Search Results

Search found 29201 results on 1169 pages for 'game development'.

Page 522/1169 | < Previous Page | 518 519 520 521 522 523 524 525 526 527 528 529  | Next Page >

  • Ray Tracing Shadows in deferred rendering

    - by Grieverheart
    Recently I have programmed a raytracer for fun and found it beutifully simple how shadows are created compared to a rasterizer. Now, I couldn't help but I think if it would be possible to implement somthing similar for ray tracing of shadows in a deferred renderer. The way I though this could work is after drawing to the gbuffer, in a separate pass and for each pixel to calculate rays to the lights and draw them as lines of unique color together with the geometry (with color 0). The lines will be cut-off if there is occlusion and this fact could be used in a fragment shader to calculate which rays are occluded. I guess there must be something I'm missing, for example I'm not sure how the fragment shader could save the occlusion results for each ray so that they are available for pixel at the ray's origin. Has this method been tried before, is it possible to implement it as I described and if yes what would be the drawbacks in performance of calculating shadows this way?

    Read the article

  • How to create per-vertex normals when reusing vertex data?

    - by Chris Smith
    I am displaying a cube using a vertex buffer object (gl.ELEMENT_ARRAY_BUFFER). This allows me to specify vertex indicies, rather than having duplicate vertexes. In the case of displaying a simple cube, this means I only need to have eight vertices total. Opposed to needing three vertices per triangle, times two triangles per face, times six faces. Sound correct so far? My question is, how do I now deal with vertex attribute data such as color, texture coordinates, and normals when reusing vertices using the vertex buffer object? If I am reusing the same vertex data in my indexed vertex buffer, how can I differentiate when vertex X is used as part of the cube's front face versus the cube's left face? In both cases I would like the surface normal and texture coordinates to be different. I understand I could average the surface normal, however I would like to render a cube. Also, this still doesn't work for texture coordinates. Is there a way to save memory using a vertex buffer object while being able to provide different vertex attribute data based on context? (Per-triangle would be idea.) Or should I just duplicate each vertex for each context in which it gets rendered. (So there is a one-to-one mapping between vertex, normal, color, etc.) Note: I'm using OpenGL ES.

    Read the article

  • Problem using glm::lookat

    - by omikun
    I am trying to rotate a sprite so it is always facing a 3D camera. Object GLfloat vertexData[] = { // X Y Z U V 0.0f, 0.8f, 0.0f, 0.5f, 1.0f, -0.8f,-0.8f, 0.0f, 0.0f, 0.0f, 0.8f,-0.8f, 0.0f, 1.0f, 0.0f, }; Per frame transform glm::mat4 newTransform = glm::lookAt(glm::vec3(0), gCamera.position(), gCamera.up()); shaders->setUniform("camera", gCamera.matrix()); shaders->setUniform("model", newTransform); In the vertex shader: gl_Position = camera * model * vec4(vert, 1); The object will track the camera if I move the camera up or down, but if I move the camera left/right (spin the camera around the object's y axis), it will rotate in the other direction so I end up seeing its front twice and its back twice as I rotate around it 360. If I use -gCamera.up() instead, it would track the camera side to side, but spin the opposite direction when I move the camera up/down. What am I doing wrong?

