera.position); } camera.update = function(){ viewMatrix = mat4.create(); mat4.rotateY(viewMatrix, viewMatrix, camera.yaw); mat4.rotateX(viewMatrix, viewMatrix, camera.pitch); mat4.translate(viewMatrix, viewMatrix, camera.position); } //prevent camera pitch from going above 90 and reset yaw when it goes over 360 camera.lockCamera = function(){ if(camera.pitch > 90.0){ camera.pitch = 90; } if(camera.pitch < -90){ camera.pitch = -90; } if(camera.yaw <0.0){ camera.yaw = camera.yaw + 360; } if(camera.yaw >360.0){ camera.yaw = camera.yaw - 0.0; } } camera.translateCamera = function(distance, direction){ //calculate where we are looking at in radians and add the direction we want to go in ie WASD keys var radian = glMatrix.toRadian(camera.yaw + direction); //console.log(camera.position[3], radian, distance, direction); //calc X coord camera.position[0] = camera.position[0] - Math.sin(radian) * distance; //calc Z coord camera.position[2] = camera.position [2] - Math.cos(radian) * distance; console.log(camera.position [2] - (Math.cos(radian) * distance)); } camera.rotateUp = function(distance, direction){ var radian = glMatrix.toRadian(camera.pitch + direction); //calc Y coord camera.position[1] = camera.position[1] + Math.sin(radian) * distance; } camera.moveForward = function(){ if(camera.pitch!=90 && camera.pitch!=-90){ camera.translateCamera(-camera.moveVelocity, 0.0); } camera.rotateUp(camera.moveVelocity, 0.0); } camera.moveBack = function(){ if(camera.pitch!=90 && camera.pitch!=-90){ camera.translateCamera(-camera.moveVelocity, 180.0); } camera.rotateUp(camera.moveVelocity, 180.0); } camera.moveLeft = function(){ camera.translateCamera(-camera.moveVelocity, 270.0); } camera.moveRight = function(){ camera.translateCamera(-camera.moveVelocity, 90.0); } camera.lookUp = function(){ camera.pitch = camera.pitch + rotSpeed; camera.lockCamera(); } camera.lookDown = function(){ camera.pitch = camera.pitch - rotSpeed; camera.lockCamera(); } camera.lookLeft = function(){ camera.yaw= camera.yaw - rotSpeed; camera.lockCamera(); } camera.lookRight = function(){ camera.yaw = camera.yaw + rotSpeed; camera.lockCamera(); } . If there is no problem with my camera then I am doing some matrix calculations within my draw function where a problem might be. //position cube 1 worldMatrix = mat4.create(); mvMatrix = mat4.create(); mat4.translate(worldMatrix, worldMatrix, [-20.0, 0.0, -30.0]); mat4.multiply(mvMatrix, worldMatrix, viewMatrix); setShaderMatrix(); gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer); gl.vertexAttribPointer(shaderProgram.attPosition, 3, gl.FLOAT, false, 8*4,0); gl.vertexAttribPointer(shaderProgram.attTexCoord, 2, gl.FLOAT, false, 8*4, 3*4); gl.vertexAttribPointer(shaderProgram.attNormal, 3, gl.FLOAT, false, 8*4, 5*4); gl.activeTexture(gl.TEXTURE0); gl.bindTexture(gl.TEXTURE_2D, myTexture); gl.uniform1i(shaderProgram.uniSampler, 0); gl.useProgram(shaderProgram); gl.drawArrays(gl.TRIANGLES, 0, vertexBuffer.numItems); //position cube 2 worldMatrix = mat4.create(); mvMatrix = mat4.create(); mat4.multiply(mvMatrix, worldMatrix, viewMatrix); mat4.translate(worldMatrix, worldMatrix, [40.0, 0.0, -30.0]); setShaderMatrix(); gl.drawArrays(gl.TRIANGLES, 0, vertexBuffer.numItems); //position cube 3 worldMatrix = mat4.create(); mvMatrix = mat4.create(); mat4.multiply(mvMatrix, worldMatrix, viewMatrix); mat4.translate(worldMatrix, worldMatrix, [20.0, 0.0, -100.0]); setShaderMatrix(); gl.drawArrays(gl.TRIANGLES, 0, vertexBuffer.numItems); camera.update();

    Read the article

  • OpenGL ES 2.0: Using VBOs?

