Search Results

Search found 4842 results on 194 pages for 'computation expression'.

Page 52/194 | < Previous Page | 48 49 50 51 52 53 54 55 56 57 58 59  | Next Page >

  • Akka framework support for finding duplicate messages

    - by scala_is_awesome
    I'm trying to build a high-performance distributed system with Akka and Scala. If a message requesting an expensive (and side-effect-free) computation arrives, and the exact same computation has already been requested before, I want to avoid computing the result again. If the computation requested previously has already completed and the result is available, I can cache it and re-use it. However, the time window in which duplicate computation can be requested may be arbitrarily small. e.g. I could get a thousand or a million messages requesting the same expensive computation at the same instant for all practical purposes. There is a commercial product called Gigaspaces that supposedly handles this situation. However there seems to be no framework support for dealing with duplicate work requests in Akka at the moment. Given that the Akka framework already has access to all the messages being routed through the framework, it seems that a framework solution could make a lot of sense here. Here is what I am proposing for the Akka framework to do: 1. Create a trait to indicate a type of messages (say, "ExpensiveComputation" or something similar) that are to be subject to the following caching approach. 2. Smartly (hashing etc.) identify identical messages received by (the same or different) actors within a user-configurable time window. Other options: select a maximum buffer size of memory to be used for this purpose, subject to (say LRU) replacement etc. Akka can also choose to cache only the results of messages that were expensive to process; the messages that took very little time to process can be re-processed again if needed; no need to waste precious buffer space caching them and their results. 3. When identical messages (received within that time window, possibly "at the same time instant") are identified, avoid unnecessary duplicate computations. The framework would do this automatically, and essentially, the duplicate messages would never get received by a new actor for processing; they would silently vanish and the result from processing it once (whether that computation was already done in the past, or ongoing right then) would get sent to all appropriate recipients (immediately if already available, and upon completion of the computation if not). Note that messages should be considered identical even if the "reply" fields are different, as long as the semantics/computations they represent are identical in every other respect. Also note that the computation should be purely functional, i.e. free from side-effects, for the caching optimization suggested to work and not change the program semantics at all. If what I am suggesting is not compatible with the Akka way of doing things, and/or if you see some strong reasons why this is a very bad idea, please let me know. Thanks, Is Awesome, Scala

