Search Results

Search found 28914 results on 1157 pages for 'cloud development'.

Page 539/1157 | < Previous Page | 535 536 537 538 539 540 541 542 543 544 545 546  | Next Page >

  • SDL mouse wheel not picking up

    - by Chris
    Running Ubuntu 11.04, SDL 1.2 trying to pickup mouse wheel up/down movement with this (stripped down) code: int main( int argc, char **argv ) { SDL_MouseButtonEvent *mousebutton = NULL; while ( !done ) { if(mousebutton != NULL && mousebutton->button == SDL_BUTTON_LEFT) yrot += 0.75f; else if(mousebutton != NULL && mousebutton->button == SDL_BUTTON_RIGHT) yrot -= 0.75f; else if(mousebutton != NULL && mousebutton->button == SDL_BUTTON_WHEELUP){ xrot += 0.75f; }else if(mousebutton != NULL && mousebutton->button == SDL_BUTTON_WHEELDOWN){ xrot -= 0.75f; } while ( SDL_PollEvent( &event ) ) { switch( event.type ) { case SDL_MOUSEBUTTONDOWN: mousebutton = &event.button; break; case SDL_MOUSEBUTTONUP: mousebutton = NULL; break; default: break; } } } return 0; } strange thing is, scrolling with the mouse button does nothing, but if I hold down a mouse button or two and then move the mouse it hits the SDL_BUTTON_WHEEL code occasionally. This honestly reeks of a pointer issue, which would make sense since I've been spoiled with C# for the past couple years, but I am just not seeing it. How do i correctly find mouse scroll events in SDL?

    Read the article

  • Making a game with responsive resolution

    - by alexandervrs
    I am making a game, however I wish for it to be resolution agnostic. My target resolution i.e. where things look as intended is 1600 x 900. My ideas are: Make the HUD stay fixed to the sides no matter what resolution, use different size for HUD graphics under a certain resolution and another under a certain large one. Use large HD sprites/backgrounds which are a power of 2, so they scale nicely. Use the player's native resolution. Scale the game area (not the HUD) to fit (resulting zooming in some and cropping the game area sides if necessary for widescreen, no stretch), but always fill the screen. Have a min and max resolution limit for small and very large displays where you will just change the resolution(?) or scale up/down to fit. What I am a bit confused though is what math formula I would use to scale the game area correctly based on the resolution no matter the aspect ratio, fully fit in a square screen and with some clip to the sides for widescreen. Pseudocode would help as well. :)

    Read the article

  • Reversi/Othello early-game evaluation function

    - by Vladislav Il'ushin
    I've written my own Reversi player, based on the MiniMax algorithm, with Alpha-Beta pruning, but in the first 10 moves my evaluation function is too slow. I need a good early-game evaluation function. I'm trying to do it with this matrix (corresponding to the board) which determines how favourable that square is to have: { 30, -25, 10, 5, 5, 10, -25, 30,}, {-25, -25, 1, 1, 1, 1, -25, -25,}, { 10, 1, 5, 2, 2, 5, 1, 10,}, { 5, 1, 2, 1, 1, 2, 1, 5,}, { 5, 1, 2, 1, 1, 2, 1, 5,}, { 10, 1, 5, 2, 2, 5, 1, 10,}, {-25, -25, 1, 1, 1, 1, -25, -25,}, { 30, -25, 10, 5, 5, 10, -25, 30,},}; But it doesn't work well. Have you even written an early-game evaluation function for Reversi?

    Read the article

  • 2D SAT Collision Detection not working when using certain polygons (With example)

    - by sFuller
    My SAT algorithm falsely reports that collision is occurring when using certain polygons. I believe this happens when using a polygon that does not contain a right angle. Here is a simple diagram of what is going wrong: Here is the problematic code: std::vector<vec2> axesB = polygonB->GetAxes(); //loop over axes B for(int i = 0; i < axesB.size(); i++) { float minA,minB,maxA,maxB; polygonA->Project(axesB[i],&minA,&maxA); polygonB->Project(axesB[i],&minB,&maxB); float intervalDistance = polygonA->GetIntervalDistance(minA, maxA, minB, maxB); if(intervalDistance >= 0) return false; //Collision not occurring } This function retrieves axes from the polygon: std::vector<vec2> Polygon::GetAxes() { std::vector<vec2> axes; for(int i = 0; i < verts.size(); i++) { vec2 a = verts[i]; vec2 b = verts[(i+1)%verts.size()]; vec2 edge = b-a; axes.push_back(vec2(-edge.y,edge.x).GetNormailzed()); } return axes; } This function returns the normalized vector: vec2 vec2::GetNormailzed() { float mag = sqrt( x*x + y*y ); return *this/mag; } This function projects a polygon onto an axis: void Polygon::Project(vec2* axis, float* min, float* max) { float d = axis->DotProduct(&verts[0]); float _min = d; float _max = d; for(int i = 1; i < verts.size(); i++) { d = axis->DotProduct(&verts[i]); _min = std::min(_min,d); _max = std::max(_max,d); } *min = _min; *max = _max; } This function returns the dot product of the vector with another vector. float vec2::DotProduct(vec2* other) { return (x*other->x + y*other->y); } Could anyone give me a pointer in the right direction to what could be causing this bug? Edit: I forgot this function, which gives me the interval distance: float Polygon::GetIntervalDistance(float minA, float maxA, float minB, float maxB) { float intervalDistance; if (minA < minB) { intervalDistance = minB - maxA; } else { intervalDistance = minA - maxB; } return intervalDistance; //A positive value indicates this axis can be separated. } Edit 2: I have recreated the problem in HTML5/Javascript: Demo

    Read the article

  • What should I worry about when changing OpenGL origin to upper left of screen?

