Search Results

Search found 32277 results on 1292 pages for 'module development'.

Page 537/1292 | < Previous Page | 533 534 535 536 537 538 539 540 541 542 543 544  | Next Page >

  • XNA: SpriteFont question

    - by Zukki
    Hi everyone, I need some help with the SpriteFont. I want a different font for my game, other than Kootenay. So, I edit the SpriteFont xml, i.e: <FontName>Kootenay</FontName> or <FontName>Arial</FontName> No problem with Windows fonts, or other XNA redistributable fonts pack. However, I want to use other fonts, that I downloaded and installed already, they are TTF or OTF, both supported by XNA. My problem is, I cant use them, I got this error: The font family "all the fonts i tried" could not be found. Please ensure the requested font is installed, and is a TrueType or OpenType font. So, checking at the windows fonts folder, I check the properties and details of the fonts, I try all the names they have, and but never works. Maybe I need some kind of importing or installing in order to use them, I dont know, and I hope you guys can help me, thanks!

    Read the article

  • Central renderer for a given scene

    - by Loggie
    When creating a central rendering system for all game objects in a given scene I am trying to work out the best way to go about passing the scene to the render system to be rendered. If I have a scene managed by an arbitrary structure, i.e., an octree, bsp trees, quad-tree, kd tree, etc. What is the best way to pass this to the render system? The obvious problem is that if simply given the root node of the structure, the render system would require an intrinsic knowledge of the structure in order to traverse the structure. My solution to this is to clip all objects outside the frustum in the scene manager and then create a list of the objects which are left and pass this simple list to the render system, be it an array, a vector, a linked list, etc. (This would be a structure required by the render system as a means to know which objects should be rendered). The list would of course attempt to minimise OpenGL state changes by grouping objects that require the same rendering operations to be performed on them. I have been thinking a lot about this and started searching various terms on here and followed any additional information/links but I have not really found a definitive answer. The case may be that there is no definitive answer but I would appreciate some advice and tips. My question is, is this a reasonable solution to the problem? Are there any improvements that I could make? Are there any caveats I should know about? Side question: Am I right in assuming that octrees, bsp trees, etc are all forms of BVH?

    Read the article

  • Map format for 3d open world

    - by Pacha
    I am making an open world 3d platformer in Ogre3D, and I have no idea on what kind of 3d map file format I should use for it. I want to make low-polygon blocky-style objects. Probably rectangles and other geometrical figures that don't have circular edges. Some of those blocks will have properties, like climbable or they might move. I was wondering what would be the best thing to do to make the map (just one level, as it is open).

    Read the article

  • How do I implement SkyBox in xna 4.0 Reach Profile (for Windows Phone 7)?