    Read the article

  • Deterministic/Consistent Unique Masking

    - by Dinesh Rajasekharan-Oracle
    One of the key requirements while masking data in large databases or multi database environment is to consistently mask some columns, i.e. for a given input the output should always be the same. At the same time the masked output should not be predictable. Deterministic masking also eliminates the need to spend enormous amount of time spent in identifying data relationships, i.e. parent and child relationships among columns defined in the application tables. In this blog post I will explain different ways of consistently masking the data across databases using Oracle Data Masking and Subsetting The readers of post should have minimal knowledge on Oracle Enterprise Manager 12c, Application Data Modeling, Data Masking concepts. For more information on these concepts, please refer to Oracle Data Masking and Subsetting document Oracle Data Masking and Subsetting 12c provides four methods using which users can consistently yet irreversibly mask their inputs. 1. Substitute 2. SQL Expression 3. Encrypt 4. User Defined Function SUBSTITUTE The substitute masking format replaces the original value with a value from a pre-created database table. As the method uses a hash based algorithm in the back end the mappings are consistent. For example consider DEPARTMENT_ID in EMPLOYEES table is replaced with FAKE_DEPARTMENT_ID from FAKE_TABLE. The substitute masking transformation that all occurrences of DEPARTMENT_ID say ‘101’ will be replaced with ‘502’ provided same substitution table and column is used , i.e. FAKE_TABLE.FAKE_DEPARTMENT_ID. The following screen shot shows the usage of the Substitute masking format with in a masking definition: Note that the uniqueness of the masked value depends on the number of columns being used in the substitution table i.e. if the original table contains 50000 unique values, then for the masked output to be unique and deterministic the substitution column should also contain 50000 unique values without which only consistency is maintained but not uniqueness. SQL EXPRESSION SQL Expression replaces an existing value with the output of a specified SQL Expression. For example while masking an EMPLOYEES table the EMAIL_ID of an employee has to be in the format EMPLOYEE’s [email protected] while FIRST_NAME and LAST_NAME are the actual column names of the EMPLOYEES table then the corresponding SQL Expression will look like %FIRST_NAME%||’.’||%LAST_NAME%||’@COMPANY.COM’. The advantage of this technique is that if you are masking FIRST_NAME and LAST_NAME of the EMPLOYEES table than the corresponding EMAIL ID will be replaced accordingly by the masking scripts. One of the interesting aspect’s of a SQL Expressions is that you can use sub SQL expressions, which means that you can write a nested SQL and use it as SQL Expression to address a complex masking business use cases. SQL Expression can also be used to consistently replace value with hashed value using Oracle’s PL/SQL function ORA_HASH. The following SQL Expression will help in the previous example for replacing the DEPARTMENT_IDs with a hashed number ORA_HASH (%DEPARTMENT_ID%, 1000) The following screen shot shows the usage of encrypt masking format with in the masking definition: ORA_HASH takes three arguments: 1. Expression which can be of any data type except LONG, LOB, User Defined Type [nested table type is allowed]. In the above example I used the Original value as expression. 2. Number of hash buckets which can be number between 0 and 4294967295. The default value is 4294967295. You can also co-relate the number of hash buckets to a range of numbers. In the above example above the bucket value is specified as 1000, so the end result will be a hashed number in between 0 and 1000. 3. Seed, can be any number which decides the consistency, i.e. for a given seed value the output will always be same. The default seed is 0. In the above SQL Expression a seed in not specified, so it to 0. If you have to use a non default seed then the function will look like. ORA_HASH (%DEPARTMENT_ID%, 1000, 1234 The uniqueness depends on the input and the number of hash buckets used. However as ORA_HASH uses a 32 bit algorithm, considering birthday paradox or pigeonhole principle there is a 0.5 probability of collision after 232-1 unique values. ENCRYPT Encrypt masking format uses a blend of 3DES encryption algorithm, hashing, and regular expression to produce a deterministic and unique masked output. The format of the masked output corresponds to the specified regular expression. As this technique uses a key [string] to encrypt the data, the same string can be used to decrypt the data. The key also acts as seed to maintain consistent outputs for a given input. The following screen shot shows the usage of encrypt masking format with in the masking definition: Regular Expressions may look complex for the first time users but you will soon realize that it’s a simple language. There are many resources in internet, oracle documentation, oracle learning library, my oracle support on writing a Regular Expressions, out of all the following My Oracle Support document helped me to get started with Regular Expressions: Oracle SQL Support for Regular Expressions[Video](Doc ID 1369668.1) USER DEFINED FUNCTION [UDF] User Defined Function or UDF provides flexibility for the users to code their own masking logic in PL/SQL, which can be called from masking Defintion. The standard format of an UDF in Oracle Data Masking and Subsetting is: Function udf_func (rowid varchar2, column_name varchar2, original_value varchar2) returns varchar2; Where • rowid is the row identifier of the column that needs to be masked • column_name is the name of the column that needs to be masked • original_value is the column value that needs to be masked You can achieve deterministic masking by using Oracle’s built in hash functions like, ORA_HASH, DBMS_CRYPTO.MD4, DBMS_CRYPTO.MD5, DBMS_UTILITY. GET_HASH_VALUE.Please refers to the Oracle Database Documentation for more information on the Oracle Hash functions. For example the following masking UDF generate deterministic unique hexadecimal values for a given string input: CREATE OR REPLACE FUNCTION RD_DUX (rid varchar2, column_name varchar2, orig_val VARCHAR2) RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE IS stext varchar2 (26); no_of_characters number(2); BEGIN no_of_characters:=6; stext:=substr(RAWTOHEX(DBMS_CRYPTO.HASH(UTL_RAW.CAST_TO_RAW(text),1)),0,no_of_characters); RETURN stext; END; The uniqueness depends on the input and length of the string and number of bits used by hash algorithm. In the above function MD4 hash is used [denoted by argument 1 in the DBMS_CRYPTO.HASH function which is a 128 bit algorithm which produces 2^128-1 unique hashed values , however this is limited by the length of the input string which is 6, so only 6^6 unique values will be generated. Also do not forget about the birthday paradox/pigeonhole principle mentioned earlier in this post. An another example is to consistently replace characters or numbers preserving the length and special characters as shown below: CREATE OR REPLACE FUNCTION RD_DUS(rid varchar2,column_name varchar2,orig_val VARCHAR2) RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE IS stext varchar2(26); BEGIN DBMS_RANDOM.SEED(orig_val); stext:=TRANSLATE(orig_val,'ABCDEFGHILKLMNOPQRSTUVWXYZ',DBMS_RANDOM.STRING('U',26)); stext:=TRANSLATE(stext,'abcdefghijklmnopqrstuvwxyz',DBMS_RANDOM.STRING('L',26)); stext:=TRANSLATE(stext,'0123456789',to_char(DBMS_RANDOM.VALUE(1,9))); stext:=REPLACE(stext,'.','0'); RETURN stext; END; The following screen shot shows the usage of an UDF with in a masking definition: To summarize, Oracle Data Masking and Subsetting helps you to consistently mask data across databases using one or all of the methods described in this post. It saves the hassle of identifying the parent-child relationships defined in the application table. Happy Masking

    Read the article

  • How can I combine sequential expression trees into a fast method?

    - by chillitom
    Suppose I have the following expressions: Expression<Action<T, StringBuilder>> expr1 = (t, sb) => sb.Append(t.Name); Expression<Action<T, StringBuilder>> expr2 = (t, sb) => sb.Append(", "); Expression<Action<T, StringBuilder>> expr3 = (t, sb) => sb.Append(t.Description); I'd like to be able to compile these into a method/delegate equivalent to the following: void Method(T t, StringBuilder sb) { sb.Append(t.Name); sb.Append(", "); sb.Append(t.Description); } What is the best way to approach this? I'd like it to perform well, ideally with performance equivalent to the above method.

    Read the article

  • How can I update an expression in a Runt::Schedule object?