    - by derivative
    For self education, I'm writing a 2D platformer engine in C++ using SDL / OpenGL. I initially began with pure SDL using the tutorials on sdltutorials.com and lazyfoo.net, but I'm now rendering in an OpenGL context (specifically immediate mode but I'm learning about VAOs/VBOs) and using SDL for interface, audio, etc. SDL uses a coordinate system with the origin in the upper left of the screen and the positive y-axis pointing down. It's easy to set up my orthographic projection in OpenGL to mirror this. I know that texture coordinates are a right-hand system with values from 0 to 1 -- flipping the texture vertically before rendering (well, flip the file before loading) yields textures that render correctly... which is fine if I'm drawing the entire texture, but ultimately I'll be using tilesets and can imagine problems. What should I be concerned about in terms of rendering when I do this? If anybody has any advice or they've done this themselves and can point out future pitfalls, that would be great, but really any thoughts would be appreciated.

    Read the article

  • How important is a single-player mode in a 2-player game?

    - by Davy8
    So say you have a 2 player game, taking Chess as an example (except it's an original game with no ready-to-go AI available). Let's say there's also a social-aspect to the meta-game, so let's say it's a Chess game on Facebook where you can challenge your friends. How important is it to have a single-player mode, knowing that an AI will need to be created (I've done minimax AI for tic tac toe, but nothing too sophisticated)? Is it important enough that it should be in the initial launch of the game? Can it wait for a future iteration (knowing that being hosted on the web means the game can be updated at any time)?

    Read the article

  • cocos2d-x simple shader usage [on hold]

    - by Narek
    I want to obtain color ramp effect from this tutorial: http://www.raywenderlich.com/10862/how-to-create-cool-effects-with-custom-shaders-in-opengl-es-2-0-and-cocos2d-2-x Here is my code in cocos2d-x 3: bool HelloWorld::init() { ////////////////////////////// // 1. super init first if ( !Layer::init() ) { return false; } Vec2 origin = Director::getInstance()->getVisibleOrigin(); sprite = Sprite::create("HelloWorld.png"); sprite->setAnchorPoint(Vec2(0, 0)); sprite->setRotation(3); sprite->setPosition(origin); addChild(sprite); std::string str = FileUtils::getInstance()->getStringFromFile("CSEColorRamp.fsh"); const GLchar * fragmentSource = str.c_str(); GLProgram* p = GLProgram::createWithByteArrays(ccPositionTextureA8Color_vert, fragmentSource); p->bindAttribLocation(GLProgram::ATTRIBUTE_NAME_POSITION, GLProgram::VERTEX_ATTRIB_POSITION); p->bindAttribLocation(GLProgram::ATTRIBUTE_NAME_TEX_COORD, GLProgram::VERTEX_ATTRIB_TEX_COORD); p->link(); p->updateUniforms(); sprite->setGLProgram(p); // 3 colorRampUniformLocation = glGetUniformLocation(sprite->getGLProgram()->getProgram(), "u_colorRampTexture"); glUniform1i(colorRampUniformLocation, 1); // 4 colorRampTexture = Director::getInstance()->getTextureCache()->addImage("colorRamp.png"); colorRampTexture->setAliasTexParameters(); // 5 sprite->getGLProgram()->use(); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, colorRampTexture->getName()); glActiveTexture(GL_TEXTURE0); return true; } And here is the fragment shader as it is in the tutorial: #ifdef GL_ES precision mediump float; #endif // 1 varying vec2 v_texCoord; uniform sampler2D u_texture; uniform sampler2D u_colorRampTexture; void main() { // 2 vec3 normalColor = texture2D(u_texture, v_texCoord).rgb; // 3 float rampedR = texture2D(u_colorRampTexture, vec2(normalColor.r, 0)).r; float rampedG = texture2D(u_colorRampTexture, vec2(normalColor.g, 0)).g; float rampedB = texture2D(u_colorRampTexture, vec2(normalColor.b, 0)).b; // 4 gl_FragColor = vec4(rampedR, rampedG, rampedB, 1); } As a result I get a black screen with 2 draw calls. What is wrong? Do I miss something?

