Search Results

Search found 33291 results on 1332 pages for 'development environment'.

Page 544/1332 | < Previous Page | 540 541 542 543 544 545 546 547 548 549 550 551  | Next Page >

  • How to make my sprite jump properly?

    - by Matthew Morgan
    I'm currently working on a 2D platformer in XNA. I have, however been having some trouble with creating a fully functional jumping algorithm. This is what I have so far: if (keystate.IsKeyDown(Keys.W)) if (onGround = true) //"onground" is true when the collision between the main sprite and the ground is detected { spritePosition.Y = velocity.Y = -5; } So, the problem I am now having is that as soon as the jump starts the variable "onGround" = false and the sprite is brought back the ground by the simple gravity I have implemented. The other problem I have is creating a limit to the height after which the sprite should automatically return to the ground. Any advice or suggestions would be greatly appreciated.

    Read the article

  • Must all AI states be able to react to any event?

    - by Prog
    FSMs implemented with the State design pattern are a common way to design AI agents. I am familiar with the State design pattern and know how to implement it. How is this used in games to design AI agents? Consider a simplified class Monster, representing an AI agent: class Monster { State state; // other fields omitted public void update(){ // called every game-loop cycle state.execute(this); } public void setState(State state){ this.state = state; } // irrelevant stuff omitted } There are several State subclasses implementing execute() differently. So far, classic State pattern. AI agents are subject to environmental effects and other objects communicating with them. For example, an AI agent might tell another AI agent to attack (i.e. agent.attack()). Or a fireball might tell an AI agent to fall down. This means that the agent must have methods such as attack() and fallDown(), or commonly some message receiving mechanism to understand such messages. With an FSM, the current State of the agent should be the one taking care of such method calls - i.e. the agent delegates to the current state upon every event. Is this correct? If correct, how is this done? Are all states obligated by their superclass to implement methods such as attack(), fallDown() etc., so the agent can always delegate to them on almost every event? Or is it done in some other way?

    Read the article

  • Using box2d DrawDebugData with multi layer scene ?

    - by Mr.Gando
    In my Game, a Scene is composed by several layers. Each layer has different camera transformations. This way I can have a layer at z=3 (GUI), z=2 (Monsters), z=1 (scrolling background), and this 3 layers compose my whole Scene. My render loop looks something like: renderLayer() applyTransformations() renderVisibleEntities() renderChildLayers() end If I call DrawDebugData() in the render loop, the whole b2world debug data will be rendered once for each layer in my scene, this generates a mess, because the "debug boxes" get duplicated, some of them get the camera transformations applied and some of them don't, etc. What I would like to do, would be to make DrawDebugData to draw only certain debug boxes. In that way, I could call something like b2world->DrawDebugDataForLayer(int layer_id) and call that on each layer like : renderLayer() applyTransformations() renderVisibleEntities() //Only render my corresponding layer debug data b2world->DrawDebugDataForLayer(layer_id) renderChildLayers() end Is there a way to subclass b2World so I could add this functionality ( specific to my game ) ? If not, what would be the best way to achieve this (Cocos2d uses a similar scene graph approach and box2d, but I'm not sure if debugDraw works in Cocos2d... ) Thanks

    Read the article

  • What are some good resources for creating a game engine in XNA?

    - by Glasser
    I'm currently a student game programmer working on an indie project. We have a team of eleven people (five programmers, four artists, and two audio designers) aboard, all working hard to help design this game. We've been meeting for months now and so far we have a pretty buffed out Game Design Document as well as much audio/visual concept art. Our programmers are itching to progress on our own end. Each person in our programming team is well versed in C++, but is very familiar with C#. We have enough experience and skill that we're confident that we will be successful with our game, and we're looking to build our own game engine in XNA as it seems like it would be worth our time and effort in the end. The game itself will be a 2D beat 'em up style game to be released over xbox live and the PC. It's play style will be similar to that of Castle Crashers or Scott Pilgrim vs The World. We want to design the game engine to allow us to better implement our assets into the game as well as to simplify the creation of design elements/mechanics. Currently between our programmers, we have books such as "XNA 4.0" and "Game Coding Complete, Third Edition," but we'd still like more information on both XNA and (especially) building a game engine from scratch. What are any other good books, websites, or resources we could use to further map out and program our game engine?

