Search Results

Search found 1725 results on 69 pages for 'compute shader'.

Page 53/69 | < Previous Page | 49 50 51 52 53 54 55 56 57 58 59 60  | Next Page >

  • Population count of rightmost n integers

    - by Jason Baker
    I'm implementing Bagwell's Ideal Hash Trie in Haskell. To find an element in a sub-trie, he says to do the following: Finding the arc for a symbol s, requires ?nding its corresponding bit in the bit map and then counting the one bits below it in the map to compute an index into the ordered sub-trie. What is the best way to do this? It sounds like the most straightforward way of doing this is to select the bits below that bit and do a population count on the resulting number. Is there a faster or better way to do this?

    Read the article

  • For each level of factor aggregate values over all levels except the current one (in R)

    - by Andrey Chetverikov
    For each level of factor I need to extract values aggregated over all subsets of data.frame except the current one. For example, there is a several subjects doing a reaction time task during several days, and I need to compute mean reaction time for all subjects and all days, but not including the subject for whom the mean is computed. Currently, I do it like this: library(lme4) ddply(sleepstudy, .(Subject, Days), summarise , avg_rt=mean(sleepstudy[sleepstudy$Subject!=Subject&sleepstudy$Days==Days,"Reaction"]), .progress="text") It works fine for small data sets, but for large ones it can be very slow. Is there a way to do it faster?

    Read the article

  • Is there a way to intersect/diff a std::map and a std::set?

    - by Jack
    I'm wondering if there a way to intersect or make the differences between two structures defined as std::set<MyData*> and std::map<MyData*, MyValue> with standard algorithms (like std::set_intersect) The problem is that I need to compute the difference between the set and the keyset of the map but I would like to avoid reallocating it (since it's something that is done many times per second with large data structures). Is there a way to obtain a "key view" of the std::map? After all what I'm looking is to consider just the keys when doing the set operation so from an implementation point it should be possible but I haven't been able to find anything.

    Read the article

  • read text files containing binary data as a single matrix in matlab

    - by user1716595
    I have a text file which contains binary data in the following manner: 00000000000000000000000000000000001011111111111111111111111111111111111111111111111111111111110000000000000000000000000000000 00000000000000000000000000000000000000011111111111111111111111111111111111111111111111000111100000000000000000000000000000000 00000000000000000000000000000000000011111111111111111111111111111111111111111111111111111111100000000000000000000000000000000 00000000000000000000000000000000000111111111111111111111111111111111111111111111111111111111100000000000000000000000000000000 00000000000000000000000000000000000011111111111111111111111111111111111111111111111111111111100000000000000000000000000000000 00000000000000000000000000000000000000011111111111111111111111111111111111111111111111111111100000000000000000000000000000000 00000000000000000000000000000000000000011111111111111111111111111111111111111111111111000111110000000000000000000000000000000 00000000000000000000000000000000000000111111111111111111111111111111111111111111111111111111110000000000000000000000000000000 00000000000000000000000000000000000000000000111111111111111111111111111111111111110000000011100000000000000000000000000000000 00000000000000000000000000000000000000011111111111111111111111111111111111111111111111100111110000000000000000000000000000000 00000000000000000000000000000000000111111111111111111111111111111111111111111111111111110111110000000000000000000000000000000 00000000000000000000000000000000001111111111111111111111111111111111111111111111111111111111100000000000000000000000000000000 00000000000000000000000000000000000000001111111111111111111111111111111111111111111111000011100000000000000000000000000000000 00000000000000000000000000000000000000001111111111111111111111111111111111111111111111000011100000000000000000000000000000000 00000000000000000000000000000000000001111111111111111111111111111111111111111111111111111111000000000000000000000000000000000 00000000000000000000000000000000000000011111111111111111111111111111111111111111111110000011100000000000000000000000000000000 00000000000000000000000000000000000000000000011111111111111111111111111111111111100000000011100000000000000000000000000000000 00000000000000000000000000000000000000111111111111111111111111111111111111111111111111110111100000000000000000000000000000000 Plz note that each 1 or 0 is independent i.e the values are not decimal.I need to find the column wise sum of the file.There are 125 columns in all (here it is jumping onto the next line) and there are 840946 rows. I have tried textread,fscanf and a few other matlab commands but the result is that they all read each row in decimal format and create a 840946*1 array.I want to create a 840946*125 array to compute a column wise sum. Kindly help, Thanks!

    Read the article

  • MPI_Bsend and MPI_Isend. How do they work ?

    - by GBBL
    Hi, using buffered send and non blocking send I was wondering how and if they implement a new level of parallelism in my application eventually generating a thread. Imagine that a slave process generates a large amount of data and want to send it to the master. My idea was to start a buffered or non blocking send then immediately begin to compute the next result. Just when I would have to send the new data I wold check if I can reuse the buffer. This would introduce a new level of parallelism in my application between CPU and communication. Does anybody knows how this is done in MPI ? Does MPI generate a new thread to handle the Bsend or Isend ? Thanks.

    Read the article

  • what's the name of this language that description another language syntax?

    - by Boolean
    for example: <SELECT statement> ::= [WITH <common_table_expression> [,...n]] <query_expression> [ ORDER BY { order_by_expression | column_position [ ASC | DESC ] } [ ,...n ] ] [ COMPUTE { { AVG | COUNT | MAX | MIN | SUM } ( expression ) } [ ,...n ] [ BY expression [ ,...n ] ] ] [ <FOR Clause>] [ OPTION ( <query_hint> [ ,...n ] ) ] <query_expression> ::= { <query_specification> | ( <query_expression> ) } [ { UNION [ ALL ] | EXCEPT | INTERSECT } <query_specification> | ( <query_expression> ) [...n ] ] <query_specification> ::= SELECT [ ALL | DISTINCT ] [TOP expression [PERCENT] [ WITH TIES ] ] < select_list > [ INTO new_table ] [ FROM { <table_source> } [ ,...n ] ] [ WHERE <search_condition> ] [ <GROUP BY> ] [ HAVING < search_condition > ] whats the language called?

    Read the article

  • Birthday effect - clarification needed plz.

