Search Results

Search found 33291 results on 1332 pages for 'development environment'.

Page 542/1332 | < Previous Page | 538 539 540 541 542 543 544 545 546 547 548 549  | Next Page >

  • Combining pathfinding with global AI objectives

    - by V_Programmer
    I'm making a turn-based strategy game using Java and LibGDX. Now I want to code the AI. I haven't written the AI code yet. I've simply designed it. The AI will have two components, one focused in tactics and resource management (create troops, determine who have strategical advantage, detect important objectives, etc) and a individual component, focused in assign the work to each unit, examine its possibilites and move the unit. Now I'm facing an important problem. The map where the action take place is a grid-based map. Each terrain has different movement cost. I read about pathfinding and I think A* is a very good option to determine a good route between two points. However, imagine I have an unit with movement = 5 (i.e, it can move 5 tiles of movement cost = 1). My tactical AI has found an objective at a distance d = 20 tiles (Manhattan distance) from my unit. My problem is the following: the unit won't be able to reach the objective in one turn. So the AI will have to store a list of position and execute them in various turns. I don't know how to solve this. PS. In my unit code, I have a list called "selectionMarks" which stores all the possible places where the unit can go in this turn. This places are calculed recursively using a "getSelectionMarks" function. Any help is appreciated :D

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • How to get this wavefront .obj data onto the frustum?

    - by NoobScratcher
    I've finally figured out how to get the data from a .obj file and store the vertex positions x,y,z into a structure called Points with members x y z which are of type float. I want to know how to get this data onto the screen. Here is my attempt at doing so: //make a fileobject and store list and the index of that list in a c string ifstream file (list[index].c_str() ); std::vector<int>faces; std::vector<Point>points; points.push_back(Point()); Point p; int face[4]; while ( !file.eof() ) { char modelbuffer[10000]; //Get lines and store it in line string file.getline(modelbuffer, 10000); switch(modelbuffer[0]) { case 'v' : sscanf(modelbuffer, "v %f %f %f", &p.x, &p.y, &p.z); points.push_back(p); cout << "Getting Vertex Positions" << endl; cout << "v" << p.x << endl; cout << "v" << p.y << endl; cout << "v" << p.z << endl; break; case 'f': sscanf(modelbuffer, "f %d %d %d %d", face, face+1, face+2, face+3 ); cout << face[0] << endl; cout << face[1] << endl; cout << face[2] << endl; cout << face[3] << endl; faces.push_back(face[0]); faces.push_back(face[1]); faces.push_back(face[2]); faces.push_back(face[3]); } GLuint vertexbuffer; glGenBuffers(1, &vertexbuffer); glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer); glBufferData(GL_ARRAY_BUFFER, points.size(), points.data(), GL_STATIC_DRAW); //glBufferData(GL_ARRAY_BUFFER,sizeof(points), &(points[0]), GL_STATIC_DRAW); glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, 0); glVertexPointer(3, GL_FLOAT, sizeof(points),points.data()); glIndexPointer(GL_DOUBLE, 0, faces.data()); glDrawArrays(GL_QUADS, 0, points.size()); glDrawElements(GL_QUADS, faces.size(), GL_UNSIGNED_INT, faces.data()); } As you can see I've clearly failed the end part but I really don't know why its not rendering the data onto the frustum? Does anyone have a solution for this?

    Read the article

  • Scrolling though objects then creating a new instace of this object

    - by gopgop
    In my game when pressing the right mouse button you will place an object on the ground. all objects have the same super class (GameObject). I have a field called selected and will be equal to one certain gameobject at a time. when clicking the right mouse button it checks whats the instance of selected and that how it determines which object to place on the ground. code exapmle: t is the "slot" for which the object will go to. if (selected instanceof MapleTree) { t = new MapleTree(game,highLight); } else if (selected instanceof OakTree) { t = new OakTree(game,highLight); } Now it has to be a "new" instance of the object. Eventually my game will have hundreds of GameObjects and I don't want to have a huge if else statement. How would I make it so it scrolls though the possible kinds of objects and if its the correct type then create a new instance of it...? When pressing E it will switch the type of selected and is an if else statement as well. How would I do it for this too? here is a code example: if (selected instanceof MapleTree) { selected = new OakTree(game); } else if (selected instanceof OakTree) { selected = new MapleTree(game); }

    Read the article

  • Working out of a vertex array for destrucible objects

    - by bobobobo
    I have diamond-shaped polygonal bullets. There are lots of them on the screen. I did not want to create a vertex array for each, so I packed them into a single vertex array and they're all drawn at once. | bullet1.xyz | bullet1.rgb | bullet2.xyz | bullet2.rgb This is great for performance.. there is struct Bullet { vector<Vector3f*> verts ; // pointers into the vertex buffer } ; This works fine, the bullets can move and do collision detection, all while having their data in one place. Except when a bullet "dies" Then you have to clear a slot, and pack all the bullets towards the beginning of the array. Is this a good approach to handling lots of low poly objects? How else would you do it?

    Read the article

  • Splitting a tetris game apart - where to put time-management?