    Read the article

  • problem with frustum AABB culling in DirectX

    - by Matthew Poole
    Hi, I am currently working on a project with a few friends, and I am trying to get frustum culling working. Every single tutorial or article I go to shows that my math is correct and that this should be working. I thought maybe posting here, somebody would catch something I could not. Thank you. Here are the important code snippets /create the projection matrix void CD3DCamera::SetLens(float fov, float aspect, float nearZ, float farZ) { D3DXMatrixPerspectiveFovLH(&projMat, D3DXToRadian(fov), aspect, nearZ, farZ); } //build the view matrix after changes have been made to camera void CD3DCamera::BuildView() { //keep axes orthoganal D3DXVec3Normalize(&look, &look); //up D3DXVec3Cross(&up, &look, &right); D3DXVec3Normalize(&up, &up); //right D3DXVec3Cross(&right, &up, &look); D3DXVec3Normalize(&right, &right); //fill view matrix float x = -D3DXVec3Dot(&position, &right); float y = -D3DXVec3Dot(&position, &up); float z = -D3DXVec3Dot(&position, &look); viewMat(0,0) = right.x; viewMat(1,0) = right.y; viewMat(2,0) = right.z; viewMat(3,0) = x; viewMat(0,1) = up.x; viewMat(1,1) = up.y; viewMat(2,1) = up.z; viewMat(3,1) = y; viewMat(0,2) = look.x; viewMat(1,2) = look.y; viewMat(2,2) = look.z; viewMat(3,2) = z; viewMat(0,3) = 0.0f; viewMat(1,3) = 0.0f; viewMat(2,3) = 0.0f; viewMat(3,3) = 1.0f; } void CD3DCamera::BuildFrustum() { D3DXMATRIX VP; D3DXMatrixMultiply(&VP, &viewMat, &projMat); D3DXVECTOR4 col0(VP(0,0), VP(1,0), VP(2,0), VP(3,0)); D3DXVECTOR4 col1(VP(0,1), VP(1,1), VP(2,1), VP(3,1)); D3DXVECTOR4 col2(VP(0,2), VP(1,2), VP(2,2), VP(3,2)); D3DXVECTOR4 col3(VP(0,3), VP(1,3), VP(2,3), VP(3,3)); // Planes face inward frustum[0] = (D3DXPLANE)(col2); // near frustum[1] = (D3DXPLANE)(col3 - col2); // far frustum[2] = (D3DXPLANE)(col3 + col0); // left frustum[3] = (D3DXPLANE)(col3 - col0); // right frustum[4] = (D3DXPLANE)(col3 - col1); // top frustum[5] = (D3DXPLANE)(col3 + col1); // bottom // Normalize the frustum for( int i = 0; i < 6; ++i ) D3DXPlaneNormalize( &frustum[i], &frustum[i] ); } bool FrustumCheck(D3DXVECTOR3 max, D3DXVECTOR3 min, const D3DXPLANE* frustum) { // Test assumes frustum planes face inward. D3DXVECTOR3 P; D3DXVECTOR3 Q; bool ret = false; for(int i = 0; i < 6; ++i) { // For each coordinate axis x, y, z... for(int j = 0; j < 3; ++j) { // Make PQ point in the same direction as the plane normal on this axis. if( frustum[i][j] > 0.0f ) { P[j] = min[j]; Q[j] = max[j]; } else { P[j] = max[j]; Q[j] = min[j]; } } if(D3DXPlaneDotCoord(&frustum[i], &Q) < 0.0f ) ret = false; } return true; }

    Read the article

  • Rotate sphere in Javascript / three.js while moving on x/z axes

    - by kaipr
    I have a sphere/ball in three.js which I want to "roll" arround on a x/z axis. For the z axe I could simply do this no matter what the current x and y rotation is: sphere.roll_z = function(distance) { sphere.position.z += distance; sphere.rotation.x += distance > 0 ? 0.05 : -0.05; } But how can I roll it along the x axe? And how could I properly do the roll_z? I've found a lot about quateration and matrixes, but I can't figure out how to use them properly to achieve my (rather simple) goal. I'm aware that I have to update multiple rotations and that I have to calculate how far to rotate the sphere to match the distance, but the "how" is the question. It's probably just lack of mathematical skills which I should train, but a working example/short explanation would help alot to start with.

    Read the article

  • Pix for visual studio express 2012 (Desktop)

    - by JohnB
    (Originally asked on stackoverflow) Using visual c++ express 2010 for direct3d you have to download the directX sdk and there is a tool called pix for debugging shaders, looking at 3d resources etc. With visual studio 2012 express the directx sdk is included in the windows sdk that comes with it but this does not seem to include the winpix.exe tool. Is this very useful tool still available? I guess I can still use the one from the previous sdk but it seems wrong to install the entire sdk just for that tool. Is there a version for VS2012 express that I'm missing?

    Read the article

  • AABB > AABB collision response?