    - by Biny
    I'm trying to Implement SkyBox in my phone game. Most of the samples in the web are for HiDef profile, and they are using custom effects (that not supported on Windows Phone). I've tried to follow this guide. But for some reason my SkyBox is not rendered. This is my SkyBox class: using System; using System.Collections.Generic; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using Rocuna.Core; using Rocuna.GameEngine.Graphics; using Rocuna.GameEngine.Graphics.Components; namespace Rocuna.GameEngine.Extension.WP7.Graphics { /// <summary> /// Sky box element for phone games. /// </summary> public class SkyBox : SkyBoxBase { /// <summary> /// Initializes a new instance of the <see cref="SkyBoxBase"/> class. /// </summary> /// <param name="game">The Game that the game component should be attached to.</param> public SkyBox(TextureCube cube, Game game) : base(game) { Cube = cube; CubeFaces = new Texture2D[6]; PositionOffset = new Vector3(20, 20, 20); CreateGraphic(512); StripTexturesFromCube(); InitializeData(Game.GraphicsDevice); } #region Properties /// <summary> /// Gets or sets the position offset. /// </summary> /// <value> /// The position offset. /// </value> public Vector3 PositionOffset { get; set; } /// <summary> /// Gets or sets the position. /// </summary> /// <value> /// The position. /// </value> public Vector3 Position { get; set; } /// <summary> /// Gets or sets the cube. /// </summary> /// <value> /// The cube. /// </value> public TextureCube Cube { get; set; } /// <summary> /// Gets or sets the pixel array. /// </summary> /// <value> /// The pixel array. /// </value> public Color[] PixelArray { get; set; } /// <summary> /// Gets or sets the cube faces. /// </summary> /// <value> /// The cube faces. /// </value> public Texture2D[] CubeFaces { get; set; } /// <summary> /// Gets or sets the vertex buffer. /// </summary> /// <value> /// The vertex buffer. /// </value> public VertexBuffer VertexBuffer { get; set; } /// <summary> /// Gets or sets the index buffer. /// </summary> /// <value> /// The index buffer. /// </value> public IndexBuffer IndexBuffer { get; set; } /// <summary> /// Gets or sets the effect. /// </summary> /// <value> /// The effect. /// </value> public BasicEffect Effect { get; set; } #endregion protected override void LoadContent() { } public override void Update(GameTime gameTime) { var camera = Game.GetService<GraphicManager>().CurrentCamera; this.Position = camera.Position + PositionOffset; base.Update(gameTime); } public override void Draw(GameTime gameTime) { DrawOrder = int.MaxValue; var graphics = Effect.GraphicsDevice; graphics.DepthStencilState = new DepthStencilState() { DepthBufferEnable = false }; graphics.RasterizerState = new RasterizerState() { CullMode = CullMode.None }; graphics.BlendState = new BlendState(); graphics.SamplerStates[0] = SamplerState.AnisotropicClamp; graphics.SetVertexBuffer(VertexBuffer); graphics.Indices = IndexBuffer; Effect.Texture = CubeFaces[0]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 0, 2); Effect.Texture = CubeFaces[1]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 6, 2); Effect.Texture = CubeFaces[2]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 12, 2); Effect.Texture = CubeFaces[3]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 18, 2); Effect.Texture = CubeFaces[4]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 24, 2); Effect.Texture = CubeFaces[5]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 30, 2); base.Draw(gameTime); } #region Fields private List<VertexPositionNormalTexture> _vertices = new List<VertexPositionNormalTexture>(); private List<ushort> _indices = new List<ushort>(); #endregion #region Private methods private void InitializeData(GraphicsDevice graphicsDevice) { VertexBuffer = new VertexBuffer(graphicsDevice, typeof(VertexPositionNormalTexture), _vertices.Count, BufferUsage.None); VertexBuffer.SetData<VertexPositionNormalTexture>(_vertices.ToArray()); // Create an index buffer, and copy our index data into it. IndexBuffer = new IndexBuffer(graphicsDevice, typeof(ushort), _indices.Count, BufferUsage.None); IndexBuffer.SetData<ushort>(_indices.ToArray()); // Create a BasicEffect, which will be used to render the primitive. Effect = new BasicEffect(graphicsDevice); Effect.TextureEnabled = true; Effect.EnableDefaultLighting(); } private void CreateGraphic(float size) { Vector3[] normals = { Vector3.Right, Vector3.Left, Vector3.Up, Vector3.Down, Vector3.Backward, Vector3.Forward, }; Vector2[] textureCoordinates = { Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, }; var index = 0; foreach (var normal in normals) { var side1 = new Vector3(normal.Z, normal.X, normal.Y); var side2 = Vector3.Cross(normal, side1); AddIndex(CurrentVertex + 0); AddIndex(CurrentVertex + 1); AddIndex(CurrentVertex + 2); AddIndex(CurrentVertex + 0); AddIndex(CurrentVertex + 2); AddIndex(CurrentVertex + 3); AddVertex((normal - side1 - side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal - side1 + side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal + side1 + side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal + side1 - side2) * size / 2, normal, textureCoordinates[index++]); } } protected void StripTexturesFromCube() { PixelArray = new Color[Cube.Size * Cube.Size]; for (int s = 0; s < CubeFaces.Length; s++) { CubeFaces[s] = new Texture2D(Game.GraphicsDevice, Cube.Size, Cube.Size, false, SurfaceFormat.Color); switch (s) { case 0: Cube.GetData<Color>(CubeMapFace.PositiveX, PixelArray); CubeFaces[s].SetData<Color>(PixelArray); break; case 1: Cube.GetData(CubeMapFace.NegativeX, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 2: Cube.GetData(CubeMapFace.PositiveY, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 3: Cube.GetData(CubeMapFace.NegativeY, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 4: Cube.GetData(CubeMapFace.PositiveZ, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 5: Cube.GetData(CubeMapFace.NegativeZ, PixelArray); CubeFaces[s].SetData(PixelArray); break; } } } protected void AddVertex(Vector3 position, Vector3 normal, Vector2 textureCoordinates) { _vertices.Add(new VertexPositionNormalTexture(position, normal, textureCoordinates)); } protected void AddIndex(int index) { if (index > ushort.MaxValue) throw new ArgumentOutOfRangeException("index"); _indices.Add((ushort)index); } protected int CurrentVertex { get { return _vertices.Count; } } #endregion } }