    - by Mark
    Please help interpret the Birthday effect as described in Wikipedia: A birthday attack works as follows: 1) Pick any message m and compute h(m). 2) Update list L. Check if h(m) is in the list L. 3) if (h(m),m) is already in L, a colliding message pair has been found. else save the pair (h(m),m) in the list L and go back to step 1. From the birthday paradox we know that we can expect to find a matching entry, after performing about 2^(n/2) hash evaluations. Does the above mean 2^(n/2) iterations through the above entire loop (i.e. 2^(n/2) returns to step 1), OR does it mean 2^(n/2) comparisons to individual items already in L.

    Read the article

  • Can someone please clarify the Birthday Effect for me?

    - by Mark
    Please help interpret the Birthday effect as described in Wikipedia: A birthday attack works as follows: Pick any message m and compute h(m). Update list L. Check if h(m) is in the list L. if (h(m),m) is already in L, a colliding message pair has been found. else save the pair (h(m),m) in the list L and go back to step 1. From the birthday paradox we know that we can expect to find a matching entry, after performing about 2^(n/2) hash evaluations. Does the above mean 2^(n/2) iterations through the above entire loop (i.e. 2^(n/2) returns to step 1), OR does it mean 2^(n/2) comparisons to individual items already in L.

    Read the article

  • Why do we need to estimate the true position in Kalman filters?

    - by Kalla
    I am following a probably well-known tutorial about Kalman filter here From these lines of code: figure; plot(t,pos, t,posmeas, t,poshat); grid; xlabel('Time (sec)'); ylabel('Position (feet)'); title('Figure 1 - Vehicle Position (True, Measured, and Estimated)') I understand that x is the true position, y is measured position, xhat is estimated position. Then, if we can compute x (this code: x = a * x + b * u + ProcessNoise;), why do we need to estimated x anymore?

    Read the article

  • Considerations when porting a MS VC++ program (single machine) to a rocks cluster

    - by Mel
    I am trying to port a MS VC++ program to run on a rocks cluster! I am not very good with linux but I am eager to learn and I imagine porting it wouldn't be an impossible task for me. However, I do not understand how to take advantage of the cluster nodes. because it seems that the code execute only runs on the front end server (obviously). I have read a little about MPI and its seems like I should use MPI to comminicate between nodes. The program is currently written such that I have a main thread that synchronizes all worker threads. The main thread also recieves commands to manipulate the simulation or query its state. If the simulation is properly setup, communication between executing threads can be significantly minimized. What I don't understand is how do I start the process on the compute nodes and how do I handle failures in nodes? And maybe there should be other things I should also consider when porting my program to run in a cluster?

    Read the article

  • algorithms undirected graph twodegree[]

    - by notamathwiz
    For each node u in an undirected graph, let twodegree[u] be the sum of the degrees of u's neighbors. Show how to compute the entire array of twodegree[.] values in linear time, given a graph in adjacency list format. This is the solution for all u ? V : degree[u] = 0 for all (u; w) ? E: degree[u] = degree[u] + 1 for all u ? V : twodegree[u] = 0 for all (u; w) ? E: twodegree[u] = twodegree[u] + degree[w] can someone explain what degree[u] does in this case and how twodegree[u] = twodegree[u] + degree[w] is supposed to be the sum of the degrees of u's neighbors?

    Read the article

  • ASR / SNMP on Exadata

    - by rene.kundersma
    Recently I worked with ASR on Exadata for multiple customers. ASR is a great functionality that enables your 'systems' to alert Oracle when hardware failures occur. Sun hardware is using ASM for sometime and since 2009/2010 this is also available for Exadata. My goal is not to re-write the documentation so for general information I like to refer to this link. So, where is this note about ? Well, it is about two things I experienced around setting up ASR. I like to provide my experience so others can be successful with ASR fast as well. (It is however expected that things will be updated in the latest documentation.) First, imagine yourself configuring SNMP traps to be sent to ASR. In this situation be sure to not erase any existing SNMP Subscribers settings for example the subscription to Enterprise Manager Grid Control or whatever you already subscribed for. So, when you have documentation stating to execute "cellcli -e alter cell snmpSubscriber=(host=, port=)" be sure to add existing snmpSubscribers when they exist. The syntax allows this: snmpSubscriber= ((host=host [,port=port] [,community=community][,type=ASR]) [,(host=host[,port=port][,community=community][,type=ASR])...) Second, when configuring SnmpSubscribers using DCLI you have to work with a slash to escape the brackets. Be sure to verify your SNMP settings after setting them because you might end up with a bracket in the 'asrs.state' file stating 'public\' in stead of 'public'. Having the extra slash after the word 'public' of course doesn't help when sending SNMP-traps: dcli -g dbs_group -l root -n "/opt/oracle.cellos/compmon/exadata_mon_hw_asr.pl -validate_snmp_subscriber -type asr" cn38: Sending test trap to destination - 173.25.100.43:162 cn38: (1). count - 50 Failed to run "/usr/bin/snmptrap -v 2c -c public\ -M "+/opt/oracle.cellos/compmon/" -m SUN-HW-TRAP-MIB 173.25.100.43:162 "" SUN-HW- TRAP-MIB::sunHwTrapTestTrap sunHwTrapSystemIdentifier s " Sun Oracle Database Machine secret" sunHwTrapChassisId s "secret" sunHwTrapProductName s "SUN FIRE X4170 SERVER" sunHwTrapTestMessage s "This is a test trap. Exadata Compute Server: cn38.oracle.com "" cn38: getaddrinfo: +/opt/oracle.cellos/compmon/ Name or service not known cn38: snmptrap: Unknown host (+/opt/oracle.cellos/compmon/) All together ASR is a great addition to Exadata that I highly recommend. Some excellent documentation is written on the implementation details and available on MyOracleSupport. See "Oracle Database Machine Monitoring (Doc ID 1110675.1)" Rene Kundersma Technical Architect Oracle Technology Services