    - by Levi
    I'm really confused about how to fix this in 3d? I want it so that I can slide along cubes but without getting caught if there's 2 adjacent cubes. I've gotten it so that I can do x collision, with sliding, and y, and z, but I can't do them together, probably because I don't know how to resolve it correctly. e.g. [] [] []^ []O [] O is the player, ^ is the direction the player is moving, with the methods which I was trying I would get stuck between the cubes because the z axis was responding and kicking me out :/. I don't know how to resolve this in all 3 direction, like how would I go about telling which direction I have to resolve in. My previous methods involved me checking 4 points in a axis aligned square around the player, I was checking if these points where inside the cubes and if they where fixing my position, but I couldn't get it working correctly. Help is appreciated. edit: pretend all the blocks are touching.

    Read the article

  • Smooth animation in Cocos2d for iOS

    - by MrDatabase
    I move a simple CCSprite around the screen of an iOS device using this code: [self schedule:@selector(update:) interval:0.0167]; - (void) update:(ccTime) delta { CGPoint currPos = self.position; currPos.x += xVelocity; currPos.y += yVelocity; self.position = currPos; } This works however the animation is not smooth. How can I improve the smoothness of my animation? My scene is exceedingly simple (just has one full-screen CCSprite with a background image and a relatively small CCSprite that moves slowly). I've logged the ccTime delta and it's not consistent (it's almost always greater than my specified interval of 0.0167... sometimes up to a factor of 4x). I've considered tailoring the motion in the update method to the delta time (larger delta = larger movement etc). However given the simplicity of my scene it's seems there's a better way (and something basic that I'm probably missing).

    Read the article

  • Avoid if statements in DirectX 10 shaders?

    - by PolGraphic
    I have heard that if statements should be avoid in shaders, because both parts of the statements will be execute, and than the wrong will be dropped (which harms the performance). It's still a problem in DirectX 10? Somebody told me, that in it only the right branch will be execute. For the illustration I have the code: float y1 = 5; float y2 = 6; float b1 = 2; float b2 = 3; if(x>0.5){ x = 10 * y1 + b1; }else{ x = 10 * y2 + b2; } Is there an other way to make it faster? If so, how do it? Both branches looks similar, the only difference is the values of "constants" (y1, y2, b1, b2 are the same for all pixels in Pixel Shader).

    Read the article

  • Rotate a particle system

    - by Blueski
    Languages / Libraries in use: C++, OpenGL, GLUT Okay, here's the deal. I've got a particle system which shoots out alpha blended textures to produce a flame. The system only keeps track of very basic things such as, time alive, life, xyz and spread. The direction in which the flames are currently moving in is purely based on other things which are going on in my code ( I assume ). My goal however, is to attach the flame to the camera (DONE) and have the flame pointing in the direction my camera is facing (NOT WORKING). I've tried glRotate for both x,y,z and I can't get it to work properly. I'm currently using gluLookAt to move the camera, and get the flame to follow the XYZ of the camera by calling glTranslatef(camX, camY - offset, camZ); Any suggestions on how I can rotate the direction of the flame with the camera would be greatly appreciated. Heres an image of what I've got: http://i.imgur.com/YhV4w.png Notes: Crosshair depicts where camera is facing if I turn the camera, flame doesn't follow the crosshair Also asked here: http://stackoverflow.com/questions/9560396/rotate-a-particle-system but was referred here

    Read the article

  • XNA Sprite Rotation Matrix - Moving Origin

    - by Jon
    I am currently grouping sprites together, then applying a rotation transformation on draw: private void UpdateMatrix(ref Vector2 origin, float radians) { Vector3 matrixorigin = new Vector3(origin, 0); _rotationMatrix = Matrix.CreateTranslation(-matrixorigin) * Matrix.CreateRotationZ(radians) * Matrix.CreateTranslation(matrixorigin); } Where the origin is the Centermost point of my group of sprites. I apply this transformation to each sprite in the group. My problem is that when I adjust the point of origin, my entire sprite group will re-position itself on screen. How could I differentiate the point of rotation used in the transformation, from the position of the sprite group? Is there a better way of creating this transformation matrix?

