Search Results

Search found 2725 results on 109 pages for 'nodes'.

Page 53/109 | < Previous Page | 49 50 51 52 53 54 55 56 57 58 59 60  | Next Page >

  • Any Good Cocos2d Pause Menu Library

    - by Mahbubur R Aaman
    Background : From http://code.google.com/p/cocos2d-iphone/issues/detail?id=173 Scenes/Nodes doesn't support the CocosNodeOpacity protocol. From http://playsnackgames.com/blog/2011/09/cocos2d-tutorial-creating-a-reusable-pause-layer/ Cocos2d offers a simple method to pause and resume itself, but these methods stop the CCDirector (the class that manages most aspects of a Cocos2d’s app lifetime) from running actions and lower the fps to 5 to conserve battery life. Related issues http://www.cocos2d-iphone.org/forum/topic/4368 http://www.cocos2d-iphone.org/forum/topic/151 http://stackoverflow.com/questions/5852354/cocos2d-engine-pause-resume http://stackoverflow.com/questions/11878450/how-to-pause-a-layer-in-cocos2d-2-0 Question : Is there any Good Cocos2d Pause Menu Library solving these tricky issues? This will save many hours of Game Developer's life.

    Read the article

  • SQL Server 2012 edition comparison details are published

    - by DavidWimbush
    Interesting stuff, particularly if you're doing BI. BISM tabular and Power View will not be in Standard Edition, only in the new - presumably more expensive - Business Intelligence Edition. That kind of makes sense as you need a fairly pricey edition of SharePoint to really get all the benefits, but it's a shame there won't be some kind of limited version in Standard Edition. And Always On will be in Standard Edition but limited to 2 nodes. I really expected Always On to be Enterprise-only so this is a great decision. It allows those of us working at a more modest scale to benefit and raises the fault tolerance of SQL Server as a product to a new level.Read all about it here: http://www.microsoft.com/sqlserver/en/us/future-editions/sql2012-editions.aspx

    Read the article

  • Implementation of Race Game Tree

    - by Mert Toka
    I build a racing game right in OpenGL using Glut, and I'm a bit lost in all the details. First of all, any suggestions as a road map would be more than great. So far what I thought is this: Tree implementation for transformations. Simulated dynamics.(*) Octree implementation for collusion detection. Actual collusion detection.(*) Modelling in Maya and export them as .OBJs. Polishing the game with GLSL or something like that for graphics quality. (*): I am not sure the order of these two. So I started with the simulated dynamics without tree, and it turned out to be a huge chaos for me. Is there any way you can think of such that could help me to build such tree to use in racing game? I thought something like this but I have no idea how to implement it. Reds are static, yellows are dynamic nodes

    Read the article

  • FBX SDK Not Converting Child Node Coordinate Systems

    - by Al Bundy
    I am trying to import a scene into my application from an fbx file. In 3DS Max, the scene and it’s local translations are as follows: Root (0, 0, 0) '-Sphere001 (-15, 30, 0) ' '-Sphere002 (-2, -30, 0) ' '-Sphere003 (-30, -20, 0) '-Cube001 (35, -15, 0) This is the code that I am using to get the translations of each node: FbxDouble3 fbxPosition = pChild->LclTranslation.Get(); FbxDouble3 fbxRotation = pChild->LclRotation.Get(); FbxDouble3 fbxScale = pChild->LclScaling.Get(); When I try to import the scene, the first node from the scene is getting converted to a right handed system, using this conversion: (X, Z, -Y), but none of their child nodes are. after importing the scene, the local translations I get are as follows: Root (0, 0, 0) --Sphere001 (-15, 0, -30) - converted ----Sphere002 (-2, -30, 0) - not converted ------Sphere003 (-30, -20, 0) - not converted --Cube001 (35, 0, 15) - converted Can anybody help me make sense of this? Thanks