    - by nightcracker
    I am creating a tetris game in C++ & SDL, and I'm trying to do it "good" by making it object-oriented and keeping scopes small. So far I have the following structure: A main with some lowlevel SDL set up and handling input A game class that keeps track of score and provides the interface for main (move block down, etc) A map class that keeps track of the current game field, which blocks are where. Used by the game class. A block class that consists of the current falling block, used by game. A renderer class abstracting low level SDL to a format where you render "tetris blocks". Used by map and block. Now I have a though time where to place the time-management of this game. For example, where should be decided when a block bumps the bottom of the screen how long it takes the current block locks in place and a new block spawns? I also have an other unrelated question, is there some place where you can find some standard data on tetris like standard score tables, rulesets, timings, etc?

    Read the article

  • Box2D blocky map. Body, Fixtures a huge map and performance

    - by Solom
    Right now I'm still in the planning phase of a my very first game. I'm creating a "Minecraft"-like game in 2D that features blocks that can be destroyed as well as players moving around the map. For creating the map I chose a 2D-Array of Integers that represent the Block ID. For testing purposes I created a huge map (16348 * 256) and in my prototype that didn't use Box2D everything worked like a charm. I only rendered those blocks that where within the bounds of my camera and got 60 fps straight. The problem started when I decided to use an existing physics-solution rather than implementing my own one. What I had was basically simple hitboxes around the blocks and then I had to manually check if the player collided with any of those in his neighborhood. For more advanced physics as well as the collision detection I want to switch over to Box2D. The problem I have right now is ... how to go about the bodies? I mean, the blocks are of a static bodytype. They don't move on their own, they just are there to be collided with. But as far as I can see it, every block needs his own body with a rectangular fixture attached to it, so as to be destroyable. But for a huge map such as mine, this turns out to be a real performance bottle-neck. (In fact even a rather small map [compared to the other] of 1024*256 is unplayable.) I mean I create thousands of thousands of blocks. Even if I just render those that are in my immediate neighborhood there are hundreds of them and (at least with the debugRenderer) I drop to 1 fps really quickly (on my own "monster machine"). I thought about strategies like creating just one body, attaching multiple fixtures and only if a fixture got hit, separate it from the body, create a new one and destroy it, but this didn't turn out quite as successful as hoped. (In fact the core just dumps. Ah hello C! I really missed you :X) Here is the code: public class Box2DGameScreen implements Screen { private World world; private Box2DDebugRenderer debugRenderer; private OrthographicCamera camera; private final float TIMESTEP = 1 / 60f; // 1/60 of a second -> 1 frame per second private final int VELOCITYITERATIONS = 8; private final int POSITIONITERATIONS = 3; private Map map; private BodyDef blockBodyDef; private FixtureDef blockFixtureDef; private BodyDef groundDef; private Body ground; private PolygonShape rectangleShape; @Override public void show() { world = new World(new Vector2(0, -9.81f), true); debugRenderer = new Box2DDebugRenderer(); camera = new OrthographicCamera(); // Pixel:Meter = 16:1 // Body definition BodyDef ballDef = new BodyDef(); ballDef.type = BodyDef.BodyType.DynamicBody; ballDef.position.set(0, 1); // Fixture definition FixtureDef ballFixtureDef = new FixtureDef(); ballFixtureDef.shape = new CircleShape(); ballFixtureDef.shape.setRadius(.5f); // 0,5 meter ballFixtureDef.restitution = 0.75f; // between 0 (not jumping up at all) and 1 (jumping up the same amount as it fell down) ballFixtureDef.density = 2.5f; // kg / m² ballFixtureDef.friction = 0.25f; // between 0 (sliding like ice) and 1 (not sliding) // world.createBody(ballDef).createFixture(ballFixtureDef); groundDef = new BodyDef(); groundDef.type = BodyDef.BodyType.StaticBody; groundDef.position.set(0, 0); ground = world.createBody(groundDef); this.map = new Map(20, 20); rectangleShape = new PolygonShape(); // rectangleShape.setAsBox(1, 1); blockFixtureDef = new FixtureDef(); // blockFixtureDef.shape = rectangleShape; blockFixtureDef.restitution = 0.1f; blockFixtureDef.density = 10f; blockFixtureDef.friction = 0.9f; } @Override public void render(float delta) { Gdx.gl.glClearColor(1, 1, 1, 1); Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT); debugRenderer.render(world, camera.combined); drawMap(); world.step(TIMESTEP, VELOCITYITERATIONS, POSITIONITERATIONS); } private void drawMap() { for(int a = 0; a < map.getHeight(); a++) { /* if(camera.position.y - (camera.viewportHeight/2) > a) continue; if(camera.position.y - (camera.viewportHeight/2) < a) break; */ for(int b = 0; b < map.getWidth(); b++) { /* if(camera.position.x - (camera.viewportWidth/2) > b) continue; if(camera.position.x - (camera.viewportWidth/2) < b) break; */ /* blockBodyDef = new BodyDef(); blockBodyDef.type = BodyDef.BodyType.StaticBody; blockBodyDef.position.set(b, a); world.createBody(blockBodyDef).createFixture(blockFixtureDef); */ PolygonShape rectangleShape = new PolygonShape(); rectangleShape.setAsBox(1, 1, new Vector2(b, a), 0); blockFixtureDef.shape = rectangleShape; ground.createFixture(blockFixtureDef); rectangleShape.dispose(); } } } @Override public void resize(int width, int height) { camera.viewportWidth = width / 16; camera.viewportHeight = height / 16; camera.update(); } @Override public void hide() { dispose(); } @Override public void pause() { } @Override public void resume() { } @Override public void dispose() { world.dispose(); debugRenderer.dispose(); } } As you can see I'm facing multiple problems here. I'm not quite sure how to check for the bounds but also if the map is bigger than 24*24 like 1024*256 Java just crashes -.-. And with 24*24 I get like 9 fps. So I'm doing something really terrible here, it seems and I assume that there most be a (much more performant) way, even with Box2D's awesome physics. Any other ideas? Thanks in advance!