    Read the article

  • converting a mouse click to a ray

    - by Will
    I have a perspective projection. When the user clicks on the screen, I want to compute the ray between the near and far planes that projects from the mouse point, so I can do some ray intersection code with my world. I am using my own matrix and vector and ray classes and they all work as expected. However, when I try and convert the ray to world coordinates my far always ends up as 0,0,0 and so my ray goes from the mouse click to the centre of the object space, rather than through it. (The x and y coordinates of near and far are identical, they differ only in the z coordinates where they are negatives of each other) GLint vp[4]; glGetIntegerv(GL_VIEWPORT,vp); matrix_t mv, p; glGetFloatv(GL_MODELVIEW_MATRIX,mv.f); glGetFloatv(GL_PROJECTION_MATRIX,p.f); const matrix_t inv = (mv*p).inverse(); const float unit_x = (2.0f*((float)(x-vp[0])/(vp[2]-vp[0])))-1.0f, unit_y = 1.0f-(2.0f*((float)(y-vp[1])/(vp[3]-vp[1]))); const vec_t near(vec_t(unit_x,unit_y,-1)*inv); const vec_t far(vec_t(unit_x,unit_y,1)*inv); ray = ray_t(near,far-near); What have I got wrong? (How do you unproject the mouse-point?)

    Read the article

  • Obtaining a HBITMAP/HICON from D2D Bitmap

    - by Tom
    Is there any way to obtain a HBITMAP or HICON from a ID2D1Bitmap* using Direct2D? I am using the following function to load a bitmap: http://msdn.microsoft.com/en-us/library/windows/desktop/dd756686%28v=vs.85%29.aspx The reason I ask is because I am creating my level editor tool and would like to draw a PNG image on a standard button control. I know that you can do this using GDI+: HBITMAP hBitmap; Gdiplus::Bitmap b(L"a.png"); b.GetHBITMAP(NULL, &hBitmap); SendMessage(GetDlgItem(hDlg, IDC_BUTTON1), BM_SETIMAGE, IMAGE_BITMAP, (LPARAM)hBitmap); Is there any equivalent, simple solution using Direct2D? If possible, I would like to render multiple PNG files (some with transparency) on a single button.

    Read the article

  • How to calculate turn heading to a missile?

    - by Tony
    I have a missile that is shot from a ship at an angle, the missile then turns towards the target in an arc with a given turn radius. How do I determine the point on the arc when I need to start turning so the missile is heading straight for the target? EDIT What I need to do before I launch the missiles is calculate and draw the flight paths. So in the attached example the launch vehicle has a heading of 90 deg and the targets are behind it. Both missiles are launched at a relative heading of -45deg or + 45 deg to the launch vehicle's heading. The missiles initially turn towards the target with a known turn radius. I have to calculate the point at which the turn takes the missile to heading at which it will turn to directly attack the target. Obviously if the target is at or near 45 degrees then there is no initial turn the missile just goes straight for the target. After the missile is launched the map will also show the missile tracking on this line as indication of its flight path. What I am doing is working on a simulator which mimics operational software. So I need to draw the calculated flight path before I allow the missile to be launched. In this example the targets are behind the launch vehicle but the precalculated paths are drawn.

    Read the article

  • How can I test if an oriented rectangle contains another oriented rectangle?

    - by gronzzz
    I have the following situation: To detect whether is the red rectangle is inside orange area I use this function: - (BOOL)isTile:(CGPoint)tile insideCustomAreaMin:(CGPoint)min max:(CGPoint)max { if ((tile.x < min.x) || (tile.x > max.x) || (tile.y < min.y) || (tile.y > max.y)) { NSLog(@" Object is out of custom area! "); return NO; } return YES; } But what if I need to detect whether the red tile is inside of the blue rectangle? I wrote this function which uses the world position: - (BOOL)isTileInsidePlayableArea:(CGPoint)tile { // get world positions from tiles CGPoint rt = [[CoordinateFunctions shared] worldFromTile:ccp(24, 0)]; CGPoint lb = [[CoordinateFunctions shared] worldFromTile:ccp(24, 48)]; CGPoint worldTile = [[CoordinateFunctions shared] worldFromTile:tile]; return [self isTile:worldTile insideCustomAreaMin:ccp(lb.x, lb.y) max:ccp(rt.x, rt.y)]; } How could I do this without converting to the global position of the tiles?

