Search Results

Search found 33291 results on 1332 pages for 'development environment'.

Page 542/1332 | < Previous Page | 538 539 540 541 542 543 544 545 546 547 548 549  | Next Page >

  • Splitting a tetris game apart - where to put time-management?

    - by nightcracker
    I am creating a tetris game in C++ & SDL, and I'm trying to do it "good" by making it object-oriented and keeping scopes small. So far I have the following structure: A main with some lowlevel SDL set up and handling input A game class that keeps track of score and provides the interface for main (move block down, etc) A map class that keeps track of the current game field, which blocks are where. Used by the game class. A block class that consists of the current falling block, used by game. A renderer class abstracting low level SDL to a format where you render "tetris blocks". Used by map and block. Now I have a though time where to place the time-management of this game. For example, where should be decided when a block bumps the bottom of the screen how long it takes the current block locks in place and a new block spawns? I also have an other unrelated question, is there some place where you can find some standard data on tetris like standard score tables, rulesets, timings, etc?

    Read the article

  • Very slow direct3D texture sampling

    - by __dominic
    Hi, So I'm writing a small game using Direct3D 9 and I'm using multitexturing for the terrain. All I'm doing is sampling 3 textures and a blend map and getting the overall color from the three textures based on the color channels from the blend map. Anyway, I am getting a massive frame rate drop when I sample more than 1 texture, I'm going from 120+ fps to just under 50. This is the HLSL code responsible for the slow down: float3 ground = tex2D(GroundTex, multiTex).rgb; float3 stone = tex2D(StoneTex, multiTex).rgb; float3 grass = tex2D(GrassTex, multiTex).rgb; float3 blend = tex2D(BlendMapTex, blendMap).rgb; Am I doing it wrong ? If anyone has any info or tips about texture sampling or anything, that would be nice. Thanks.

    Read the article

  • How to choose how to store data?

    - by Eldros
    Give a man a fish and you feed him for a day. Teach a man to fish and you feed him for a lifetime. - Chinese Proverb I could ask what kind of data storage I should use for my actual project, but I want to learn to fish, so I don't need to ask for a fish each time I begin a new project. So, until I used two methods to store data on my non-game project: XML files, and relational databases. I know that there is also other kind of database, of the NoSQL kind. However I wouldn't know if there is more choice available to me, or how to choose in the first place, aside arbitrary picking one. So the question is the following: How should I choose the kind of data storage for a game project? And I would be interested on the following criterion when choosing: The size of the project. The platform targeted by the game. The complexity of the data structure. Added Portability of data amongst many project. Added How often should the data be accessed Added Multiple type of data for a same application Any other point you think is of interest when deciding what to use. EDIT I know about Would it be better to use XML/JSON/Text or a database to store game content?, but thought it didn't address exactly my point. Now if I am wrong, I would gladely be shown the error in my ways.

    Read the article

  • 15 Puzzle Shuffle Method Issues

    - by Codemiester
    I am making a 15 puzzle game in C# that allows the user to enter a custom row and column value up to a maximum of a 10 x 10 puzzle. Because of this I am having problems with the shuffle method. I want to make it so the puzzle is always solvable. By first creating a winning puzzle then shuffling the empty space. The problem is it is too inefficient to call every click event each time. I need a way to invoke the click event of a button adjacent to the empty space but not diagonal. I also use an invisible static button for the empty spot. The PuzzlePiece class inherits from Button. I am not too sure how to do this. I would appreciate any help. Thanks here is what I have: private void shuffleBoard() { //5 is just for test purposes for (int i = 0; i < 5; i++) { foreach (Control item in this.Controls) { if (item is PuzzlePiece) { ((PuzzlePiece)item).PerformClick(); } } } } void PuzzlePiece_Click(object sender, EventArgs e) { PuzzlePiece piece = (PuzzlePiece)sender; if (piece.Right == puzzleForm.emptyPiece.Left && piece.Top == puzzleForm.emptyPiece.Top) { movePiece(piece); } else if (piece.Left == puzzleForm.emptyPiece.Right && piece.Top == puzzleForm.emptyPiece.Top) { movePiece(piece); } else if (piece.Top == puzzleForm.emptyPiece.Bottom && piece.Left == puzzleForm.emptyPiece.Left) { movePiece(piece); } else if (piece.Bottom == puzzleForm.emptyPiece.Top && piece.Left == puzzleForm.emptyPiece.Left) { movePiece(piece); } }