    Read the article

  • Circle vs Edge collision detection / resolution

    - by topheman
    I made a javascript class Ball.js that handles physics interactions betweens balls as well as painting. In the v1.0, the ball vs ball collision detection and resolution is well handled. In the next version (v2), I'm trying to add edgeCollision handling. I'm having some problems, maybe you will be able to help me. All the v2 branch source code is on github repository : https://github.com/topheman/Ball.js/tree/v2 The v2 demos (where you can see the bug I will be talking about) : http://labs.topheman.com/Ball-v2/#help As you will see on the demo, I have two major problems that I'm having a really hard time to solve on Ball.js : method resolveEdgeCollision : bounce angle is inconsistent method checkEdgeCollision : if the ball's velocity (the length that it runs each frame) is higher than its diameter, eventually, it will pass through an edge, without triggering any collision Any Ideas ?...

    Read the article

  • Alternatives to the GPL

    - by Bane
    I made a game, and I am currently making a game engine. I want them both to be completely free and open source. What license should I choose? I was reading a bit on GPL, but that seems to be more suited for system code and libraries, AFAIK, as it doesn't permit the use of code for proprietorial software - which, in turn, implies that the code can be used in the first place. I can see that, obviously, game engines can be considered libraries, and therefor be used, but what about game code? Is there an alternative to GPL?

    Read the article

  • Do I need "cube subclasses" to represent the blocks in a Minecraft-like world?

    - by stighy
    I would like to try to develop a very simple game like Minecraft for my own education. My main problem at the moment is figuring out how to model classes that represent the world, which will be made of blocks of various types (such as dirt, stone and sand). I am thinking of creating the following class structure: Cube (with proprerties like color, strength, flammable, gravity) with subclasses: Dirt Stone Sand et cetera My question is, do I need the Cube subclasses or a single class Cube sufficient?

    Read the article

  • Detecting tile with height in isometric game

    - by Carlos Navarro
    I'm trying to create an isometric tile-based game (for iPhone) and I'm having trouble with height in tiles. What I currently do (without heights) is apply some mathematic transformations to my 2D-matrix (which represent the tiles) so that I know where in the screen (x,y) should I place the isometric tile. Then, when the user clicks somewhere in the screen, I take that values and pass them through a function (kind of f^-1) to get which tile it belongs to. This works perfectly. My problem is: imagine that I want some tiles to have a different height from others. In order to draw the tile itself its pretty simple, since the z-coordinate has no transformation in the isometric approach used in games (z'=z). BUT what if I want to calculate the tile coordinate (defined by X-tile and Y-tile) from the touch coordinates (x,y)? Any guess?

    Read the article

  • Library For Opengl 1.4?

    - by Robinson Joaquin
    My netbook only supports openGL version 1.4, my GPU is intel gma 3150, so for you what is the best library/tools to use or somewhat great move to make/advice, there are no wrong answers, (I am trying to create a game) PS: I already check the net for resources but, opengl (redbook) 4th edition is scarce (and redbook for v1.1 is already deprecated and is very OLD than what I'm looking for), besides I don't have money to buy a new laptop or a opengl book from online shop because international delivery is very expensive, I'm from outside US.

    Read the article

  • Frame Buffer Objects vs calling TexCoord2f?

    - by sensae
    I'm learning the basics of OpenGL with lwjgl currently, and following a guide I've got textured quads that can move around a scene. I've been reading about Frame Buffer Objects, and I'm not really clear on their purpose and their benefit. My understanding is that I'll create a FBO with the texture I'd like, load the FBO, draw a quad, then unload the FBO. What would the technique I'm currently doing for texture management be called, and how does it differ from using FBOs? What are the benefits to using FBOs? How does it fit into the grand rendering scheme of things?

    Read the article

  • Fast determination of whether objects are onscreen in 2D

    - by Ben Ezard
    So currently, I have this in each object's renderer's update method: float a = transform.position.x * Main.scale; float b = transform.position.y * Main.scale; float c = Camera.main.transform.position.x * Main.scale; float d = Camera.main.transform.position.y * Main.scale; onscreen = a + width - c > 0 && a - c < GameView.width && b + height - d > 0 && b - d < GameView.height; transform.position is a 2D vector containing the game engine's definition of where the object is - this is then multiplied by Main.scale to translate that coordinate into actual screen space Similarly, Camera.main.transform.position is the in-engine representation of where the main camera is, and this is also multiplied by Main.scale The problem is, as my game is tile-based, thousands of these updates get called every frame, just to determine whether or not each object should be drawn - how can I improve this please?