    - by Reid Beels
    Runt provides a Schedule class for managing collections of events, each represented by a temporal expression. The Schedule class provides an update method, cited in the release notes as "allowing clients to update existing expressions". The implementation of this method, however, simply calls a supplied block, providing the temporal expression for the specified event (as shown). # From lib/runt/schedule.rb:61 # # Call the supplied block/Proc with the currently configured # TemporalExpression associated with the supplied Event. # def update(event,&block) block.call(@elems[event]) end How is one expected to use this method to update an expression?

    Read the article

  • How to stop ReSharper from showing error on a lambda expression where Action is expected?

    - by carlmon
    In Silverlight, System.Windows.Threading's Dispatcher.BeginInvoke() takes an Action<T> or a delegate to invoke. .NET allows me to pass just the lambda expression. but ReSharper sees it as an error, saying "Cannot resolve method 'BeginInvoke(lambda expression)'": Dispatcher.BeginInvoke(() => { DoSomething(); }) The error goes away if I explicitly create the Action around the expression like this: Dispatcher.BeginInvoke(new Action<object>(o => { DoSomething(); })); I prefer the least amount of code in this case for the best readability. Is there a way to disable this specific ReSharper error notification? I tried some of the options, but could not find it. Thanks, Carl

    Read the article

  • Phone Number validation using Regular Expression validation in c# 2008?

    - by prateeksaluja20
    Hello Experts , I Want to validate the phone number in this format i.e +919981424199,+91231456789,.... I am using Asp.net +c#2008 for developing web site.for this i have used the Regular Expression validation control-property-Validation Expression="[0-9]+(,[0-9]+)*". But this accept the number as 919981424199,..... User may be enter in this way +919981424199,919300951916,so on so i need the validation expression for this type format.The "+" symbol is optional it can be use & it can't.I tried to solve but still i am searching.please help me to sort out this problem. thanks in advance.

    Read the article

  • What is the max LINQ Expression Trees can do?

    - by yeeen
    What is the maximun that LINQ expression Tree can do? Can it define a class? How about a method, with all the declared name, modifiers, parametertype and return type? Must the program always define the tree himself? Is it possible to generate the tree from a given C# file? Where can I get resources to learn about writing basic to advanced Expression Tree and Expression Tree Visitor? (articles and videos will be great) Thanks for those who are able to help...

    Read the article

  • what is regular expression not generated over {a,b}?

    - by Loop
    Hello all, I am really stuck with these 2 question for over 2 days now. trying to figure out what the question means.... my tutor is out of town too.... write a regular expression for the only strings that are not generated over {a,b} by the expression: (a+b)*a(a+b)*. explain your reasoning. and i tried the second question, do you think is there any better answer than this one? what is regular expression of set of string that contain an odd number of a's or exactly two b's................(a((a|b)(a|b))*|bb).... coz i know to represent any odd length of a's, the RE is a((a|b)(a|b))*