    - by Bunkai.Satori
    OpenGL VBOs (vertex buffer objects) have been developed to improve performance of OpenGL (OpenGL ES 2.0 in my case). The logic is that with the help of VBOs, the data does not need to be copied from client memory to graphics card on per frame basis. However, as I see it, the game scene changes continuously: position of objects change, their scaling and rotating change, they get animated, they explode, they get spawn or disappear. In such highly dynamic environment, such as computer game scene is, what is the point of using VBOs, if the VBOs would need to be constructed on per-frame basis anyway? Can you please help me to understand how to practically take beneif of VBOs in computer games? Can there be more vertex based VBOs (say one per one object) or there must be always exactly only one VBO present for each draw cycle?

    Read the article

  • Random Between: using random with the instance_create function in GML

    - by CLockeWork
    Hopefully this should be a simple one; I want to restrict the points that instances enter the screen from so they don't come in at the edges. In Game Maker I'm using the following code instance_create(random(room_width), random(-100) - 50, obj_enemy1); to create the instance off screen (create(x, y, ...)) At the moment I'm just using the room_width to define the max width for the random on x, but ideally I want to find a way of defining a max AND min width for the random. I can't figure out how to restrict the range on the x axis to between say 100 and 350. Any help would be appreciated. Cheers

    Read the article

  • XNA Screen Manager problem with transitions

    - by NexAddo
    I'm having issues using the game statemanagement example in the game I am developing. I have no issues with my first three screens transitioning between one another. I have a main menu screen, a splash screen and a high score screen that cycle: mainMenuScreen->splashScreen->highScoreScreen->mainMenuScreen The screens change every 15 seconds. Transition times public MainMenuScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.0); currentCreditAmount = Global.CurrentCredits; } public SplashScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } public HighScoreScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } public GamePlayScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } When a user inserts credits they can play the game after pressing start mainMenuScreen->splashScreen->highScoreScreen->(loops forever) || || || ===========Credits In============= || Start || \/ LoadingScreen || Start || \/ GamePlayScreen During each of these transitions, between screens, the same code is used, which exits(removes) all current active screens and respects transitions, then adds the new screen to the screen manager: foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); //AddScreen takes a new screen to manage and the controlling player ScreenManager.AddScreen(new NameOfScreenHere(), null); Each screen is removed from the ScreenManager with ExitScreen() and using this function, each screen transition is respected. The problem I am having is with my gamePlayScreen. When the current game is finished and the transition is complete for the gamePlayScreen, it should be removed and the next screens should be added to the ScreenManager. GamePlayScreen Code Snippet private void FinishCurrentGame() { AudioManager.StopSounds(); this.UnloadContent(); if (Global.SaveDevice.IsReady) Stats.Save(); if (HighScoreScreen.IsInHighscores(timeLimit)) { foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); Global.TimeRemaining = timeLimit; ScreenManager.AddScreen(new BackgroundScreen(), null); ScreenManager.AddScreen(new MessageBoxScreen("Enter your Initials", true), null); } else { foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); ScreenManager.AddScreen(new BackgroundScreen(), null); ScreenManager.AddScreen(new MainMenuScreen(), null); } } The problem is that when isExiting is set to true by screen.ExitScreen() for the gamePlayScreen, the transition never completes the transition and removes the screen from the ScreenManager. Every other screen that I use the same technique to add and remove each screen fully transitions On/Off and is removed at the appropriate time from the ScreenManager, but noy my GamePlayScreen. Has anyone that has used the GameStateManagement example experienced this issue or can someone see the mistake I am making? EDIT This is what I tracked down. When the game