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Combining pathfinding with global AI objectives

    - by V_Programmer
    I'm making a turn-based strategy game using Java and LibGDX. Now I want to code the AI. I haven't written the AI code yet. I've simply designed it. The AI will have two components, one focused in tactics and resource management (create troops, determine who have strategical advantage, detect important objectives, etc) and a individual component, focused in assign the work to each unit, examine its possibilites and move the unit. Now I'm facing an important problem. The map where the action take place is a grid-based map. Each terrain has different movement cost. I read about pathfinding and I think A* is a very good option to determine a good route between two points. However, imagine I have an unit with movement = 5 (i.e, it can move 5 tiles of movement cost = 1). My tactical AI has found an objective at a distance d = 20 tiles (Manhattan distance) from my unit. My problem is the following: the unit won't be able to reach the objective in one turn. So the AI will have to store a list of position and execute them in various turns. I don't know how to solve this. PS. In my unit code, I have a list called "selectionMarks" which stores all the possible places where the unit can go in this turn. This places are calculed recursively using a "getSelectionMarks" function. Any help is appreciated :D

    Read the article

  • Scrolling Box2D DebugDraw

    - by onedayitwillmake
    I'm developing a game using Box2D (javascript implementation - Box2DWeb), and I would like to know how I can pan the debug draw. I know the usual answer is - don't use debug draw, it's just for debugging. I'm not, however not all my objects are on the same screen, and i'd like to see where they are in the physics representation. How can I pan the debug drawing? As you can see the debug draw stuff, is show on the top left, but it only shows a small part of the world. Here is an example of what I mean: http://onedayitwillmake.com/ChuClone/ The game is open source, If you'd like to poke through and note something that perhaps i'm doing something that is obviously wrong: https://github.com/onedayitwillmake/ChuClone

    Read the article

  • Ray Picking Problems

    - by A Name I Haven't Decided On
    I've read so many answers on here about how to do Ray Picking, that I thought I had the idea of it down. But when I try to implement it in my game, I get garbage. I'm working with LWJGL. Here's the code: public static Ray getPick(int mouseX, int mouseY){ glPushMatrix(); //Setting up the Mouse Clip Vector4f mouseClip = new Vector4f((float)mouseX * 2 / 960f - 1, 1 - (float)mouseY * 2 / 640f ,0 ,1); //Loading Matrices FloatBuffer modMatrix = BufferUtils.createFloatBuffer(16); FloatBuffer projMatrix = BufferUtils.createFloatBuffer(16); glGetFloat(GL_MODELVIEW_MATRIX, modMatrix); glGetFloat(GL_PROJECTION_MATRIX, projMatrix); //Assigning Matrices Matrix4f proj = new Matrix4f(); Matrix4f model = new Matrix4f(); model.load(modMatrix); proj.load(projMatrix); //Multiplying the Projection Matrix by the Model View Matrix Matrix4f tempView = new Matrix4f(); Matrix4f.mul(proj, model, tempView); tempView.invert(); //Getting the Camera Position in World Space. The 4th Column of the Model View Matrix. model.invert(); Point cameraPos = new Point(model.m30, model.m31, model.m32); //Theoretically getting the vector the Picking Ray goes Vector4f rayVector = new Vector4f(); Matrix4f.transform(tempView, mouseClip, rayVector); rayVector.translate((float)-cameraPos.getX(),(float) -cameraPos.getY(),(float) -cameraPos.getZ(), 0f); rayVector.normalise(); glPopMatrix(); //This Basically Spits out a value that changes as the Camera moves. //When the Mouse moves, the values change around 0.001 points from screen edge to edge. System.out.format("Vector: %f %f %f%n", rayVector.x, rayVector.y, rayVector.z); //return new Ray(cameraPos, rayVector); return null; } I don't really know why this isn't working. I was hoping some more experienced eyes might be able to help me out. I can get the camera position like a champ, it's the vector the rays going in that I can't seem to get right. Thanks.

    Read the article

  • Previewing a Demo Level in Mobile for UDK?