    Read the article

  • shift reduce&& reduce reduce errors in build parser for python garmmer

    - by user366580
    i wanna build buttom up parser by java cup i write code in java cup , it is for python language so i used grammer was written in this site : but not all grammer , i choice partial set ,just while , identifer also i smiplified them when i did compile for the java cup that i write by write this command in command prompt window : java java_cup.Main -parser CalcParser -symbols CalcSymbol < javacupfile.cup i get conflict errors ,they are of type reduce-shift conflict and reduce-reduce conflict you can see to print screen of the errors in these links image 1 click here to see imge1 the grammer was in EBNF form in as refernce site and i convert it to BNF form maybe i make mistake in converting so i get such errors the origanl grammmer was // grammer in EBNF form identifier ::= (letter|"_") (letter | digit | "_")* letter ::= lowercase | uppercase lowercase ::= "a"..."z" uppercase ::= "A"..."Z" digit ::= "0"..."9 compound_stmt ::= if_stmt | while_stmt for_stmt ::= "for" target_list "in" expression_list ":" suite ["else" ":" suite] while_stmt ::= "while" expression ":" suite ["else" ":" suite] suite ::= stmt_list NEWLINE stmt_list ::= simple_stmt (";" simple_stmt)* [";"] simple_stmt ::= expression_stmt expression_stmt ::= expression_list expression_list ::= expression ( "," expression )* [","] expression ::= conditional_expression conditional_expression ::= or_test ["if" or_test "else" expression] or_test ::= and_test | or_test "or" and_test and_test ::= not_test | and_test "and" not_test not_test ::= comparison | "not" not_test comparison ::= or_expr ( comp_operator or_expr )* comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" | "!=" | "is" ["not"] | ["not"] "in" or_expr ::= xor_expr | or_expr "|" xor_expr xor_expr ::= and_expr | xor_expr "^" and_expr and_expr ::= "&" | and_expr the grammer after converting to BNF form identifier ::=letterletter| letterdigit| letter"_"| "_"letter | "_"digit | "_""_" letter ::= lowercase | uppercase lowercase ::= "a"..."z" uppercase ::= "A"..."Z" digit ::= "0"..."9 while_stmt ::= "while" expression ":" suite "else" ":" suite |"while" expression ":" suite suite ::= stmt_list NEWLINE stmt_list ::= simple_stmt ";" simple_stmt stmt_list|";" simple_stmt ::= expression_stmt expression_stmt ::= expression_list expression_list ::= expression "," expression expression_list| "," expression ::= conditional_expression conditional_expression ::= or_test "if" or_test "else" expression |or_test or_test ::= and_test | or_test "or" and_test and_test ::= not_test | and_test "and" not_test not_test ::= comparison | "not" not_test comparison ::= or_expr comp_operator or_expr comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" | "!=" | "is" ["not"] | ["not"] "in" or_expr ::= xor_expr | or_expr "|" xor_expr xor_expr ::= and_expr | xor_expr "^" and_expr and_expr ::= "&" | and_expr and the java cup file that i compile and get those errors is import java.io.*; terminal COMA; terminal ELSE; terminal WHILE; terminal NEWLINE; terminal SEMCOLON; terminal CAMMA; terminal IF; terminal OR; terminal AND; terminal NOT; terminal LESS; terminal GREATER; terminal EQUAL; terminal GREATERorE; terminal LESSorE; terminal NEQUAL; terminal OROP; terminal XOROP; terminal ANDOP; terminal Integer DIGIT; terminal java.lang.String LOWERCASE; terminal java.lang.String UPPERCASE; non terminal java.lang.String IDENTIFIER; non terminal java.lang.String LETTER; non terminal COMPOUND_STMT; non terminal WHILE_STMT; non terminal EXPRESSION; non terminal SUITE ; non terminal STMT_LIST; non terminal SIMPLE_STMT; non terminal EXPRESSION_STMT; non terminal EXPRESSION_LIST; non terminal CONDITITONAL_EXPRESSION; non terminal OR_TEST; non terminal AND_TEST; non terminal NOT_TEST; non terminal COMPARISON; non terminal COMP_OPERATOR; non terminal OR_EXPR; non terminal XOR_EXPR; non terminal AND_EXPR; IDENTIFIER ::=LETTER{: System.out.printf("lowercase"); :}| {: System.out.printf("uppercase"); :} LETTER{: System.out.printf("lowercase"); :}| {: System.out.printf("uppercase"); :}| LETTER{: System.out.printf("lowercase"); :}| {: System.out.printf("uppercase"); :} DIGIT; LETTER ::= LOWERCASE | UPPERCASE; COMPOUND_STMT ::=WHILE_STMT; WHILE_STMT ::= WHILE{: System.out.printf( "while"); :} EXPRESSION COMA {: System.out.printf(":"); :} SUITE ELSE {: System.out.printf("else" ); :} COMA{: System.out.printf( ":" ); :} SUITE |WHILE{: System.out.printf( "while" ); :} EXPRESSION COMA{: System.out.printf( ":" ); :} SUITE; SUITE ::= STMT_LIST NEWLINE{: System.out.printf( "newline" ); :}; STMT_LIST ::= SIMPLE_STMT SEMCOLON{: System.out.printf( ";" ); :} SIMPLE_STMT STMT_LIST|SEMCOLON{: System.out.printf( ";" ); :}; SIMPLE_STMT ::=EXPRESSION_STMT; EXPRESSION_STMT ::=EXPRESSION_LIST; EXPRESSION_LIST ::= EXPRESSION CAMMA{: System.out.printf( "," ); :} EXPRESSION EXPRESSION_LIST| CAMMA{: System.out.printf( "," ); :}; EXPRESSION ::= CONDITITONAL_EXPRESSION; CONDITITONAL_EXPRESSION ::= OR_TEST IF{: System.out.printf( "if"); :} OR_TEST ELSE{: System.out.printf("else"); :} EXPRESSION |OR_TEST; OR_TEST ::= AND_TEST | OR_TEST OR{: System.out.printf( "or"); :} AND_TEST; AND_TEST ::= NOT_TEST | AND_TEST AND{: System.out.printf( "and"); :} NOT_TEST; NOT_TEST ::= COMPARISON | NOT{: System.out.printf("not"); :} NOT_TEST; COMPARISON ::= OR_EXPR COMP_OPERATOR OR_EXPR ; COMP_OPERATOR ::= LESS{: System.out.printf( "<"); :} | GREATER{: System.out.printf(">"); :} | EQUAL{: System.out.printf("=="); :} | GREATERorE{: System.out.printf(">="); :} | LESSorE{: System.out.printf("<="); :} | NEQUAL{: System.out.printf("!="); :}; OR_EXPR ::= XOR_EXPR | OR_EXPR OROP{: System.out.printf("|"); :} XOR_EXPR; XOR_EXPR ::= AND_EXPR | XOR_EXPR XOROP {: System.out.printf("^"); :}XOR_EXPR; AND_EXPR ::= ANDOP{: System.out.printf("&"); :} | AND_EXPR; can any one told me how can solve this errors to build parser correcrtly??

    Read the article

  • Generic Method to find the tuples used for computation in Postgres?

    - by Rahul
    If I have a table col1 | name | pay ------+------------------+------ 1 | Steve Jobs | 1006 2 | Mike Markkula | 1007 3 | Mike Scott | 1978 4 | John Sculley | 1983 5 | Michael Spindler | 1653 The user executes a sum query which sums the pay of people getting paid more than $1500. Is there a way to also implicitly know which tuples have been used which satisfy the condition for sum ? I know you can separately write another query to just return the primary key ids which satisfy the condition. But, Is there any other way to do that in the same query ? probably rewrite the query in some way ? or... any suggestion ?