    Read the article

  • Big Data – Buzz Words: What is Hadoop – Day 6 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned what is NoSQL. In this article we will take a quick look at one of the four most important buzz words which goes around Big Data – Hadoop. What is Hadoop? Apache Hadoop is an open-source, free and Java based software framework offers a powerful distributed platform to store and manage Big Data. It is licensed under an Apache V2 license. It runs applications on large clusters of commodity hardware and it processes thousands of terabytes of data on thousands of the nodes. Hadoop is inspired from Google’s MapReduce and Google File System (GFS) papers. The major advantage of Hadoop framework is that it provides reliability and high availability. What are the core components of Hadoop? There are two major components of the Hadoop framework and both fo them does two of the important task for it. Hadoop MapReduce is the method to split a larger data problem into smaller chunk and distribute it to many different commodity servers. Each server have their own set of resources and they have processed them locally. Once the commodity server has processed the data they send it back collectively to main server. This is effectively a process where we process large data effectively and efficiently. (We will understand this in tomorrow’s blog post). Hadoop Distributed File System (HDFS) is a virtual file system. There is a big difference between any other file system and Hadoop. When we move a file on HDFS, it is automatically split into many small pieces. These small chunks of the file are replicated and stored on other servers (usually 3) for the fault tolerance or high availability. (We will understand this in the day after tomorrow’s blog post). Besides above two core components Hadoop project also contains following modules as well. Hadoop Common: Common utilities for the other Hadoop modules Hadoop Yarn: A framework for job scheduling and cluster resource management There are a few other projects (like Pig, Hive) related to above Hadoop as well which we will gradually explore in later blog posts. A Multi-node Hadoop Cluster Architecture Now let us quickly see the architecture of the a multi-node Hadoop cluster. A small Hadoop cluster includes a single master node and multiple worker or slave node. As discussed earlier, the entire cluster contains two layers. One of the layer of MapReduce Layer and another is of HDFC Layer. Each of these layer have its own relevant component. The master node consists of a JobTracker, TaskTracker, NameNode and DataNode. A slave or worker node consists of a DataNode and TaskTracker. It is also possible that slave node or worker node is only data or compute node. The matter of the fact that is the key feature of the Hadoop. In this introductory blog post we will stop here while describing the architecture of Hadoop. In a future blog post of this 31 day series we will explore various components of Hadoop Architecture in Detail. Why Use Hadoop? There are many advantages of using Hadoop. Let me quickly list them over here: Robust and Scalable – We can add new nodes as needed as well modify them. Affordable and Cost Effective – We do not need any special hardware for running Hadoop. We can just use commodity server. Adaptive and Flexible – Hadoop is built keeping in mind that it will handle structured and unstructured data. Highly Available and Fault Tolerant – When a node fails, the Hadoop framework automatically fails over to another node. Why Hadoop is named as Hadoop? In year 2005 Hadoop was created by Doug Cutting and Mike Cafarella while working at Yahoo. Doug Cutting named Hadoop after his son’s toy elephant. Tomorrow In tomorrow’s blog post we will discuss Buzz Word – MapReduce. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • How can I generate a 2d navigation mesh in a dynamic environment at runtime?

    - by Stephen
    So I've grasped how to use A* for path-finding, and I am able to use it on a grid. However, my game world is huge and I have many enemies moving toward the player, which is a moving target, so a grid system is too slow for path-finding. I need to simplify my node graph by using a navigational mesh. I grasp the concept of "how" a mesh works (finding a path through nodes on the vertices and/or the centers of the edges of polygons). My game uses dynamic obstacles that are procedurally generated at run-time. I can't quite wrap my head around how to take a plane that has multiple obstacles in it and programatically divide the walkable area up into polygons for the navigation mesh, like the following image. Where do I start? How do I know when a segment of walk-able area is already defined, or worse, when I realize I need to subdivide a previously defined walk-able area as the algorithm "walks" through the map? I'm using javascript in nodejs, if it matters.

    Read the article

  • ssh forwarding error

    - by Ahsan
    I have some issues regarding SSH and i am unable to solve . I have completed bootstrap and node status is 1 node allocated to maas, Now when i do juju status, it says invalid ssh key , hostname cannot be found error. .. I then went to /etc/hosts file and i changed 127.0.0.1 localhost to my 127.0.01 Node1 Now it gives me , error SSH forwading error: @@@@@@@@@@@@@@@@@@@@@@@@@@ I also have run the node after bootstrap and it gives ssh key .. I didnt added any ssh key in my Dashboard of MAAS. Secondly i want to ask how can i make more nodes allocated to root? Do i have to rewrite the maas-oauth portion in environment with another API key . Kindly Reply ASAP ....