    Read the article

  • Sending a android.content.Context parameter to a function with JNI

    - by Ef Es
    I am trying to create a method that checks for internet connection that needs a Context parameter. The JNIHelper allows me to call static functions with parameters, but I don't know how to "retrieve" Cocos2d-x Activity class to use it as a parameter. public static boolean isNetworkAvailable(Context context) { boolean haveConnectedWifi = false; boolean haveConnectedMobile = false; ConnectivityManager cm = (ConnectivityManager) context.getSystemService( Context.CONNECTIVITY_SERVICE); NetworkInfo[] netInfo = cm.getAllNetworkInfo(); for (NetworkInfo ni : netInfo) { if (ni.getTypeName().equalsIgnoreCase("WIFI")) if (ni.isConnected()) haveConnectedWifi = true; if (ni.getTypeName().equalsIgnoreCase("MOBILE")) if (ni.isConnected()) haveConnectedMobile = true; } return haveConnectedWifi || haveConnectedMobile; } and the c++ code is JniMethodInfo methodInfo; if ( !JniHelper::getStaticMethodInfo( methodInfo, "my/app/TestApp", "isNetworkAvailable", "(android/content/Context;)V")) { //error return; } CCLog( "Method found and loaded!"); methodInfo.env->CallStaticVoidMethod( methodInfo.classID, methodInfo.methodID); methodInfo.env->DeleteLocalRef( methodInfo.classID);

    Read the article

  • Greiner-Hormann clipping problem

    - by Belgin
    I have a set of planar polygons in 3D space defined by their vertices in counterclockwise order. Let's define the 'positive face' as being the face of the 3D polygon such as when observed, the vertices appear in counterclockwise order, and the 'negative face', the face which when observed, the vertices appear in clockwise order. I'm doing perspective projection of the set of polygons onto a projection polygon defined by the points in this order: (0, h, 0), (0, 0, 0), (w, 0, 0), and (w, h, 0), where w and h are strictly positive integers. The positive face of this projection polygon is oriented towards positive Z, and the camera point is somewhere at (0, 0, d), where d is a strictly negative number. In order to 'clip' the projected polygons into the projection polygon, I'm applying the Greiner-Hormann (PDF) clipping algorithm, which requires that the clipper and the to-be-clipped polygons be in the same order (i.e. clockwise or counterclockwise). My question is the following: How can I determine whether the projected face of the 3D polygon is the negative or the positive one? Meaning, how do I find out if I have to work with the vertices in normal or inverted order for the algorithm to work? I noticed that only if the 3D polygon is facing the projection polygon with its negative face, both of them are in the same order (counterclockwise), otherwise, a modification needs to be done. Here is a picture (PNG) that illustrates this. Note that the planes described by the polygon from the set and the projection polygon may not always be parallel.

    Read the article

  • convert image to spritesheet of tiles for isometric map?

    - by Paul
    is there a way to convert an isometric image (like the first image) to a spritesheet (like the second image), in order to place each image on the isometric map with the code? The map looks like the first image, but some buildings are bigger than just one tile, so I need several squares (let's say the first image is a building, made of multiple tiles with different colors), and each square is placed with an offset of 64x32. The building is created in Blender and I save the image with the isometric perspective. But I have to split each square from this image in order to have the spritesheet, maybe there is smarter way, or a java software that would make the conversion for me?

    Read the article

  • multipass shadow mapping renderer in XNA

    - by Nick
    I am wanting to implement a multipass renderer in XNA (additive blending combines the contributions from each light). I have the renderer working without any shadows, but when I try to add shadow mapping support I run into an issue with switching render targets to draw the shadow maps. When I switch render targets, I lose the contents of the backbuffer which ruins the whole additive blending idea. For example: Draw() { DrawAmbientLighting() foreach (DirectionalLight) { DrawDirectionalShadowMap() // <-- I lose all previous lighting contributions when I switch to the shadow map render target here DrawDirectionalLighting() } } Is there any way around my issue? (I could render all the shadow maps first, but then I have to make and hold onto a render target for each light that casts a shadow--is this the only way?)