    Read the article

  • Best Practices for Building a Virtualized SPARC Computing Environment

    - by Scott Elvington
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Oracle just published Best Practices for Building a Virtualized SPARC Computing Environment, a white paper that provides guidance on the complete hardware and software stack for deploying and managing your physical and virtual SPARC infrastructure. The solution is based on Oracle SPARC T4 servers, Oracle Solaris 11 with Oracle VM for SPARC 2.2, Sun ZFS storage appliances, Sun 10GbE 72 port switches and Oracle Enterprise Manager Ops Center 12c. The paper emphasizes the value and importance of planning the resources (compute, network and storage) that will comprise the virtualized environment to achieve the desired capacity, performance and availability characteristics. The document also details numerous operational best practices that will help you deliver on those characteristics with unique capabilities provided by Enterprise Manager Ops Center including policy-based guest placement, pool resource balancing and automated guest recovery in the event of server failure. Plenty of references to supplementary documentation are included to help point you to additional resources. Whether you’re building the first stages of your private cloud or a general-purpose virtualized SPARC computing environment, these documented best practices will help ensure success. Please join Phil Bullinger and Steve Wilson from Oracle to learn more about breakthrough efficiency in private cloud infrastructure and how SPARC based virtualization can help you get started on your cloud journey. Stay Connected: Twitter |  Face book |  You Tube |  Linked in |  Newsletter

    Read the article

  • Diving into OpenStack Network Architecture - Part 1

    - by Ronen Kofman
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} rkofman Normal rkofman 83 3045 2014-05-23T21:11:00Z 2014-05-27T06:58:00Z 3 1883 10739 Oracle Corporation 89 25 12597 12.00 140 Clean Clean false false false false EN-US X-NONE HE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} Before we begin OpenStack networking has very powerful capabilities but at the same time it is quite complicated. In this blog series we will review an existing OpenStack setup using the Oracle OpenStack Tech Preview and explain the different network components through use cases and examples. The goal is to show how the different pieces come together and provide a bigger picture view of the network architecture in OpenStack. This can be very helpful to users making their first steps in OpenStack or anyone wishes to understand how networking works in this environment.  We will go through the basics first and build the examples as we go. According to the recent Icehouse user survey and the one before it, Neutron with Open vSwitch plug-in is the most widely used network setup both in production and in POCs (in terms of number of customers) and so in this blog series we will analyze this specific OpenStack networking setup. As we know there are many options to setup OpenStack networking and while Neturon + Open vSwitch is the most popular setup there is no claim that it is either best or the most efficient option. Neutron + Open vSwitch is an example, one which provides a good starting point for anyone interested in understanding OpenStack networking. Even if you are using different kind of network setup such as different Neutron plug-in or even not using Neutron at all this will still be a good starting point to understand the network architecture in OpenStack. The setup we are using for the examples is the one used in the Oracle OpenStack Tech Preview. Installing it is simple and it would be helpful to have it as reference. In this setup we use eth2 on all servers for VM network, all VM traffic will be flowing through this interface.The Oracle OpenStack Tech Preview is using VLANs for L2 isolation to provide tenant and network isolation. The following diagram shows how we have configured our deployment: This first post is a bit long and will focus on some basic concepts in OpenStack networking. The components we will be discussing are Open vSwitch, network namespaces, Linux bridge and veth pairs. Note that this is not meant to be a comprehensive review of these components, it is meant to describe the component as much as needed to understand OpenStack network architecture. All the components described here can be further explored using other resources. Open vSwitch (OVS) In the Oracle OpenStack Tech Preview OVS is used to connect virtual machines to the physical port (in our case eth2) as shown in the deployment diagram. OVS contains bridges and ports, the OVS bridges are different from the Linux bridge (controlled by the brctl command) which are also used in this setup. To get started let’s view the OVS structure, use the following command: # ovs-vsctl show 7ec51567-ab42-49e8-906d-b854309c9edf     Bridge br-int         Port br-int             Interface br-int type: internal         Port "int-br-eth2"             Interface "int-br-eth2"     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2" ovs_version: "1.11.0" We see a standard post deployment OVS on a compute node with two bridges and several ports hanging off of each of them. The example above is a compute node without any VMs, we can see that the physical port eth2 is connected to a bridge called “br-eth2”. We also see two ports "int-br-eth2" and "phy-br-eth2" which are actually a veth pair and form virtual wire between the two bridges, veth pairs are discussed later in this post. When a virtual machine is created a port is created on one the br-int bridge and this port is eventually connected to the virtual machine (we will discuss the exact connectivity later in the series). Here is how OVS looks after a VM was launched: # ovs-vsctl show efd98c87-dc62-422d-8f73-a68c2a14e73d     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port br-int             Interface br-int type: internal         Port "qvocb64ea96-9f" tag: 1             Interface "qvocb64ea96-9f"     Bridge "br-eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2" ovs_version: "1.11.0" Bridge "br-int" now has a new port "qvocb64ea96-9f" which connects to the VM and tagged with VLAN 1. Every VM which will be launched will add a port on the “br-int” bridge for every network interface the VM has. Another useful command on OVS is dump-flows for example: # ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4): cookie=0x0, duration=735.544s, table=0, n_packets=70, n_bytes=9976, idle_age=17, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL cookie=0x0, duration=76679.786s, table=0, n_packets=0, n_bytes=0, idle_age=65534, hard_age=65534, priority=2,in_port=1 actions=drop cookie=0x0, duration=76681.36s, table=0, n_packets=68, n_bytes=7950, idle_age=17, hard_age=65534, priority=1 actions=NORMAL As we see the port which is connected to the VM has the VLAN tag 1. However the port on the VM network (eth2) will be using tag 1000. OVS is modifying the vlan as the packet flow from the VM to the physical interface. In OpenStack the Open vSwitch agent takes care of programming the flows in Open vSwitch so the users do not have to deal with this at all. If you wish to learn more about how to program the Open vSwitch you can read more about it at http://openvswitch.org looking at the documentation describing the ovs-ofctl command. Network Namespaces (netns) Network namespaces is a very cool Linux feature can be used for many purposes and is heavily used in OpenStack networking. Network namespaces are isolated containers which can hold a network configuration and is not seen from outside of the namespace. A network namespace can be used to encapsulate specific network functionality or provide a network service in isolation as well as simply help to organize a complicated network setup. Using the Oracle OpenStack Tech Preview we are using the latest Unbreakable Enterprise Kernel R3 (UEK3), this kernel provides a complete support for netns. Let's see how namespaces work through couple of examples to control network namespaces we use the ip netns command: Defining a new namespace: # ip netns add my-ns # ip netns list my-ns As mentioned the namespace is an isolated container, we can perform all the normal actions in the namespace context using the exec command for example running the ifconfig command: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:16436 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) We can run every command in the namespace context, this is especially useful for debug using tcpdump command, we can ping or ssh or define iptables all within the namespace. Connecting the namespace to the outside world: There are various ways to connect into a namespaces and between namespaces we will focus on how this is done in OpenStack. OpenStack uses a combination of Open vSwitch and network namespaces. OVS defines the interfaces and then we can add those interfaces to namespace. So first let's add a bridge to OVS: # ovs-vsctl add-br my-bridge Now let's add a port on the OVS and make it internal: # ovs-vsctl add-port my-bridge my-port # ovs-vsctl set Interface my-port type=internal And let's connect it into the namespace: # ip link set my-port netns my-ns Looking inside the namespace: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:65536 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) my-port   Link encap:Ethernet HWaddr 22:04:45:E2:85:21           BROADCAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) Now we can add more ports to the OVS bridge and connect it to other namespaces or other device like physical interfaces. Neutron is using network namespaces to implement network services such as DCHP, routing, gateway, firewall, load balance and more. In the next post we will go into this in further details. Linux Bridge and veth pairs Linux bridge is used to connect the port from OVS to the VM. Every port goes from the OVS bridge to a Linux bridge and from there to the VM. The reason for using regular Linux bridges is for security groups’ enforcement. Security groups are implemented using iptables and iptables can only be applied to Linux bridges and not to OVS bridges. Veth pairs are used extensively throughout the network setup in OpenStack and are also a good tool to debug a network problem. Veth pairs are simply a virtual wire and so veths always come in pairs. Typically one side of the veth pair will connect to a bridge and the other side to another bridge or simply left as a usable interface. In this example we will create some veth pairs, connect them to bridges and test connectivity. This example is using regular Linux server and not an OpenStack node: Creating a veth pair, note that we define names for both ends: # ip link add veth0 type veth peer name veth1 # ifconfig -a . . veth0     Link encap:Ethernet HWaddr 5E:2C:E6:03:D0:17           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) veth1     Link encap:Ethernet HWaddr E6:B6:E2:6D:42:B8           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) . . To make the example more meaningful this we will create the following setup: veth0 => veth1 => br-eth3 => eth3 ======> eth2 on another Linux server br-eth3 – a regular Linux bridge which will be connected to veth1 and eth3 eth3 – a physical interface with no IP on it, connected to a private network eth2 – a physical interface on the remote Linux box connected to the private network and configured with the IP of 50.50.50.1 Once we create the setup we will ping 50.50.50.1 (the remote IP) through veth0 to test that the connection is up: # brctl addbr br-eth3 # brctl addif br-eth3 eth3 # brctl addif br-eth3 veth1 # brctl show bridge name     bridge id               STP enabled     interfaces br-eth3         8000.00505682e7f6       no              eth3                                                         veth1 # ifconfig veth0 50.50.50.50 # ping -I veth0 50.50.50.51 PING 50.50.50.51 (50.50.50.51) from 50.50.50.50 veth0: 56(84) bytes of data. 64 bytes from 50.50.50.51: icmp_seq=1 ttl=64 time=0.454 ms 64 bytes from 50.50.50.51: icmp_seq=2 ttl=64 time=0.298 ms When the naming is not as obvious as the previous example and we don't know who are the paired veth interfaces we can use the ethtool command to figure this out. The ethtool command returns an index we can look up using ip link command, for example: # ethtool -S veth1 NIC statistics: peer_ifindex: 12 # ip link . . 12: veth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 Summary That’s all for now, we quickly reviewed OVS, network namespaces, Linux bridges and veth pairs. These components are heavily used in the OpenStack network architecture we are exploring and understanding them well will be very useful when reviewing the different use cases. In the next post we will look at how the OpenStack network is laid out connecting the virtual machines to each other and to the external world. @RonenKofman