    - by Reno Yeo
    I've already clicked on "Emulate Mobile Features" and everything has been compiled. I've also set the mobile previewer settings to iPhone 4's dimensions and features. However, when i click on the mobile previewer, a new window pops up but it goes into a "Not Responding" mode after a while. Is there anything I'm doing wrong? To be honest, I'm afraid of the difficulty curve required in learning UDK, but I am interested in developing a game for it.

    Read the article

  • Partial Shader Signatures HLSL D3D11 C++

    - by ThePhD
    I had been debugging a problem I was having in a single shader file with 2 functions in it. I'm using DirectX 11, vs_5_0 and ps_5_0. I have stripped it down to its basic components to understand what was going wrong with the shaders, because the different named components of the Pixel and Vertex shaders were swapping the data being input: void QuadVertex ( inout float4 position : SV_Position, inout float4 color : COLOR0, inout float2 tex : TEXCOORD0 ) { // ViewProject is a 4x4 matrix, // just included here to show the simple passthrough of the data position = mul(position, ViewProjection); } And a Pixel Shader: float4 QuadPixel ( float4 color : COLOR0, float2 tex : TEXCOORD0 ) : SV_Target0 { // Color is filled with position data and tex is // filled with color values from the Vertex Shader return color; } The ID3D11InputLayout and associated C++ code correctly compiles the shaders and sets them up with some simple primitive data: data[0].Position.x = 0.0f * 210; data[0].Position.y = 1.0f * 160; data[0].Position.z = 0.0f; data[1].Position.x = 0.0f * 210; data[1].Position.y = 0.0f * 160; data[1].Position.z = 0.0f; data[2].Position.x = 1.0f * 210; data[2].Position.y = 1.0f * 160; data[2].Position.z = 0.0f; data[0].Colour = Colors::Red; data[1].Colour = Colors::Red; data[2].Colour = Colors::Red; data[0].Texture = Vector2::Zero; data[1].Texture = Vector2::Zero; data[2].Texture = Vector2::Zero; When used with the shader, the float4 color always ended up with the position data, and the float2 tex always ended up with the color data. After a moment, I figured out that the shader's input and output signatures needed to be in the correct order and the correct format and be laid out in the exact order of the output from the Vertex Shader, regardless of the semantics: float4 QuadPixel ( float4 pos : SV_Position, float4 color : COLOR0, float2 tex : TEXCOORD0 ) : SV_Target0 { return color; } After finding this out, My question is: Why don't the semantics map the appropriate components when going from Vertex Shader to Pixel Shader? Is there any way that I can make it so certain semantics are always mapped to other semantics, or do I always have to follow the rigid Shader Signature (in this case, Position, Color, and Texture) ? As a side note for why I'm asking: I know that when using XNA, my shader signatures for functions could differ in position and even drop items from Vertex Shader to Pixel Shader function parameters, having only the COLOR0 and TEXCOORD0 components being used (and it would still match up correctly). However, I also know that XNA relied on DX9 (and maybe a little DX10) implementation, and that maybe this kind of flexibility no longer exists in DX11?

    Read the article

  • Why is this 8 puzzle unsolvable?

    - by Ashwin
    I am developing a 8 puzzle game. I went through the rules in this (see Detecting Unsolvable Puzzles) link, which tell you how to detect if an initial state is unsolvable. It says that if the number of inversions is odd, then the goal state cannot be reached and if even the goal state can be reached. Inversion is defined as Given a board, an inversion is any pair of blocks i and j where i < j but i appears after j when considering the board in row-major order (row 0, followed by row 1, and so forth). There is a 8-puzzle solver(applet) here. Choose 8-puzzle from the options. 1,0,3,2,4,5,6,7,8 and 7,0,2,8,5,3,6,4,1 As you can see both of them contain an even number of inversions. Still the program says that the puzzle is unsolvable. So is the Princeton link wrong?

    Read the article

  • Drag camera/view in a 3D world

    - by Dono
    I'm trying to make a Draggable view in a 3D world. Currently, I've made it using mouse position on the screen, but, when I move the distance traveled by my mouse is not equal to the distance traveled in the 3D world. So, I've tried to do that : Compute a ray from mouse position to 3D world. Calculate intersection with the ground. Check intersection difference old position <- new position. Translate camera with the difference. I've got a problem with this method: The ray is computed with the current camera's position I move the camera I compute the new ray with new camera position. The difference between old ray and new ray is now invalid. So, graphically my camera don't stop to move to previous/new position everytime. How can I do a draggable camera with another solution ? Thanks!