    Read the article

  • Rotating a cube using jBullet collisions

    - by Kenneth Bray
    How would one go about rotating/flipping a cube with the physics of jBullet? Here is my Draw method for my cube object: public void Draw() { // center point posX, posY, posZ float radius = .25f;//size / 2; glPushMatrix(); glBegin(GL_QUADS); //top { glColor3f(5.0f,1.0f,5.0f); // white glVertex3f(posX + radius, posY + radius, posZ - radius); glVertex3f(posX - radius, posY + radius, posZ - radius); glVertex3f(posX - radius, posY + radius, posZ + radius); glVertex3f(posX + radius, posY + radius, posZ + radius); } //bottom { glColor3f(1.0f,1.0f,0.0f); // ?? color glVertex3f(posX + radius, posY - radius, posZ + radius); glVertex3f(posX - radius, posY - radius, posZ + radius); glVertex3f(posX - radius, posY - radius, posZ - radius); glVertex3f(posX + radius, posY - radius, posZ - radius); } //right side { glColor3f(1.0f,0.0f,1.0f); // ?? color glVertex3f(posX + radius, posY + radius, posZ + radius); glVertex3f(posX + radius, posY - radius, posZ + radius); glVertex3f(posX + radius, posY - radius, posZ - radius); glVertex3f(posX + radius, posY + radius, posZ - radius); } //left side { glColor3f(0.0f,1.0f,1.0f); // ?? color glVertex3f(posX - radius, posY + radius, posZ - radius); glVertex3f(posX - radius, posY - radius, posZ - radius); glVertex3f(posX - radius, posY - radius, posZ + radius); glVertex3f(posX - radius, posY + radius, posZ + radius); } //front side { glColor3f(0.0f,0.0f,1.0f); // blue glVertex3f(posX + radius, posY + radius, posZ + radius); glVertex3f(posX - radius, posY + radius, posZ + radius); glVertex3f(posX - radius, posY - radius, posZ + radius); glVertex3f(posX + radius, posY - radius, posZ + radius); } //back side { glColor3f(0.0f,1.0f,0.0f); // green glVertex3f(posX + radius, posY - radius, posZ - radius); glVertex3f(posX - radius, posY - radius, posZ - radius); glVertex3f(posX - radius, posY + radius, posZ - radius); glVertex3f(posX + radius, posY + radius, posZ - radius); } glEnd(); glPopMatrix(); Update(); } This is my update method for the cube position: public void Update() { Transform trans = new Transform(); cubeRigidBody.getMotionState().getWorldTransform(trans); posX = trans.origin.x; posY = trans.origin.y; posZ = trans.origin.z; Quat4f outRot = new Quat4f(); trans.getRotation(outRot); rotX = outRot.x; rotY = outRot.y; rotZ = outRot.z; rotW = outRot.w; } I am assuming I need to use glrotatef, but it does not seem to work at all when I try that.. this is how I have tried to rotate the cubes: GL11.glRotatef(rotW, rotX, 0.0f, 0.0f); GL11.glRotatef(rotW, 0.0f, rotY, 0.0f); GL11.glRotatef(rotW, 0.0f, 0.0f, rotZ);

    Read the article

  • Calculating up-vector to avoid gimbal lock using euler angles

    - by jessejuicer
    I wish to orbit a camera around a sphere, yet the problem is that when the camera rotates so that it is at the north pole (and pointing down) or the south pole (and pointing up) of the sphere the camera doesn't handle itself very well. It spins rapidly until arriving 180 degrees in the opposite direction. I believe this is known as gimbal lock. I understand you can avoid this problem using quaternions. But I also read in another forum that it's possible to avoid this easily using euler angles as well. Which I would prefer to do. It was said that all you need to do is "calculate a proper up-vector every frame, and that avoids the problem entirely." Well, I tried aligning the up-vector with the vertical axis of the camera whenever the camera changed orientation, but this didn't seem to work. Meaning that the up-vector followed exactly the orientation of the camera's y-axis (or it's up vector), instead of using a constant up-vector aligned to the up-vector of the world (0, 1, 0). How exactly do I go about calculating a proper up-vector as my camera orientation changes to avoid the gimbal lock problem mentioned above?

    Read the article

  • GLSL: Strange light reflections

    - by Tom
    According to this tutorial I'm trying to make a normal mapping using GLSL, but something is wrong and I can't find the solution. The output render is in this image: Image1 in this image is a plane with two triangles and each of it is different illuminated (that is bad). The plane has 6 vertices. In the upper left side of this plane are 2 identical vertices (same in the lower right). Here are some vectors same for each vertice: normal vector = 0, 1, 0 (red lines on image) tangent vector = 0, 0,-1 (green lines on image) bitangent vector = -1, 0, 0 (blue lines on image) here I have one question: The two identical vertices does need to have the same tangent and bitangent? I have tried to make other values to the tangents but the effect was still similar. Here are my shaders Vertex shader: #version 130 // Input vertex data, different for all executions of this shader. in vec3 vertexPosition_modelspace; in vec2 vertexUV; in vec3 vertexNormal_modelspace; in vec3 vertexTangent_modelspace; in vec3 vertexBitangent_modelspace; // Output data ; will be interpolated for each fragment. out vec2 UV; out vec3 Position_worldspace; out vec3 EyeDirection_cameraspace; out vec3 LightDirection_cameraspace; out vec3 LightDirection_tangentspace; out vec3 EyeDirection_tangentspace; // Values that stay constant for the whole mesh. uniform mat4 MVP; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Output position of the vertex, in clip space : MVP * position gl_Position = MVP * vec4(vertexPosition_modelspace,1); // Position of the vertex, in worldspace : M * position Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz; // Vector that goes from the vertex to the camera, in camera space. // In camera space, the camera is at the origin (0,0,0). vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz; EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace; // Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity. vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz; LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace; // UV of the vertex. No special space for this one. UV = vertexUV; // model to camera = ModelView vec3 vertexTangent_cameraspace = MV3x3 * vertexTangent_modelspace; vec3 vertexBitangent_cameraspace = MV3x3 * vertexBitangent_modelspace; vec3 vertexNormal_cameraspace = MV3x3 * vertexNormal_modelspace; mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); // You can use dot products instead of building this matrix and transposing it. See References for details. LightDirection_tangentspace = TBN * LightDirection_cameraspace; EyeDirection_tangentspace = TBN * EyeDirection_cameraspace; } Fragment shader: #version 130 // Interpolated values from the vertex shaders in vec2 UV; in vec3 Position_worldspace; in vec3 EyeDirection_cameraspace; in vec3 LightDirection_cameraspace; in vec3 LightDirection_tangentspace; in vec3 EyeDirection_tangentspace; // Ouput data out vec3 color; // Values that stay constant for the whole mesh. uniform sampler2D DiffuseTextureSampler; uniform sampler2D NormalTextureSampler; uniform sampler2D SpecularTextureSampler; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Light emission properties // You probably want to put them as uniforms vec3 LightColor = vec3(1,1,1); float LightPower = 40.0; // Material properties vec3 MaterialDiffuseColor = texture2D( DiffuseTextureSampler, vec2(UV.x,-UV.y) ).rgb; vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor; //vec3 MaterialSpecularColor = texture2D( SpecularTextureSampler, UV ).rgb * 0.3; vec3 MaterialSpecularColor = vec3(0.5,0.5,0.5); // Local normal, in tangent space. V tex coordinate is inverted because normal map is in TGA (not in DDS) for better quality vec3 TextureNormal_tangentspace = normalize(texture2D( NormalTextureSampler, vec2(UV.x,-UV.y) ).rgb*2.0 - 1.0); // Distance to the light float distance = length( LightPosition_worldspace - Position_worldspace ); // Normal of the computed fragment, in camera space vec3 n = TextureNormal_tangentspace; // Direction of the light (from the fragment to the light) vec3 l = normalize(LightDirection_tangentspace); // Cosine of the angle between the normal and the light direction, // clamped above 0 // - light is at the vertical of the triangle -> 1 // - light is perpendicular to the triangle -> 0 // - light is behind the triangle -> 0 float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(EyeDirection_tangentspace); // Direction in which the triangle reflects the light vec3 R = reflect(-l,n); // Cosine of the angle between the Eye vector and the Reflect vector, // clamped to 0 // - Looking into the reflection -> 1 // - Looking elsewhere -> < 1 float cosAlpha = clamp( dot( E,R ), 0,1 ); color = // Ambient : simulates indirect lighting MaterialAmbientColor + // Diffuse : "color" of the object MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) + // Specular : reflective highlight, like a mirror MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance); //color.xyz = E; //color.xyz = LightDirection_tangentspace; //color.xyz = EyeDirection_tangentspace; } I have replaced the original color value by EyeDirection_tangentspace vector and then I got other strange effect but I can not link the image (not eunogh reputation) Is it possible that with this shaders is something wrong, or maybe in other place in my code e.g with my matrices? SOLVED Solved... 3 days needed for changing one letter from this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(12*sizeof(float)) // array buffer offset ); to this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(11*sizeof(float)) // array buffer offset ); see difference? :)