is done, I call foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); to start the transition off process for the gameplay screen. At this point there is only 1 screen on the ScreenManager stack. The gamePlay screen gets isExiting set to true and starts to transition off. Right after the above call to ExitScreen() I add a background screen and menu screen to the screenManager: ScreenManager.AddScreen(new background(), null); ScreenManager.AddScreen(new Menu(), null); The count of the ScreenManager is now 3. What I noticed while stepping through the updates for GameScreen and ScreenManager, the gameplay screen never gets to the point where the transistion process finishes so the ScreenManager can remove it from the stack. This anomaly does not happen to any of my other screens when I switch between them. Screen Manager Code #region File Description //----------------------------------------------------------------------------- // ScreenManager.cs // // Microsoft XNA Community Game Platform // Copyright (C) Microsoft Corporation. All rights reserved. //----------------------------------------------------------------------------- #endregion #define DEMO #region Using Statements using System; using System.Diagnostics; using System.Collections.Generic; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; using PerformanceUtility.GameDebugTools; #endregion namespace GameStateManagement { /// <summary> /// The screen manager is a component which manages one or more GameScreen /// instances. It maintains a stack of screens, calls their Update and Draw /// methods at the appropriate times, and automatically routes input to the /// topmost active screen. /// </summary> public class ScreenManager : DrawableGameComponent { #region Fields List<GameScreen> screens = new List<GameScreen>(); List<GameScreen> screensToUpdate = new List<GameScreen>(); InputState input = new InputState(); SpriteBatch spriteBatch; SpriteFont font; Texture2D blankTexture; bool isInitialized; bool getOut; bool traceEnabled; #if DEBUG DebugSystem debugSystem; Stopwatch stopwatch = new Stopwatch(); bool debugTextEnabled; #endif #endregion #region Properties /// <summary> /// A default SpriteBatch shared by all the screens. This saves /// each screen having to bother creating their own local instance. /// </summary> public SpriteBatch SpriteBatch { get { return spriteBatch; } } /// <summary> /// A default font shared by all the screens. This saves /// each screen having to bother loading their own local copy. /// </summary> public SpriteFont Font { get { return font; } } public Rectangle ScreenRectangle { get { return new Rectangle(0, 0, GraphicsDevice.Viewport.Width, GraphicsDevice.Viewport.Height); } } /// <summary> /// If true, the manager prints out a list of all the screens /// each time it is updated. This can be useful for making sure /// everything is being added and removed at the right times. /// </summary> public bool TraceEnabled { get { return traceEnabled; } set { traceEnabled = value; } } #if DEBUG public bool DebugTextEnabled { get { return debugTextEnabled; } set { debugTextEnabled = value; } } public DebugSystem DebugSystem { get { return debugSystem; } } #endif #endregion #region Initialization /// <summary> /// Constructs a new screen manager component. /// </summary> public ScreenManager(Game game) : base(game) { // we must set EnabledGestures before we can query for them, but // we don't assume the game wants to read them. //TouchPanel.EnabledGestures = GestureType.None; } /// <summary> /// Initializes the screen manager component. /// </summary> public override void Initialize() { base.Initialize(); #if DEBUG debugSystem = DebugSystem.Initialize(Game, "Fonts/MenuFont"); #endif isInitialized = true; } /// <summary> /// Load your graphics content. /// </summary> protected override void LoadContent() { // Load content belonging to the screen manager. ContentManager content = Game.Content; spriteBatch = new SpriteBatch(GraphicsDevice); font = content.Load<SpriteFont>(@"Fonts\menufont"); blankTexture = content.Load<Texture2D>(@"Textures\Backgrounds\blank"); // Tell each of the screens to load their content. foreach (GameScreen screen in screens) { screen.LoadContent(); } } /// <summary> /// Unload your graphics content. /// </summary> protected override void UnloadContent() { // Tell each of the screens to unload their content. foreach (GameScreen screen in screens) { screen.UnloadContent(); } } #endregion #region Update and Draw /// <summary> /// Allows each screen to run logic. /// </summary> public override void Update(GameTime gameTime) { #if DEBUG debugSystem.TimeRuler.StartFrame(); debugSystem.TimeRuler.BeginMark("Update", Color.Blue); if (debugTextEnabled && getOut == false) { debugSystem.FpsCounter.Visible = true; debugSystem.TimeRuler.Visible = true; debugSystem.TimeRuler.ShowLog = true; getOut = true; } else if (debugTextEnabled == false) { getOut = false; debugSystem.FpsCounter.Visible = false; debugSystem.TimeRuler.Visible = false; debugSystem.TimeRuler.ShowLog = false; } #endif // Read the keyboard and gamepad. input.Update(); // Make a copy of the master screen list, to avoid confusion if // the process of updating one screen adds or removes others. screensToUpdate.Clear(); foreach (GameScreen screen in screens) screensToUpdate.Add(screen); bool otherScreenHasFocus = !Game.IsActive; bool coveredByOtherScreen = false; // Loop as long as there are screens waiting to be updated. while (screensToUpdate.Count > 0) { // Pop the topmost screen off the waiting list. GameScreen screen = screensToUpdate[screensToUpdate.Count - 1]; screensToUpdate.RemoveAt(screensToUpdate.Count - 1); // Update the screen. screen.Update(gameTime, otherScreenHasFocus, coveredByOtherScreen); if (screen.ScreenState == ScreenState.TransitionOn || screen.ScreenState == ScreenState.Active) { // If this is the first active screen we came across, // give it a chance to handle input. if (!otherScreenHasFocus) { screen.HandleInput(input); otherScreenHasFocus = true; } // If this is an active non-popup, inform any subsequent // screens that they are covered by it. if (!screen.IsPopup) coveredByOtherScreen = true; } } // Print debug trace? if (traceEnabled) TraceScreens(); #if DEBUG debugSystem.TimeRuler.EndMark("Update"); #endif } /// <summary> /// Prints a list of all the screens, for debugging. /// </summary> void TraceScreens() { List<string> screenNames = new List<string>(); foreach (GameScreen screen in screens) screenNames.Add(screen.GetType().Name); Debug.WriteLine(string.Join(", ", screenNames.ToArray())); } /// <summary> /// Tells each screen to draw itself. /// </summary> public override void Draw(GameTime gameTime) { #if DEBUG debugSystem.TimeRuler.StartFrame(); debugSystem.TimeRuler.BeginMark("Draw", Color.Yellow); #endif foreach (GameScreen screen in screens) { if (screen.ScreenState == ScreenState.Hidden) continue; screen.Draw(gameTime); } #if DEBUG debugSystem.TimeRuler.EndMark("Draw"); #endif #if DEMO SpriteBatch.Begin(); SpriteBatch.DrawString(font, "DEMO - NOT FOR RESALE", new Vector2(20, 80), Color.White); SpriteBatch.End(); #endif } #endregion #region Public Methods /// <summary> /// Adds a new screen to the screen manager. /// </summary> public void AddScreen(GameScreen screen, PlayerIndex? controllingPlayer) { screen.ControllingPlayer = controllingPlayer; screen.ScreenManager = this; screen.IsExiting = false; // If we have a graphics device, tell the screen to load content. if (isInitialized) { screen.LoadContent(); } screens.Add(screen); } /// <summary> /// Removes a screen from the screen manager. You should normally /// use GameScreen.ExitScreen instead of calling this directly, so /// the screen can gradually transition off rather than just being /// instantly removed. /// </summary> public void RemoveScreen(GameScreen screen) { // If we have a graphics device, tell the screen to unload content. if (isInitialized) { screen.UnloadContent(); } screens.Remove(screen); screensToUpdate.Remove(screen); } /// <summary> /// Expose an array holding all the screens. We return a copy rather /// than the real master list, because screens should only ever be added /// or removed using the AddScreen and RemoveScreen methods. /// </summary> public GameScreen[] GetScreens() { return screens.ToArray(); } /// <summary> /// Helper draws a translucent black fullscreen sprite, used for fading /// screens in and out, and for darkening the background behind popups. /// </summary> public void FadeBackBufferToBlack(float alpha) { Viewport viewport = GraphicsDevice.Viewport; spriteBatch.Begin(); spriteBatch.Draw(blankTexture, new Rectangle(0, 0, viewport.Width, viewport.Height), Color.Black * alpha); spriteBatch.End(); } #endregion } } Game Screen Parent of GamePlayScreen #region File Description //----------------------------------------------------------------------------- // GameScreen.cs // // Microsoft XNA Community Game Platform // Copyright (C) Microsoft Corporation. All