    Read the article

  • How can i get almost pixel perfect collision detection in a multiplayer game?

    - by Freddy
    I'm currently working on a multiplayer game for iPhone. The problem i have, as with all multiplayer games, is that the other user will always see everything at a non-constant delay. The game I'm making need to have a almost pixel perfect collision detection, but 1 or 2 pixels off is not that big of a deal. How can I possibly get this working? I guess I could just set local player to also be at X ms delay. However this will probably just be worse and feel sloppy when the user input. I know this problem is probably something network programmers deal with everyday and I would be glad if someone could give me a possible solution for this.

    Read the article

  • Need to make animation whereby the character shatters into a bunch of pieces

    - by theprojectabot
    I would like to take a 3d character model, cut out a bunch of shapes (or a bunch of triangles in the shape of the pieces I want) and then have the pieces separate from each other at the beginning of the animation and fall apart with gravity so it looks like the model is falling apart in shattered pieces. Is there a way to run a script on a mesh, cut out these pieces, instantiate all of them as separate models and then run gravity on them during the simulation?

    Read the article

  • Confusion on HLSL Samplers. Can I Set Samplers Inside Functions?

    - by Kyle Connors
    I'm trying to create a system where I can instance a quad to the screen, however I've run into a problem. Like I said, I'm trying to instance the quad, so I'm trying to use the same geometry several times, and I'm trying to do it in one draw call. The issue is, I want some quads to use different textures, but I can't figure out how to get the data into a sampler so I can use it in the pixel shader. I figured that since we can simply pass in the 4 bytes of our IDirect3DTexture9* to set the global texture, I can do so when passing in my dynamic buffer. (Which also stores each objects world matrix and UV data) Now that I'm sending the data, I can't figure how to get it into the sampler, and I really want to assume that it's simply not possible. Is there any way I could achieve this?

    Read the article

  • How to solve problems with movement in simple tile based multiplayer game?

    - by Murlo
    I'm making a simple tile based 2D multiplayer game in JavaScript using socket.io where you can move one tile every 200 ms. The two solutions I've tried are as follows: The client sends "walk one tile north" every 200 ms. Problem: People can easily hack the client to send the action more often. The client sends "walking north" and "stopped walking". Problem: Sometimes the player moves extra steps when "stopped walking" doesn't arrive in time. Do you know a way around these problems or is there a better way to do it? EDIT: Regarding the first solution I've tried adding validation on the server to check if it has been 200 ms since last movement. The problem is that latency still encourages people just to spam the action as much as possible, giving them an unfair advantage.

    Read the article

  • Comparison between a value with static type Array and a possibly unrelated type Class

    - by Kaoru
    I got this error: Comparison between a value with static type Array and a possibly unrelated type Class. After i modify the class to many classes (before that, everything is on 1 class (all of the functions)), but after i move everything to many classes (all the functions is not on 1 class), that error appear. How to solve this? I am using AS3 and as3isolib Library. Here is the code after i modify the function: if (Constant.dude.y < Constant._numY) { if (Constant.dude.sprites != marioBackClass) { Constant.dude.sprites = [marioBackClass]; Constant.dudeDir = "Up"; } } Here is the code before i change the function to many classes: if (dude.y < ._numY) { if (dude.sprites.toString() != marioBackClass.toString()) { dude.sprites = [marioBackClass]; dudeDir = "Up"; } }