    Read the article

  • Is it possible to create ICriteria/ICriterion from LINQ or HQL?

    - by adrin
    I am creating a method that can create filter understood by NHibernate (by filter i mean a set of ICriteria object for example) from my abstract filter object. public static IEnumerable<ICriterion> ToNhCriteria(this MyCriteria criteria) { // T4 generated function // lots of result.Add(Expression.Or(Expression.Eq(),Expression.Eq)) expression trees - hard to generate // Is there a way to generate HQL/Linq query here istead? } then i want to do something like session.CreateCriteria<Entity>().Add(myCriteria.ToNhCriteria()) to filter entities. The problem is that using Expression. methods (Expression.Or etc) is quite tedious (the method is generated and i have multiple or statements that have to be joined into an expression somehow). Is there a way to avoid using Expression.Or() and create ICrietrion / ICriteria using LINQ or HQL?

    Read the article

  • How to make that the LanguageBinder take precedence over the DynamicBinder

    - by rudimenter
    Hi I Have a class which implement IDynamicMetaObjectProvider I implement the BindGetMember Method from DynamicMetaObject. Now when i Generate a dynamic Object and Access a property every call gets implicit passed through the BindGetMember Method. I want that at first the language Binder get his chance before my code comes in. It is somehow doable with "binder.FallbackGetMember" but i am not sure how the expression has to look like. I call here dynamic com=CommandFactory.GetCommand(); com.testprop; //expected: "test"; but "test2" comes back public class Command : System.Dynamic.IDynamicMetaObjectProvider { public string testprop { get { return "test"; } } public object GetValue(string name) { return "test2"; } System.Dynamic.DynamicMetaObject System.Dynamic.IDynamicMetaObjectProvider.GetMetaObject(System.Linq.Expressions.Expression parameter) { return new MetaCommand(parameter, this); } private class MetaCommand : System.Dynamic.DynamicMetaObject { public MetaCommand(Expression expression, Command value) : base(expression, System.Dynamic.BindingRestrictions.Empty, value) { } public override System.Dynamic.DynamicMetaObject BindGetMember(System.Dynamic.GetMemberBinder binder) { var self = this.Expression; var bag = (Command)base.Value; Expression target; target = Expression.Call( Expression.Convert(self, typeof(Command)), typeof(Command).GetMethod("GetValue"), Expression.Constant(binder.Name) ); var restrictions = BindingRestrictions .GetInstanceRestriction(self, bag); return new DynamicMetaObject(target, restrictions); } #endregion } }

    Read the article

  • NHibernate Criteria question

    - by Jeneatte Jolie
    I have a person object, which can have unlimited number of first names. So the first names are another object. ie person --- name             --- name             --- name What I want to do is write an nhiberate query using which will get me a person who has certain names. so one query might be find someone whose names are alison and jane and philippa, then next query may be one to find someone whose names are alison and jane. I only want to return people who have all the names I'm search on. So far I've got ICriteria criteria = session.CreateCriteria(typeof (Person)); criteria.CreateAlias("Names", "name"); ICriterion expression = null; foreach (string name in namesToFind) { if (expression == null) { expression = Expression.Like("name.Value", "%" + name + "%"); } else { expression = Expression.Or( expression, Expression.Like("name.Value", "%" + name + "%")); } } if (expression != null) criteria.Add(expression); But this is returning every person with ANY of the names I'm searching on, not ALL the names. Can anyone help me out with this? Thanks!

    Read the article

  • Is SQL DATEDIFF(year, ..., ...) an Expensive Computation?

    - by rlb.usa
    I'm trying to optimize up some horrendously complicated SQL queries because it takes too long to finish. In my queries, I have dynamically created SQL statements with lots of the same functions, so I created a temporary table where each function is only called once instead of many, many times - this cut my execution time by 3/4. So my question is, can I expect to see much of a difference if say, 1,000 datediff computations are narrowed to 100?

    Read the article

  • How to implement geo-based data store and computation?

    - by Mickey Shine
    Well, let me explain this briefly: 1.I want to build a website that provides location based services, like http://fireeagle.yahoo.net/ . 2.I guess most of these services have something do with longitude and latitude. 3.Is there any particular database/datastore/data structures fit well for such apps? I mean easy to store longitude, latitude and easy to compute or easy to use. I am new to this and any feedbacks are welcome

    Read the article

  • Computation overhead in C# - Using getters/setters vs. modifying arrays directly and casting speeds

