Search Results

Search found 3627 results on 146 pages for 'opengl es 2 0'.

Page 51/146 | < Previous Page | 47 48 49 50 51 52 53 54 55 56 57 58  | Next Page >

  • Encode two integers into colour values and compare them in a HLSL shader

    - by Ben Slinger
    I am writing a 2D point and click adventure game in Monogame, and I'd like to be able to create an image mask for every room which defines which parts of the background a character can walk behind, and at which Y value a character needs to be at for the background to be drawn above the character. I haven't done any shader work before but after doing some reading I thought the following solution should work: Create a mask for the room with different walk behind areas painted in a colour that defines the baseline Y value (Walk Behind Mask) Render all objects to a RenderTarget2D (Base Texture) Render all objects to a different RenderTarget2D, but changing every pixel of each object to a colour that defines its Y value (Position Mask) Pass these two textures plus the image mask into the shader, and for each pixel compare the colour of the image mask to the colour of the Position Mask to the Walk Behind Mask - if the Position Mask pixel is larger (thus lower on the screen and closer to the camera) than the Walk Behind Mask, draw the pixel from the Base Texture, otherwise draw a transparent pixel (allowing the background to show through). I've got it mostly working, but I'm having trouble packing and unpacking the Y values into colours and retrieving them correctly in the shader. Here are some code examples of how I'm doing it so far: (When drawing to the Position Mask RenderTarget2D) Color posColor = new Color(((int)Position.Y >> 16) & 255, ((int)Position.Y >> 8) & 255, (int)Position.Y & 255); So as far as I can tell, this should be taking the first 3 bytes of the position integer and encoding them into a 4 byte colour (ignoring the alpha as the 4th byte). This seems to work fine, as when my character is at Y = 600, the resulting Color from this is: {[Color: R=0, G=2, B=88, A=255, PackedValue=4283957760]}. I then have an area in my Walk Behind Mask that I only want the character to be displayed behind if his Y value is lower than 655, so I've painted it with R=0, G=2, B=143, A=255. Now, I think I have the shader OK as well, here's what I have: sampler BaseTexture : register(s0); sampler MaskTexture : register(s1); sampler PositionTexture : register(s2); float4 mask( float2 coords : TEXCOORD0 ) : COLOR0 { float4 color = tex2D(BaseTexture, coords); float4 maskColor = tex2D(MaskTexture, coords); float4 positionColor = tex2D(PositionTexture, coords); float maskCompare = (maskColor.r * pow(2,24)) + (maskColor.g * pow(2,16)) + (maskColor.b * pow(2,8)); float positionCompare = (positionColor.r * pow(2,24)) + (positionColor.g * pow(2,16)) + (positionColor.b * pow(2,8)); return positionCompare < maskCompare ? float4(0,0,0,0) : color; } technique Technique1 { pass NoEffect { PixelShader = compile ps_3_0 mask(); } } This isn't working, however - currently all characters are displayed behind the walk behind area, regardless of their Y value. I tried printing out some debug info by grabbing the pixel from both the Position Mask and the Walk Under Mask under the current mouse position, and it seems like maybe the colours aren't being rendered to the Position Mask correctly? When calculating the colour in that code above I'm getting R=0, G=2, B=88, A=255, but when I mouseover my character I get R=0, G=0, B=30, A=255. Any ideas what I'm doing wrong? It seems like maybe I'm losing some information when rendering to the RenderTarget2D, but I'm now knowledgeable enough to figure out what's happening. Also, I should probably ask, is this an efficient way to do this? Will there be a performance impact? Edit: Whoops, turns out there was a bug that I'd introduced myself, I was drawing out the Position Mask with the position Color, left over from some early testing I was doing. So this solution is working perfectly, though I'm still interested in whether this is an efficient solution performance wise.

    Read the article

  • GLSL: How Do I cast a float into an int?

    - by dugla
    In a GLSL fragment shader I am trying to cast a float into an int. The compiler has other ideas. It complains thusly: ERROR: 0:60: '=' : cannot convert from 'mediump float' to 'highp int' I am trying to do this: mediump float indexf = floor(2.0 * mixer); highp int index = indexf; I (vainly) tried to raise the precision of the int above the float to appease the GL Gods but no joy. Could someone please school me here? Thanks, Doug

    Read the article

  • Renderbuffer to GLSL shader?

    - by Dan
    I have a software that performs volume rendering through a raycasting approach. The actual raycasting shader writes the raycasted volume depth into a framebuffer object, through gl_FragDepth, that I bind before calling the shader. The problem I have is that I would like to use this depth in another shader that I call later on. I figured out that the only way to do that is to bind the framebuffer once the raycasting has finished, read the depthmap through something like glReadPixels(0, 0, m_winSize.x , m_winSize.y, GL_DEPTH_COMPONENT, GL_FLOAT, pixels); and write it to a 2D texture as usual glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, m_winSize.x, m_winSize.y, 0, GL_DEPTH_COMPONENT, GL_FLOAT, pixels) and then pass this 2D texture that contains a simple depth map to the other shader. However, I am not entirely sure that what I do is the proper way to do this. Is there anyway to pass the framebuffer that I fill up in my raycasting shader to the other shader?

    Read the article

  • Combine Two Shader Program

    - by Siddharth
    For my android application, I want to apply brightness and contrast shader on same image. At present I am using gpuimage plugin. In that I found two separate program for brightness and contrast as per the following. Contrast shader: varying highp vec2 textureCoordinate; uniform sampler2D inputImageTexture; uniform lowp float contrast; void main() { lowp vec4 textureColor = texture2D(inputImageTexture, textureCoordinate); gl_FragColor = vec4(((textureColor.rgb - vec3(0.5)) * contrast + vec3(0.5)), textureColor.w); } Brightness shader: varying highp vec2 textureCoordinate; uniform sampler2D inputImageTexture; uniform lowp float brightness; void main() { lowp vec4 textureColor = texture2D(inputImageTexture, textureCoordinate); gl_FragColor = vec4((textureColor.rgb + vec3(brightness)), textureColor.w); } Now applying both of the effects I write following code varying highp vec2 textureCoordinate; uniform sampler2D inputImageTexture; varying highp vec2 textureCoordinate2; uniform sampler2D inputImageTexture2; uniform lowp float contrast; uniform lowp float brightness; void main() { lowp vec4 textureColorForContrast = texture2D(inputImageTexture, textureCoordinate); lowp vec4 contastVec4 = vec4(((textureColorForContrast.rgb - vec3(0.5)) * contrast + vec3(0.5)), textureColorForContrast.w); lowp vec4 textureColorForBrightness = texture2D(inputImageTexture2, textureCoordinate2); lowp vec4 brightnessVec4 = vec4((textureColorForBrightness.rgb + vec3(brightness)), textureColorForBrightness.w); gl_FragColor = contastVec4 + brightnessVec4; } Doesn't able to get desire result. I can't able to figure out what I have to do next? So please friends help me in this. What program I have to write?