    Read the article

  • Draw Bug 2D player Camera

    - by RedShft
    I have just implemented a 2D player camera for my game, everything works properly except the player on the screen jitters when it moves between tiles. What I mean by jitter, is that if the player is moving the camera updates the tileset to be drawn and if the player steps to the right, the camera snaps that way. The movement is not smooth. I'm guessing this is occurring because of how I implemented the function to calculate the current viewable area or how my draw function works. I'm not entirely sure how to fix this. This camera system was entirely of my own creation and a first attempt at that, so it's very possible this is not a great way of doing things. My camera class, pulls information from the current tileset and calculates the viewable area. Right now I am targettng a resolution of 800 by 600. So I try to fit the appropriate amount of tiles for that resolution. My camera class, after calculating the current viewable tileset relative to the players location, returns a slice of the original tileset to be drawn. This tileset slice is updated every frame according to the players position. This slice is then passed to the map class, which draws the tile on screen. //Map Draw Function //This draw function currently matches the GID of the tile to it's location on the //PNG file of the tileset and then draws this portion on the screen void Draw(SDL_Surface* background, int[] _tileSet) { enforce( tilesetImage != null, "Tileset is null!"); enforce( background != null, "BackGround is null!"); int i = 0; int j = 0; SDL_Rect DestR, SrcR; SrcR.x = 0; SrcR.y = 0; SrcR.h = 32; SrcR.w = 32; foreach(tile; _tileSet) { //This code is matching the current tiles ID to the tileset image SrcR.x = cast(short)(tileWidth * (tile >= 11 ? (tile - ((tile / 10) * 10) - 1) : tile - 1)); SrcR.y = cast(short)(tileHeight * (tile > 10 ? (tile / 10) : 0)); //Applying the tile to the surface SDL_BlitSurface( tilesetImage, &SrcR, background, &DestR ); //this keeps track of what column/row we are on i++; if ( i == mapWidth ) { i = 0; j++; } DestR.x = cast(short)(i * tileWidth); DestR.y = cast(short)(j * tileHeight); } } //Camera Class class Camera { private: //A rectangle representing the view area SDL_Rect viewArea; //In number of tiles int viewAreaWidth; int viewAreaHeight; //This is the x and y coordinate of the camera in MAP SPACE IN PIXELS vect2 cameraCoordinates; //The player location in map space IN PIXELS vect2 playerLocation; //This is the players location in screen space; vect2 playerScreenLoc; int playerTileCol; int playerTileRow; int cameraTileCol; int cameraTileRow; //The map is stored in a single array with the tile ids //this corresponds to the index of the starting and ending tile int cameraStartTile, cameraEndTile; //This is a slice of the current tile set int[] tileSetCopy; int mapWidth; int mapHeight; int tileWidth; int tileHeight; public: this() { this.viewAreaWidth = 25; this.viewAreaHeight = 19; this.cameraCoordinates = vect2(0, 0); this.playerLocation = vect2(0, 0); this.viewArea = SDL_Rect (0, 0, 0, 0); this.tileWidth = 32; this.tileHeight = 32; } void Init(vect2 playerPosition, ref int[] tileSet, int mapWidth, int mapHeight ) { playerLocation = playerPosition; this.mapWidth = mapWidth; this.mapHeight = mapHeight; CalculateCurrentCameraPosition( tileSet, playerPosition ); //writeln( "Tile Set Copy: ", tileSetCopy ); //writeln( "Orginal Tile Set: ", tileSet ); } void CalculateCurrentCameraPosition( ref int[] tileSet, vect2 playerPosition ) { playerLocation = playerPosition; playerTileCol = cast(int)((playerLocation.x / tileWidth) + 1); playerTileRow = cast(int)((playerLocation.y / tileHeight) + 1); //writeln( "Player Tile (Column, Row): ","(", playerTileCol, ", ", playerTileRow, ")"); cameraTileCol = playerTileCol - (viewAreaWidth / 2); cameraTileRow = playerTileRow - (viewAreaHeight / 2); CameraMapBoundsCheck(); //writeln( "Camera Tile Start (Column, Row): ","(", cameraTileCol, ", ", cameraTileRow, ")"); cameraStartTile = ( (cameraTileRow - 1) * mapWidth ) + cameraTileCol - 1; //writeln( "Camera Start Tile: ", cameraStartTile ); cameraEndTile = cameraStartTile + ( viewAreaWidth * viewAreaHeight ) * 2; //writeln( "Camera End Tile: ", cameraEndTile ); tileSetCopy = tileSet[cameraStartTile..cameraEndTile]; } vect2 CalculatePlayerScreenLocation() { cameraCoordinates.x = cast(float)(cameraTileCol * tileWidth); cameraCoordinates.y = cast(float)(cameraTileRow * tileHeight); playerScreenLoc = playerLocation - cameraCoordinates + vect2(32, 32);; //writeln( "Camera Coordinates: ", cameraCoordinates ); //writeln( "Player Location (Map Space): ", playerLocation ); //writeln( "Player Location (Screen Space): ", playerScreenLoc ); return playerScreenLoc; } void CameraMapBoundsCheck() { if( cameraTileCol < 1 ) cameraTileCol = 1; if( cameraTileRow < 1 ) cameraTileRow = 1; if( cameraTileCol + 24 > mapWidth ) cameraTileCol = mapWidth - 24; if( cameraTileRow + 19 > mapHeight ) cameraTileRow = mapHeight - 19; } ref int[] GetTileSet() { return tileSetCopy; } int GetViewWidth() { return viewAreaWidth; } }

    Read the article

  • How do i approach this collision model?

    - by PeeS
    this is the game level prototype i have already implemented. It has few objects per room to allow me to finally add some collision detection/response code into it. VIDEO As you can probably see, every object inside has it's own AABB, even the room itself has AABB. So a player is like 'inside the Room AABB'. My player will be exactly inside the room, so he would have to collide correctly with those AABBs, so that when he hits any of those objects inside he get's a proper collision response from those AABB's. Now i would like to hear from you what kind of collision approach should i choose in here? How do i approach this kind of stuff: AABB to AABB collision detection then when this is positive go with AABB - Tri to find proper plane normal and calculate response ? AABB to AABB then when positive go with AABB - AABB Side check to find proper proper plane normal and calculate response? Anything else? How do you do this ? Many thanks.

    Read the article

  • How to choose how to store data?