    Read the article

  • How to get a point to the left/right of a vector

    - by MulletDevil
    I have a position vector of a point in space and a quaternion for it's rotation. What i'm trying to calculate is a point too the left and a point to the right. I have the position and rotation(quaternion) of the red dot. What I want is to get the position of the green dots. I have a float value for the distance I want these points to be. With only the position and rotation is it possible to get a unit direction vector pointing left/right which I can multiply by my float value? Edit: I also know the original direction vector.

    Read the article

  • Problem animating in Unity/Orthello 2D. Can't move gameObject

    - by Nelson Gregório
    I have a enemy npc that moves left and right in a corridor. It's animated with 2 sprites using Orthello 2D Framework. If I untick the animation's play on start and looping, the npc moves correctly. If I turn it on, the npc tries to move but is pulled back to his starting position again and again because of the animation loop. If I turn looping off during runtime, the npc moves correctly again. What did I do wrong? Here's the npc code if needed. using UnityEngine; using System.Collections; public class Enemies : MonoBehaviour { private Vector2 movement; public float moveSpeed = 200; public bool started = true; public bool blockedRight = false; public bool blockedLeft = false; public GameObject BorderL; public GameObject BorderR; void Update () { if (gameObject.transform.position.x < BorderL.transform.position.x) { started = false; blockedRight = false; blockedLeft = true; } if (gameObject.transform.position.x > BorderR.transform.position.x) { started = false; blockedLeft = false; blockedRight = true; } if(started) { movement = new Vector2(1, 0f); movement *= Time.deltaTime*moveSpeed; gameObject.transform.Translate(movement.x,movement.y, 0f); } if(!blockedRight && !started && blockedLeft) { movement = new Vector2(1, 0f); movement *= Time.deltaTime*moveSpeed; gameObject.transform.Translate(movement.x,movement.y, 0f); } if(!blockedLeft && !started && blockedRight) { movement = new Vector2(-1, 0f); movement *= Time.deltaTime*moveSpeed; gameObject.transform.Translate(movement.x,movement.y, 0f); } } }