    Read the article

  • JOGL hardware based shadow mapping - computing the texture matrix

    - by axel22
    I am implementing hardware shadow mapping as described here. I've rendered the scene successfully from the light POV, and loaded the depth buffer of the scene into a texture. This texture has correctly been loaded - I check this by rendering a small thumbnail, as you can see in the screenshot below, upper left corner. The depth of the scene appears to be correct - objects further away are darker, and that are closer to the light are lighter. However, I run into trouble while rendering the scene from the camera's point of view using the depth texture - the texture on the polygons in the scene is rendered in a weird, nondeterministic fashion, as shown in the screenshot. I believe I am making an error while computing the texture transformation matrix, but I am unsure where exactly. Since I have no matrix utilities in JOGL other then the gl[Load|Mult]Matrix procedures, I multiply the matrices using them, like this: void calcTextureMatrix() { glPushMatrix(); glLoadIdentity(); glLoadMatrixf(biasmatrix, 0); glMultMatrixf(lightprojmatrix, 0); glMultMatrixf(lightviewmatrix, 0); glGetFloatv(GL_MODELVIEW_MATRIX, shadowtexmatrix, 0); glPopMatrix(); } I obtained these matrices by using the glOrtho and gluLookAt procedures: glLoadIdentity() val wdt = width / 45 val hgt = height / 45 glOrtho(wdt, -wdt, -hgt, hgt, -45.0, 45.0) glGetFloatv(GL_MODELVIEW_MATRIX, lightprojmatrix, 0) glLoadIdentity() glu.gluLookAt( xlook + lightpos._1, ylook + lightpos._2, lightpos._3, xlook, ylook, 0.0f, 0.f, 0.f, 1.0f) glGetFloatv(GL_MODELVIEW_MATRIX, lightviewmatrix, 0) My bias matrix is: float[] biasmatrix = new float[16] { 0.5f, 0.f, 0.f, 0.f, 0.f, 0.5f, 0.f, 0.f, 0.f, 0.f, 0.5f, 0.f, 0.5f, 0.5f, 0.5f, 1.f } After applying the camera projection and view matrices, I do: glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR) glTexGenfv(GL_S, GL_EYE_PLANE, shadowtexmatrix, 0) glEnable(GL_TEXTURE_GEN_S) for each component. Does anybody know why the texture is not being rendered correctly? Thank you.

    Read the article

  • SpriteBatch.end() generating null pointer exception

    - by odaymichael
    I am getting a null pointer exception using libGDX that the debugger points as the SpriteBatch.end() line. I was wondering what would cause this. Here is the offending code block, specifically the batch.end() line: batch.begin(); for (int j = 0; j < 3; j++) for (int i = 0; i < 3; i++) if (zoomgrid[i][j].getPiece().getImage() != null) zoomgrid[i][j].getPiece().getImage().draw(batch); batch.end(); The top of the stack is actually a line that calls lastTexture.bind(); In the flush() method of com.badlogic.gdx.graphics.g2d.SpriteBatch. I appreciate any input, let me know if I haven't included enough information.

    Read the article

  • Rotate view matrix based on touch coordinates

    - by user1055947
    I'm working on an Android game where I need to rotate the camera around the origin based on the user dragging their finger. My view matrix has initial position of sitting on the negative z and facing origin. I have succeeded in moving the camera through rotation left or right, up or down based on the user dragging the finger, but my problem is obviously that after I drag my finger up/down and rotate say 90 degrees so my intial position of -z is now +y and still facing origin, if I drag my finger left/right I want to rotate from +y to +x, but what happens is it rotates around the pole +y. This is to be expected as I am mapping 2D touch drag coords to 3D space, but I dont know where to start trying to do what I want. Perhaps someone can point me in the right direction, I've been googling for a while now but I don't know what I want to do is called! Edit __ What I was looking for is called an ArcBall, google it for lots of info on it.