    - by Eldros
    Give a man a fish and you feed him for a day. Teach a man to fish and you feed him for a lifetime. - Chinese Proverb I could ask what kind of data storage I should use for my actual project, but I want to learn to fish, so I don't need to ask for a fish each time I begin a new project. So, until I used two methods to store data on my non-game project: XML files, and relational databases. I know that there is also other kind of database, of the NoSQL kind. However I wouldn't know if there is more choice available to me, or how to choose in the first place, aside arbitrary picking one. So the question is the following: How should I choose the kind of data storage for a game project? And I would be interested on the following criterion when choosing: The size of the project. The platform targeted by the game. The complexity of the data structure. Added Portability of data amongst many project. Added How often should the data be accessed Added Multiple type of data for a same application Any other point you think is of interest when deciding what to use. EDIT I know about Would it be better to use XML/JSON/Text or a database to store game content?, but thought it didn't address exactly my point. Now if I am wrong, I would gladely be shown the error in my ways.

    Read the article

  • CCSpriteHole in cocos2d 2.0?

    - by rakkarage
    i was using this cocos2d class CCSpriteHole in cocos2d 1.0 fine... http://jpsarda.tumblr.com/post/15779708304/new-cocos2d-iphone-extensions-a-progress-bar-and-a i am trying to convert it to cocos2d 2.0... i got it to compile by changing glVertexPointer to glVertexAttribPointer like in the 2.0 version of CCSpriteScale9 here http://jpsarda.tumblr.com/post/9162433577/scale9grid-for-cocos2d and changing contentSizeInPixels_ to contentSize_... -(id) init { if( (self=[super init]) ) { opacityModifyRGB_ = YES; opacity_ = 255; color_ = colorUnmodified_ = ccWHITE; capSize=capSizeInPixels=CGSizeZero; //Not used blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; // update texture (calls updateBlendFunc) [self setTexture:nil]; // default transform anchor anchorPoint_ = ccp(0.5f, 0.5f); vertexDataCount=24; vertexData = (ccV2F_C4F_T2F*) malloc(vertexDataCount * sizeof(ccV2F_C4F_T2F)); [self setTextureRectInPixels:CGRectZero untrimmedSize:CGSizeZero]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture rect:(CGRect)rect { NSAssert(texture!=nil, @"Invalid texture for sprite"); // IMPORTANT: [self init] and not [super init]; if( (self = [self init]) ) { [self setTexture:texture]; [self setTextureRect:rect]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture { NSAssert(texture!=nil, @"Invalid texture for sprite"); CGRect rect = CGRectZero; rect.size = texture.contentSize; return [self initWithTexture:texture rect:rect]; } -(id) initWithFile:(NSString*)filename { NSAssert(filename!=nil, @"Invalid filename for sprite"); CCTexture2D *texture = [[CCTextureCache sharedTextureCache] addImage: filename]; if( texture ) return [self initWithTexture:texture]; return nil; } +(id)spriteWithFile:(NSString*)f { return [[self alloc] initWithFile:f]; } - (void) dealloc { if (vertexData) free(vertexData); } -(void) updateColor { ccColor4F color4; color4.r=(float)color_.r/255.0f; color4.g=(float)color_.g/255.0f; color4.b=(float)color_.b/255.0f; color4.a=(float)opacity_/255.0f; for (int i=0; i<vertexDataCount; i++) { vertexData[i].colors=color4; } } -(void)updateTextureCoords:(CGRect)rect { CCTexture2D *tex = texture_; if(!tex) return; float atlasWidth = (float)tex.pixelsWide; float atlasHeight = (float)tex.pixelsHigh; float left,right,top,bottom; left = rect.origin.x/atlasWidth; right = left + rect.size.width/atlasWidth; top = rect.origin.y/atlasHeight; bottom = top + rect.size.height/atlasHeight; // // |/|/|/| // CGSize capTexCoordsSize=CGSizeMake(capSizeInPixels.width/atlasWidth, capSizeInPixels.height/atlasHeight); // From left to right //Top band // Left vertexData[0].texCoords=(ccTex2F){left,top}; vertexData[1].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[2].texCoords=(ccTex2F){left+capTexCoordsSize.width,top}; vertexData[3].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[4].texCoords=(ccTex2F){right-capTexCoordsSize.width,top}; vertexData[5].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[6].texCoords=(ccTex2F){right,top}; vertexData[7].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Center band // Left vertexData[8].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[9].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[10].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[11].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[12].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[13].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[14].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; vertexData[15].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Bottom band //Left vertexData[16].texCoords=(ccTex2F){left,bottom}; vertexData[17].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[18].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom}; vertexData[19].