    - by Jeffrey Kern
    I was going to write a long-winded post, but I'll boil it down here: I'm trying to emulate the graphical old-school style of the NES via XNA. However, my FPS is SLOW, trying to modify 65K pixels per frame. If I just loop through all 65K pixels and set them to some arbitrary color, I get 64FPS. The code I made to look-up what colors should be placed where, I get 1FPS. I think it is because of my object-orented code. Right now, I have things divided into about six classes, with getters/setters. I'm guessing that I'm at least calling 360K getters per frame, which I think is a lot of overhead. Each class contains either/and-or 1D or 2D arrays containing custom enumerations, int, Color, or Vector2D, bytes. What if I combined all of the classes into just one, and accessed the contents of each array directly? The code would look a mess, and ditch the concepts of object-oriented coding, but the speed might be much faster. I'm also not concerned about access violations, as any attempts to get/set the data in the arrays will done in blocks. E.g., all writing to arrays will take place before any data is accessed from them. As for casting, I stated that I'm using custom enumerations, int, Color, and Vector2D, bytes. Which data types are fastest to use and access in the .net Framework, XNA, XBox, C#? I think that constant casting might be a cause of slowdown here. Also, instead of using math to figure out which indexes data should be placed in, I've used precomputed lookup tables so I don't have to use constant multiplication, addition, subtraction, division per frame. :)

    Read the article

  • Why should I use $[ EXPR ] instead of $(( EXPR ))?

    - by qdii
    On the paragraph explaining arithmetic expansion, Bash's user guide uncovers 2 different ways of evaluating an expression, the first one uses $((?EXPRESSION?)) and the second one uses $[?EXPRESSION?]. The two ways seem pretty similar as the only difference I have found is: $[?EXPRESSION?] will only calculate the result of EXPRESSION, and do no tests: Yet, I am intrigued because the same document recommends using $[?EXPRESSION?] rather than $((?EXPRESSION?)). Wherever possible, Bash users should try to use the syntax with square brackets: Why would you want that if less tests are being done?

    Read the article

  • Parallelism in .NET – Part 6, Declarative Data Parallelism

    - by Reed
    When working with a problem that can be decomposed by data, we have a collection, and some operation being performed upon the collection.  I’ve demonstrated how this can be parallelized using the Task Parallel Library and imperative programming using imperative data parallelism via the Parallel class.  While this provides a huge step forward in terms of power and capabilities, in many cases, special care must still be given for relative common scenarios. C# 3.0 and Visual Basic 9.0 introduced a new, declarative programming model to .NET via the LINQ Project.  When working with collections, we can now write software that describes what we want to occur without having to explicitly state how the program should accomplish the task.  By taking advantage of LINQ, many operations become much shorter, more elegant, and easier to understand and maintain.  Version 4.0 of the .NET framework extends this concept into the parallel computation space by introducing Parallel LINQ. Before we delve into PLINQ, let’s begin with a short discussion of LINQ.  LINQ, the extensions to the .NET Framework which implement language integrated query, set, and transform operations, is implemented in many flavors.  For our purposes, we are interested in LINQ to Objects.  When dealing with parallelizing a routine, we typically are dealing with in-memory data storage.  More data-access oriented LINQ variants, such as LINQ to SQL and LINQ to Entities in the Entity Framework fall outside of our concern, since the parallelism there is the concern of the data base engine processing the query itself. LINQ (LINQ to Objects in particular) works by implementing a series of extension methods, most of which work on IEnumerable<T>.  The language enhancements use these extension methods to create a very concise, readable alternative to using traditional foreach statement.  For example, let’s revisit our minimum aggregation routine we wrote in Part 4: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re doing a very simple computation, but writing this in an imperative style.  This can be loosely translated to English as: Create a very large number, and save it in min Loop through each item in the collection. For every item: Perform some computation, and save the result If the computation is less than min, set min to the computation Although this is fairly easy to follow, it’s quite a few lines of code, and it requires us to read through the code, step by step, line by line, in order to understand the intention of the developer. We can rework this same statement, using LINQ: double min = collection.Min(item => item.PerformComputation()); Here, we’re after the same information.  However, this is written using a declarative programming style.  When we see this code, we’d naturally translate this to English as: Save the Min value of collection, determined via calling item.PerformComputation() That’s it – instead of multiple logical steps, we have one single, declarative request.  This makes the developer’s intentions very clear, and very easy to follow.  The system is free to implement this using whatever method required. Parallel LINQ (PLINQ) extends LINQ to Objects to support parallel operations.  This is a perfect fit in many cases when you have a problem that can be decomposed by data.  To show this, let’s again refer to our minimum aggregation routine from Part 4, but this time, let’s review our final, parallelized version: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Here, we’re doing the same computation as above, but fully parallelized.  Describing this in English becomes quite a feat: Create a very large number, and save it in min Create a temporary object we can use for locking Call Parallel.ForEach, specifying three delegates For the first delegate: Initialize a local variable to hold the local state to a very large number For the second delegate: For each item in the collection, perform some computation, save the result If the result is less than our local state, save the result in local state For the final delegate: Take a lock on our temporary object to protect our min variable Save the min of our min and local state variables Although this solves our problem, and does it in a very efficient way, we’ve created a set of code that is quite a bit more difficult to understand and maintain. PLINQ provides us with a very nice alternative.  In order to use PLINQ, we need to learn one new extension method that works on IEnumerable<T> – ParallelEnumerable.AsParallel(). That’s all we need to learn in order to use PLINQ: one single method.  We can write our minimum aggregation in PLINQ very simply: double min = collection.AsParallel().Min(item => item.PerformComputation()); By simply adding “.AsParallel()” to our LINQ to Objects query, we converted this to using PLINQ and running this computation in parallel!  This can be loosely translated into English easily, as well: Process the collection in parallel Get the Minimum value, determined by calling PerformComputation on each item Here, our intention is very clear and easy to understand.  We just want to perform the same operation we did in serial, but run it “as parallel”.  PLINQ completely extends LINQ to Objects: the entire functionality of LINQ to Objects is available.  By simply adding a call to AsParallel(), we can specify that a collection should be processed in parallel.  This is simple, safe, and incredibly useful.