    Read the article

  • FrameBuffer Render to texture not working all the way

    - by brainydexter
    I am learning to use Frame Buffer Objects. For this purpose, I chose to render a triangle to a texture and then map that to a quad. When I render the triangle, I clear the color to something blue. So, when I render the texture on the quad from fbo, it only renders everything blue, but doesn't show up the triangle. I can't seem to figure out why this is happening. Can someone please help me out with this ? I'll post the rendering code here, since glCheckFramebufferStatus doesn't complain when I setup the FBO. I've pasted the setup code at the end. Here is my rendering code: void FrameBufferObject::Render(unsigned int elapsedGameTime) { glBindFramebuffer(GL_FRAMEBUFFER, m_FBO); glClearColor(0.0, 0.6, 0.5, 1); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // adjust viewport and projection matrices to texture dimensions glPushAttrib(GL_VIEWPORT_BIT); glViewport(0,0, m_FBOWidth, m_FBOHeight); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(0, m_FBOWidth, 0, m_FBOHeight, 1.0, 100.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); DrawTriangle(); glPopAttrib(); // setting FrameBuffer back to window-specified Framebuffer glBindFramebuffer(GL_FRAMEBUFFER, 0); //unbind // back to normal viewport and projection matrix //glViewport(0, 0, 1280, 768); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0, 1.33, 1.0, 1000.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glClearColor(0, 0, 0, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); render(elapsedGameTime); } void FrameBufferObject::DrawTriangle() { glPushMatrix(); glBegin(GL_TRIANGLES); glColor3f(1, 0, 0); glVertex2d(0, 0); glVertex2d(m_FBOWidth, 0); glVertex2d(m_FBOWidth, m_FBOHeight); glEnd(); glPopMatrix(); } void FrameBufferObject::render(unsigned int elapsedTime) { glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, m_TextureID); glPushMatrix(); glTranslated(0, 0, -20); glBegin(GL_QUADS); glColor4f(1, 1, 1, 1); glTexCoord2f(1, 1); glVertex3f(1,1,1); glTexCoord2f(0, 1); glVertex3f(-1,1,1); glTexCoord2f(0, 0); glVertex3f(-1,-1,1); glTexCoord2f(1, 0); glVertex3f(1,-1,1); glEnd(); glPopMatrix(); glBindTexture(GL_TEXTURE_2D, 0); glDisable(GL_TEXTURE_2D); } void FrameBufferObject::Initialize() { // Generate FBO glGenFramebuffers(1, &m_FBO); glBindFramebuffer(GL_FRAMEBUFFER, m_FBO); // Add depth buffer as a renderbuffer to fbo // create depth buffer id glGenRenderbuffers(1, &m_DepthBuffer); glBindRenderbuffer(GL_RENDERBUFFER, m_DepthBuffer); // allocate space to render buffer for depth buffer glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, m_FBOWidth, m_FBOHeight); // attaching renderBuffer to FBO // attach depth buffer to FBO at depth_attachment glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, m_DepthBuffer); // Adding a texture to fbo // Create a texture glGenTextures(1, &m_TextureID); glBindTexture(GL_TEXTURE_2D, m_TextureID); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, m_FBOWidth, m_FBOHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); // onlly allocating space glBindTexture(GL_TEXTURE_2D, 0); // attach texture to FBO glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, m_TextureID, 0); // Check FBO Status if( glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) std::cout << "\n Error:: FrameBufferObject::Initialize() :: FBO loading not complete \n"; // switch back to window system Framebuffer glBindFramebuffer(GL_FRAMEBUFFER, 0); } Thanks!

    Read the article

  • Suitability of ground fog using layered alpha quads?

    - by Nick Wiggill
    A layered approach would use a series of massive alpha-textured quads arranged parallel to the ground, intersecting all intervening terrain geometry, to provide the illusion of ground fog quite effectively from high up, looking down, and somewhat less effectively when inside the fog and looking toward the horizon (see image below). Alternatively, a shader-heavy approach would instead calculate density as function of view distance into the ground fog substrate, and output the fragment value based on that. Without having to performance-test each approach myself, I would like first to hear others' experiences (not speculation!) on what sort of performance impact the layered alpha texture approach is likely to have. I ask specifically due to the oft-cited impacts of overdraw (not sure how fill-rate bound your average desktop system is). A list of games using this approach, particularly older games, would be immensely useful: if this was viable on pre DX9/OpenGL2 hardware, it is likely to work fine for me. One big question is in regards to this sort of effect: (Image credit goes to Lume of lume.com) Notice how the vertical fog gradation is continuous / smooth. OTOH, using textured quad layers, I can only assume that layers would be mighty obvious when walking through them -- the more sparse they were, the more obvious this would be. This is in contrast to where fog planes are aligned to face the player every frame, where this coarseness would be much less obvious.

    Read the article

  • Fog shader camera problem

    - by MaT
    I have some difficulties with my vertex-fragment fog shader in Unity. I have a good visual result but the problem is that the gradient is based on the camera's position, it moves as the camera moves. I don't know how to fix it. Here is the shader code. struct v2f { float4 pos : SV_POSITION; float4 grabUV : TEXCOORD0; float2 uv_depth : TEXCOORD1; float4 interpolatedRay : TEXCOORD2; float4 screenPos : TEXCOORD3; }; v2f vert(appdata_base v) { v2f o; o.pos = mul(UNITY_MATRIX_MVP, v.vertex); o.uv_depth = v.texcoord.xy; o.grabUV = ComputeGrabScreenPos(o.pos); half index = v.vertex.z; o.screenPos = ComputeScreenPos(o.pos); o.interpolatedRay = mul(UNITY_MATRIX_MV, v.vertex); return o; } sampler2D _GrabTexture; float4 frag(v2f IN) : COLOR { float3 uv = UNITY_PROJ_COORD(IN.grabUV); float dpth = UNITY_SAMPLE_DEPTH(tex2Dproj(_CameraDepthTexture, uv)); dpth = LinearEyeDepth(dpth); float4 wsPos = (IN.screenPos + dpth * IN.interpolatedRay); // Here is the problem but how to fix it float fogVert = max(0.0, (wsPos.y - _Depth) * (_DepthScale * 0.1f)); fogVert *= fogVert; fogVert = (exp (-fogVert)); return fogVert; } Thanks a lot !

    Read the article

  • converting a mouse click to a ray

    - by Will
    I have a perspective projection. When the user clicks on the screen, I want to compute the ray between the near and far planes that projects from the mouse point, so I can do some ray intersection code with my world. I am using my own matrix and vector and ray classes and they all work as expected. However, when I try and convert the ray to world coordinates my far always ends up as 0,0,0 and so my ray goes from the mouse click to the centre of the object space, rather than through it. (The x and y coordinates of near and far are identical, they differ only in the z coordinates where they are negatives of each other) GLint vp[4]; glGetIntegerv(GL_VIEWPORT,vp); matrix_t mv, p; glGetFloatv(GL_MODELVIEW_MATRIX,mv.f); glGetFloatv(GL_PROJECTION_MATRIX,p.f); const matrix_t inv = (mv*p).inverse(); const float unit_x = (2.0f*((float)(x-vp[0])/(vp[2]-vp[0])))-1.0f, unit_y = 1.0f-(2.0f*((float)(y-vp[1])/(vp[3]-vp[1]))); const vec_t near(vec_t(unit_x,unit_y,-1)*inv); const vec_t far(vec_t(unit_x,unit_y,1)*inv); ray = ray_t(near,far-near); What have I got wrong? (How do you unproject the mouse-point?)