    Read the article

  • Design pattern for isomorphic trees

    - by Peregring-lk
    I want to create a data structure to work with isomorphic tree. I don't search for a "algorithms" or methods to check if two or more trees are isomorphic each other. Just to create various trees with the same structure. Example: 2 - - - - - - - 'a' - - - - - - - 3.5 / \ / \ / \ 3 3 'f' 'y' 1.0 3.1 / \ / \ / \ 4 7 'e' 'f' 2.3 7.7 The first "layer" or tree is the "natural tree" (a tree with natural numbers), the second layer is the "character tree" and the third one is the "float tree". The data structure has a method or iterator to traverse the tree and to make diferent operations with its values. These operations could change the value of nodes, but never its structure (first I create the structure and then I configure the tree with its diferent layers). In case of that I add a new node, this would be applied to each layer. Which known design pattern fits with this description or is related with it?

    Read the article

  • PARTNER WEBCAST : Nimble SmartStack for Oracle with Cisco UCS (Nov 12)

    - by Zeynep Koch
    You are invited to the live webcast with Nimble Storage, Oracle and Cisco where we will talk about the new SmartStack solution from Nimble Storage that features Oracle Linux, Oracle VM and Cisco UCS products. When : Tuesday, November 12, 2013, 11:00 AM Pacific Time Panelists: Michele Resta, Director of Linux and Virtualization Alliances, Oracle John McAbel, Senior Product Manager, Cisco Ibby Rahmani, Solutions Marketing, Nimble Storage SmartStack™solutions provide pre-validated reference architectures that speed deployments and minimize risk. All SmartStack solutions incorporate Cisco UCS as the compute and network infrastructure. In this webinar, you will learn how Nimble Storage SmartStack with Oracle and Cisco provides a converged infrastructure for Oracle Database environments with Oracle Linux and Oracle VM. SmartStack, built on best-of-breed components, delivers the performance and reliability needed for deploying Oracle on a single symmetric multiprocessing (SMP) server or Oracle Real Application Clusters (RAC) on multiple nodes.  Register today 

    Read the article

  • SQL Server 2012 AlwaysOn Groups and FCIs Part 4

    This is Part 4 of a series on AlwaysOn and FCI integration in SQL Server. In this article we will learn how to add the iSCSI disk storage to our SQL Server nodes and build the cluster. 24% of devs don’t use database source control – make sure you aren’t one of themVersion control is standard for application code, but databases haven’t caught up. So what steps can you take to put your SQL databases under version control? Why should you start doing it? Read more to find out…

    Read the article

  • A tour of the GlassFish 3.1.2 DCOM support

    - by alexismp
    While we've mentioned the DCOM support in GlassFish 3.1.2 several times before, you'll probably find Byron's DCOM blog entry to be useful if you're using Windows as a deployment platform for your GlassFish cluster. Byron discusses how DCOM is used to communicate with remote Windows nodes participating in a GlassFish cluster, what Java libraries were used to wrap around DCOM, what new asadmin commands were addd (in particular validate-dcom) as well as some tips to make this all work on your specific environment. In addition to this blog post, you should considering reading the official product documentation : • Considerations for Using DCOM for Centralized Administration • Setting Up DCOM and Testing the DCOM Set Up

    Read the article

  • Most efficient way to rebuild a tree structure from data

    - by Ahsan
    Have a question on recursively populating JsTree using the .NET wrapper available via NuGet. Any help would be greatly appreciated. the .NET class JsTree3Node has a property named Children which holds a list of JsTree3Nodes, and the pre-existing table which contains the node structure looks like this NodeId ParentNodeId Data AbsolutePath 1 NULL News /News 2 1 Financial /News/Financial 3 2 StockMarket /News/Financial/StockMarket I have a EF data context from the the database, so my code currently looks like this. var parentNode = new JsTree3Node(Guid.NewGuid().ToString()); foreach(var nodeItem in context.Nodes) { parentNode.Children.Add(nodeItem.Data); // What is the most efficient logic to do this recursively? } as the inline comment says in the above code, what would be the most efficient way to load the JStree data on to the parentNode object. I can change the existing node table to suite the logic so feel free to suggest any changes to improve performance.