    Read the article

  • Auto-tiling with Yoshi's Island style tiles

    - by Boreal
    I'm creating a 2D platformer and I'd like to implement an auto-tiling system. Normally, this wouldn't be particularly difficult. However, I'd like to have tiles like in Yoshi's Island, where the graphics extend past the actual collidable tile's boundaries. Consider this image: Although the eggs and the Piranha Plant are clearly resting on the ground, the flower tiles continue behind them, out of the collidable tile. I know that it would be simple to do by hand, but extremely time consuming. Using an auto-tiling algorithm would save me a lot of time and boredom, but I'm not sure where to start.

    Read the article

  • How can I locate empty space next to polygon regions?

    - by Stephen
    Let's say I have the following area in a top-down map: The circle is the player, the black square is an obstacle, and the grey polygons with red borders are walk-able areas that will be used as a navigation mesh for enemies. Obstacles and grey polygons are always convex. The grey regions were defined using an algorithm when the world was generated at runtime. Notice the little white column. I need to figure out where any empty space like this is, if at all, after the algorithm builds the grey regions, so that I can fill the space with another region. Basically what I'm hoping for is an algorithm that can detect empty space next to a polygon.

    Read the article

  • Only draw visible objects to the camera in 2D

    - by Deukalion
    I have Map, each map has an array of Ground, each Ground consists of an array of VertexPositionTexture and a texture name reference so it renders a texture at these points (as a shape through triangulation). Now when I render my map I only want to get a list of all objects that are visible in the camera. (So I won't loop through more than I have to) Structs: public struct Map { public Ground[] Ground { get; set; } } public struct Ground { public int[] Indexes { get; set; } public VertexPositionNormalTexture[] Points { get; set; } public Vector3 TopLeft { get; set; } public Vector3 TopRight { get; set; } public Vector3 BottomLeft { get; set; } public Vector3 BottomRight { get; set; } } public struct RenderBoundaries<T> { public BoundingBox Box; public T Items; } when I load a map: foreach (Ground ground in CurrentMap.Ground) { Boundaries.Add(new RenderBoundaries<Ground>() { Box = BoundingBox.CreateFromPoints(new Vector3[] { ground.TopLeft, ground.TopRight, ground.BottomLeft, ground.BottomRight }), Items = ground }); } TopLeft, TopRight, BottomLeft, BottomRight are simply the locations of each corner that the shape make. A rectangle. When I try to loop through only the objects that are visible I do this in my Draw method: public int Draw(GraphicsDevice device, ICamera camera) { BoundingFrustum frustum = new BoundingFrustum(camera.View * camera.Projection); // Visible count int count = 0; EffectTexture.World = camera.World; EffectTexture.View = camera.View; EffectTexture.Projection = camera.Projection; foreach (EffectPass pass in EffectTexture.CurrentTechnique.Passes) { pass.Apply(); foreach (RenderBoundaries<Ground> render in Boundaries.Where(m => frustum.Contains(m.Box) != ContainmentType.Disjoint)) { // Draw ground count++; } } return count; } When I try adding just one ground, then moving the camera so the ground is out of frame it still returns 1 which means it still gets draw even though it's not within the camera's view. Am I doing something or wrong or can it be because of my Camera? Any ideas why it doesn't work?

    Read the article

  • Multiple Sprites using foreach Collison Detection in XNA (C#)

    - by Bradley Kreuger
    Back again from my last question. Now I was curious I use a foreach statement to use the same shot class. How would I go about doing collison detection. I used the tutorial here on how to shoot a fireball http://www.xnadevelopment.com/tutorials.shtml. I tried to put in several places a foreach to look at all of them to see if they have reached the borders of my sprite hero but doesn't seem to do anything. If again some one might know of a good site that has tutorials to explain collision detection a little bit better that would be appriecated.