    Read the article

  • Why is my model's scale changing after rotating it?

    - by justnS
    I have just started a simple flight simulator and have implemented Roll and pitch. In the beginning, testing went very well; however, after about 15-20 seconds of constantly moving the thumbsticks in a random or circular motion, my model's scale begins to grow. At first I thought the model was moving closer to the camera, but i set break points when it was happening and can confirm the translation of my orientation matrix remains 0,0,0. Is this a result of Gimbal Lock? Does anyone see an obvious error in my code below? public override void Draw( Matrix view, Matrix projection ) { Matrix[] transforms = new Matrix[Model.Bones.Count]; Model.CopyAbsoluteBoneTransformsTo( transforms ); Matrix translateMatrix = Matrix.Identity * Matrix.CreateFromAxisAngle( _orientation.Right, MathHelper.ToRadians( pitch ) ) * Matrix.CreateFromAxisAngle( _orientation.Down, MathHelper.ToRadians( roll ) ); _orientation *= translateMatrix; foreach ( ModelMesh mesh in Model.Meshes ) { foreach ( BasicEffect effect in mesh.Effects ) { effect.World = _orientation * transforms[mesh.ParentBone.Index]; effect.View = view; effect.Projection = projection; effect.EnableDefaultLighting(); } mesh.Draw(); } } public void Update( GamePadState gpState ) { roll = 5 * gpState.ThumbSticks.Left.X; pitch = 5 * gpState.ThumbSticks.Left.Y; }

    Read the article

  • How to make Pokémon White 3D effect?

    - by Pipo
    I just wondered how to create a 3D effect similar to Pokemon White/Black? It seems to be not polygon based, but created just with sprites. If the perspective changes the sprites stay sharp and don't get blurred. How can I archive this? Source: https://www.youtube.com/watch?v=fZEPUPYOnRc&feature=youtube_gdata_player Edit: Wow, two downvotes because I used a video instead of screenshots? Don't get me wrong, I thank you, because you want to help me, but the 3D effect can be better understand in motion. Anyway, here is a screenshot: http://wearearcade.com/wp-content/uploads/2011/03/pokemon-black-white-starter-town.jpg So, if this is a hardware limitation, how can I archive this o na different hardware, e.g. a HTML5 game? Thank you.

    Read the article

  • What functionality should I use in OpenGL 2.0?

    - by Jeffrey
    Considering OpenGL 2.1, we all know that glBegin and glEnd are the devil. Should I use only VBO to render 3d primitives (I can't find VAO in that version, weren't there already?)? Should I still use the matrix stack (why not?)? Should I still use glFrustum? Can I take advantage of shaders in GLSL 1.20? Where can I find a tutorial for VBO in OpenGL 2.1 and the "correct" way of programming in it? Also how am I supposed to animate something. Like a cube moving around an object or a player moving in the scene (static vbo data + shader?)? Note: Take your time to answer this question, I'll accept an answer tomorrow.

    Read the article

  • Trouble with SAT style vector projection in C#/XNA

    - by ssb
    Simply put I'm having a hard time working out how to work with XNA's Vector2 types while maintaining spatial considerations. I'm working with separating axis theorem and trying to project vectors onto an arbitrary axis to check if those projections overlap, but the severe lack of XNA-specific help online combined with pseudo code everywhere that omits key parts of the algorithm, googling has left me little help. I'm aware of HOW to project a vector, but the way that I know of doing it involves the two vectors starting from the same point. Particularly here: http://www.metanetsoftware.com/technique/tutorialA.html So let's say I have a simple rectangle, and I store each of its corners in a list of Vector2s. How would I go about projecting that onto an arbitrary axis? The crux of my problem is that taking the dot product of say, a vector2 of (1, 0) and a vector2 of (50, 50) won't get me the dot product I'm looking for.. or will it? Because that (50, 50) won't be the vector of the polygon's vertex but from whatever XNA calculates. It's getting the calculation from the right starting point that's throwing me off. I'm sorry if this is unclear, but my brain is fried from trying to think about this. I need a better understanding of how XNA calculates Vector2s as actual vectors and not just as random points.