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Center vertexData[20].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom}; vertexData[21].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Right vertexData[22].texCoords=(ccTex2F){right,bottom}; vertexData[23].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; } -(void) updateVertices { float left=0; //-spriteSizeInPixels.width*0.5f; float right=left+contentSize_.width; float bottom=0; //-spriteSizeInPixels.height*0.5f; float top=bottom+contentSize_.height; float holeLeft=holeRect.origin.x*CC_CONTENT_SCALE_FACTOR(); float holeRight=holeLeft+holeRect.size.width*CC_CONTENT_SCALE_FACTOR(); float holeBottom=holeRect.origin.y*CC_CONTENT_SCALE_FACTOR(); float holeTop=holeBottom+holeRect.size.height*CC_CONTENT_SCALE_FACTOR(); // // |/|/|/| // // From left to right //Top band // Left vertexData[0].vertices=(ccVertex2F){left,top}; vertexData[1].vertices=(ccVertex2F){left,holeTop}; vertexData[2].vertices=(ccVertex2F){holeLeft,top}; vertexData[3].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[4].vertices=(ccVertex2F){holeRight,top}; vertexData[5].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[6].vertices=(ccVertex2F){right,top}; vertexData[7].vertices=(ccVertex2F){right,holeTop}; //Center band // Left vertexData[8].vertices=(ccVertex2F){left,holeBottom}; vertexData[9].vertices=(ccVertex2F){left,holeTop}; vertexData[10].vertices=(ccVertex2F){holeLeft,holeBottom}; vertexData[11].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[12].vertices=(ccVertex2F){holeRight,holeBottom}; vertexData[13].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[14].vertices=(ccVertex2F){right,holeBottom}; vertexData[15].vertices=(ccVertex2F){right,holeTop}; //Bottom band //Left vertexData[16].vertices=(ccVertex2F){left,bottom}; vertexData[17].vertices=(ccVertex2F){left,holeBottom}; vertexData[18].vertices=(ccVertex2F){holeLeft,bottom}; vertexData[19].vertices=(ccVertex2F){holeLeft,holeBottom}; // Center vertexData[20].vertices=(ccVertex2F){holeRight,bottom}; vertexData[21].vertices=(ccVertex2F){holeRight,holeBottom}; // Right vertexData[22].vertices=(ccVertex2F){right,bottom}; vertexData[23].vertices=(ccVertex2F){right,holeBottom}; } -(void) setHole:(CGRect)r inRect:(CGRect)totalSurface { holeRect=r; self.contentSize=totalSurface.size; holeRect.origin=ccpSub(holeRect.origin,totalSurface.origin); CGPoint holeCenter=ccp(holeRect.origin.x+holeRect.size.width*0.5f,holeRect.origin.y+holeRect.size.height*0.5f); self.anchorPoint=ccp(holeCenter.x/contentSize_.width,holeCenter.y/contentSize_.height); //[self updateTextureCoords:rectInPixels_]; [self updateVertices]; [self updateColor]; } -(void) draw { BOOL newBlend = NO; if( blendFunc_.src != CC_BLEND_SRC || blendFunc_.dst != CC_BLEND_DST ) { newBlend = YES; glBlendFunc( blendFunc_.src, blendFunc_.dst ); } glBindTexture(GL_TEXTURE_2D, [texture_ name]); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); if( newBlend ) glBlendFunc(CC_BLEND_SRC, CC_BLEND_DST); } -(void)setTextureRectInPixels:(CGRect)rect untrimmedSize:(CGSize)untrimmedSize { rectInPixels_ = rect; rect_ = CC_RECT_PIXELS_TO_POINTS( rect ); //[self setContentSizeInPixels:untrimmedSize]; [self updateTextureCoords:rectInPixels_]; } -(void)setTextureRect:(CGRect)rect { CGRect rectInPixels = CC_RECT_POINTS_TO_PIXELS( rect ); [self setTextureRectInPixels:rectInPixels untrimmedSize:rectInPixels.size]; } // // RGBA protocol // #pragma mark CCSpriteHole - RGBA protocol -(GLubyte) opacity { return opacity_; } -(void) setOpacity:(GLubyte) anOpacity { opacity_ = anOpacity; // special opacity for premultiplied textures if( opacityModifyRGB_ ) [self setColor: (opacityModifyRGB_ ? colorUnmodified_ : color_ )]; [self updateColor]; } - (ccColor3B) color { if(opacityModifyRGB_){ return colorUnmodified_; } return color_; } -(void) setColor:(ccColor3B)color3 { color_ = colorUnmodified_ = color3; if( opacityModifyRGB_ ){ color_.r = color3.r * opacity_/255; color_.g = color3.g * opacity_/255; color_.b = color3.b * opacity_/255; } [self updateColor]; } -(void) setOpacityModifyRGB:(BOOL)modify { ccColor3B oldColor = self.color; opacityModifyRGB_ = modify; self.color = oldColor; } -(BOOL) doesOpacityModifyRGB { return opacityModifyRGB_; } #pragma mark CCSpriteHole - CocosNodeTexture protocol -(void) updateBlendFunc { if( !texture_ || ! [texture_ hasPremultipliedAlpha] ) { blendFunc_.src = GL_SRC_ALPHA; blendFunc_.dst = GL_ONE_MINUS_SRC_ALPHA; [self setOpacityModifyRGB:NO]; } else { blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; [self setOpacityModifyRGB:YES]; } } -(void) setTexture:(CCTexture2D*)texture { // accept texture==nil as argument NSAssert( !texture || [texture isKindOfClass:[CCTexture2D class]], @"setTexture expects a CCTexture2D. Invalid argument"); texture_ = texture; [self updateBlendFunc]; } -(CCTexture2D*) texture { return texture_; } @end but now positioning and scaling seem to not work? and it starts in the wrong position... but changing the opacity still works. so i was wondering if anyone can see why my 2.0 version is not working? or if maybe there is a better way to do a sprite hole with cocos2d/opengl 2.0? shaders? thanks