    Read the article

  • Web.Config is Cached

    - by SGWellens
    There was a question from a student over on the Asp.Net forums about improving site performance. The concern was that every time an app setting was read from the Web.Config file, the disk would be accessed. With many app settings and many users, it was believed performance would suffer. Their intent was to create a class to hold all the settings, instantiate it and fill it from the Web.Config file on startup. Then, all the settings would be in RAM. I knew this was not correct and didn't want to just say so without any corroboration, so I did some searching. Surprisingly, this is a common misconception. I found other code postings that cached the app settings from Web.Config. Many people even thanked the posters for the code. In a later post, the student said their text book recommended caching the Web.Config file. OK, here's the deal. The Web.Config file is already cached. You do not need to re-cache it. From this article http://msdn.microsoft.com/en-us/library/aa478432.aspx It is important to realize that the entire <appSettings> section is read, parsed, and cached the first time we retrieve a setting value. From that point forward, all requests for setting values come from an in-memory cache, so access is quite fast and doesn't incur any subsequent overhead for accessing the file or parsing the XML. The reason the misconception is prevalent may be because it's hard to search for Web.Config and cache without getting a lot of hits on how to setup caching in the Web.Config file. So here's a string for search engines to index on: "Is the Web.Config file Cached?" A follow up question was, are the connection strings cached? Yes. http://msdn.microsoft.com/en-us/library/ms178683.aspx At run time, ASP.NET uses the Web.Config files to hierarchically compute a unique collection of configuration settings for each incoming URL request. These settings are calculated only once and then cached on the server. And, as everyone should know, if you modify the Web.Config file, the web application will restart. I hope this helps people to NOT write code! Steve WellensCodeProject