    Read the article

  • Kinect Click counter function

    - by Sweta Dwivedi
    So i have the following kinect click function which will check if the hand is within the bounds then it will click with a counter . . however there is a slight problem . .the first few button clicks work fine.. but after it clicks one of the buttons it changes the game state and immediately clicks the other button without the counter reaching 200. . . Kinect click is a method in the button class. . .and each button inside a list can access the Kinect click method. . . public bool KinectClick(int x,int y) { if ((x >= position.X && x <= position.X + position.Width) && (y >= position.Y && y <= position.Y + position.Height)) { counter++; if (counter > 200) { counter = 0; return true; } } else { counter = 0; } return false; } I call to check if this property is true in the Game update method to act as a button click. . foreach(Button g_t in Game_theme) { if ((g_t.KinectClick(x_c, y_c) == true || g_t.ButtonClicked() == true) && g_t.name == "animoe") { Selected_anim = true; currentGameState = GameState.InGame; } if ((g_t.KinectClick(x_c, y_c) == true || g_t.ButtonClicked() == true) && g_t.name == "planet") { Selected_planet = true; currentGameState = GameState.InGame; }

    Read the article

  • Class Design - Space Simulator

    - by Peteyslatts
    I have pretty much taught myself everything I know about programming, so while I know how to teach myself (books, internet and reading API's), I'm finding that there hasn't been a whole lot in the way of good programming. So I have two questions: First the broad one: Does anyone have suggestions as to sources for learning about good programming habits and techniques? I'd prefer it if the resource wasn't a 5000 page tome. The more I can read it in installments the better. More specifically: I am finishing up learning the basics of XNA and I want to create a space simulator to test my knowledge. This isn't a full scale simulator, but just something that covers everything I learned. It's also going to be modular so I can build on it, after I get the basics down. One of the early features I want to implement is AI. And I want to take this into account as I'm designing my classes so I can minimize rewriting code. So my question: How should I design ship classes so that both the player and AI can use them? The only idea I have so far is: Create a ship class that contains stats, models, textures, collision data etc. The player and AI would then have the data for position, rotation, health, etc and would base their status off of the ship stats.

    Read the article

  • Square game map rendered as sphere

    - by Roflha
    For a hobby project of mine I have created a finite voxel world (similar to Minecraft), but as I said, mine is finite. When you reach the edge of it, you are sent to the other side. That is all working fine along with rendering the far side of the map, but I want to be able to render this grid as a sphere. Looking down from above, the world is a square. I basically want to be able to represent a portion of that square as a sphere, as if you were looking at a planet. Right now I am experimenting with taking a circular section of the map, and rendering that, but it look to flat (no curvature around the edges). My question then, is what would be the best way to add some curvature to the edges of a 2d circle to make it look like a hemisphere. However, I am not overly attached to this implementation so if somebody has some other idea for representing the square as a planet, I am all ears.

    Read the article

  • Defining the track in a 2D racing game

    - by Ivan
    I am designing a top-down racing game using canvas (html5) which takes a lot of inspiration from Micro Machines. In MM, cars can move off the track, but they are reset/destroyed if they go too far. My maths knowledge isn't great, so I'm finding it hard to separate 3D/complex concepts from those which are directly relevant to my situation. For example, I have seen "splines" mentioned, is this something I should read up on or is that overkill for a 2D game? Could I use a single path which defines the centre of the track and check a car's distance from this line? A second path might be required as a "racing line" for AI. Any advice on methods/techniques/terms to read up on would be greatly appreciated.

    Read the article

  • Question about JPanel "transition" for Java Swing

    - by user16778
    I want to make like a sort of main menu (in GUI). When the user clicks the start button, the screen transition into another "screen" (JPanel). This image will make it easier to understand. http://i.imgur.com/Cfdry.png Currently, I have a MainMenu extends JPanel and that gets added into a driver class with a JFrame. I can't figure how to switch to another class like Game extends JPanel. So when the user clicks the start button in MainMenu, I want it to somehow hide itself and the Game to show itself. Thanks.