    Read the article

  • A simple example of movement prediction

    - by Daniel
    I've seen lots of examples of theory about the reason for client-side prediction, but I'm having a hard time converting it into code. I was wondering if someone knows of some specific examples that share some of the code, or can share their knowledge to shed some light into my situation. I'm trying to run some tests to get a the movement going (smoothly) between multiple clients. I'm using mouse input to initiate movement. I'm using AS3 and C# on a local Player.IO server. Right now I'm trying to get the Client side working, as I'm only forwarding position info with the client. I have 2 timers, one is an onEnterFrame and the other is a 100ms Timer, and one on mouseClick listener. When I click anywhere with a mouse, I update my player class to give it a destination point On every enterFrame Event for the player, it moves towards the destination point At every 100ms it sends a message to the server with the position of where it should be in a 100ms. The distance traveled is calculated by taking the distance (in Pixels) that the player can travel in one second, and dividing it by the framerate for the onEnterFrame handler, and by the update frequency (1/0.100s) for the server update. For the other Players, the location is interpolated and animated on every frame based on the new location. Is this the right way of doing it?

    Read the article

  • Box 2D Collision Question

    - by Farooq Arshed
    I am very new to Box 2D Physics world. I wanted to know how to collide 2 bodies when one is Dynamic and other is Kinematic. The whole Scenario is explained below: I have 3 balls in total. I want to balls to remain in their places and the third ball to be able to move. When the third ball hits the other two balls then they should move according to the speed and direction from which they were hit. My gravity of the world is 0 because I only want z-axis gravity. I would also like some one to point me towards some good tutorials regarding Box 2D basics which is language independent. I hope I have explained my scenario well. Thanks for the help in advance.

    Read the article

  • Combining pathfinding with global AI objectives

    - by V_Programmer
    I'm making a turn-based strategy game using Java and LibGDX. Now I want to code the AI. I haven't written the AI code yet. I've simply designed it. The AI will have two components, one focused in tactics and resource management (create troops, determine who have strategical advantage, detect important objectives, etc) and a individual component, focused in assign the work to each unit, examine its possibilites and move the unit. Now I'm facing an important problem. The map where the action take place is a grid-based map. Each terrain has different movement cost. I read about pathfinding and I think A* is a very good option to determine a good route between two points. However, imagine I have an unit with movement = 5 (i.e, it can move 5 tiles of movement cost = 1). My tactical AI has found an objective at a distance d = 20 tiles (Manhattan distance) from my unit. My problem is the following: the unit won't be able to reach the objective in one turn. So the AI will have to store a list of position and execute them in various turns. I don't know how to solve this. PS. In my unit code, I have a list called "selectionMarks" which stores all the possible places where the unit can go in this turn. This places are calculed recursively using a "getSelectionMarks" function. Any help is appreciated :D

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Most suited technology for browser games?

    - by Tingle
    I was thinking about making a 2D MMO which I would in the long run support on various plattforms like desktop, mac, browser, android and ios. The server will be c++/linux based and the first client would go in the browser. So I have done some research and found that webgl and flash 11 support hardware accelerated rendering, I saw some other things like normal HTML5 painting. So my question is, which technology should I use for such a project? My main goal would be that the users have a hassle free experience using what there hardware can give them with hardware acceleration. And the client should work on the most basic out-of-the-box pc's that any casual pc or mac user has. And another criteria would be that it should be developer friendly. I've messed with webgl abit for example and that would require writing a engine from scratch - which is acceptable but not preferred. Also, in case of non-actionscript, which kind language is most prefered in terms of speed and flexability. I'm not to fond of javascript due to the garbage collector but have learned to work around it. Thank you for you time.

    Read the article

  • Working out of a vertex array for destrucible objects

    - by bobobobo
    I have diamond-shaped polygonal bullets. There are lots of them on the screen. I did not want to create a vertex array for each, so I packed them into a single vertex array and they're all drawn at once. | bullet1.xyz | bullet1.rgb | bullet2.xyz | bullet2.rgb This is great for performance.. there is struct Bullet { vector<Vector3f*> verts ; // pointers into the vertex buffer } ; This works fine, the bullets can move and do collision detection, all while having their data in one place. Except when a bullet "dies" Then you have to clear a slot, and pack all the bullets towards the beginning of the array. Is this a good approach to handling lots of low poly objects? How else would you do it?