    Read the article

  • Deferred contexts and inheriting state from the immediate context

    - by dreijer
    I took my first stab at using deferred contexts in DirectX 11 today. Basically, I created my deferred context using CreateDeferredContext() and then drew a simple triangle strip with it. Early on in my test application, I call OMSetRenderTargets() on the immediate context in order to render to the swap chain's back buffer. Now, after having read the documentation on MSDN about deferred contexts, I assumed that calling ExecuteCommandList() on the immediate context would execute all of the deferred commands as "an extension" to the commands that had already been executed on the immediate context, i.e. the triangle strip I rendered in the deferred context would be rendered to the swap chain's back buffer. That didn't seem to be the case, however. Instead, I had to manually pull out the immediate context's render target (using OMGetRenderTargets()) and then set it on the deferred context with OMSetRenderTargets(). Am I doing something wrong or is that the way deferred contexts work?

    Read the article

  • Expiring timed actions a good idea?

    - by Bart van Heukelom
    We have an online game where players sometimes have to wait a while (say 30 minutes) before a process they intiated completes. This encourages them to come back later. An example of this is growing crops in Farmville or basically any action in the Sims Play4Free. Now, however, there is the idea to let these processes expire, so if the player doesn't 'reap' them in time (e.g. within 4 hours) they are aborted. I'm a bit sceptical about this. How will this make players come back more often? Is not the reward of reaping the process enough for that? Can we expect players to fit their daily schedule around our game, maybe even set the alarm clock at night? Won't this just cause players to give up on starting these processes in the first place? I realise this may be too subjective for this site, so I'll end with a concrete question: Do (m)any other online free-to-play games employ this technique?

    Read the article

  • Efficient way to render tile-based map in Java

    - by Lucius
    Some time ago I posted here because I was having some memory issues with a game I'm working on. That has been pretty much solved thanks to some suggestions here, so I decided to come back with another problem I'm having. Basically, I feel that too much of the CPU is being used when rendering the map. I have a Core i5-2500 processor and when running the game, the CPU usage is about 35% - and I can't accept that that's just how it has to be. This is how I'm going about rendering the map: I have the X and Y coordinates of the player, so I'm not drawing the whole map, just the visible portion of it; The number of visible tiles on screen varies according to the resolution chosen by the player (the CPU usage is 35% here when playing at a resolution of 1440x900); If the tile is "empty", I just skip drawing it (this didn't visibly lower the CPU usage, but reduced the drawing time in about 20ms); The map is composed of 5 layers - for more details; The tiles are 32x32 pixels; And just to be on the safe side, I'll post the code for drawing the game here, although it's as messy and unreadable as it can be T_T (I'll try to make it a little readable) private void drawGame(Graphics2D g2d){ //Width and Height of the visible portion of the map (not of the screen) int visionWidht = visibleCols * TILE_SIZE; int visionHeight = visibleRows * TILE_SIZE; //Since the map can be smaller than the screen, I center it just to be sure int xAdjust = (getWidth() - visionWidht) / 2; int yAdjust = (getHeight() - visionHeight) / 2; //This "deducedX" thing is to move the map a few pixels horizontally, since the player moves by pixels and not full tiles int playerDrawX = listOfCharacters.get(0).getX(); int deducedX = 0; if (listOfCharacters.get(0).currentCol() - visibleCols / 2 >= 0) { playerDrawX = visibleCols / 2 * TILE_SIZE; map_draw_col = listOfCharacters.get(0).currentCol() - visibleCols / 2; deducedX = listOfCharacters.get(0).getXCol(); } //"deducedY" is the same deal as "deducedX", but vertically int playerDrawY = listOfCharacters.get(0).getY(); int deducedY = 0; if (listOfCharacters.get(0).currentRow() - visibleRows / 2 >= 0) { playerDrawY = visibleRows / 2 * TILE_SIZE; map_draw_row = listOfCharacters.get(0).currentRow() - visibleRows / 2; deducedY = listOfCharacters.get(0).getYRow(); } int max_cols = visibleCols + map_draw_col; if (max_cols >= map.getCols()) { max_cols = map.getCols() - 1; deducedX = 0; map_draw_col = max_cols - visibleCols + 1; playerDrawX = listOfCharacters.get(0).getX() - map_draw_col * TILE_SIZE; } int max_rows = visibleRows + map_draw_row; if (max_rows >= map.getRows()) { max_rows = map.getRows() - 1; deducedY = 0; map_draw_row = max_rows - visibleRows + 1; playerDrawY = listOfCharacters.get(0).getY() - map_draw_row * TILE_SIZE; } //map_draw_row and map_draw_col representes the coordinate of the upper left tile on the screen //iterate through all the tiles on screen and draw them - this is what consumes most of the CPU for (int col = map_draw_col; col <= max_cols; col++) { for (int row = map_draw_row; row <= max_rows; row++) { Tile[] tiles = map.getTiles(col, row); for(int layer = 0; layer < tiles.length; layer++){ Tile currentTile = tiles[layer]; boolean shouldDraw = true; //I only draw the tile if it exists and is not empty (id=-1) if(currentTile != null && currentTile.getId() >= 0){ //The layers above 1 can be draw behing or infront of the player according to where it's standing if(layer > 1 && currentTile.getId() >= 0){ if(playerBehind(col, row, layer, listOfCharacters.get(0))){ behinds.get(0).add(new int[]{col, row}); //the tiles that are infront of the player wont be draw right now shouldDraw = false; } } if(shouldDraw){ g2d.drawImage( tiles[layer].getImage(), (col-map_draw_col)*TILE_SIZE - deducedX + xAdjust, (row-map_draw_row)*TILE_SIZE - deducedY + yAdjust, null); } } } } } } There's some more code in this method but nothing relevant to this question. Basically, the biggest problem is that I iterate over around 5000 tiles (in this specific resolution) 60 times each second. I thought about rendering the visible portion of the map once and storing it into a BufferedImage and when the player moved move the whole image the same amount but to the opposite side and then drawn the tiles that appeared on the screen, but if I do it like that, I wont be able to have animated tiles (at least I think). That being said, any suggestions?