    Read the article

  • Camera doesn't move

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but I couldn't make it move. #define PI_OVER_180 0.0174532925f #define GL_CLAMP_TO_EDGE 0x812F #include "metinalifeyyaz.h" #include <GL/glu.h> #include <GL/glut.h> #include <QTimer> #include <cmath> #include <QKeyEvent> #include <QWidget> #include <QDebug> metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • cocos2d-x simple shader usage [on hold]

    - by Narek
    I want to obtain color ramp effect from this tutorial: http://www.raywenderlich.com/10862/how-to-create-cool-effects-with-custom-shaders-in-opengl-es-2-0-and-cocos2d-2-x Here is my code in cocos2d-x 3: bool HelloWorld::init() { ////////////////////////////// // 1. super init first if ( !Layer::init() ) { return false; } Vec2 origin = Director::getInstance()->getVisibleOrigin(); sprite = Sprite::create("HelloWorld.png"); sprite->setAnchorPoint(Vec2(0, 0)); sprite->setRotation(3); sprite->setPosition(origin); addChild(sprite); std::string str = FileUtils::getInstance()->getStringFromFile("CSEColorRamp.fsh"); const GLchar * fragmentSource = str.c_str(); GLProgram* p = GLProgram::createWithByteArrays(ccPositionTextureA8Color_vert, fragmentSource); p->bindAttribLocation(GLProgram::ATTRIBUTE_NAME_POSITION, GLProgram::VERTEX_ATTRIB_POSITION); p->bindAttribLocation(GLProgram::ATTRIBUTE_NAME_TEX_COORD, GLProgram::VERTEX_ATTRIB_TEX_COORD); p->link(); p->updateUniforms(); sprite->setGLProgram(p); // 3 colorRampUniformLocation = glGetUniformLocation(sprite->getGLProgram()->getProgram(), "u_colorRampTexture"); glUniform1i(colorRampUniformLocation, 1); // 4 colorRampTexture = Director::getInstance()->getTextureCache()->addImage("colorRamp.png"); colorRampTexture->setAliasTexParameters(); // 5 sprite->getGLProgram()->use(); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, colorRampTexture->getName()); glActiveTexture(GL_TEXTURE0); return true; } And here is the fragment shader as it is in the tutorial: #ifdef GL_ES precision mediump float; #endif // 1 varying vec2 v_texCoord; uniform sampler2D u_texture; uniform sampler2D u_colorRampTexture; void main() { // 2 vec3 normalColor = texture2D(u_texture, v_texCoord).rgb; // 3 float rampedR = texture2D(u_colorRampTexture, vec2(normalColor.r, 0)).r; float rampedG = texture2D(u_colorRampTexture, vec2(normalColor.g, 0)).g; float rampedB = texture2D(u_colorRampTexture, vec2(normalColor.b, 0)).b; // 4 gl_FragColor = vec4(rampedR, rampedG, rampedB, 1); } As a result I get a black screen with 2 draw calls. What is wrong? Do I miss something?

    Read the article

  • Interesting 3d zooming technique

    - by stark
    Is it possible to zoom to a certain point on screen by modifying the field of view and rotating the camera as to keep that point/object in the same place on screen while zooming ? Changing the camera position is not allowed.. I projected the 3d pos of the object on screen and remembered it. Then on each frame I calculate the direction to it in camera space and then I construct a rotation matrix to align this direction to Z axis (in cam space). After this, I calculate the direction from the camera to the object in world space and transform this vector with the matrix I obtained earlier and then use this final vector as the camera's new direction. And it's actually "kinda working", the problem is that it is more/less off than the camera's rotation before starting to zoom depending on the area you are trying to zoom in (larger error on edges/corners). It looks acceptable, but I'm not settling for only this. Any suggestions/resources for doing this technique perfectly ? If some of you want to explain the math in detail, be my guests, I can understand these things well. Thanks. Edit: I'll check often for responses, I'm really curious about this :D