    Read the article

  • Random Position between ranges.

    - by blakey87
    Does anyone have a good algorithm for generating a random y position for spawning a block, which takes into account a minimum and maximum height, allowing player to to jump on the block. Blocks will continually be spawned, so the player must always be able to jump onto the next block, bearing in mind the minimum position which would be the ground, and the maximum which would the players jump height bearing in mind the ceiling

    Read the article

  • Any learning/studying material for C/C++ that use game programming as learning context out there?

    - by mac
    As most of game programming is done - I read on this very site - in C/C++ I was wondering if there is any learning/studying material for C/C++ that would target specifically game programming. I am not looking for material about "developing games" or "software architecture for games", but rather for material that uses "game programming" as the CONTEXT for introducing and illustrating C/C++ features, idioms, programming techniques, etc... With a simile: think to the GOF book on design patterns. There, they used "developing a text-editor" as a context for introducing design patterns, but the book is most definitively not a book about "developing text-editors". Thanks in advance for your time and advice! PS: My background: I am a programmer with a solid experience in OO scripting languages and only some experience in C and Assembler (on AVR microcontrollers), so I am thinking to mid-to-advanced level material, rather than tutorials for beginners, although it might be interesting to take a look to the latter ones if nothing else is available.

    Read the article

  • How do you prevent inflation in a virtual economy?

    - by Tetrad
    With your typical MMORPG, players can usually farm the world for raw materials essentially forever. Monsters/mineral veins/etc are usually on some respawn timer so, other than time, there really isn't a good way to limit the amount of new currency entering the system. So that really only leaves money sinks to try to take money out of the system. What are some strategies to prevent inflation of the in-game currency?

    Read the article

  • Box2D platformer movement. Are joints a good idea?

    - by Romeo
    So i smashed my brains trying to make my character move. As i wanted later in the game to add explosions and bullets it wasn't a good idea to mess with the velocity and the forces/impulses didn't work as i expected so something stuck in my mind: Is it a good idea to put at his bottom a wheel(circle) which is invisible to the player that will do the movement by rotation? I will attach this to my main body with a revolute joint but i don't really know how to make the main body and wheel body to don't collide one with each other since funny things can happen. What is your oppinion?

    Read the article

  • Offset Forward vector of object based on Rotation

    - by Taylor
    I'm using the Bullet 3D physics engine in a iOS application running openGL ES 1.1 Currently I'm accepting info from the gyroscope to allow the user to "look around" a 3d world that follows a bouncing ball (note: it only takes in the yaw to look around 360 degrees). Im also accepting information from the accelerometer based on the tilt to push the ball. As of right now, to move forward, the user tilts the devise forward (using the accelerometer); to move to the right, the user tilts the devise to the right and so on. The forward vector is currently along it's local Z-axis. The problem is that I want to change the ball bounce based on where the user has changed the view. If I change the view, the ball bounces in the fixed direction. I want to change the forward facing direction so that when a user changes the view (say to the look at the right of the world, the user rotates the device), tilting the devise forward will result in a forward force in that direction. Basically, I want the forward vector to take the rotation into consideration. Sorry if I didn't explain the issue well enough, its kind of confusing to write down.

    Read the article

  • OpenGL loading functions error [on hold]