    Read the article

  • Orthographic Projection Issue

    - by Nick
    I have a problem with my Ortho Matrix. The engine uses the perspective projection fine but for some reason the Ortho matrix is messed up. (See screenshots below). Can anyone understand what is happening here? At the min I am taking the Projection matrix * Transform (Translate, rotate, scale) and passing to the Vertex shader to multiply the Vertices by it. VIDEO Shows the same scene, rotating on the Y axis. http://youtu.be/2feiZAIM9Y0 void Matrix4f::InitOrthoProjTransform(float left, float right, float top, float bottom, float zNear, float zFar) { m[0][0] = 2 / (right - left); m[0][1] = 0; m[0][2] = 0; m[0][3] = 0; m[1][0] = 0; m[1][1] = 2 / (top - bottom); m[1][2] = 0; m[1][3] = 0; m[2][0] = 0; m[2][1] = 0; m[2][2] = -1 / (zFar - zNear); m[2][3] = 0; m[3][0] = -(right + left) / (right - left); m[3][1] = -(top + bottom) / (top - bottom); m[3][2] = -zNear / (zFar - zNear); m[3][3] = 1; } This is what happens with Ortho Matrix: This is the Perspective Matrix:

    Read the article

  • 3DS Max exporting too many vertexes for model

    - by Juan Pablo
    I have a sample model of a cube and a buddha downloaded from internet in 3ds format which I can load correctly into my program and view them without problem, but wanted to try and create my own model. I created a simple box mesh in 3ds max, and exported it as .3ds (Converted to mesh - export as .3ds) When inspecting the .3ds file with a hex viewer, I was expecting to see 8 vertexes and 12 faces declared (as the model I downloaded from internet). But what i found was that it listed 26 vertexes, and 12 faces! And when I try to load that file with my .3ds viewer, my parser isn't detecting the face block (0x4120), which is strange because it worked for other objects downloaded from internet. Do I have to set any special property in order to export a 3ds file with minimum vertexes and a vertex-index list?

    Read the article

  • 3D texture coordinates for a cube

    - by Roshan
    I want to use glTexImage3D with cube. what will be the texture coordinates for it? i am using GL_TEXTURE_3D as target. I tried with u v coordinates same as 2d texture coordinates with z component 0-depth for each face. But that goes wrong. How to apply each layer to each face of the cube with target= GL_TEXTURE_3D? Lets assume i have 8 layers of 2D images in my 3D texture. I want all 8 layers to apply on each of the cube and not 1 layer on 1 face of the cube.

    Read the article

  • Orthographic Zooming with 0,0 at top/left

    - by Sean M.
    I'm trying to implement zooming on my 2D game. Since it's using orthographic projection, I thought it would be easy to implement zooming. After looking around the internet, I found a bunch of explanations and samples on how to do this if (0,0) is the center of the screen with the orthographic projection. The problem is, my ortho projection has (0,0) at the top-left (similar to XNA/Monogame, and a couple others). I could not find any examples about how to implement zooming to the center of the screen when the center is not (0,0). And help/links/code examples would be greatly appreciated.