    Read the article

  • Inside the DLR – Invoking methods

    - by Simon Cooper
    So, we’ve looked at how a dynamic call is represented in a compiled assembly, and how the dynamic lookup is performed at runtime. The last piece of the puzzle is how the resolved method gets invoked, and that is the subject of this post. Invoking methods As discussed in my previous posts, doing a full lookup and bind at runtime each and every single time the callsite gets invoked would be far too slow to be usable. The results obtained from the callsite binder must to be cached, along with a series of conditions to determine whether the cached result can be reused. So, firstly, how are the conditions represented? These conditions can be anything; they are determined entirely by the semantics of the language the binder is representing. The binder has to be able to return arbitary code that is then executed to determine whether the conditions apply or not. Fortunately, .NET 4 has a neat way of representing arbitary code that can be easily combined with other code – expression trees. All the callsite binder has to return is an expression (called a ‘restriction’) that evaluates to a boolean, returning true when the restriction passes (indicating the corresponding method invocation can be used) and false when it does’t. If the bind result is also represented in an expression tree, these can be combined easily like so: if ([restriction is true]) { [invoke cached method] } Take my example from my previous post: public class ClassA { public static void TestDynamic() { CallDynamic(new ClassA(), 10); CallDynamic(new ClassA(), "foo"); } public static void CallDynamic(dynamic d, object o) { d.Method(o); } public void Method(int i) {} public void Method(string s) {} } When the Method(int) method is first bound, along with an expression representing the result of the bind lookup, the C# binder will return the restrictions under which that bind can be reused. In this case, it can be reused if the types of the parameters are the same: if (thisArg.GetType() == typeof(ClassA) && arg1.GetType() == typeof(int)) { thisClassA.Method(i); } Caching callsite results So, now, it’s up to the callsite to link these expressions returned from the binder together in such a way that it can determine which one from the many it has cached it should use. This caching logic is all located in the System.Dynamic.UpdateDelegates class. It’ll help if you’ve got this type open in a decompiler to have a look yourself. For each callsite, there are 3 layers of caching involved: The last method invoked on the callsite. All methods that have ever been invoked on the callsite. All methods that have ever been invoked on any callsite of the same type. We’ll cover each of these layers in order Level 1 cache: the last method called on the callsite When a CallSite<T> object is first instantiated, the Target delegate field (containing the delegate that is called when the callsite is invoked) is set to one of the UpdateAndExecute generic methods in UpdateDelegates, corresponding to the number of parameters to the callsite, and the existance of any return value. These methods contain most of the caching, invoke, and binding logic for the callsite. The first time this method is invoked, the UpdateAndExecute method finds there aren’t any entries in the caches to reuse, and invokes the binder to resolve a new method. Once the callsite has the result from the binder, along with any restrictions, it stitches some extra expressions in, and replaces the Target field in the callsite with a compiled expression tree similar to this (in this example I’m assuming there’s no return value): if ([restriction is true]) { [invoke cached method] return; } if (callSite._match) { _match = false; return; } else { UpdateAndExecute(callSite, arg0, arg1, ...); } Woah. What’s going on here? Well, this resulting expression tree is actually the first level of caching. The Target field in the callsite, which contains the delegate to call when the callsite is invoked, is set to the above code compiled from the expression tree into IL, and then into native code by the JIT. This code checks whether the restrictions of the last method that was invoked on the callsite (the ‘primary’ method) match, and if so, executes that method straight away. This means that, the next time the callsite is invoked, the first code that executes is the restriction check, executing as native code! This makes this restriction check on the primary cached delegate very fast. But what if the restrictions don’t match? In that case, the second part of the stitched expression tree is executed. What this section should be doing is calling back into the UpdateAndExecute method again to resolve a new method. But it’s slightly more complicated than that. To understand why, we need to understand the second and third level caches. Level 2 cache: all methods that have ever been invoked on the callsite When a binder has returned the result of a lookup, as well as updating the Target field with a compiled expression tree, stitched together as above, the callsite puts the same compiled expression tree in an internal list of delegates, called the rules list. This list acts as the level 2 cache. Why use the same delegate? Stitching together expression trees is an expensive operation. You don’t want to do it every time the callsite is invoked. Ideally, you would create one expression tree from the binder’s result, compile it, and then use the resulting delegate everywhere in the callsite. But, if the same delegate is used to invoke the callsite in the first place, and in the caches, that means each delegate needs two modes of operation. An ‘invoke’ mode, for when the delegate is set as the value of the Target field, and a ‘match’ mode, used when UpdateAndExecute is searching for a method in the callsite’s cache. Only in the invoke mode would the delegate call back into UpdateAndExecute. In match mode, it would simply return without doing anything. This mode is controlled by the _match field in CallSite<T>. The first time the callsite is invoked, _match is false, and so the Target delegate is called in invoke mode. Then, if the initial restriction check fails, the Target delegate calls back into UpdateAndExecute. This method sets _match to true, then calls all the cached delegates in the rules list in match mode to try and find one that passes its restrictions, and invokes it. However, there needs to be some way for each cached delegate to inform UpdateAndExecute whether it passed its restrictions or not. To do this, as you can see above, it simply re-uses _match, and sets it to false if it did not pass the restrictions. This allows the code within each UpdateAndExecute method to check for cache matches like so: foreach (T cachedDelegate in Rules) { callSite._match = true; cachedDelegate(); // sets _match to false if restrictions do not pass if (callSite._match) { // passed restrictions, and the cached method was invoked // set this delegate as the primary target to invoke next time callSite.Target = cachedDelegate; return; } // no luck, try the next one... } Level 3 cache: all methods that have ever been invoked on any callsite with the same signature The reason for this cache should be clear – if a method has been invoked through a callsite in one place, then it is likely to be invoked on other callsites in the codebase with the same signature. Rather than living in the callsite, the ‘global’ cache for callsite delegates lives in the CallSiteBinder class, in the Cache field. This is a dictionary, typed on the callsite delegate signature, providing a RuleCache<T> instance for each delegate signature. This is accessed in the same way as the level 2 callsite cache, by the UpdateAndExecute methods. When a method is matched in the global cache, it is copied into the callsite and Target cache before being executed. Putting it all together So, how does this all fit together? Like so (I’ve omitted some implementation & performance details): That, in essence, is how the DLR performs its dynamic calls nearly as fast as statically compiled IL code. Extensive use of expression trees, compiled to IL and then into native code. Multiple levels of caching, the first of which executes immediately when the dynamic callsite is invoked. And a clever re-use of compiled expression trees that can be used in completely different contexts without being recompiled. All in all, a very fast and very clever reflection caching mechanism.