    - by Ghilliedrone
    I'm new to OpenGL, and I bought a book on it for beginners. I finished writing the sample code for making a context/window. I get an error on this line at the part PFNWGLCREATECONTEXTATTRIBSARBPROC, saying "Error: expected a ')'": typedef HGLRC(APIENTRYP PFNWGLCREATECONTEXTATTRIBSARBPROC)(HDC, HGLRC, const int*); Replacing it or adding a ")" makes it error, but the error disappears when I use the OpenGL headers included in the books CD, which are OpenGL 3.0. I would like a way to make this work with the newest gl.h/wglext.h and without libraries. Here's the rest of the class if it's needed: #include <ctime> #include <windows.h> #include <iostream> #include <gl\GL.h> #include <gl\wglext.h> #include "Example.h" #include "GLWindow.h" typedef HGLRC(APIENTRYP PFNWGLCREATECONTEXTATTRIBSARBPROC)(HDC, HGLRC, const int*); PFNWGLCREATECONTEXTATTRIBSARBPROC wglCreateContextAttribsARB = NULL; bool GLWindow::create(int width, int height, int bpp, bool fullscreen) { DWORD dwExStyle; //Window Extended Style DWORD dwStyle; //Window Style m_isFullscreen = fullscreen;//Store the fullscreen flag m_windowRect.left = 0L; m_windowRect.right = (long)width; m_windowRect.top = 0L; m_windowRect.bottom = (long)height;//Set bottom to height // fill out the window class structure m_windowClass.cbSize = sizeof(WNDCLASSEX); m_windowClass.style = CS_HREDRAW | CS_VREDRAW; m_windowClass.lpfnWndProc = GLWindow::StaticWndProc; //We set our static method as the event handler m_windowClass.cbClsExtra = 0; m_windowClass.cbWndExtra = 0; m_windowClass.hInstance = m_hinstance; m_windowClass.hIcon = LoadIcon(NULL, IDI_APPLICATION); // default icon m_windowClass.hCursor = LoadCursor(NULL, IDC_ARROW); // default arrow m_windowClass.hbrBackground = NULL; // don't need background m_windowClass.lpszMenuName = NULL; // no menu m_windowClass.lpszClassName = (LPCWSTR)"GLClass"; m_windowClass.hIconSm = LoadIcon(NULL, IDI_WINLOGO); // windows logo small icon if (!RegisterClassEx(&m_windowClass)) { MessageBox(NULL, (LPCWSTR)"Failed to register window class", NULL, MB_OK); return false; } if (m_isFullscreen)//If we are fullscreen, we need to change the display { DEVMODE dmScreenSettings; //Device mode memset(&dmScreenSettings, 0, sizeof(dmScreenSettings)); dmScreenSettings.dmSize = sizeof(dmScreenSettings); dmScreenSettings.dmPelsWidth = width; //Screen width dmScreenSettings.dmPelsHeight = height; //Screen height dmScreenSettings.dmBitsPerPel = bpp; //Bits per pixel dmScreenSettings.dmFields = DM_BITSPERPEL | DM_PELSWIDTH | DM_PELSHEIGHT; if (ChangeDisplaySettings(&dmScreenSettings, CDS_FULLSCREEN) != DISP_CHANGE_SUCCESSFUL) { MessageBox(NULL, (LPCWSTR)"Display mode failed", NULL, MB_OK); m_isFullscreen = false; } } if (m_isFullscreen) //Is it fullscreen? { dwExStyle = WS_EX_APPWINDOW; //Window Extended Style dwStyle = WS_POPUP; //Windows Style ShowCursor(false); //Hide mouse pointer } else { dwExStyle = WS_EX_APPWINDOW | WS_EX_WINDOWEDGE; //Window Exteneded Style dwStyle = WS_OVERLAPPEDWINDOW; //Windows Style } AdjustWindowRectEx(&m_windowRect, dwStyle, false, dwExStyle); //Adjust window to true requested size //Class registered, so now create window m_hwnd = CreateWindowEx(NULL, //Extended Style (LPCWSTR)"GLClass", //Class name (LPCWSTR)"Chapter 2", //App name dwStyle | WS_CLIPCHILDREN | WS_CLIPSIBLINGS, 0, 0, //x, y coordinates m_windowRect.right - m_windowRect.left, m_windowRect.bottom - m_windowRect.top, //Width and height NULL, //Handle to parent NULL, //Handle to menu m_hinstance, //Application instance this); //Pass a pointer to the GLWindow here //Check if window creation failed, hwnd would equal NULL if (!m_hwnd) { return 0; } m_hdc = GetDC(m_hwnd); ShowWindow(m_hwnd, SW_SHOW); UpdateWindow(m_hwnd); m_lastTime = GetTickCount() / 1000.0f; return true; } LRESULT CALLBACK GLWindow::StaticWndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { GLWindow* window = nullptr; //If this is the create message if (uMsg == WM_CREATE) { //Get the pointer we stored during create window = (GLWindow*)((LPCREATESTRUCT)lParam)->lpCreateParams; //Associate the window pointer with the hwnd for the other events to access SetWindowLongPtr(hWnd, GWL_USERDATA, (LONG_PTR)window); } else { //If this is not a creation event, then we should have stored a pointer to the window window = (GLWindow*)GetWindowLongPtr(hWnd, GWL_USERDATA); if (!window) { //Do the default event handling return DefWindowProc(hWnd, uMsg, wParam, lParam); } } //Call our window's member WndProc(allows us to access member variables) return window->WndProc(hWnd, uMsg, wParam, lParam); } LRESULT GLWindow::WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { switch (uMsg) { case WM_CREATE: { m_hdc = GetDC(hWnd); setupPixelFormat(); //Set the version that we want, in this case 3.0 int attribs[] = { WGL_CONTEXT_MAJOR_VERSION_ARB, 3, WGL_CONTEXT_MINOR_VERSION_ARB, 0, 0}; //Create temporary context so we can get a pointer to the function HGLRC tmpContext = wglCreateContext(m_hdc); //Make the context current wglMakeCurrent(m_hdc, tmpContext); //Get the function pointer wglCreateContextAttribsARB = (PFNWGLCREATECONTEXTATTRIBSARBPROC)wglGetProcAddress("wglCreateContextAttribsARB"); //If this is NULL then OpenGl 3.0 is not supported if (!wglCreateContextAttribsARB) { MessageBox(NULL, (LPCWSTR)"OpenGL 3.0 is not supported", (LPCWSTR)"An error occured", MB_ICONERROR | MB_OK); DestroyWindow(hWnd); return 0; } //Create an OpenGL 3.0 context using the new function m_hglrc = wglCreateContextAttribsARB(m_hdc, 0, attribs); //Delete the temporary context wglDeleteContext(tmpContext); //Make the GL3 context current wglMakeCurrent(m_hdc, m_hglrc); m_isRunning = true; } break; case WM_DESTROY: //Window destroy case WM_CLOSE: //Windows is closing wglMakeCurrent(m_hdc, NULL); wglDeleteContext(m_hglrc); m_isRunning = false; //Stop the main loop PostQuitMessage(0); break; case WM_SIZE: { int height = HIWORD(lParam); //Get height and width int width = LOWORD(lParam); getAttachedExample()->onResize(width, height); //Call the example's resize method } break; case WM_KEYDOWN: if (wParam == VK_ESCAPE) //If the escape key was pressed { DestroyWindow(m_hwnd); } break; default: break; } return DefWindowProc(hWnd, uMsg, wParam, lParam); } void GLWindow::processEvents() { MSG msg; //While there are messages in the queue, store them in msg while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { //Process the messages TranslateMessage(&msg); DispatchMessage(&msg); } } Here is the header: #pragma once #include <ctime> #include <windows.h> class Example;//Declare our example class class GLWindow { public: GLWindow(HINSTANCE hInstance); //default constructor bool create(int width, int height, int bpp, bool fullscreen); void destroy(); void processEvents(); void attachExample(Example* example); bool isRunning(); //Is the window running? void swapBuffers() { SwapBuffers(m_hdc); } static LRESULT CALLBACK StaticWndProc(HWND wnd, UINT msg, WPARAM wParam, LPARAM lParam); LRESULT CALLBACK WndProc(HWND wnd, UINT msg, WPARAM wParam, LPARAM lParam); float getElapsedSeconds(); private: Example* m_example; //A link to the example program bool m_isRunning; //Is the window still running? bool m_isFullscreen; HWND m_hwnd; //Window handle HGLRC m_hglrc; //Rendering context HDC m_hdc; //Device context RECT m_windowRect; //Window bounds HINSTANCE m_hinstance; //Application instance WNDCLASSEX m_windowClass; void setupPixelFormat(void); Example* getAttachedExample() { return m_example; } float m_lastTime; };