    Read the article

  • Implementing `fling` logic without pan gesture recognizers

    - by KDiTraglia
    So I am trying to port over a simple game that I originally wrote to iphone into cocos2d-x. I've hit a minor bump however in implementing simple 'fling' logic I had in the iphone version that is difficult to port over to the c++. In iOS I could get the velocity of a pan gesture very easily: CGPoint velocity = [recognizer velocityInView:recognizer.view]; However now I basically only know where the touch began, where the touch ended, and all the touches that are logged in between. For now I logged all the pts onto a stack then pulled the last point and the 6th to last point (seemed to work the best), find the difference between those pts multiply by a constant and use that as the velocity. It works relatively well, but I'm wondering if anyone else has any better algorithms, when given a bunch of touch pts, to figure out a new speed upon releasing an object that feels natural (Note speed in my game is just a constant x and y, there's no drag or spin or anything tricky like that). Bonus points if anyone has figured out how to get pan gestures into the newest version (3.0 alpha) of cocos2d-x without losing ability to build cross platform.

    Read the article

  • How to use OpenGL functions from multiples thread?

    - by Robert
    I'm writing a small game using OpenGL. I'm implementing basic networking in this game and I'm facing a problem. I have a thread in my client socket class that check for available data, when there are data I raise an event like this : immutable int len = this.m_socket.receive(data); if(len > 0) { this.m_onDataEvent(data); } Then on my game class, I have a function that handle and parse data like this : switch(msgId) { case ProtocolID.CharacterData: // Load terrain with opengl, character model.... Im not able to call opengl functions because my opengl context is created from a different thread. But I really don't know how I can solve this problem, I tried Google but it's really hard to find a solution. I'm using D programming language if it can help.

    Read the article

  • Recasting and Drawing in SDL

    - by user1078123
    I have some code that essentially draws a column on the screen of a wall in a raycasting-type 3d engine. I am trying to optimize it, as it takes about 10 milliseconds do draw a million pixels using this, and the vast majority of game time is spent in this loop. However, I don't quite understand what's occurring, particularly the recasting (I modified the "pixel manipulation" sample code from the SDL documentation). "canvas" is the surface I am drawing to, and "hello" is the surface containing the texture for the column. int c = (curcol)* canvas->format->BytesPerPixel; void *canvaspixels = canvas->pixels; Uint16 texpitch = hello->pitch; int lim = (drawheight +startdraw) * canvpitch +c + (int) canvaspixels; Uint8 *k = (Uint8 *)hello->pixels + (hit)* hello->format->BytesPerPixel; for (int j= (startdraw)*(canvpitch)+c + (int) canvaspixels; (j< lim); j+= canvpitch){ Uint8 *q = (Uint8 *) ((int(h))*(texpitch)+k); *(Uint32 *)j = *(Uint32 *)q; h += s; } We have void pointers (not sure how those are even represented), 8, 16, and 32 bit ints (h and s are floats), all being intermingled, and while it works, it is quite confusing.

    Read the article

  • Projecting onto different size screens by cropping

    - by Jason
    Hi, I am building a phone application which will display a shape on screen. The shape should look the same on different screen sizes. I. Decided the best way to do this is to show more of the background on larger screen keeping the shapes proportion the same on all screens. My problem is I am not sure how to achieve this, I can query the screen size at runtime and calculate how different it is from the six is designed for but I am not sure what to do with this value. What kind of projection should I use for my orthographic matrix an hour will I display more on larger screens and not loose information on smaller screens? Thanks, Jason.

    Read the article

  • Linear search vs Octree (Frustum cull)

    - by Dave
    I am wondering whether I should look into implementing an octree of some kind. I have a very simple game which consists of a 3d plane for the floor. There are multiple objects scattered around on the ground, each one has an aabb in world space. Currently I just do a loop through the list of all these objects and check if its bounding box intersects with the frustum, it works great but I am wondering if if it would be a good investment in an octree. I only have max 512 of these objects on the map and they all contain bounding boxes. I am not sure if an octree would make it faster since I have so little objects in the scene.