    Read the article

  • How to create games with scrolling?

    - by Chandan Shetty SP
    In games like city story or we farm how do they implement scrolling? To do scrolling using UIScrollView the EAGLView size has to be bigger. In those games EAGLView size look like more than 1024*1024. But there is limitation in viewport size in iphone devices(in 3G iphone max is 1024). I played those games in 3G iphone they are working fine. Any idea how they implemented their scrolling mechanism?

    Read the article

  • Rendering transparent textures in directX

    - by Vibhore Tanwer
    I am working with a directX application with WPF, I am facing a problem with videos and images that contains transparent pixels, I have to draw a color in background an then a video/image over it. What I expect is background color should be visible while playing video only non transparent pixels should be visible but what I get is a black background behind the video. I am using following settings on device to achieve alpha blending : device.RenderState.SourceBlend = Blend.SourceAlpha; device.RenderState.DestinationBlend = Blend.InvSourceAlpha; device.RenderState.AlphaBlendEnable = true; What am I missing here? What is the best approach to handle transparent videos? Any help will be of great value to me.

    Read the article

  • Box 2D Collision Question

    - by Farooq Arshed
    I am very new to Box 2D Physics world. I wanted to know how to collide 2 bodies when one is Dynamic and other is Kinematic. The whole Scenario is explained below: I have 3 balls in total. I want to balls to remain in their places and the third ball to be able to move. When the third ball hits the other two balls then they should move according to the speed and direction from which they were hit. My gravity of the world is 0 because I only want z-axis gravity. I would also like some one to point me towards some good tutorials regarding Box 2D basics which is language independent. I hope I have explained my scenario well. Thanks for the help in advance.

    Read the article

  • What causes the iOS OpenGLES driver to allocate extra memory?

    - by Martin Linklater
    I'm trying to optimize the memory usage of our iOS game and I'm puzzled about when/why the iOS GLES driver allocates extra memory at runtime... When I run our game through Instruments with the OpenGL ES Driver instrument the gartUsedBytes value can fluctuate quite wildly. We preload all our textures and build the buffer objects up front, so it's not the game engine requesting extra memory from GL. Currently we are manually requesting around 50MB of GL memory, yet the gartUsedBytes value sits at around 90MB most of the time, peaking at 125MB from time to time. It seems to be linked to what you are rendering that frame - our PVS only submits VBO's for visible meshes. Can anyone shed some light on what the driver is doing in the background ? Like I said earlier, all our game engine allocations are done on level load, so in theory there shouldn't be any fluctuation on GL memory usage while the level is running. Thanks.

    Read the article

  • Offset Forward vector of object based on Rotation

    - by Taylor
    I'm using the Bullet 3D physics engine in a iOS application running openGL ES 1.1 Currently I'm accepting info from the gyroscope to allow the user to "look around" a 3d world that follows a bouncing ball (note: it only takes in the yaw to look around 360 degrees). Im also accepting information from the accelerometer based on the tilt to push the ball. As of right now, to move forward, the user tilts the devise forward (using the accelerometer); to move to the right, the user tilts the devise to the right and so on. The forward vector is currently along it's local Z-axis. The problem is that I want to change the ball bounce based on where the user has changed the view. If I change the view, the ball bounces in the fixed direction. I want to change the forward facing direction so that when a user changes the view (say to the look at the right of the world, the user rotates the device), tilting the devise forward will result in a forward force in that direction. Basically, I want the forward vector to take the rotation into consideration. Sorry if I didn't explain the issue well enough, its kind of confusing to write down.

    Read the article

  • Good practices in screen states management?

    - by DevilWithin
    I wonder what are the best ways to organize different screens in a game? I am thinking of it like this: Inheriting a base State class, and overriding update and render methods, to handle the current screen. Then, under certain events a StateManager is able to activate another Screen State, and the game screen changes as only the current State is rendered. On the activation of a new screen, effects like fading could be added, and also the same goes for its deactivation. This way a flow of screen could be made. By saying when A ends, B starts, allowing for complex animations etc. Toughts?

    Read the article

< Previous Page | 538 539 540 541 542 543 544 545 546 547 548 549  | Next Page >