    Read the article

  • 3D picking lwjgl

    - by Wirde
    I have written some code to preform 3D picking that for some reason dosn't work entirely correct! (Im using LWJGL just so you know.) I posted this at stackoverflow at first but after researching some more in to my problem i found this neat site and tought that you guys might be more qualified to answer this question. This is how the code looks like: if(Mouse.getEventButton() == 1) { if (!Mouse.getEventButtonState()) { Camera.get().generateViewMatrix(); float screenSpaceX = ((Mouse.getX()/800f/2f)-1.0f)*Camera.get().getAspectRatio(); float screenSpaceY = 1.0f-(2*((600-Mouse.getY())/600f)); float displacementRate = (float)Math.tan(Camera.get().getFovy()/2); screenSpaceX *= displacementRate; screenSpaceY *= displacementRate; Vector4f cameraSpaceNear = new Vector4f((float) (screenSpaceX * Camera.get().getNear()), (float) (screenSpaceY * Camera.get().getNear()), (float) (-Camera.get().getNear()), 1); Vector4f cameraSpaceFar = new Vector4f((float) (screenSpaceX * Camera.get().getFar()), (float) (screenSpaceY * Camera.get().getFar()), (float) (-Camera.get().getFar()), 1); Matrix4f tmpView = new Matrix4f(); Camera.get().getViewMatrix().transpose(tmpView); Matrix4f invertedViewMatrix = (Matrix4f)tmpView.invert(); Vector4f worldSpaceNear = new Vector4f(); Matrix4f.transform(invertedViewMatrix, cameraSpaceNear, worldSpaceNear); Vector4f worldSpaceFar = new Vector4f(); Matrix4f.transform(invertedViewMatrix, cameraSpaceFar, worldSpaceFar); Vector3f rayPosition = new Vector3f(worldSpaceNear.x, worldSpaceNear.y, worldSpaceNear.z); Vector3f rayDirection = new Vector3f(worldSpaceFar.x - worldSpaceNear.x, worldSpaceFar.y - worldSpaceNear.y, worldSpaceFar.z - worldSpaceNear.z); rayDirection.normalise(); Ray clickRay = new Ray(rayPosition, rayDirection); Vector tMin = new Vector(), tMax = new Vector(), tempPoint; float largestEnteringValue, smallestExitingValue, temp, closestEnteringValue = Camera.get().getFar()+0.1f; Drawable closestDrawableHit = null; for(Drawable d : this.worldModel.getDrawableThings()) { // Calcualte AABB for each object... needs to be moved later... firstVertex = true; for(Surface surface : d.getSurfaces()) { for(Vertex v : surface.getVertices()) { worldPosition.x = (v.x+d.getPosition().x)*d.getScale().x; worldPosition.y = (v.y+d.getPosition().y)*d.getScale().y; worldPosition.z = (v.z+d.getPosition().z)*d.getScale().z; worldPosition = worldPosition.rotate(d.getRotation()); if (firstVertex) { maxX = worldPosition.x; maxY = worldPosition.y; maxZ = worldPosition.z; minX = worldPosition.x; minY = worldPosition.y; minZ = worldPosition.z; firstVertex = false; } else { if (worldPosition.x > maxX) { maxX = worldPosition.x; } if (worldPosition.x < minX) { minX = worldPosition.x; } if (worldPosition.y > maxY) { maxY = worldPosition.y; } if (worldPosition.y < minY) { minY = worldPosition.y; } if (worldPosition.z > maxZ) { maxZ = worldPosition.z; } if (worldPosition.z < minZ) { minZ = worldPosition.z; } } } } // ray/slabs intersection test... // clickRay.getOrigin().x + clickRay.getDirection().x * f = minX // clickRay.getOrigin().x - minX = -clickRay.getDirection().x * f // clickRay.getOrigin().x/-clickRay.getDirection().x - minX/-clickRay.getDirection().x = f // -clickRay.getOrigin().x/clickRay.getDirection().x + minX/clickRay.getDirection().x = f largestEnteringValue = -clickRay.getOrigin().x/clickRay.getDirection().x + minX/clickRay.getDirection().x; temp = -clickRay.getOrigin().y/clickRay.getDirection().y + minY/clickRay.getDirection().y; if(largestEnteringValue < temp) { largestEnteringValue = temp; } temp = -clickRay.getOrigin().z/clickRay.getDirection().z + minZ/clickRay.getDirection().z; if(largestEnteringValue < temp) { largestEnteringValue = temp; } smallestExitingValue = -clickRay.getOrigin().x/clickRay.getDirection().x + maxX/clickRay.getDirection().x; temp = -clickRay.getOrigin().y/clickRay.getDirection().y + maxY/clickRay.getDirection().y; if(smallestExitingValue > temp) { smallestExitingValue = temp; } temp = -clickRay.getOrigin().z/clickRay.getDirection().z + maxZ/clickRay.getDirection().z; if(smallestExitingValue < temp) { smallestExitingValue = temp; } if(largestEnteringValue > smallestExitingValue) { //System.out.println("Miss!"); } else { if (largestEnteringValue < closestEnteringValue) { closestEnteringValue = largestEnteringValue; closestDrawableHit = d; } } } if(closestDrawableHit != null) { System.out.println("Hit at: (" + clickRay.setDistance(closestEnteringValue).x + ", " + clickRay.getCurrentPosition().y + ", " + clickRay.getCurrentPosition().z); this.worldModel.removeDrawableThing(closestDrawableHit); } } } I just don't understand what's wrong, the ray are shooting and i do hit stuff that gets removed but the result of the ray are verry strange it sometimes removes the thing im clicking at, sometimes it removes things thats not even close to what im clicking at, and sometimes it removes nothing at all. Edit: Okay so i have continued searching for errors and by debugging the ray (by painting smal dots where it travles) i can now se that there is something oviously wrong with the ray that im sending out... it has its origin near the world center (nearer or further away depending on where on the screen im clicking) and always shots to the same position no matter where I direct my camera... My initial toughts is that there might be some error in the way i calculate my viewMatrix (since it's not possible to get the viewmatrix from the gluLookAt method in lwjgl; I have to build it my self and I guess thats where the problem is at)... Edit2: This is how i calculate it currently: private double[][] viewMatrixDouble = {{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,1}}; public Vector getCameraDirectionVector() { Vector actualEye = this.getActualEyePosition(); return new Vector(lookAt.x-actualEye.x, lookAt.y-actualEye.y, lookAt.z-actualEye.z); } public Vector getActualEyePosition() { return eye.rotate(this.getRotation()); } public void generateViewMatrix() { Vector cameraDirectionVector = getCameraDirectionVector().normalize(); Vector side = Vector.cross(cameraDirectionVector, this.upVector).normalize(); Vector up = Vector.cross(side, cameraDirectionVector); viewMatrixDouble[0][0] = side.x; viewMatrixDouble[0][1] = up.x; viewMatrixDouble[0][2] = -cameraDirectionVector.x; viewMatrixDouble[1][0] = side.y; viewMatrixDouble[1][1] = up.y; viewMatrixDouble[1][2] = -cameraDirectionVector.y; viewMatrixDouble[2][0] = side.z; viewMatrixDouble[2][1] = up.z; viewMatrixDouble[2][2] = -cameraDirectionVector.z; /* Vector actualEyePosition = this.getActualEyePosition(); Vector zaxis = new Vector(this.lookAt.x - actualEyePosition.x, this.lookAt.y - actualEyePosition.y, this.lookAt.z - actualEyePosition.z).normalize(); Vector xaxis = Vector.cross(upVector, zaxis).normalize(); Vector yaxis = Vector.cross(zaxis, xaxis); viewMatrixDouble[0][0] = xaxis.x; viewMatrixDouble[0][1] = yaxis.x; viewMatrixDouble[0][2] = zaxis.x; viewMatrixDouble[1][0] = xaxis.y; viewMatrixDouble[1][1] = yaxis.y; viewMatrixDouble[1][2] = zaxis.y; viewMatrixDouble[2][0] = xaxis.z; viewMatrixDouble[2][1] = yaxis.z; viewMatrixDouble[2][2] = zaxis.z; viewMatrixDouble[3][0] = -Vector.dot(xaxis, actualEyePosition); viewMatrixDouble[3][1] =-Vector.dot(yaxis, actualEyePosition); viewMatrixDouble[3][2] = -Vector.dot(zaxis, actualEyePosition); */ viewMatrix = new Matrix4f(); viewMatrix.load(getViewMatrixAsFloatBuffer()); } Would be verry greatfull if anyone could verify if this is wrong or right, and if it's wrong; supply me with the right way of doing it... I have read alot of threads and documentations about this but i can't seam to wrapp my head around it... Edit3: Okay with the help of Byte56 (thanks alot for the help) i have now concluded that it's not the viewMatrix that is the problem... I still get the same messedup result; anyone that think that they can find the error in my code, i certenly can't, have bean working on this for 3 days now :(