    Read the article

  • Designing binary operations(AND, OR, NOT) in graphs DB's like neo4j

    - by Nicholas
    I'm trying to create a recipe website using a graph database, specifically neo4j using spring-data-neo4j, to try and see what can be done in Graph Databases. My model so far is: (Chef)-[HAS_INGREDIENT]->(Ingredient) (Chef)-[HAS_VALUE]->(Value) (Ingredient)-[HAS_INGREDIENT_VALUE]->(Value) (Recipe)-[REQUIRES_INGREDIENT]->(Ingredient) (Recipe)-[REQUIRES_VALUE]->(Value) I have this set up so I can do things like have the "chef" enter ingredients they have on hand, and suggest recipes, as well as suggest recipes that are close matches, but missing one ingredient. Some recipes can get complex, utilizing AND, OR, and NOT type logic, something like (Milk AND (Butter OR spread OR (vegetable oil OR olive oil))) and I'm wondering if it would be sane to model this in a graph using a tree type representation? An example of what I was thinking is to create three "node" types of AND, OR, and NOT and have each of them connect to the nodes value underneath. How else might this be represented in a Graph Database or is my example above a decent representation?

    Read the article

  • How/where to run the algorithm on large dataset?

    - by niko
    I would like to run the PageRank algorithm on graph with 4 000 000 nodes and around 45 000 000 edges. Currently I use neo4j graph databse and classic relational database (postgres) and for software projects I mostly use C# and Java. Does anyone know what would be the best way to perform a PageRank computation on such graph? Is there any way to modify the PageRank algorithm in order to run it at home computer or server (48GB RAM) or is there any useful cloud service to push the data along the algorithm and retrieve the results? At this stage the project is at the research stage so in case of using cloud service if possible, would like to use such provider that doesn't require much administration and service setup, but instead focus just on running the algorith once and get the results without much overhead administration work.

    Read the article

  • 2D pathfinding - finding smooth paths

    - by Kooi Nam Ng
    I was trying to implement a simple pathfinding, but the outcome is less satisfactory than what I intended to achieve. The thing is units in games like Starcraft 2 move in all directions whereas units in my case only move in at most 8 directions (Warcraft 1 style) as these 8 directions direct to next available nodes (they move from a tile to next neighboring tile). What should I do in order to achieve the result as in Starcraft 2? Shrink the tile size? On the picture you can see a horizontal line of rock tiles being obstacles, and the found path marked as green tiles. The red line is the path I want to achieve.

    Read the article

  • Podcast: Dell Perot Systems Relies on Oracle In-Memory Database Cache

    - by john.brust
    Recently we spoke with Bill Binko, Technology Consultant at Dell Perot Systems, about a high volume web-based content delivery system they implemented for a client with Oracle In-Memory Database Cache. Their client needed to respond to ~1 billion hits (web requests) per day, but hadn't been able to support this load. Oracle In-Memory Database Cache allowed for multiple & complicated queries to take place without ever hitting the disk...providing sub-millisecond response time and ability to manage much higher high volumes of data. Old System: Old SQL Server Database, over 300 servers, difficult to maintain. New System: One Oracle Database 11g instance, multiple Oracle RAC nodes, backed up by Oracle Data Guard, and Oracle In-Memory Database Cache to cut query response times by 10x. Listen to the podcast.

    Read the article

  • Good book or tutorial for learning how to apply integration methods

    - by Cumatru
    I'm looking to animate a graph layout using edges as springs and nodes as weights ( a node with more links will have a bigger weight ). I'm not capable of wrapping my head around the usage of mathematical and physics relations in my application. As far as i read, Runge Kutta 4 ( preferably ) or Verlet will be a good choice, but i have problems with understanding how they really work, and what physics equations should i apply. If i can't understand them, i can't use them. I'm looking for a book or a tutorial which describe the things that i need.

    Read the article

  • Learning to optimize with Assembly

    - by niktehpui
    I am a second year student of Computer Games Technology. I recently finished my first prototype of my "kind" of own pathfinder (that doesn't use A* instead a geometrical approach/pattern recognition, the pathfinder just needs the knowledge about the terrain that is in his view to make decisions, because I wanted an AI that could actually explore, if the terrain is already known, then it will walk the shortest way easily, because the pathfinder has a memory of nodes). Anyway my question is more general: How do I start optimizing algorithms/loops/for_each/etc. using Assembly, although general tips are welcome. I am specifically looking for good books, because it is really hard to find good books on this topic. There are some small articles out there like this one, but still isn't enough knowledge to optimize an algorithm/game... I hope there is a modern good book out there, that I just couldn't find...