    Read the article

  • Problems with SAT Collision Detection

    - by DJ AzKai
    I'm doing a project in one of my modules for college in C++ with SFML and I was hoping someone may be able to help me. I'm using a vector of squares and triangles and I am using the SAT collision detection method to see if objects collide and to make the objects respond to the collision appropriately using the MTV(minimum translation vector) Below is my code: //from the main method int main(){ // Create the main window sf::RenderWindow App(sf::VideoMode(800, 600, 32), "SFML OpenGL"); // Create a clock for measuring time elapsed sf::Clock Clock; srand(time(0)); //prepare OpenGL surface for HSR glClearDepth(1.f); glClearColor(0.3f, 0.3f, 0.3f, 0.f); //background colour glEnable(GL_DEPTH_TEST); glDepthMask(GL_TRUE); //// Setup a perspective projection & Camera position glMatrixMode(GL_PROJECTION); glLoadIdentity(); //set up a 3D Perspective View volume //gluPerspective(90.f, 1.f, 1.f, 300.0f);//fov, aspect, zNear, zFar //set up a orthographic projection same size as window //this mease the vertex coordinates are in pixel space glOrtho(0,800,0,600,0,1); // use pixel coordinates // Finally, display rendered frame on screen vector<BouncingThing*> triangles; for(int i = 0; i < 10; i++) { //instantiate each triangle; triangles.push_back(new BouncingTriangle(Vector2f(rand() % 700, rand() % 500), 3)); } vector<BouncingThing*> boxes; for(int i = 0; i < 10; i++) { //instantiate each box; boxes.push_back(new BouncingBox(Vector2f(rand() % 700, rand() % 500), 4)); } CollisionDetection * b = new CollisionDetection(); // Start game loop while (App.isOpen()) { // Process events sf::Event Event; while (App.pollEvent(Event)) { // Close window : exit if (Event.type == sf::Event::Closed) App.close(); // Escape key : exit if ((Event.type == sf::Event::KeyPressed) && (Event.key.code == sf::Keyboard::Escape)) App.close(); } //Prepare for drawing // Clear color and depth buffer glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Apply some transformations glMatrixMode(GL_MODELVIEW); glLoadIdentity(); for(int i = 0; i < 10; i++) { triangles[i]->draw(); boxes[i]->draw(); triangles[i]->update(Vector2f(800,600)); boxes[i]->draw(); boxes[i]->update(Vector2f(800,600)); } for(int j = 0; j < 10; j++) { for(int i = 0; i < 10; i++) { triangles[j]->setCollision(b->CheckCollision(*(triangles[j]),*(boxes[i]))); } } for(int j = 0; j < 10; j++) { for(int i = 0; i < 10; i++) { boxes[j]->setCollision(b->CheckCollision(*(boxes[j]),*(triangles[i]))); } } for(int i = 0; i < triangles.size(); i++) { for(int j = i + 1; j < triangles.size(); j ++) { triangles[j]->setCollision(b->CheckCollision(*(triangles[j]),*(triangles[i]))); } } for(int i = 0; i < triangles.size(); i++) { for(int j = i + 1; j < triangles.size(); j ++) { boxes[j]->setCollision(b->CheckCollision(*(boxes[j]),*(boxes[i]))); } } App.display(); } return EXIT_SUCCESS; } (ignore this line) //from the BouncingThing.cpp BouncingThing::BouncingThing(Vector2f position, int noSides) : pos(position), pi(3.14), radius(3.14), nSides(noSides) { collided = false; if(nSides ==3) { Vector2f vert1 = Vector2f(-12.0f,-12.0f); Vector2f vert2 = Vector2f(0.0f, 12.0f); Vector2f vert3 = Vector2f(12.0f,-12.0f); verts.push_back(vert1); verts.push_back(vert2); verts.push_back(vert3); } else if(nSides == 4) { Vector2f vert1 = Vector2f(-12.0f,12.0f); Vector2f vert2 = Vector2f(12.0f, 12.0f); Vector2f vert3 = Vector2f(12.0f,-12.0f); Vector2f vert4 = Vector2f(-12.0f, -12.0f); verts.push_back(vert1); verts.push_back(vert2); verts.push_back(vert3); verts.push_back(vert4); } velocity.x = ((rand() % 5 + 1) / 3) + 1; velocity.y = ((rand() % 5 + 1) / 3 ) +1; } void BouncingThing::update(Vector2f screenSize) { Transform t; t.rotate(0); for(int i=0;i< verts.size(); i++) { verts[i]=t.transformPoint(verts[i]); } if(pos.x >= screenSize.x || pos.x <= 0) { velocity.x *= -1; } if(pos.y >= screenSize.y || pos.y <= 0) { velocity.y *= -1; } if(collided) { //velocity.x *= -1; //velocity.y *= -1; collided = false; } pos += velocity; } void BouncingThing::setCollision(bool x){ collided = x; } void BouncingThing::draw() { glBegin(GL_POLYGON); glColor3f(0,1,0); for(int i = 0; i < verts.size(); i++) { glVertex2f(pos.x + verts[i].x,pos.y + verts[i].y); } glEnd(); } vector<Vector2f> BouncingThing::getNormals() { vector<Vector2f> normalVerts; if(nSides == 3) { Vector2f ab = Vector2f((verts[1].x + pos.x) - (verts[0].x + pos.x), (verts[1].y + pos.y) - (verts[0].y + pos.y)); ab = flip(ab); ab.x *= -1; normalVerts.push_back(ab); Vector2f bc = Vector2f((verts[2].x + pos.x) - (verts[1].x + pos.x), (verts[2].y + pos.y) - (verts[1].y + pos.y)); bc = flip(bc); bc.x *= -1; normalVerts.push_back(bc); Vector2f ac = Vector2f((verts[2].x + pos.x) - (verts[0].x + pos.x), (verts[2].y + pos.y) - (verts[0].y + pos.y)); ac = flip(ac); ac.x *= -1; normalVerts.push_back(ac); return normalVerts; } if(nSides ==4) { Vector2f ab = Vector2f((verts[1].x + pos.x) - (verts[0].x + pos.x), (verts[1].y + pos.y) - (verts[0].y + pos.y)); ab = flip(ab); ab.x *= -1; normalVerts.push_back(ab); Vector2f bc = Vector2f((verts[2].x + pos.x) - (verts[1].x + pos.x), (verts[2].y + pos.y) - (verts[1].y + pos.y)); bc = flip(bc); bc.x *= -1; normalVerts.push_back(bc); return normalVerts; } } Vector2f BouncingThing::flip(Vector2f v){ float vyTemp = v.x; float vxTemp = v.y * -1; return Vector2f(vxTemp, vyTemp); } (Ignore this line) CollisionDetection::CollisionDetection() { } vector<float> CollisionDetection::bubbleSort(vector<float> w) { int temp; bool finished = false; while (!finished) { finished = true; for (int i = 0; i < w.size()-1; i++) { if (w[i] > w[i+1]) { temp = w[i]; w[i] = w[i+1]; w[i+1] = temp; finished=false; } } } return w; } class Vector{ public: //static int dp_count; static float dot(sf::Vector2f a,sf::Vector2f b){ //dp_count++; return a.x*b.x+a.y*b.y; } static float length(sf::Vector2f a){ return sqrt(a.x*a.x+a.y*a.y); } static Vector2f add(Vector2f a, Vector2f b) { return Vector2f(a.x + b.y, a.y + b.y); } static sf::Vector2f getNormal(sf::Vector2f a,sf::Vector2f b){ sf::Vector2f n; n=a-b; n/=Vector::length(n);//normalise float x=n.x; n.x=n.y; n.y=-x; return n; } }; bool CollisionDetection::CheckCollision(BouncingThing & x, BouncingThing & y) { vector<Vector2f> xVerts = x.getVerts(); vector<Vector2f> yVerts = y.getVerts(); vector<Vector2f> xNormals = x.getNormals(); vector<Vector2f> yNormals = y.getNormals(); int size; vector<float> xRange; vector<float> yRange; for(int j = 0; j < xNormals.size(); j++) { Vector p; for(int i = 0; i < xVerts.size(); i++) { xRange.push_back(p.dot(xNormals[j], Vector2f(xVerts[i].x, xVerts[i].x))); } for(int i = 0; i < yVerts.size(); i++) { yRange.push_back(p.dot(xNormals[j], Vector2f(yVerts[i].x , yVerts[i].y))); } yRange = bubbleSort(yRange); xRange = bubbleSort(xRange); if(xRange[xRange.size() - 1] < yRange[0] || yRange[yRange.size() - 1] < xRange[0]) { return false; } float x3 = Min(xRange[0], yRange[0]); float y3 = Max(xRange[xRange.size() - 1], yRange[yRange.size() - 1]); float length = Max(x3, y3) - Min(x3, y3); } for(int j = 0; j < yNormals.size(); j++) { Vector p; for(int i = 0; i < xVerts.size(); i++) { xRange.push_back(p.dot(yNormals[j], xVerts[i])); } for(int i = 0; i < yVerts.size(); i++) { yRange.push_back(p.dot(yNormals[j], yVerts[i])); } yRange = bubbleSort(yRange); xRange = bubbleSort(xRange); if(xRange[xRange.size() - 1] < yRange[0] || yRange[yRange.size() - 1] < xRange[0]) { return false; } } return true; } float CollisionDetection::Min(float min, float max) { if(max < min) { min = max; } else return min; } float CollisionDetection::Max(float min, float max) { if(min > max) { max = min; } else return min; } On the screen the objects will freeze for a small amount of time before moving off again. However the problem is is that when this happens there are no collisions actually happening and I would really love to find out where the flaw is in the code. If you need any more information/code please don't hesitate to ask and I'll reply as soon as possible Regards, AzKai