    Read the article

  • WinAPI window taking 50% of CPU when idle

    - by henryprescott
    I'm currently working on a game that creates a window using WindowsAPI. However, at the moment the process is taking up 50% of my CPU. All I am doing is creating the window and looping using the code found below: int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nShowCmd) { MSG message = {0}; WNDCLASSEX wcl = {0}; wcl.cbSize = sizeof(wcl); wcl.style = CS_OWNDC | CS_HREDRAW | CS_VREDRAW; wcl.lpfnWndProc = WindowProc; wcl.cbClsExtra = 0; wcl.cbWndExtra = 0; wcl.hInstance = hInstance = hInstance; wcl.hIcon = LoadIcon(0, IDI_APPLICATION); wcl.hCursor = LoadCursor(0, IDC_ARROW); wcl.hbrBackground = 0; wcl.lpszMenuName = 0; wcl.lpszClassName = "GL2WindowClass"; wcl.hIconSm = 0; if (!RegisterClassEx(&wcl)) return 0; hWnd = CreateAppWindow(wcl, "Application"); if (hWnd) { if (Init()) { ShowWindow(hWnd, nShowCmd); UpdateWindow(hWnd); while (true) { while (PeekMessage(&message, 0, 0, 0, PM_REMOVE)) { if (message.message == WM_QUIT) break; TranslateMessage(&message); DispatchMessage(&message); } if (message.message == WM_QUIT) break; if (hasFocus) { elapsedTime = GetElapsedTimeInSeconds(); lastEarth += elapsedTime; lastUpdate += elapsedTime; lastFrame += elapsedTime; lastParticle += elapsedTime; if(lastUpdate >= (1.0f / 100.0f)) { Update(lastUpdate); lastUpdate = 0; } if(lastFrame >= (1.0f / 60.0f)) { UpdateFrameRate(lastFrame); lastFrame = 0; Render(); SwapBuffers(hDC); } if(lastEarth >= (1.0f / 10.0f)) { UpdateEarthAnimation(); lastEarth = 0; } if(lastParticle >= (1.0f / 30.0f)) { particleManager->rightBooster->Update(); particleManager->rightBoosterSmoke->Update(); particleManager->leftBooster->Update(); particleManager->leftBoosterSmoke->Update(); particleManager->breakUp->Update(); lastParticle = 0; } } else { WaitMessage(); } } } Cleanup(); UnregisterClass(wcl.lpszClassName, hInstance); } return static_cast<int>(message.wParam); } So even when I am not drawing anything when the window has focus it still takes up 50%. I don't understand how this is taking up so much system resources. Am I doing something wrong? Any help would be much appreciated, thank you!

    Read the article

  • Problems with texture orientation in space

    - by frankie
    I am currently drawing texture in 3D space and have some problems with it's orientation. I'd like me textures always to be oriented with front face to user. My desirable result looks like Note, that text size stay without changes when we rotating world and stay oriented with front face to user. Now I can draw text in 3D space, but it is not oriented with front but rotating with world. Such results I got with following shaders: Vertex Shader uniform vec3 Position; void main() { gl_Position = vec4(Position, 1.0); } Geometry Shader layout(points) in; layout(triangle_strip, max_vertices = 4) out; out vec2 fsTextureCoordinates; uniform mat4 projectionMatrix; uniform mat4 modelViewMatrix; uniform sampler2D og_texture0; uniform float og_highResolutionSnapScale; uniform vec2 u_originScale; void main() { vec2 halfSize = vec2(textureSize(og_texture0, 0)) * 0.5 * og_highResolutionSnapScale; vec4 center = gl_in[0].gl_Position; center.xy += (u_originScale * halfSize); vec4 v0 = vec4(center.xy - halfSize, center.z, 1.0); vec4 v1 = vec4(center.xy + vec2(halfSize.x, -halfSize.y), center.z, 1.0); vec4 v2 = vec4(center.xy + vec2(-halfSize.x, halfSize.y), center.z, 1.0); vec4 v3 = vec4(center.xy + halfSize, center.z, 1.0); gl_Position = projectionMatrix * modelViewMatrix * v0; fsTextureCoordinates = vec2(0.0, 0.0); EmitVertex(); gl_Position = projectionMatrix * modelViewMatrix * v1; fsTextureCoordinates = vec2(1.0, 0.0); EmitVertex(); gl_Position = projectionMatrix * modelViewMatrix * v2; fsTextureCoordinates = vec2(0.0, 1.0); EmitVertex(); gl_Position = projectionMatrix * modelViewMatrix * v3; fsTextureCoordinates = vec2(1.0, 1.0); EmitVertex(); } Fragment Shader in vec2 fsTextureCoordinates; out vec4 fragmentColor; uniform sampler2D og_texture0; uniform vec3 u_color; void main() { vec4 color = texture(og_texture0, fsTextureCoordinates); if (color.a == 0.0) { discard; } fragmentColor = vec4(color.rgb * u_color.rgb, color.a); } Any ideas how to get my desirable result? EDIT 1: I make edit in my geometry shader and got part of lable drawn on screen at corner. But it is not rotating. .......... vec4 centerProjected = projectionMatrix * modelViewMatrix * center; centerProjected /= centerProjected.w; vec4 v0 = vec4(centerProjected.xy - halfSize, 0.0, 1.0); vec4 v1 = vec4(centerProjected.xy + vec2(halfSize.x, -halfSize.y), 0.0, 1.0); vec4 v2 = vec4(centerProjected.xy + vec2(-halfSize.x, halfSize.y), 0.0, 1.0); vec4 v3 = vec4(centerProjected.xy + halfSize, 0.0, 1.0); gl_Position = og_viewportOrthographicMatrix * v0; ..........

    Read the article

  • 2D map/plane with nodes overlayed that supports panning, scaling and clicking on nodes

    - by garlicman
    I'm trying my hand at Android development and seem to be running into an invisible ceiling in trying to get what I want accomplished. Basically I'm trying to create an app that renders a 2D surface map that I can (pinch) zoom and pan. I'll have to place nodes on the surface of the map that will scale/zoom and pan in relation to the surface. I started out with a 2D ImageView approach and got as far as pinch zoom, pan and laying nodes as relative ImageViews, but all the methods I tried to get X,Y,W,H for the 2D surface were always off for some reason. Additionally, I was never able to scale the node ImageViews correctly, and as a result never got far enough to try and work out their X,Y scaled offset. So I decided to get back to 3D rendering. Conceptually pan/zoom is camera manipulation, so I don't have to mess with how to scale the 2D map or the nodes. But I need a starting point or sample to get me going that's close to what I'm trying to achieve. A sample on a translucent spinning cube isn't helping as much as I need it to. Any tips? Links, insults and sympathy are all welcome!