rights reserved. //----------------------------------------------------------------------------- #endregion #region Using Statements using System; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Input; //using Microsoft.Xna.Framework.Input.Touch; using System.IO; #endregion namespace GameStateManagement { /// <summary> /// Enum describes the screen transition state. /// </summary> public enum ScreenState { TransitionOn, Active, TransitionOff, Hidden, } /// <summary> /// A screen is a single layer that has update and draw logic, and which /// can be combined with other layers to build up a complex menu system. /// For instance the main menu, the options menu, the "are you sure you /// want to quit" message box, and the main game itself are all implemented /// as screens. /// </summary> public abstract class GameScreen { #region Properties /// <summary> /// Normally when one screen is brought up over the top of another, /// the first screen will transition off to make room for the new /// one. This property indicates whether the screen is only a small /// popup, in which case screens underneath it do not need to bother /// transitioning off. /// </summary> public bool IsPopup { get { return isPopup; } protected set { isPopup = value; } } bool isPopup = false; /// <summary> /// Indicates how long the screen takes to /// transition on when it is activated. /// </summary> public TimeSpan TransitionOnTime { get { return transitionOnTime; } protected set { transitionOnTime = value; } } TimeSpan transitionOnTime = TimeSpan.Zero; /// <summary> /// Indicates how long the screen takes to /// transition off when it is deactivated. /// </summary> public TimeSpan TransitionOffTime { get { return transitionOffTime; } protected set { transitionOffTime = value; } } TimeSpan transitionOffTime = TimeSpan.Zero; /// <summary> /// Gets the current position of the screen transition, ranging /// from zero (fully active, no transition) to one (transitioned /// fully off to nothing). /// </summary> public float TransitionPosition { get { return transitionPosition; } protected set { transitionPosition = value; } } float transitionPosition = 1; /// <summary> /// Gets the current alpha of the screen transition, ranging /// from 1 (fully active, no transition) to 0 (transitioned /// fully off to nothing). /// </summary> public float TransitionAlpha { get { return 1f - TransitionPosition; } } /// <summary> /// Gets the current screen transition state. /// </summary> public ScreenState ScreenState { get { return screenState; } protected set { screenState = value; } } ScreenState screenState = ScreenState.TransitionOn; /// <summary> /// There are two possible reasons why a screen might be transitioning /// off. It could be temporarily going away to make room for another /// screen that is on top of it, or it could be going away for good. /// This property indicates whether the screen is exiting for real: /// if set, the screen will automatically remove itself as soon as the /// transition finishes. /// </summary> public bool IsExiting { get { return isExiting; } protected internal set { isExiting = value; } } bool isExiting = false; /// <summary> /// Checks whether this screen is active and can respond to user input. /// </summary> public bool IsActive { get { return !otherScreenHasFocus && (screenState == ScreenState.TransitionOn || screenState == ScreenState.Active); } } bool otherScreenHasFocus; /// <summary> /// Gets the manager that this screen belongs to. /// </summary> public ScreenManager ScreenManager { get { return screenManager; } internal set { screenManager = value; } } ScreenManager screenManager; public KeyboardState KeyboardState { get {return Keyboard.GetState();} } /// <summary> /// Gets the index of the player who is currently controlling this screen, /// or null if it is accepting input from any player. This is used to lock /// the game to a specific player profile. The main menu responds to input /// from any connected gamepad, but whichever player makes a selection from /// this menu is given control over all subsequent screens, so other gamepads /// are inactive until the controlling player returns to the main menu. /// </summary> public PlayerIndex? ControllingPlayer { get { return controllingPlayer; } internal set { controllingPlayer = value; } } PlayerIndex? controllingPlayer; /// <summary> /// Gets whether or not this screen is serializable. If this is true, /// the screen will be recorded into the screen manager's state