    Read the article

  • 3d trajectory - calculate initial velocity

    - by Skoder
    Hey, I've got a 2D projectile code sample working, but would like to extend it to 3D. How would I calculate the initial velocity of the Z-axis? At the moment, I've got: initVel.X = (float)Math.Cos(45.0); initVel.Y = (float)Math.Sin(45.0); How would I convert this to work in 3D (and add the initial velocity for the Z-axis)? In my example, X is across, Y is up down and Z is going into the screen. I also normalize the vector and multiply it by the speed. Thanks

    Read the article

  • "Walking" along a rotating surface in LimeJS

    - by Dave Lancea
    I'm trying to have a character walk along a plank (a long, thin rectangle) that works like a seesaw, being rotated around a central point by box2d physics (falling objects). I want the left and right arrow keys to move the player up and down the plank, regardless of it's slope, and I don't want to use real physics for the player movement. My idea for achieving this was to compute the coordinate based on the rotation of the plank and the current location "up" or "down" the board. My math is derived from here: http://math.stackexchange.com/questions/143932/calculate-point-given-x-y-angle-and-distance Here's the code I have so far: movement = 0; if(keys[37]){ // Left movement = -3; } if(keys[39]){ // Right movement = 3; } // this.plank is a LimeJS sprite. // getRotation() Should return an angle in degrees var rotation = this.plank.getRotation(); // this.current_plank_location is initialized as 0 this.current_plank_location += movement; var x_difference = this.current_plank_location * Math.cos(rotation); var y_difference = this.current_plank_location * Math.sin(rotation); this.setPosition(seesaw.PLANK_CENTER_X + x_difference, seesaw.PLANK_CENTER_Y + y_difference); This code causes the player to swing around in a circle when they are out of the center of the plank given a slight change in rotation of the plank. Any ideas on how I can get the player position to follow the board position?

    Read the article

  • Vector vs Scalar velocity?

    - by Serguei Fedorov
    I am revamping an engine I have been working on and off on for the last few weeks to use a directional vector to dictate direction; this way I can dictate the displacement based on a direction. However, the issue I am trying to overcome is the following problem; the speed towards X and speed towards Y are unrelated to one another. If gravity pulls the object down by an increasing velocity my velocity towards the X should not change. This is very easy to implement if my speed is broken into a Vector datatype, Vector.X dictates one direction Vector.Y dictates the other (assuming we are not concerned about the Z axis). However, this defeats the purpose of the directional vector because: SpeedX = 10 SpeedY = 15 [1, 1] normalized = ~[0.7, 0.7] [0.7, 0.7] * [10, 15] = [7, 10.5] As you can see my direction is now "scaled" to my speed which is no longer the direction that I want to be moving in. I am very new to vector math and this is a learning project for me. I looked around a little bit on the internet but I still want to figure out things on my own (not just look at an example and copy off it). Is there way around this? Using a directional vector is extremely useful but I am a little bit stumped at this problem. I am sorry if my mathematical understanding maybe completely wrong.

    Read the article

  • forward motion car physics - gradual slow

    - by spartan2417
    Im having trouble creating realistic car movements in xna 4. Right now i have a car going forward and hitting a terminal velocity which is fine but when i release the up key i need to the car to slow down gradually and then come to a stop. Im pretty sure this is easy code but i cant seem to get it to work the code - update if (Keyboard.GetState().IsKeyDown(Keys.Up)) { double elapsedTime = gameTime.ElapsedGameTime.Milliseconds; CalcTotalForce(); Acceleration = Vector2.Divide(CalcTotalForce(), MASS); Velocity = Vector2.Add(Velocity, Vector2.Multiply(Acceleration, (float)(elapsedTime))); Position = Vector2.Add(Position, Vector2.Multiply(Velocity, (float)(elapsedTime))); } added functions public Vector2 CalcTraction() { //Traction force = vector direction * engine force return Vector2.Multiply(forwardDirection, ENGINE_FORCE); } public Vector2 CalcDrag() { //Drag force = constdrag * velocity * speed return Vector2.Multiply(Vector2.Multiply(Velocity, DRAG_CONST), Velocity.Y); } public Vector2 CalcRoll() { //roll force = const roll * velocity return Vector2.Multiply(Velocity, ROLL_CONST); } public Vector2 CalcTotalForce() { //total force = traction + (-drag) + (-rolling) return Vector2.Add(CalcTraction(), Vector2.Add(-CalcDrag(), -CalcRoll())); } anyone have any ideas?

    Read the article

< Previous Page | 533 534 535 536 537 538 539 540 541 542 543 544  | Next Page >