    Read the article

  • LWJGL - Continuous key press event without delay

    - by Zarkopafilis
    I am checking for key presses and then based on the keys pressed I am moving a square around the screen. I am setting booleans for the keys WASD. But , Whenever I try to keep the key down , it takes a while till it moves continuously (Just a half second stop after a single move.) Any way to get rid of that and make it be "smooth"? Code: up = false; down = false; left = false; right = false; reset = false; while(Keyboard.next()){ if (Keyboard.getEventKeyState()) { if(Keyboard.isKeyDown(Keyboard.KEY_SPACE)){ reset = false; } if(Keyboard.isKeyDown(Keyboard.KEY_W)){ up = true; } if(Keyboard.isKeyDown(Keyboard.KEY_S)){ down = true; } if(Keyboard.isKeyDown(Keyboard.KEY_A)){ left = true; } if(Keyboard.isKeyDown(Keyboard.KEY_D)){ right = true; } } }

    Read the article

  • Car-like Physics - Basic Maths to Simulate Steering

    - by Reanimation
    As my program stands I have a cube which I can control using keyboard input. I can make it move left, right, up, down, back, fourth along the axis only. I can also rotate the cube either left or right; all the translations and rotations are implemented using glm. if (keys[VK_LEFT]) //move cube along xAxis negative { globalPos.x -= moveCube; keys[VK_RIGHT] = false; } if (keys[VK_RIGHT]) //move cube along xAxis positive { globalPos.x += moveCube; keys[VK_LEFT] = false; } if (keys[VK_UP]) //move cube along yAxis positive { globalPos.y += moveCube; keys[VK_DOWN] = false; } if (keys[VK_DOWN]) //move cube along yAxis negative { globalPos.y -= moveCube; keys[VK_UP] = false; } if (FORWARD) //W - move cube along zAxis positive { globalPos.z += moveCube; BACKWARD = false; } if (BACKWARD) //S- move cube along zAxis negative { globalPos.z -= moveCube; FORWARD = false; } if (ROT_LEFT) //rotate cube left { rotX +=0.01f; ROT_LEFT = false; } if (ROT_RIGHT) //rotate cube right { rotX -=0.01f; ROT_RIGHT = false; } I render the cube using this function which handles the shader and position on screen: void renderMovingCube(){ glUseProgram(myShader.handle()); GLuint matrixLoc4MovingCube = glGetUniformLocation(myShader.handle(), "ProjectionMatrix"); glUniformMatrix4fv(matrixLoc4MovingCube, 1, GL_FALSE, &ProjectionMatrix[0][0]); glm::mat4 viewMatrixMovingCube; viewMatrixMovingCube = glm::lookAt(camOrigin,camLookingAt,camNormalXYZ); ModelViewMatrix = glm::translate(viewMatrixMovingCube,globalPos); ModelViewMatrix = glm::rotate(ModelViewMatrix,rotX, glm::vec3(0,1,0)); //manually rotate glUniformMatrix4fv(glGetUniformLocation(myShader.handle(), "ModelViewMatrix"), 1, GL_FALSE, &ModelViewMatrix[0][0]); movingCube.render(); glUseProgram(0); } The glm::lookAt function always points to the screens centre (0,0,0). The globalPos is a glm::vec3 globalPos(0,0,0); so when the program executes, renders the cube in the centre of the screens viewing matrix; the keyboard inputs above adjust the globalPos of the moving cube. The glm::rotate is the function used to rotate manually. My question is, how can I make the cube go forwards depending on what direction the cube is facing.... ie, once I've rotated the cube a few degrees using glm, the forwards direction, relative to the cube, is no longer on the z-Axis... how can I store the forwards direction and then use that to navigate forwards no matter what way it is facing? (either using vectors that can be applied to my code or some handy maths). Thanks.