    Read the article

  • Java Slick2d - Mouse picking how to take into account camera

    - by Corey
    When I move it it obviously changes the viewport so my mouse picking is off. My camera is just a float x and y and I use g.translate(-cam.cameraX+400, -cam.cameraY+300); to translate the graphics. I have the numbers hard coded just for testing purposes. How would I take into account the camera so my mouse picking works correctly. double mousetileX = Math.floor((double)mouseX/tiles.tileWidth); double mousetileY = Math.floor((double)mouseY/tiles.tileHeight); double playertileX = Math.floor(playerX/tiles.tileWidth); double playertileY = Math.floor(playerY/tiles.tileHeight); double lengthX = Math.abs((float)playertileX - mousetileX); double lengthY = Math.abs((float)playertileY - mousetileY); double distance = Math.sqrt((lengthX*lengthX)+(lengthY*lengthY)); if(input.isMousePressed(Input.MOUSE_LEFT_BUTTON) && distance < 4) { if(tiles.map[(int)mousetileX][(int)mousetileY] == 1) { tiles.map[(int)mousetileX][(int)mousetileY] = 0; } } That is my mouse picking code

    Read the article

  • Change alpha to a Frame in libgdx

    - by Rudy_TM
    I have this batch.draw(currentFrame, x, y, this.parent.originX, this.parent.originY, this.parent.width, this.parent.height, this.scaleX, this.scaleY,this.rotation); I want to apply the alpha that it gets from the method, but theres is not overload from the SpriteBatch class that takes the alpha value, is there some wey to apply it? (i did it this way, because this are animation, and i wanted to control them) in my static ones i apply sprite.draw(SpriteBatch, alpha) Thanks