    Read the article

  • Optimistic work sharing on sparsely distributed systems

    - by Asti
    What would a system like BOINC look like if it were written today? At the time BOINC was written, databases were the primary choice for maintaining a shared state and concurrency among nodes. Since then, many approaches have been developed for tasking with optimistic concurrency (OT, partial synchronization primitives, shared iterators etc.) Is there an optimal paradigm for optimistically distributing units of work on sparsely distributing systems which communicate through message passing? Sorry if this is a bit vague. P.S. The concept of Tuple-spaces is great, but locking is inherent to its definition. Edit: I already have a federation system which works very well. I have a reactive OT system is implemented on top of it. I'm looking to extend it to get clients to do units of work.

    Read the article

  • synchronization web service methodologies or papers

    - by Grady Player
    I am building a web service (PHP+JSON) to sync with my iphone app. The main goals are: Backup Provide a web view for printing / sorting, manipulating. allow a group sync up and down. I am aware of the logic problems with all of these items, Ie. if one person deletes something, do you persist this change to other users, collisions, etc. I am looking for just any book or scholarly work, or even words of wisdom to address common issues. when to detect changes of data with hashes, vs modified dates, or combination. how do address consolidation of sequential ID's originating on different client nodes (can be sidestepped in my context, but it would be interesting.) dealing with collisions (is there a universally safe way to do so?). general best practices. how to structure the actual data transaction (ask for whole list then detect changes...)

    Read the article

  • Is this the right strategy to convert an in-level order binary tree to a doubly linked list?

    - by Ankit Soni
    So I recently came across this question - Make a function that converts a in-level-order binary tree into a doubly linked list. Apparently, it's a common interview question. This is the strategy I had - Simply do a pre-order traversal of the tree, and instead of returning a node, return a list of nodes, in the order in which you traverse them. i.e return a list, and append the current node to the list at each point. For the base case, return the node itself when you are at a leaf. so you would say left = recursive_function(node.left) right = recursive_function(node.right) return(left.append(node.data)).append(right);` Is this the right approach?