and /// its Serialize and Deserialize methods will be called as appropriate. /// If this is false, the screen will be ignored during serialization. /// By default, all screens are assumed to be serializable. /// </summary> public bool IsSerializable { get { return isSerializable; } protected set { isSerializable = value; } } bool isSerializable = true; #endregion #region Initialization /// <summary> /// Load graphics content for the screen. /// </summary> public virtual void LoadContent() { } /// <summary> /// Unload content for the screen. /// </summary> public virtual void UnloadContent() { } #endregion #region Update and Draw /// <summary> /// Allows the screen to run logic, such as updating the transition position. /// Unlike HandleInput, this method is called regardless of whether the screen /// is active, hidden, or in the middle of a transition. /// </summary> public virtual void Update(GameTime gameTime, bool otherScreenHasFocus, bool coveredByOtherScreen) { this.otherScreenHasFocus = otherScreenHasFocus; if (isExiting) { // If the screen is going away to die, it should transition off. screenState = ScreenState.TransitionOff; if (!UpdateTransition(gameTime, transitionOffTime, 1)) { // When the transition finishes, remove the screen. ScreenManager.RemoveScreen(this); } } else if (coveredByOtherScreen) { // If the screen is covered by another, it should transition off. if (UpdateTransition(gameTime, transitionOffTime, 1)) { // Still busy transitioning. screenState = ScreenState.TransitionOff; } else { // Transition finished! screenState = ScreenState.Hidden; } } else { // Otherwise the screen should transition on and become active. if (UpdateTransition(gameTime, transitionOnTime, -1)) { // Still busy transitioning. screenState = ScreenState.TransitionOn; } else { // Transition finished! screenState = ScreenState.Active; } } } /// <summary> /// Helper for updating the screen transition position. /// </summary> bool UpdateTransition(GameTime gameTime, TimeSpan time, int direction) { // How much should we move by? float transitionDelta; if (time == TimeSpan.Zero) transitionDelta = 1; else transitionDelta = (float)(gameTime.ElapsedGameTime.TotalMilliseconds / time.TotalMilliseconds); // Update the transition position. transitionPosition += transitionDelta * direction; // Did we reach the end of the transition? if (((direction < 0) && (transitionPosition <= 0)) || ((direction > 0) && (transitionPosition >= 1))) { transitionPosition = MathHelper.Clamp(transitionPosition, 0, 1); return false; } // Otherwise we are still busy transitioning. return true; } /// <summary> /// Allows the screen to handle user input. Unlike Update, this method /// is only called when the screen is active, and not when some other /// screen has taken the focus. /// </summary> public virtual void HandleInput(InputState input) { } public KeyboardState currentKeyState; public KeyboardState lastKeyState; public bool IsKeyHit(Keys key) { if (currentKeyState.IsKeyDown(key) && lastKeyState.IsKeyUp(key)) return true; return false; } /// <summary> /// This is called when the screen should draw itself. /// </summary> public virtual void Draw(GameTime gameTime) { } #endregion #region Public Methods /// <summary> /// Tells the screen to serialize its state into the given stream. /// </summary> public virtual void Serialize(Stream stream) { } /// <summary> /// Tells the screen to deserialize its state from the given stream. /// </summary> public virtual void Deserialize(Stream stream) { } /// <summary> /// Tells the screen to go away. Unlike ScreenManager.RemoveScreen, which /// instantly kills the screen, this method respects the transition timings /// and will give the screen a chance to gradually transition off. /// </summary> public void ExitScreen() { if (TransitionOffTime == TimeSpan.Zero) { // If the screen has a zero transition time, remove it immediately. ScreenManager.RemoveScreen(this); } else { // Otherwise flag that it should transition off and then exit. isExiting = true; } } #endregion #region Helper Methods /// <summary> /// A helper method which loads assets using the screen manager's /// associated game content loader. /// </summary> /// <typeparam name="T">Type of asset.</typeparam> /// <param name="assetName">Asset name, relative to the loader root /// directory, and not including the .xnb extension.</param> /// <returns></returns> public T Load<T>(string assetName) { return ScreenManager.Game.Content.Load<T>(assetName); } #endregion } }