    Read the article

  • Regular expression to validate name n language other then english like Spanish..

    - by BT
    Hi, how can i write a regular expression to validate name field in a multilingual web application, i want to validate the name field for non-English languages e.g. Spanish or German, and we need to make sure that no one enter digits or special characters. I'm using .NET. I believe we can't use expression as below for non-English language. ^[a-zA-Z]{1,20}$ Any help will be highly appreciated!

    Read the article

  • How do you make a regular expression that matches a word with one randomly inserted character?

    - by Dfowj
    Hey all, i want to use a regular expression to match a word with one specified character randomly placed within it. I also want to keep that 'base' word's characters in their original order. For example, with the 'base' word of test and the specified character of 'y', i want the regular expression to match all the following, and ONLY the following: ytest, tyest, teyst, tesyt, testy Incase it matters, im working in javascript and using the dojo toolkit. Thanks!

    Read the article

  • .Net lambda expression-- where did this parameter come from?

    - by larryq
    I'm a lambda newbie, so if I'm missing vital information in my description please tell me. I'll keep the example as simple as possible. I'm going over someone else's code and they have one class inheriting from another. Here's the derived class first, along with the lambda expression I'm having trouble understanding: class SampleViewModel : ViewModelBase { private ICustomerStorage storage = ModelFactory<ICustomerStorage>.Create(); public ICustomer CurrentCustomer { get { return (ICustomer)GetValue(CurrentCustomerProperty); } set { SetValue(CurrentCustomerProperty, value); } } private int quantitySaved; public int QuantitySaved { get { return quantitySaved; } set { if (quantitySaved != value) { quantitySaved = value; NotifyPropertyChanged(p => QuantitySaved); //where does 'p' come from? } } } public static readonly DependencyProperty CurrentCustomerProperty; static SampleViewModel() { CurrentCustomerProperty = DependencyProperty.Register("CurrentCustomer", typeof(ICustomer), typeof(SampleViewModel), new UIPropertyMetadata(ModelFactory<ICustomer>.Create())); } //more method definitions follow.. Note the call to NotifyPropertyChanged(p => QuantitySaved) bit above. I don't understand where the "p" is coming from. Here's the base class: public abstract class ViewModelBase : DependencyObject, INotifyPropertyChanged, IXtremeMvvmViewModel { public event PropertyChangedEventHandler PropertyChanged; protected virtual void NotifyPropertyChanged<T>(Expression<Func<ViewModelBase, T>> property) { MvvmHelper.NotifyPropertyChanged(property, PropertyChanged); } } There's a lot in there that's not germane to the question I'm sure, but I wanted to err on the side of inclusiveness. The problem is, I don't understand where the 'p' parameter is coming from, and how the compiler knows to (evidently?) fill in a type value of ViewModelBase from thin air? For fun I changed the code from 'p' to 'this', since SampleViewModel inherits from ViewModelBase, but I was met with a series of compiler errors, the first one of which statedInvalid expression term '=>' This confused me a bit since I thought that would work. Can anyone explain what's happening here?

    Read the article

< Previous Page | 48 49 50 51 52 53 54 55 56 57 58 59  | Next Page >