    Read the article

  • Unexpected advantage of Engineered Systems

    - by user12244672
    It's not surprising that Engineered Systems accelerate the debugging and resolution of customer issues. But what has surprised me is just how much faster issue resolution is with Engineered Systems such as SPARC SuperCluster. These are powerful, complex, systems used by customers wanting extreme database performance, app performance, and cost saving server consolidation. A SPARC SuperCluster consists or 2 or 4 powerful T4-4 compute nodes, 3 or 6 extreme performance Exadata Storage Cells, a ZFS Storage Appliance 7320 for general purpose storage, and ultra fast Infiniband switches.  Each with its own firmware. It runs Solaris 11, Solaris 10, 11gR2, LDoms virtualization, and Zones virtualization on the T4-4 compute nodes, a modified version of Solaris 11 in the ZFS Storage Appliance, a modified and highly tuned version of Oracle Linux running Exadata software on the Storage Cells, another Linux derivative in the Infiniband switches, etc. It has an Infiniband data network between the components, a 10Gb data network to the outside world, and a 1Gb management network. And customers can run whatever middleware and apps they want on it, clustered in whatever way they want. In one word, powerful.  In another, complex. The system is highly Engineered.  But it's designed to run general purpose applications. That is, the physical components, configuration, cabling, virtualization technologies, switches, firmware, Operating System versions, network protocols, tunables, etc. are all preset for optimum performance and robustness. That improves the customer experience as what the customer runs leverages our technical know-how and best practices and is what we've tested intensely within Oracle. It should also make debugging easier by fixing a large number of variables which would otherwise be in play if a customer or Systems Integrator had assembled such a complex system themselves from the constituent components.  For example, there's myriad network protocols which could be used with Infiniband.  Myriad ways the components could be interconnected, myriad tunable settings, etc. But what has really surprised me - and I've been working in this area for 15 years now - is just how much easier and faster Engineered Systems have made debugging and issue resolution. All those error opportunities for sub-optimal cabling, unusual network protocols, sub-optimal deployment of virtualization technologies, issues with 3rd party storage, issues with 3rd party multi-pathing products, etc., are simply taken out of the equation. All those error opportunities for making an issue unique to a particular set-up, the "why aren't we seeing this on any other system ?" type questions, the doubts, just go away when we or a customer discover an issue on an Engineered System. It enables a really honed response, getting to the root cause much, much faster than would otherwise be the case. Here's a couple of examples from the last month, one found in-house by my team, one found by a customer: Example 1: We found a node eviction issue running 11gR2 with Solaris 11 SRU 12 under extreme load on what we call our ExaLego test system (mimics an Exadata / SuperCluster 11gR2 Exadata Storage Cell set-up).  We quickly established that an enhancement in SRU12 enabled an 11gR2 process to query Infiniband's Subnet Manager, replacing a fallback mechanism it had used previously.  Under abnormally heavy load, the query could return results which were misinterpreted resulting in node eviction.  In several daily joint debugging sessions between the Solaris, Infiniband, and 11gR2 teams, the issue was fully root caused, evaluated, and a fix agreed upon.  That fix went back into all Solaris releases the following Monday.  From initial issue discovery to the fix being put back into all Solaris releases was just 10 days. Example 2: A customer reported sporadic performance degradation.  The reasons were unclear and the information sparse.  The SPARC SuperCluster Engineered Systems support teams which comprises both SPARC/Solaris and Database/Exadata experts worked to root cause the issue.  A number of contributing factors were discovered, including tunable parameters.  An intense collaborative investigation between the engineering teams identified the root cause to a CPU bound networking thread which was being starved of CPU cycles under extreme load.  Workarounds were identified.  Modifications have been put back into 11gR2 to alleviate the issue and a development project already underway within Solaris has been sped up to provide the final resolution on the Solaris side.  The fixed SPARC SuperCluster configuration greatly aided issue reproduction and dramatically sped up root cause analysis, allowing the correct workarounds and fixes to be identified, prioritized, and implemented.  The customer is now extremely happy with performance and robustness.  Since the configuration is common to other customers, the lessons learned are being proactively rolled out to other customers and incorporated into the installation procedures for future customers.  This effectively acts as a turbo-boost to performance and reliability for all SPARC SuperCluster customers.  If this had occurred in a "home grown" system of this complexity, I expect it would have taken at least 6 months to get to the bottom of the issue.  But because it was an Engineered System, known, understood, and qualified by both the Solaris and Database teams, we were able to collaborate closely to identify cause and effect and expedite a solution for the customer.  That is a key advantage of Engineered Systems which should not be underestimated.  Indeed, the initial issue mitigation on the Database side followed by final fix on the Solaris side, highlights the high degree of collaboration and excellent teamwork between the Oracle engineering teams.  It's a compelling advantage of the integrated Oracle Red Stack in general and Engineered Systems in particular.