    Read the article

  • Finding diagonal objects of an object in 3d space

    - by samfisher
    Using Unity3d, I have a array which is having 8 GameObjects in grid and one object (which is already known) is in center like this where K is already known object. All objects are equidistant from their adjacent objects (even with the diagonal objects) which means (distance between 4 & K) == (distance between K & 3) = (distance between 2 & K) 1 2 3 4 K 5 6 7 8 I want to remove 1,3,6,8 from array (the diagonal objects). How can I check that at runtime? my problem is the order of objects {1-8} is not known so I need to check each object's position with K to see if it is a diagonal object or not. so what check should I put with the GameObjects (K and others) to verify if this object is in diagonal position Regards, Sam

    Read the article

  • Box2D platformer movement. Are joints a good idea?

    - by Romeo
    So i smashed my brains trying to make my character move. As i wanted later in the game to add explosions and bullets it wasn't a good idea to mess with the velocity and the forces/impulses didn't work as i expected so something stuck in my mind: Is it a good idea to put at his bottom a wheel(circle) which is invisible to the player that will do the movement by rotation? I will attach this to my main body with a revolute joint but i don't really know how to make the main body and wheel body to don't collide one with each other since funny things can happen. What is your oppinion?

    Read the article

  • Non-unique display names?

    - by Davy8
    I know of at least big title game (Starcraft II) that doesn't require unique display names, so it would seem like it can work in at least some circumstance. Under what situations does allowing non-unique display names work well? When does it not work well? Does it come down to whether or not impersonation of someone else is a problem? The reasons I believe it works for Starcraft II is that there isn't any kind of in-game trading of virtual goods and other than "for kicks" there isn't much incentive to impersonate someone else in the game. There's also ladder rankings so even trying to impersonate a pro is easily detectable unless you're on a similar skill level. What are some other cases where it makes sense to specifically allow or disallow duplicate display names? (I have no idea what to tag this as. I went with game-design because I needed at least 1 tag and I don't have rep to create new ones yet.)

    Read the article

  • How to keep track of previous scenes and return to them in libgdx

    - by MxyL
    I have three scenes: SceneTitle, SceneMenu, SceneLoad. (The difference between the title scene and the menu scene is that the title scene is what you see when you first turn on the game, and the menu scene is what you can access during the game. During the game, meaning, after you've hit "play!" in the title scene.) I provide the ability to save progress and consequently load a particular game. An issue that I've run into is being able to easily keep track of the previous scene. For example, if you enter the load scene and then decide to change your mind, the game needs to go back to where you were before; this isn't something that can be hardcoded. Now, an easy solution off the top of my head is to simply maintain a scene stack, which basically keeps track of history for me. A simple transaction would be as follows I'm currently in the menu scene, so the top of the stack is SceneMenu I go to the load scene, so the game pushes SceneLoad onto the stack. When I return from the load scene, the game pops SceneLoad off the stack and initializes the scene that's currently at the top, which is SceneMenu I'm coding in Java, so I can't simply pass around Classes as if they were objects, so I've decided implemented as enum for eac scene and put that on the stack and then have my scene managing class go through a list of if conditions to return the appropriate instance of the class. How can I implement my scene stack without having to do too much work maintaining it?

    Read the article

  • Simple 2 player server

    - by Sourabh Lal
    I have recently started learning javascript and html and have developed simple 2 player games such as tick-tack-toe, battleship, and dots&boxes. However these 2 player games can only be played on one computer (i.e. the 2 players must sit together) However, I want to modify this so that one can play with a friend on a different computer. Any suggestions on how this is possible? Also since I am a beginner please do not assume that I know all the jargon.

    Read the article

  • Calculating the rotational force of a 2D sprite

    - by Jon
    I am wondering if someone has an elegant way of calculating the following scenario. I have an object of (n) number of squares, random shapes, but we will pretend they are all rectangles. We are dealing with no gravity, so consider the object in space, from a top down perspective. I am applying a force to the object at a specific square (as illustrated below). How do I calculate the rotational angle, based on the force being applied, at the location being applied. If applied in the center square, it would go straight. How should it behave the further I move from the center? How do I calculate the rotational velocity?

    Read the article

< Previous Page | 540 541 542 543 544 545 546 547 548 549 550 551  | Next Page >