    Read the article

  • FrameBuffer Render to texture not working all the way

    - by brainydexter
    I am learning to use Frame Buffer Objects. For this purpose, I chose to render a triangle to a texture and then map that to a quad. When I render the triangle, I clear the color to something blue. So, when I render the texture on the quad from fbo, it only renders everything blue, but doesn't show up the triangle. I can't seem to figure out why this is happening. Can someone please help me out with this ? I'll post the rendering code here, since glCheckFramebufferStatus doesn't complain when I setup the FBO. I've pasted the setup code at the end. Here is my rendering code: void FrameBufferObject::Render(unsigned int elapsedGameTime) { glBindFramebuffer(GL_FRAMEBUFFER, m_FBO); glClearColor(0.0, 0.6, 0.5, 1); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // adjust viewport and projection matrices to texture dimensions glPushAttrib(GL_VIEWPORT_BIT); glViewport(0,0, m_FBOWidth, m_FBOHeight); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(0, m_FBOWidth, 0, m_FBOHeight, 1.0, 100.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); DrawTriangle(); glPopAttrib(); // setting FrameBuffer back to window-specified Framebuffer glBindFramebuffer(GL_FRAMEBUFFER, 0); //unbind // back to normal viewport and projection matrix //glViewport(0, 0, 1280, 768); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0, 1.33, 1.0, 1000.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glClearColor(0, 0, 0, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); render(elapsedGameTime); } void FrameBufferObject::DrawTriangle() { glPushMatrix(); glBegin(GL_TRIANGLES); glColor3f(1, 0, 0); glVertex2d(0, 0); glVertex2d(m_FBOWidth, 0); glVertex2d(m_FBOWidth, m_FBOHeight); glEnd(); glPopMatrix(); } void FrameBufferObject::render(unsigned int elapsedTime) { glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, m_TextureID); glPushMatrix(); glTranslated(0, 0, -20); glBegin(GL_QUADS); glColor4f(1, 1, 1, 1); glTexCoord2f(1, 1); glVertex3f(1,1,1); glTexCoord2f(0, 1); glVertex3f(-1,1,1); glTexCoord2f(0, 0); glVertex3f(-1,-1,1); glTexCoord2f(1, 0); glVertex3f(1,-1,1); glEnd(); glPopMatrix(); glBindTexture(GL_TEXTURE_2D, 0); glDisable(GL_TEXTURE_2D); } void FrameBufferObject::Initialize() { // Generate FBO glGenFramebuffers(1, &m_FBO); glBindFramebuffer(GL_FRAMEBUFFER, m_FBO); // Add depth buffer as a renderbuffer to fbo // create depth buffer id glGenRenderbuffers(1, &m_DepthBuffer); glBindRenderbuffer(GL_RENDERBUFFER, m_DepthBuffer); // allocate space to render buffer for depth buffer glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, m_FBOWidth, m_FBOHeight); // attaching renderBuffer to FBO // attach depth buffer to FBO at depth_attachment glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, m_DepthBuffer); // Adding a texture to fbo // Create a texture glGenTextures(1, &m_TextureID); glBindTexture(GL_TEXTURE_2D, m_TextureID); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, m_FBOWidth, m_FBOHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); // onlly allocating space glBindTexture(GL_TEXTURE_2D, 0); // attach texture to FBO glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, m_TextureID, 0); // Check FBO Status if( glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) std::cout << "\n Error:: FrameBufferObject::Initialize() :: FBO loading not complete \n"; // switch back to window system Framebuffer glBindFramebuffer(GL_FRAMEBUFFER, 0); } Thanks!

    Read the article

  • List of bounding boxes?

    - by Christian Frantz
    When I create a bounding box for each object in my chunk, would it be better to store them in a list? List<BoundingBox> cubeBoundingBox Or can I just use a single variable? BoundingBox cubeBoundingBox The bounding boxes will be used for all types of things so they will be moving around. In any case, I'd be adding it to a method that gets called 2500+ times for each chunk, so either I have a giant list of them or 2500+ individual boxes. Is there any advantage to using one or the other?

    Read the article

< Previous Page | 518 519 520 521 522 523 524 525 526 527 528 529  | Next Page >