    Read the article

  • Web.Config is Cached

    - by SGWellens
    There was a question from a student over on the Asp.Net forums about improving site performance. The concern was that every time an app setting was read from the Web.Config file, the disk would be accessed. With many app settings and many users, it was believed performance would suffer. Their intent was to create a class to hold all the settings, instantiate it and fill it from the Web.Config file on startup. Then, all the settings would be in RAM. I knew this was not correct and didn't want to just say so without any corroboration, so I did some searching. Surprisingly, this is a common misconception. I found other code postings that cached the app settings from Web.Config. Many people even thanked the posters for the code. In a later post, the student said their text book recommended caching the Web.Config file. OK, here's the deal. The Web.Config file is already cached. You do not need to re-cache it. From this article http://msdn.microsoft.com/en-us/library/aa478432.aspx It is important to realize that the entire <appSettings> section is read, parsed, and cached the first time we retrieve a setting value. From that point forward, all requests for setting values come from an in-memory cache, so access is quite fast and doesn't incur any subsequent overhead for accessing the file or parsing the XML. The reason the misconception is prevalent may be because it's hard to search for Web.Config and cache without getting a lot of hits on how to setup caching in the Web.Config file. So here's a string for search engines to index on: "Is the Web.Config file Cached?" A follow up question was, are the connection strings cached? Yes. http://msdn.microsoft.com/en-us/library/ms178683.aspx At run time, ASP.NET uses the Web.Config files to hierarchically compute a unique collection of configuration settings for each incoming URL request. These settings are calculated only once and then cached on the server. And, as everyone should know, if you modify the Web.Config file, the web application will restart. I hope this helps people to NOT write code!   Steve WellensCodeProject

    Read the article

  • Mathematica Programming Language&ndash;An Introduction

    - by JoshReuben
    The Mathematica http://www.wolfram.com/mathematica/ programming model consists of a kernel computation engine (or grid of such engines) and a front-end of notebook instances that communicate with the kernel throughout a session. The programming model of Mathematica is incredibly rich & powerful – besides numeric calculations, it supports symbols (eg Pi, I, E) and control flow logic.   obviously I could use this as a simple calculator: 5 * 10 --> 50 but this language is much more than that!   for example, I could use control flow logic & setup a simple infinite loop: x=1; While [x>0, x=x,x+1] Different brackets have different purposes: square brackets for function arguments:  Cos[x] round brackets for grouping: (1+2)*3 curly brackets for lists: {1,2,3,4} The power of Mathematica (as opposed to say Matlab) is that it gives exact symbolic answers instead of a rounded numeric approximation (unless you request it):   Mathematica lets you define scoped variables (symbols): a=1; b=2; c=a+b --> 5 these variables can contain symbolic values – you can think of these as partially computed functions:   use Clear[x] or Remove[x] to zero or dereference a variable.   To compute a numerical approximation to n significant digits (default n=6), use N[x,n] or the //N prefix: Pi //N -->3.14159 N[Pi,50] --> 3.1415926535897932384626433832795028841971693993751 The kernel uses % to reference the lastcalculation result, %% the 2nd last, %%% the 3rd last etc –> clearer statements: eg instead of: Sqrt[Pi+Sqrt[Sqrt[Pi+Sqrt[Pi]]] do: Sqrt[Pi]; Sqrt[Pi+%]; Sqrt[Pi+%] The help system supports wildcards, so I can search for functions like so: ?Inv* Mathematica supports some very powerful programming constructs and a rich function library that allow you to do things that you would have to write allot of code for in a language like C++.   the Factor function – factorization: Factor[x^3 – 6*x^2 +11x – 6] --> (-3+x) (-2+x) (-1+x)   the Solve function – find the roots of an equation: Solve[x^3 – 2x + 1 == 0] -->   the Expand function – express (1+x)^10 in polynomial form: Expand[(1+x)^10] --> 1+10x+45x^2+120x^3+210x^4+252x^5+210x^6+120x^7+45x^8+10x^9+x^10 the Prime function – what is the 1000th prime? Prime[1000] -->7919 Mathematica also has some powerful graphics capabilities:   the Plot function – plot the graph of y=Sin x in a single period: Plot[Sin[x], {x,0,2*Pi}] you can also plot 3D surfaces of functions using Plot3D function

    Read the article

  • FREE Windows Azure evening in London on April 15th including FREE access to Windows Azure

    - by Eric Nelson
    [Did I overdo the use of FREE in the title? :-)] April 12th to 16th is Microsoft Tech Days – 5 days of sessions on Visual Studio 2010 through to Windows 7 Phone Series. Many of these days are now full (Tip - Thursday still has room if rich client applications is your thing) but the good news is the development community in the UK has pulled together an awesome series of “fringe events” during April in London and elsewhere in the UK. There are sessions on Silverlight, SQL Server 2008 R2, Sharepoint 2010 and … the Windows Azure Platform. The UK AzureNET user group is planning to put on a great evening and AzureNET will be giving away hundreds of free subscriptions to the Windows Azure Platform during the evening. The subscription includes up to 20 Windows Azure Compute nodes and 3 SQL Azure databases for you to play with over the 2 weeks following the event. This is a great opportunity to really explore the Windows Azure Platform in detail – without a credit card! Register now! (and you might also want to join the UK Fans of Azure Community while I have your attention) FYI The Thursday day time event includes an introduction to Windows Azure session delivered by my colleague David – which would be an ideal session to attend if you are new to Azure and want to get the most out of the evening session. 7:00pm: See the difference: How Windows Azure helped build a new way of giving Simon Evans and James Broome (@broomej) They will cover the business context for Azure and then go into patterns used and lessons learnt from the project....as well as showing off the app of course! 8:00pm: UK AzureNET update 8:15pm: NoSQL databases or: How I learned to love the hash table Mark Rendle (@markrendle) In this session Mark will look at how Azure Table Service works and how to use it. We’ll look briefly at the high-level Data Services SDK, talk about its limitations, and then quickly move on to the REST API and how to use it to improve performance and reduce costs. We’ll make-up some pretend real-world problems and solve them in new and interesting ways. We’ll denormalise data (for fun and profit). We’ll talk about how certain social networking sites can deal with huge volumes of data so quickly, and why it sometimes goes wrong. Check out the complete list of fringe events which covers the UK fairly well:

    Read the article

  • Plan Operator Tuesday round-up

    - by Rob Farley
    Eighteen posts for T-SQL Tuesday #43 this month, discussing Plan Operators. I put them together and made the following clickable plan. It’s 1000px wide, so I hope you have a monitor wide enough. Let me explain this plan for you (people’s names are the links to the articles on their blogs – the same links as in the plan above). It was clearly a SELECT statement. Wayne Sheffield (@dbawayne) wrote about that, so we start with a SELECT physical operator, leveraging the logical operator Wayne Sheffield. The SELECT operator calls the Paul White operator, discussed by Jason Brimhall (@sqlrnnr) in his post. The Paul White operator is quite remarkable, and can consume three streams of data. Let’s look at those streams. The first pulls data from a Table Scan – Boris Hristov (@borishristov)’s post – using parallel threads (Bradley Ball – @sqlballs) that pull the data eagerly through a Table Spool (Oliver Asmus – @oliverasmus). A scalar operation is also performed on it, thanks to Jeffrey Verheul (@devjef)’s Compute Scalar operator. The second stream of data applies Evil (I figured that must mean a procedural TVF, but could’ve been anything), courtesy of Jason Strate (@stratesql). It performs this Evil on the merging of parallel streams (Steve Jones – @way0utwest), which suck data out of a Switch (Paul White – @sql_kiwi). This Switch operator is consuming data from up to four lookups, thanks to Kalen Delaney (@sqlqueen), Rick Krueger (@dataogre), Mickey Stuewe (@sqlmickey) and Kathi Kellenberger (@auntkathi). Unfortunately Kathi’s name is a bit long and has been truncated, just like in real plans. The last stream performs a join of two others via a Nested Loop (Matan Yungman – @matanyungman). One pulls data from a Spool (my post – @rob_farley) populated from a Table Scan (Jon Morisi). The other applies a catchall operator (the catchall is because Tamera Clark (@tameraclark) didn’t specify any particular operator, and a catchall is what gets shown when SSMS doesn’t know what to show. Surprisingly, it’s showing the yellow one, which is about cursors. Hopefully that’s not what Tamera planned, but anyway...) to the output from an Index Seek operator (Sebastian Meine – @sqlity). Lastly, I think everyone put in 110% effort, so that’s what all the operators cost. That didn’t leave anything for me, unfortunately, but that’s okay. Also, because he decided to use the Paul White operator, Jason Brimhall gets 0%, and his 110% was given to Paul’s Switch operator post. I hope you’ve enjoyed this T-SQL Tuesday, and have learned something extra about Plan Operators. Keep your eye out for next month’s one by watching the Twitter Hashtag #tsql2sday, and why not contribute a post to the party? Big thanks to Adam Machanic as usual for starting all this. @rob_farley

    Read the article

  • RTS Movement + Navigation + Destination

    - by Oliver Jones
    I'm looking into building my own simple RTS game, and I'm trying to get my head around the movement of single, and multi selected units. (Developing in Unity) After much research, I now know that its a bigger task than I thought. So I need to break it down. I already have an A* navigation system with static obstacles taken into account. I don't want to worry about dynamic local avoidance right now. So I guess my first break down question would be: How would I go about moving mutli units to the same location. Right now - my units move to the location, but because they're all told to go to the same location, they start to 'fight' over one another to get there. I think theres two paths to go down: 1) Give each individual unit a separate destination point that is close to the 'master' destination point - and get the units to move to that. 2) Group my selected units in a flock formation, and move that entire flock group towards the destination point. Question about each path: 1a) How can I go about finding a suitable destination point that is close to the master destination? What happens if there isn't a suitable destination point? 1b) Would this be more CPU heavy? As it has to compute a path for each unit? (40 unit count). 2a) Is this a good idea? Not giving the units themselves a destination, but instead the flock (which holds the units within). The units within the flock could then maintain a formation (local avoidance) - though, again local avoidance is not an issue at this current time. 2b) Not sure what results I would get if I have a flock of 5 units, or a flock of 40 units, as the radius would be greater - which might mess up my A* navigation system. In other words: A flock of 2 units will be able to move down an alleyway, but a flock of 40 wont. But my nav system won't take that into account. I would appreciate any feedback. Kind regards, Ollie Jones

    Read the article

  • Oracle VM Templates for EBS 12.1.3 for Exalogic Now Available

    - by Elke Phelps (Oracle Development)
    Oracle VM Templates for Oracle E-Business Suite 12.1.3 for x86 Exalogic Platform (64 bit) are now available on the Oracle Software Delivery Cloud.  The templates contain all the required elements to create an Oracle E-Business Suite R12 demonstration system on an Exalogic server. You can use these templates to quickly build an EBS 12.1.3 demonstration environment, bypassing the operating system and the software install (via the EBS Rapid Install).   The Oracle E-Business Suite Release 12.1.3 (64 bit) template for the Exalogic platform is a Oracle Virtual Server Guest template that contains a complete Oracle E-Business Suite Release 12.1.3 Database Tier and Application Tier Installation.  For additional details, please refer to the following My Oracle Support Note: Oracle E-Business Suite Release 12.1.3 Database Tier and Application Tier Template for Oracle Exalogic Platform (Note 1499132.1) The Oracle E-Business Suite system is installed on top of Oracle Linux Version 5 update 6. The templates have been optimized for performance, including OS kernel settings and E-Business Suite configuration settings tuned specifically for the Exalogic platform.  The configuration delivered with this template for a mid-tier running on Exalogic will support hundreds of concurrent users.  Please refer to Section 2: Performance Analysis in My Oracle Support Note 1499132.1 for additional details.   Additional Information The Oracle E-Business Suite VM templates for the Exalogic platform contain the following software versions: Operating System: Oracle Linux Version 5 Update 6 Oracle E-Business Suite 12.1.3 (Database Tier) Oracle E-Business Suite 12.1.3 (Application Tier) The following considerations were made when the Oracle E-Business Suite VM template for the Exalogic platform were designed: Templates use the hardware-virtualized architecture, supporting hardware with virtualization feature. Database Tier Template is configured to use the following configuration: 16 GB RAM 4 VCPUs 250 GB of Disk space for application installation Application Tier Template is configured to use the following configuration: 16 GB RAM 4 VCPUs 50 GB of Disk space for application installation References Oracle E-Business Suite Release 12.1.3 Database Tier and Application Tier Template for Oracle Exalogic Platform (Note 1499132.1) Related Articles Part 1: E-Business Suite 12.1.1 Templates for Oracle VM Now Available Part 2: Using Oracle VM with Oracle E-Business Suite Virtualization Kit Part 3: On Clouds and Virtualization in EBS Environments (OpenWorld 2009 Recap) Part 4: Deploying E-Business Suite on Amazon Web Services Elastic Compute Cloud Part 5: Live Migration of EBS Services Using Oracle VM Support Policies for Virtualization Technologies and Oracle E-Business Suite Virtualization and the E-Business Suite, Redux Virtualization and E-Business Suite