    Read the article

  • C# Collision test of a ship and asteriod, angle confusion

    - by Cherry
    We are trying to to do a collision detection for the ship and asteroid. If success than it should detect the collision before N turns. However it is confused between angle 350 and 15 and it is not really working. Sometimes it is moving but sometime it is not moving at all. On the other hand, it is not shooting at the right time as well. I just want to ask how to make the collision detection working??? And how to solve the angle confusion problem? // Get velocities of asteroid Console.WriteLine("lol"); // IF equation is between -2 and -3 if (equation1a <= -2) { // Calculate no. turns till asteroid hits float turns_till_hit = dx / vx; // Calculate angle of asteroid float asteroid_angle_rad = (float)Math.Atan(Math.Abs(dy / dx)); float asteroid_angle_deg = (float)(asteroid_angle_rad * 180 / Math.PI); float asteroid_angle = 0; // Calculate angle if asteroid is in certain positions if (asteroid.Y > ship.Y && asteroid.X > ship.X) { asteroid_angle = asteroid_angle_deg; } else if (asteroid.Y < ship.Y && asteroid.X > ship.X) { asteroid_angle = (360 - asteroid_angle_deg); } else if (asteroid.Y < ship.Y && asteroid.X < ship.X) { asteroid_angle = (180 + asteroid_angle_deg); } else if (asteroid.Y > ship.Y && asteroid.X < ship.X) { asteroid_angle = (180 - asteroid_angle_deg); } // IF turns till asteroid hits are less than 35 if (turns_till_hit < 50) { float angle_between = 0; // Calculate angle between if asteroid is in certain positions if (asteroid.Y > ship.Y && asteroid.X > ship.X) { angle_between = ship_angle - asteroid_angle; } else if (asteroid.Y < ship.Y && asteroid.X > ship.X) { angle_between = (360 - Math.Abs(ship_angle - asteroid_angle)); } else if (asteroid.Y < ship.Y && asteroid.X < ship.X) { angle_between = ship_angle - asteroid_angle; } else if (asteroid.Y > ship.Y && asteroid.X < ship.X) { angle_between = ship_angle - asteroid_angle; } // If angle less than 0, add 360 if (angle_between < 0) { //angle_between %= 360; angle_between = Math.Abs(angle_between); } // Calculate no. of turns to face asteroid float turns_to_face = angle_between / 25; if (turns_to_face < turns_till_hit) { float ship_angle_left = ShipAngle(ship_angle, "leftKey", 1); float ship_angle_right = ShipAngle(ship_angle, "rightKey", 1); float angle_between_left = Math.Abs(ship_angle_left - asteroid_angle); float angle_between_right = Math.Abs(ship_angle_right - asteroid_angle); if (angle_between_left < angle_between_right) { leftKey = true; } else if (angle_between_right < angle_between_left) { rightKey = true; } } if (angle_between > 0 && angle_between < 25) { spaceKey = true; } } }

    Read the article

  • Does XNA/MonoGame have a text caching mechanism, or has an open source one been implemented?

    - by Casey
    I'm playing around with MonoGame, and I've noticed the SpriteFont class draws static text very inefficiently. Each time the text is drawn the spacing is recalculated. This isn't a big deal on my quad core PC, but on mobile applications it might be a problem. Before I go and program some text which caches the arrangement of its letters in an array and then feeds that array to the SpriteBatch, I would like to make sure there isn't something available to do this already, either in MonoGame itself or a class someone has implemented and made available for general use.

    Read the article

  • Index Check and Correct Character Display in a Console Hangman Game for Java

    - by Jen
    I have this problem wherein, I can not display the correct characters given by the character. Here's what I meant: String words, in; String replaced_words; Scanner s = new Scanner (System.in); System.out.println("Enter a line of words basing on an event, verse, place or a name of a person."); words = s.nextLine(); System.out.println("The words you just placed are now accepted."); //using char array method, we tried to place the words into a characters array. char [] c = words.toCharArray(); // we need to replace the replaced_words = words.replace(' ', '_').replaceAll("[^\\-]", "-"); for (int i = 0; i < replaced_words.length(); i++) { System.out.print(replaced_words.charAt(i) + " "); } System.out.println("Now, please input a character, guessing the words you just placed."); in = s.nextLine(); in that code, want that the user, when types a word (or should it be character?), any of the correct character the user inputs will be displayed, and changes the hyphen to it...(more like the hangman series of games). How can I achieve this?

    Read the article

  • Central renderer for a given scene

    - by Loggie
    When creating a central rendering system for all game objects in a given scene I am trying to work out the best way to go about passing the scene to the render system to be rendered. If I have a scene managed by an arbitrary structure, i.e., an octree, bsp trees, quad-tree, kd tree, etc. What is the best way to pass this to the render system? The obvious problem is that if simply given the root node of the structure, the render system would require an intrinsic knowledge of the structure in order to traverse the structure. My solution to this is to clip all objects outside the frustum in the scene manager and then create a list of the objects which are left and pass this simple list to the render system, be it an array, a vector, a linked list, etc. (This would be a structure required by the render system as a means to know which objects should be rendered). The list would of course attempt to minimise OpenGL state changes by grouping objects that require the same rendering operations to be performed on them. I have been thinking a lot about this and started searching various terms on here and followed any additional information/links but I have not really found a definitive answer. The case may be that there is no definitive answer but I would appreciate some advice and tips. My question is, is this a reasonable solution to the problem? Are there any improvements that I could make? Are there any caveats I should know about? Side question: Am I right in assuming that octrees, bsp trees, etc are all forms of BVH?

    Read the article

  • Is there a cross-platform special directory I can use for game save files?

    - by Suds
    I'm developing with LWJGL and Java on a Windows 7 laptop. I've successfully set up saving to the %appdata%\gamename\saves\ or long form c:\users\user\appdata\roaming\gamename\saves\ folder by using File dir = new File(System.getenv("APPDATA") + "\\gamename\\saves\\");. I have hobbyist level experience with Linux, and zero experience with OSX. My game will be fully cross platform. Is System.getenv("APPDATA"); cross platform? If so, where does it point to on Linux or OSX? Is there a best practices alternative that I should use?

    Read the article

  • Physics Loop in a NodeJS/Socket.IO Environment

    - by Thomas Mosey
    I'm developing a 2D HTML5 Canvas Game, and I am trying to think of the most efficient way to implement a Physics Loop on the server-end of things, running NodeJS and Socket.IO. The only method I've thought of is using setTimeout/Interval, is there any better way? Any examples would be appreciated. EDIT: The Game is a top-down Game, like Zelda and older Pokemon Games. Most of the physics done in the loop will be simple intersects.