    Read the article

  • Level of detail algorithm not functioning correctly

    - by Darestium
    I have been working on this problem for months; I have been creating Planet Generator of sorts, after more than 6 months of work I am no closer to finishing it then I was 4 months ago. My problem; The terrain does not subdivide in the correct locations properly, it almost seems as if there is a ghost camera next to me, and the quads subdivide based on the position of this "ghost camera". Here is a video of the broken program: http://www.youtube.com/watch?v=NF_pHeMOju8 The best example of the problem occurs around 0:36. For detail limiting, I am going for a chunked LOD approach, which subdivides the terrain based on how far you are away from it. I use a "depth table" to determine how many subdivisions should take place. void PQuad::construct_depth_table(float distance) { tree[0] = -1; for (int i = 1; i < MAX_DEPTH; i++) { tree[i] = distance; distance /= 2.0f; } } The chuncked LOD relies on the child/parent structure of quads, the depth is determined by a constant e.g: if the constant is 6, there are six levels of detail. The quads which should be drawn go through a distance test from the player to the centre of the quad. void PQuad::get_recursive(glm::vec3 player_pos, std::vector<PQuad*>& out_children) { for (size_t i = 0; i < children.size(); i++) { children[i].get_recursive(player_pos, out_children); } if (this->should_draw(player_pos) || this->depth == 0) { out_children.emplace_back(this); } } bool PQuad::should_draw(glm::vec3 player_position) { float distance = distance3(player_position, centre); if (distance < tree[depth]) { return true; } return false; } The root quad has four children which could be visualized like the following: [] [] [] [] Where each [] is a child. Each child has the same amount of children up until the detail limit, the quads which have are 6 iterations deep are leaf nodes, these nodes have no children. Each node has a corresponding Mesh, each Mesh structure has 16x16 Quad-shapes, each Mesh's Quad-shapes halves in size each detail level deeper - creating more detail. void PQuad::construct_children() { // Calculate the position of the Quad based on the parent's location calculate_position(); if (depth < (int)MAX_DEPTH) { children.reserve((int)NUM_OF_CHILDREN); for (int i = 0; i < (int)NUM_OF_CHILDREN; i++) { children.emplace_back(PQuad(this->face_direction, this->radius)); PQuad *child = &children.back(); child->set_depth(depth + 1); child->set_child_index(i); child->set_parent(this); child->construct_children(); } } else { leaf = true; } } The following function creates the vertices for each quad, I feel that it may play a role in the problem - I just can't determine what is causing the problem. void PQuad::construct_vertices(std::vector<glm::vec3> *vertices, std::vector<Color3> *colors) { vertices->reserve(quad_width * quad_height); for (int y = 0; y < quad_height; y++) { for (int x = 0; x < quad_width; x++) { switch (face_direction) { case YIncreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, quad_height - 1.0f, -(position.y + y * element_width))); break; case YDecreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, 0.0f, -(position.y + y * element_width))); break; case XIncreasing: vertices->emplace_back(glm::vec3(quad_width - 1.0f, position.y + y * element_width, -(position.x + x * element_width))); break; case XDecreasing: vertices->emplace_back(glm::vec3(0.0f, position.y + y * element_width, -(position.x + x * element_width))); break; case ZIncreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, position.y + y * element_width, 0.0f)); break; case ZDecreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, position.y + y * element_width, -(quad_width - 1.0f))); break; } // Position the bottom, right, front vertex of the cube from being (0,0,0) to (-16, -16, 16) (*vertices)[vertices->size() - 1] -= glm::vec3(quad_width / 2.0f, quad_width / 2.0f, -(quad_width / 2.0f)); colors->emplace_back(Color3(255.0f, 255.0f, 255.0f, false)); } } switch (face_direction) { case YIncreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, quad_height - 1.0f, -(position.y + quad_height / 2.0f)); break; case YDecreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, 0.0f, -(position.y + quad_height / 2.0f)); break; case XIncreasing: this->centre = glm::vec3(quad_width - 1.0f, position.y + quad_height / 2.0f, -(position.x + quad_width / 2.0f)); break; case XDecreasing: this->centre = glm::vec3(0.0f, position.y + quad_height / 2.0f, -(position.x + quad_width / 2.0f)); break; case ZIncreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, position.y + quad_height / 2.0f, 0.0f); break; case ZDecreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, position.y + quad_height / 2.0f, -(quad_height - 1.0f)); break; } this->centre -= glm::vec3(quad_width / 2.0f, quad_width / 2.0f, -(quad_width / 2.0f)); } Any help in discovering what is causing this "subdivding in the wrong place" would be greatly appreciated.

    Read the article

  • What is the name of this tree?

    - by Daniel
    It has a single root and each node has 0..N ordered sub-nodes . The keys represent a distinct set of paths. Two trees can only be merged if they share a common root. It needs to support, at minimum: insert, merge, enumerate paths. For this tree: The +-------+----------------+ | | | cat cow dog + +--------+ + | | | | drinks jumps moos barks + | milk the paths would be: The cat drinks milk The cow jumps The cow moos The dog barks It's a bit like a trie. What is it?

    Read the article

  • Order independent transparency in particle system

    - by Stepan Zastupov
    I'm writing a particle system and would like to find a trick to achieve proper alpha blending without sorting particles because: Each particle is a point sprite in a single mesh and I can't use scene graph ability to sort transparent nodes. The system node should be properly sorted, though. Particle position is computed on shader from initial velocity, acceleration and time. In order to sort the system I would have to perform all this computations on CPU, which is something I want to avoid. Sorting hundreds of particles against camera position and uploading it on GPU each frame seams to be quiet heavy operation. Alpha testing seems to be fast enough on GLES 2.0 and works fine for non-transparent but "masked" textures. Still, it's not enough for semi-transparent particles. How would you handle this?

    Read the article

< Previous Page | 49 50 51 52 53 54 55 56 57 58 59 60  | Next Page >