    Read the article

  • Creating metadata value relationships

    - by kyle.hatlestad
    I was recently asked an question about an interesting use case. They wanted content to be submitted into UCM with a particular ID in a custom metadata field. But they wanted that ID to be translated during submission into an employee name in another metadata field upon submission. My initial thought was that this could be done with a dependent choice list (DCL). One option list field driving the choices in another. But this didn't work in this case for a couple of reasons. First, the number of IDs could potentially be very large. So making that into a drop-down list would not be practical. The preference would be for that field to simply be a text field to type in the ID. Secondly, data could be submitted through different methods other then the web-based check-in form. And without an interface to select the DCL choices, the system needed a way to determine and populate the name field. So instead I went the approach of having the value of the ID field drive the value of the Name field using the derived field approach in my rule. In looking at it though, it was easy to simply copy the value of the ID field into the Name field...but to have it look up and translate the value proved to be the tricky part. So here is the approach I took... First I created my two metadata fields as standard text fields in the Configuration Manager applet. Next I create a table that stores the relationship between the IDs and Names. I then create a View into that table and set the column to the EmployeeID. I now create a new Application Field and set it as an option list using the View I created in the previous step. The reason I create it as an Application field is because I don't need to display the field or store a value in it. I simply need to make use of the option list in the next step... Finally, I create a Rule in which I select the Employee Name field and turn on the 'Is derived field' checkbox. I edit the derived value and add a new condition. Because the option list is a Application field and not an Information field, I can't use the Compute button. Instead, I insert this line directly in the Value field: @getFieldViewValue("EmployeeMapping",#active.xEmployeeID, "EmployeeName") The "EmployeeMapping" parameter designates that the value should be pulled from the EmployeeMapping Application field that I had created in the previous step. The #active.xEmployeeID field is the ID value that should be pulled from what the user entered. "EmployeeName" is the column name in the table which has the value which corresponds to the ID. The extracted name then becomes the value within our Employee Name field. That's it. You can then add additional Rules to make the Name field read-only/hidden on the check-in page and such.

    Read the article

  • Installing Yaws server on Ubuntu 12.04 (Using a cloud service)

    - by Lee Torres
    I'm trying to get a Yaws web server working on a cloud service (Amazon AWS). I've compilled and installed a local copy on the server. My problem is that I can't get Yaws to run while running on either port 8000 or port 80. I have the following configuration in yaws.conf: port = 8000 listen = 0.0.0.0 docroot = /home/ubuntu/yaws/www/test dir_listings = true This produces the following successful launch/result: Eshell V5.8.5 (abort with ^G) =INFO REPORT==== 16-Sep-2012::17:21:06 === Yaws: Using config file /home/ubuntu/yaws.conf =INFO REPORT==== 16-Sep-2012::17:21:06 === Ctlfile : /home/ubuntu/.yaws/yaws/default/CTL =INFO REPORT==== 16-Sep-2012::17:21:06 === Yaws: Listening to 0.0.0.0:8000 for <3> virtual servers: - http://domU-12-31-39-0B-1A-F6:8000 under /home/ubuntu/yaws/www/trial - =INFO REPORT==== 16-Sep-2012::17:21:06 === Yaws: Listening to 0.0.0.0:4443 for <1> virtual servers: - When I try to access the the url (http://ec2-72-44-47-235.compute-1.amazonaws.com), it never connects. I've tried using paping to check if port 80 or 8000 is open(http://code.google.com/p/paping/) and I get a "Host can not be resolved" error, so obviously something isn't working. I've also tried setting the yaws.conf so its at Port 80, appearing like this: port = 8000 listen = 0.0.0.0 docroot = /home/ubuntu/yaws/www/test dir_listings = true and I get the following error: =ERROR REPORT==== 16-Sep-2012::17:24:47 === Yaws: Failed to listen 0.0.0.0:80 : {error,eacces} =ERROR REPORT==== 16-Sep-2012::17:24:47 === Can't listen to socket: {error,eacces} =ERROR REPORT==== 16-Sep-2012::17:24:47 === Top proc died, terminate gserv =ERROR REPORT==== 16-Sep-2012::17:24:47 === Top proc died, terminate gserv =INFO REPORT==== 16-Sep-2012::17:24:47 === application: yaws exited: {shutdown,{yaws_app,start,[normal,[]]}} type: permanent {"Kernel pid terminated",application_controller," {application_start_failure,yaws,>>>>>>{shutdown,>{yaws_app,start,[normal,[]]}}}"} I've also opened up the port 80 using iptables. Running sudo iptables -L gives this output: Chain INPUT (policy ACCEPT) target prot opt source destination ACCEPT tcp -- ip-192-168-2-0.ec2.internal ip-192-168-2-16.ec2.internal tcp dpt:http ACCEPT tcp -- 0.0.0.0 anywhere tcp dpt:http ACCEPT all -- anywhere anywhere ctstate RELATED,ESTABLISHED ACCEPT tcp -- anywhere anywhere tcp dpt:http ACCEPT tcp -- anywhere anywhere tcp dpt:http Chain FORWARD (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination In addition, I've gone to the security group panel in the Amazon AWS configuration area, and add ports 80, 8000, and 8080 to ip source 0.0.0.0 Please note: if you try to access the URL of the virtual server now, it likely won't connect because I'm not running currently running the yaws daemon. I've tested it when I've run yaws either through yaws or yaws -i Thanks for the patience