    Read the article

  • Developing games using virtualization on macOS (or Linux) [on hold]

    - by zpinner
    From what I've seen, most of the gamedev tools and engines (that could generate cross platform games) are not supported on Mac. Havok/Project Anarchy, UDK, GameMaker, e.g. . Basically, the only options I found are: Unity3d and monogame + xamarin. Unity is nice and I've been playing with it for some time, but the free version is quite limited when we're talking about shaders, that made me consider that as an indie developer, I might want more freedom to experiment new things, without paying the expensive unity license. I didn't try monogame + xamarin yet, and altough XNA is a very nice game framework, I'd like to have more freedom to experiment and finish a game first before paying for the IDE, which is not possible with the current Xamarin business model. That leaves me with the thought that I must go back to windows, which I'd preferably do it partially, if it's possible. Using BootCamp is something that I'd like to avoid, since it's a pain to reboot when changing OS and that would probably force me to become a 100% windows user. Is there anyone actually developing a game using virtualization solutions like parallels or vmwareFusion? How was your experience?

    Read the article

  • Drawing 2D Grid in 3D View - Need help with method

    - by Deukalion
    I'm trying to draw a simple 2D grid for an editor, to able to navigate more clearly around the 3D space, but I can't render it: Grid2D class, creates a grid of a certain size at a location and should just draw lines. public class Grid2D : IShape { private VertexPositionColor[] _vertices; private Vector2 _size; private Vector3 _location; private int _faces; public Grid2D(Vector2 size, Vector3 location, Color color) { float x = 0, y = 0; if (size.X < 1f) { size.X = 1f; } if (size.Y < 1f) { size.Y = 1f; } _size = size; _location = location; List<VertexPositionColor> vertices = new List<VertexPositionColor>(); _faces = 0; for (y = -size.Y; y <= size.Y; y++) { vertices.Add(new VertexPositionColor(location + new Vector3(-size.X, y, 0), color)); vertices.Add(new VertexPositionColor(location + new Vector3(size.X, y, 0), color)); _faces++; } for (x = -size.X; x <= size.X; x++) { vertices.Add(new VertexPositionColor(location + new Vector3(x, -size.Y, 0), color)); vertices.Add(new VertexPositionColor(location + new Vector3(x, size.Y, 0), color)); _faces++; } _vertices = vertices.ToArray(); } public void Render(GraphicsDevice device) { device.DrawUserPrimitives<VertexPositionColor>(PrimitiveType.LineList, _vertices, 0, _faces); } } Like this: +----+----+----+----+ | | | | | +----+----+----+----+ | | | | | +----+----+----+----+ | | | | | +----+----+----+----+ | | | | | +----+----+----+----+ Anyone knows what I'm doing wrong? If I add a Shape without texture, it's set automatically to VertexColorEnabled and TextureEnabled = false. This is how I render it: foreach (RenderObject render in _renderObjects) { render.Effect.Projection = projection; render.Effect.View = view; render.Effect.World = world; foreach (EffectPass pass in render.Effect.CurrentTechnique.Passes) { pass.Apply(); try { // Could be a Grid2D render.Shape.Render(_device); } catch { throw; } } } Exception is thrown: The current vertex shader declaration does not include all the elements required by the current Vertex Shader. Normal0 is missing. Simply put, I can't figure out how to draw a few lines. I want to draw them one at a time and I guess that's the problem I haven't figured out, and even when I tried rendering vertices[i], vertices[i+1] and primitiveCount = 1, vertices = 2, and so on it didn't work either. Any suggestions?

    Read the article

  • samplerCubeShadow and texture offset

    - by Irbis
    I use sampler2DShadow when accessing a single shadow map. I create PCF in this way: result += textureProjOffset(ShadowSampler, ShadowCoord, ivec2(-1,-1)); result += textureProjOffset(ShadowSampler, ShadowCoord, ivec2(-1,1)); result += textureProjOffset(ShadowSampler, ShadowCoord, ivec2(1,1)); result += textureProjOffset(ShadowSampler, ShadowCoord, ivec2(1,-1)); result = result * 0.25; For a cube map I use samplerCubeShadow: result = texture(ShadowCubeSampler, vec4(normalize(position), depth)); How to adopt above PCF when accessing a cube map ?

    Read the article

  • Trouble using Ray.Intersect method on bounding boxes in a 2D XNA game

    - by getsauce
    I am trying to use a ray and bounding box to determine if a box is between the player and the mouse pointer in 2D space. When I try testing the code, the collision will return true when pointed at the box but it also returns true under other circumstances where it shouldn't. For instance. If I have a player on the left and a box directly to the right, I can put the mouse pointer a few hundred pixels above the box or a few hundred below and it will still return true. Also, I can put my mouse pointer to the left of the player and in a certain area it will still return true. Does anyone have any idea what might cause this? I have left out definitions for some of my members and properties just to make this code sample easier to read. The position property is just a Vector2 for where each object is located. ray = new Ray(new Vector3(player.Position, 0), new Vector3(mouse.Position, 0); box = new BoundingBox(new Vector3(box.Position, 0), new Vector3( new Vector2(box.Position + box.Width, box.Position + box.Height), 0); if (ray.Intersects(box) != null) collision = true; else collision = false;

    Read the article

< Previous Page | 535 536 537 538 539 540 541 542 543 544 545 546  | Next Page >