    Read the article

  • Unexpected behaviour with glFramebufferTexture1D

    - by Roshan
    I am using render to texture concept with glFramebufferTexture1D. I am drawing a cube on non-default FBO with all the vertices as -1,1 (maximum) in X Y Z direction. Now i am setting viewport to X while rendering on non default FBO. My background is blue with white color of cube. For default FBO, i have created 1-D texture and attached this texture to above FBO with color attachment. I am setting width of texture equal to width*height of above FBO view-port. Now, when i render this texture to on another cube, i can see continuous white color on start or end of each face of the cube. That means part of the face is white and rest is blue. I am not sure whether this behavior is correct or not. I expect all the texels should be white as i am using -1 and 1 coordinates for cube rendered on non-default FBO. code: #define WIDTH 3 #define HEIGHT 3 GLfloat vertices8[]={ 1.0f,1.0f,1.0f, -1.0f,1.0f,1.0f, -1.0f,-1.0f,1.0f, 1.0f,-1.0f,1.0f,//face 1 1.0f,-1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f,1.0f,-1.0f, 1.0f,1.0f,-1.0f,//face 2 1.0f,1.0f,1.0f, 1.0f,-1.0f,1.0f, 1.0f,-1.0f,-1.0f, 1.0f,1.0f,-1.0f,//face 3 -1.0f,1.0f,1.0f, -1.0f,1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f,-1.0f,1.0f,//face 4 1.0f,1.0f,1.0f, 1.0f,1.0f,-1.0f, -1.0f,1.0f,-1.0f, -1.0f,1.0f,1.0f,//face 5 -1.0f,-1.0f,1.0f, -1.0f,-1.0f,-1.0f, 1.0f,-1.0f,-1.0f, 1.0f,-1.0f,1.0f//face 6 }; GLfloat vertices[]= { 0.5f,0.5f,0.5f, -0.5f,0.5f,0.5f, -0.5f,-0.5f,0.5f, 0.5f,-0.5f,0.5f,//face 1 0.5f,-0.5f,-0.5f, -0.5f,-0.5f,-0.5f, -0.5f,0.5f,-0.5f, 0.5f,0.5f,-0.5f,//face 2 0.5f,0.5f,0.5f, 0.5f,-0.5f,0.5f, 0.5f,-0.5f,-0.5f, 0.5f,0.5f,-0.5f,//face 3 -0.5f,0.5f,0.5f, -0.5f,0.5f,-0.5f, -0.5f,-0.5f,-0.5f, -0.5f,-0.5f,0.5f,//face 4 0.5f,0.5f,0.5f, 0.5f,0.5f,-0.5f, -0.5f,0.5f,-0.5f, -0.5f,0.5f,0.5f,//face 5 -0.5f,-0.5f,0.5f, -0.5f,-0.5f,-0.5f, 0.5f,-0.5f,-0.5f, 0.5f,-0.5f,0.5f//face 6 }; GLuint indices[] = { 0, 2, 1, 0, 3, 2, 4, 5, 6, 4, 6, 7, 8, 9, 10, 8, 10, 11, 12, 15, 14, 12, 14, 13, 16, 17, 18, 16, 18, 19, 20, 23, 22, 20, 22, 21 }; GLfloat texcoord[] = { 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0 }; glGenTextures(1, &id1); glBindTexture(GL_TEXTURE_1D, id1); glGenFramebuffers(1, &Fboid); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA, WIDTH*HEIGHT , 0, GL_RGBA, GL_UNSIGNED_BYTE,0); glBindFramebuffer(GL_FRAMEBUFFER, Fboid); glFramebufferTexture1D(GL_DRAW_FRAMEBUFFER,GL_COLOR_ATTACHMENT0,GL_TEXTURE_1D,id1,0); draw_cube(); glBindFramebuffer(GL_FRAMEBUFFER, 0); draw(); } draw_cube() { glViewport(0, 0, WIDTH, HEIGHT); glClearColor(0.0f, 0.0f, 0.5f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); glEnableVertexAttribArray(glGetAttribLocation(temp.psId,"position")); glVertexAttribPointer(glGetAttribLocation(temp.psId,"position"), 3, GL_FLOAT, GL_FALSE, 0,vertices8); glDrawArrays (GL_TRIANGLE_FAN, 0, 24); } draw() { glClearColor(1.0f, 0.0f, 0.0f, 1.0f); glClearDepth(1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnableVertexAttribArray(glGetAttribLocation(shader_data.psId,"tk_position")); glVertexAttribPointer(glGetAttribLocation(shader_data.psId,"tk_position"), 3, GL_FLOAT, GL_FALSE, 0,vertices); nResult = GL_ERROR_CHECK((GL_NO_ERROR, "glVertexAttribPointer(position, 3, GL_FLOAT, GL_FALSE, 0,vertices);")); glEnableVertexAttribArray(glGetAttribLocation(shader_data.psId,"inputtexcoord")); glVertexAttribPointer(glGetAttribLocation(shader_data.psId,"inputtexcoord"), 2, GL_FLOAT, GL_FALSE, 0,texcoord); glBindTexture(*target11, id1); glDrawElements ( GL_TRIANGLES, 36,GL_UNSIGNED_INT, indices ); when i change WIDTH=HEIGHT=2, and call a glreadpixels with height, width equal to 4 in draw_cube() i can see first 2 pixels with white color, next two with blue(glclearcolor), next two white and then blue and so on.. Now when i change width parameter in glTeximage1D to 16 then ideally i should see alternate patches of white and blue right? But its not the case here. why so?

    Read the article

  • Problem using glm::lookat

    - by omikun
    I am trying to rotate a sprite so it is always facing a 3D camera. Object GLfloat vertexData[] = { // X Y Z U V 0.0f, 0.8f, 0.0f, 0.5f, 1.0f, -0.8f,-0.8f, 0.0f, 0.0f, 0.0f, 0.8f,-0.8f, 0.0f, 1.0f, 0.0f, }; Per frame transform glm::mat4 newTransform = glm::lookAt(glm::vec3(0), gCamera.position(), gCamera.up()); shaders->setUniform("camera", gCamera.matrix()); shaders->setUniform("model", newTransform); In the vertex shader: gl_Position = camera * model * vec4(vert, 1); The object will track the camera if I move the camera up or down, but if I move the camera left/right (spin the camera around the object's y axis), it will rotate in the other direction so I end up seeing its front twice and its back twice as I rotate around it 360. If I use -gCamera.up() instead, it would track the camera side to side, but spin the opposite direction when I move the camera up/down. What am I doing wrong?

    Read the article

  • Render on other render targets starting from one already rendered on

    - by JTulip
    I have to perform a double pass convolution on a texture that is actually the color attachment of another render target, and store it in the color attachment of ANOTHER render target. This must be done multiple time, but using the same texture as starting point What I do now is (a bit abstracted, but what I have abstract is guaranteed to work singularly) renderOnRT(firstTarget); // This is working. for each other RT currRT{ glBindFramebuffer(GL_FRAMEBUFFER, currRT.frameBufferID); programX.use(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, firstTarget.colorAttachmentID); programX.setUniform1i("colourTexture",0); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, firstTarget.depthAttachmentID); programX.setUniform1i("depthTexture",1); glBindBuffer(GL_ARRAY_BUFFER, quadBuffID); // quadBuffID is a VBO for a screen aligned quad. It is fine. programX.vertexAttribPointer(POSITION_ATTRIBUTE, 3, GL_FLOAT, GL_FALSE, 0, (void*)0); glDrawArrays(GL_QUADS,0,4); programY.use(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, currRT.colorAttachmentID); // The second pass is done on the previous pass programY.setUniform1i("colourTexture",0); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, currRT.depthAttachmentID); programY.setUniform1i("depthTexture",1); glBindBuffer(GL_ARRAY_BUFFER, quadBuffID); programY.vertexAttribPointer(POSITION_ATTRIBUTE, 3, GL_FLOAT, GL_FALSE, 0, (void*)0); glDrawArrays(GL_QUADS, 0, 4); } The problem is that I end up with black textures and not the wanted result. The GLSL programs program(X,Y) works fine, already tested on single targets. Is there something stupid I am missing? Even an hint is much appreciated, thanks!

    Read the article

  • 3Ds Max is exporting model with more normals than vertices

    - by Delta
    I made a simple teapot with the "Create Standard Primitives" option and exported it as a collada file, ended up with this: < float_array id="Teapot001-POSITION-array" count="1590" < float_array id="Teapot001-Normal0-array" count="9216" For what I know there should be only one normal per vertex, am I wrong? What am I supposed to do with that much normals? Just put them on the normal buffer all at once normally?

    Read the article

< Previous Page | 47 48 49 50 51 52 53 54 55 56 57 58  | Next Page >