    Read the article

  • New channels for Exadata 11.2.3.1.1

    - by Rene Kundersma
    With the release of Exadata 11.2.3.1.0 back in April 2012 Oracle has deprecated the minimal pack for the Exadata Database Servers (compute nodes). From that release the Linux Database Server updates will be done using ULN and YUM. For the 11.2.3.1.0 release the ULN exadata_dbserver_11.2.3.1.0_x86_64_base channel was made available and Exadata operators could subscribe their system to it via linux.oracle.com. With the new 11.2.3.1.1 release two additional channels are added: a 'latest' channel (exadata_dbserver_11.2_x86_64_latest) a 'patch' channel (exadata_dbserver_11.2_x86_64_patch) The patch channel has the new or updated packages updated in 11.2.3.1.1 from the base channel. The latest channel has all the packages from 11.2.3.1.0 base and patch channels combined.  From here there are three possible situations a Database Server can be in before it can be updated to 11.2.3.1.1: Database Server is on Exadata release < 11.2.3.1.0 Database Server is patched to 11.2.3.1.0 Database Server is freshly imaged to 11.2.3.1.0 In order to bring a Database Server to 11.2.3.1.1 for all three cases the same approach for updating can be used (using YUM), but there are some minor differences: For Database Servers on a release < 11.2.3.1.0 the following high-level steps need to be performed: Subscribe to el5_x86_64_addons, ol5_x86_64_latest and  exadata_dbserver_11.2_x86_64_latest Create local repository Point Database Server to the local repository* install the update * during this process a one-time action needs to be done (details in the README) For Database Servers patched to 11.2.3.1.0: Subscribe to patch channel  exadata_dbserver_11.2_x86_64_patch Create local repository Point Database Server to the local repository Update the system For Database Servers freshly imaged to 11.2.3.1.0: Subscribe to patch channel  exadata_dbserver_11.2_x86_64_patch Create local  repository Point Database Server to the local repository Update the system The difference between 'situation 2' (Database Server is patched to 11.2.3.1.0) and 'situation 3' (Database Server is freshly imaged to 11.2.3.1.0) is that in situation 2 the existing Exadata-computenode.repo file needs to be edited while in situation 3 this file is not existing  and needs to be created or copied. Another difference is that you will end up with more OFA packages installed in situation 2. This is because none are removed during the updating process.  The YUM update functionality with the new channels is a great enhancements to the Database Server update procedure. As usual, the updates can be done in a rolling fashion so no database service downtime is required.  For detailed and up-to-date instructions always see the patch README's 1466459.1 patch 13998727 888828.1 Rene Kundersma

    Read the article

  • add collision detection to sprite?

    - by xBroak
    bassically im trying to add collision detection to the sprite below, using the following: self.rect = bounds_rect collide = pygame.sprite.spritecollide(self, wall_list, False) if collide: # yes print("collide") However it seems that when the collide is triggered it continuously prints 'collide' over and over when instead i want them to simply not be able to walk through the object, any help? def update(self, time_passed): """ Update the creep. time_passed: The time passed (in ms) since the previous update. """ if self.state == Creep.ALIVE: # Maybe it's time to change the direction ? # self._change_direction(time_passed) # Make the creep point in the correct direction. # Since our direction vector is in screen coordinates # (i.e. right bottom is 1, 1), and rotate() rotates # counter-clockwise, the angle must be inverted to # work correctly. # self.image = pygame.transform.rotate( self.base_image, -self.direction.angle) # Compute and apply the displacement to the position # vector. The displacement is a vector, having the angle # of self.direction (which is normalized to not affect # the magnitude of the displacement) # displacement = vec2d( self.direction.x * self.speed * time_passed, self.direction.y * self.speed * time_passed) self.pos += displacement # When the image is rotated, its size is changed. # We must take the size into account for detecting # collisions with the walls. # self.image_w, self.image_h = self.image.get_size() global bounds_rect bounds_rect = self.field.inflate( -self.image_w, -self.image_h) if self.pos.x < bounds_rect.left: self.pos.x = bounds_rect.left self.direction.x *= -1 elif self.pos.x > bounds_rect.right: self.pos.x = bounds_rect.right self.direction.x *= -1 elif self.pos.y < bounds_rect.top: self.pos.y = bounds_rect.top self.direction.y *= -1 elif self.pos.y > bounds_rect.bottom: self.pos.y = bounds_rect.bottom self.direction.y *= -1 self.rect = bounds_rect collide = pygame.sprite.spritecollide(self, wall_list, False) if collide: # yes print("collide") elif self.state == Creep.EXPLODING: if self.explode_animation.active: self.explode_animation.update(time_passed) else: self.state = Creep.DEAD self.kill() elif self.state == Creep.DEAD: pass #------------------ PRIVATE PARTS ------------------# # States the creep can be in. # # ALIVE: The creep is roaming around the screen # EXPLODING: # The creep is now exploding, just a moment before dying. # DEAD: The creep is dead and inactive # (ALIVE, EXPLODING, DEAD) = range(3) _counter = 0 def _change_direction(self, time_passed): """ Turn by 45 degrees in a random direction once per 0.4 to 0.5 seconds. """ self._counter += time_passed if self._counter > randint(400, 500): self.direction.rotate(45 * randint(-1, 1)) self._counter = 0 def _point_is_inside(self, point): """ Is the point (given as a vec2d) inside our creep's body? """ img_point = point - vec2d( int(self.pos.x - self.image_w / 2), int(self.pos.y - self.image_h / 2)) try: pix = self.image.get_at(img_point) return pix[3] > 0 except IndexError: return False def _decrease_health(self, n): """ Decrease my health by n (or to 0, if it's currently less than n) """ self.health = max(0, self.health - n) if self.health == 0: self._explode() def _explode(self): """ Starts the explosion animation that ends the Creep's life. """ self.state = Creep.EXPLODING pos = ( self.pos.x - self.explosion_images[0].get_width() / 2, self.pos.y - self.explosion_images[0].get_height() / 2) self.explode_animation = SimpleAnimation( self.screen, pos, self.explosion_images, 100, 300) global remainingCreeps remainingCreeps-=1 if remainingCreeps == 0: print("all dead")

    Read the article

< Previous Page | 49 50 51 52 53 54 55 56 57 58 59 60  | Next Page >