    Read the article

  • "Untangle"-Game AI

    - by M0rgenstern
    I am trying to program an AI for such untangle games like Untangle game. I tried the following possibilities: 1) Just set one node after the other to a random place. If every node was moved once, start over with the first node in the list. 2) First move all nodes which have the most wrong connections. If all were moved once, move the nodes which have the fewest (but not 0) wrong connections. If all were moved but there are some left, move all which are left. If none are left start over. 3) Just 2) bust starting with the nodes with the fewest connections. 4)/5) As 2) and 3) but when I didn't move nodes which have only correct connections. All of these approaches are too slow and inefficient. Can anyone suggest a solution which does not depend so much on fortune?

    Read the article

  • How can I respond to mouse events in AS3?

    - by Gabriel Meono
    Background: Trying to make a simple "drop the ball" game. The code is located inside the first frame of the timeline. Nothing more is on the stage. Issue: Using QuickBox2D I made a simple If statement that drops and object acording the Mouse-x position: if (MouseEvent.CLICK) { sim.addCircle({x:mouseX, y:1, radius:0.25, density:5}); I imported the MouseEvent library: import flash.events.MouseEvent; Nothing happens if I click, no output errors either. See it in action: http://gabrielmeono.com/download/Lucky_Hit_Alpha.swf http://gabrielmeono.com/download/Lucky_Hit_Alpha.fla Full Code: [SWF(width = 350, height = 600, frameRate = 60)] import com.actionsnippet.qbox.*; import flash.events.MouseEvent; var sim:QuickBox2D = new QuickBox2D(this); sim.createStageWalls(); //var ball:sim.addCircle({x:mouseX, y:1, radius:0.25, density:5}); // // make a heavy circle sim.addCircle({x:3, y:1, radius:0.25, density:5}); sim.addCircle({x:2, y:1, radius:0.25, density:5}); sim.addCircle({x:4, y:1, radius:0.25, density:5}); sim.addCircle({x:5, y:1, radius:0.25, density:5}); sim.addCircle({x:6, y:1, radius:0.25, density:5}); // create a few platforms sim.addBox({x:3, y:2, width:4, height:0.2, density:0, angle:0.1}); // make 26 dominoes for (var i:int = 0; i<7; i++){ //End sim.addCircle({x:1 + i * 1.5, y:16, radius:0.1, density:0}); sim.addCircle({x:2 + i * 1.5, y:15, radius:0.1, density:0}); //Mid end sim.addCircle({x:0 + i * 2, y:14, radius:0.1, density:0}); sim.addCircle({x:0 + i * 2, y:13, radius:0.1, density:0}); sim.addCircle({x:0 + i * 2, y:12, radius:0.1, density:0}); sim.addCircle({x:0 + i * 2, y:11, radius:0.1, density:0}); sim.addCircle({x:0 + i * 2, y:10, radius:0.1, density:0}); //Middle Start sim.addCircle({x:0 + i * 1.5, y:09, radius:0.1, density:0}); sim.addCircle({x:1 + i * 1.5, y:08, radius:0.1, density:0}); sim.addCircle({x:0 + i * 1.5, y:07, radius:0.1, density:0}); sim.addCircle({x:1 + i * 1.5, y:06, radius:0.1, density:0}); } if (MouseEvent.CLICK) { sim.addCircle({x:mouseX, y:1, radius:0.25, density:5}); sim.start(); /*sim.mouseDrag();*/ }

    Read the article

< Previous Page | 503 504 505 506 507 508 509 510 511 512 513 514  | Next Page >