    Read the article

  • SDL 2.0: is there a library to create 2D particle effects rapidly?

    - by mm24
    I would like to create an light/explosion particle effect using some in built library. I am used to Cocos2D where there are specific classes that you can simply initialize in a certain position and producing a certain particle effect. Is there a way to do so in SDL 2.0 C++? I have found this tutorial but it seems to go for a "build it yoursefl" solution, which is ok but I do not want to re-invent the wheel if someone else has already built it.

    Read the article

  • Expiring timed actions a good idea?

    - by Bart van Heukelom
    We have an online game where players sometimes have to wait a while (say 30 minutes) before a process they intiated completes. This encourages them to come back later. An example of this is growing crops in Farmville or basically any action in the Sims Play4Free. Now, however, there is the idea to let these processes expire, so if the player doesn't 'reap' them in time (e.g. within 4 hours) they are aborted. I'm a bit sceptical about this. How will this make players come back more often? Is not the reward of reaping the process enough for that? Can we expect players to fit their daily schedule around our game, maybe even set the alarm clock at night? Won't this just cause players to give up on starting these processes in the first place? I realise this may be too subjective for this site, so I'll end with a concrete question: Do (m)any other online free-to-play games employ this technique?

    Read the article

  • Efficient way to render tile-based map in Java

    - by Lucius
    Some time ago I posted here because I was having some memory issues with a game I'm working on. That has been pretty much solved thanks to some suggestions here, so I decided to come back with another problem I'm having. Basically, I feel that too much of the CPU is being used when rendering the map. I have a Core i5-2500 processor and when running the game, the CPU usage is about 35% - and I can't accept that that's just how it has to be. This is how I'm going about rendering the map: I have the X and Y coordinates of the player, so I'm not drawing the whole map, just the visible portion of it; The number of visible tiles on screen varies according to the resolution chosen by the player (the CPU usage is 35% here when playing at a resolution of 1440x900); If the tile is "empty", I just skip drawing it (this didn't visibly lower the CPU usage, but reduced the drawing time in about 20ms); The map is composed of 5 layers - for more details; The tiles are 32x32 pixels; And just to be on the safe side, I'll post the code for drawing the game here, although it's as messy and unreadable as it can be T_T (I'll try to make it a little readable) private void drawGame(Graphics2D g2d){ //Width and Height of the visible portion of the map (not of the screen) int visionWidht = visibleCols * TILE_SIZE; int visionHeight = visibleRows * TILE_SIZE; //Since the map can be smaller than the screen, I center it just to be sure int xAdjust = (getWidth() - visionWidht) / 2; int yAdjust = (getHeight() - visionHeight) / 2; //This "deducedX" thing is to move the map a few pixels horizontally, since the player moves by pixels and not full tiles int playerDrawX = listOfCharacters.get(0).getX(); int deducedX = 0; if (listOfCharacters.get(0).currentCol() - visibleCols / 2 >= 0) { playerDrawX = visibleCols / 2 * TILE_SIZE; map_draw_col = listOfCharacters.get(0).currentCol() - visibleCols / 2; deducedX = listOfCharacters.get(0).getXCol(); } //"deducedY" is the same deal as "deducedX", but vertically int playerDrawY = listOfCharacters.get(0).getY(); int deducedY = 0; if (listOfCharacters.get(0).currentRow() - visibleRows / 2 >= 0) { playerDrawY = visibleRows / 2 * TILE_SIZE; map_draw_row = listOfCharacters.get(0).currentRow() - visibleRows / 2; deducedY = listOfCharacters.get(0).getYRow(); } int max_cols = visibleCols + map_draw_col; if (max_cols >= map.getCols()) { max_cols = map.getCols() - 1; deducedX = 0; map_draw_col = max_cols - visibleCols + 1; playerDrawX = listOfCharacters.get(0).getX() - map_draw_col * TILE_SIZE; } int max_rows = visibleRows + map_draw_row; if (max_rows >= map.getRows()) { max_rows = map.getRows() - 1; deducedY = 0; map_draw_row = max_rows - visibleRows + 1; playerDrawY = listOfCharacters.get(0).getY() - map_draw_row * TILE_SIZE; } //map_draw_row and map_draw_col representes the coordinate of the upper left tile on the screen //iterate through all the tiles on screen and draw them - this is what consumes most of the CPU for (int col = map_draw_col; col <= max_cols; col++) { for (int row = map_draw_row; row <= max_rows; row++) { Tile[] tiles = map.getTiles(col, row); for(int layer = 0; layer < tiles.length; layer++){ Tile currentTile = tiles[layer]; boolean shouldDraw = true; //I only draw the tile if it exists and is not empty (id=-1) if(currentTile != null && currentTile.getId() >= 0){ //The layers above 1 can be draw behing or infront of the player according to where it's standing if(layer > 1 && currentTile.getId() >= 0){ if(playerBehind(col, row, layer, listOfCharacters.get(0))){ behinds.get(0).add(new int[]{col, row}); //the tiles that are infront of the player wont be draw right now shouldDraw = false; } } if(shouldDraw){ g2d.drawImage( tiles[layer].getImage(), (col-map_draw_col)*TILE_SIZE - deducedX + xAdjust, (row-map_draw_row)*TILE_SIZE - deducedY + yAdjust, null); } } } } } } There's some more code in this method but nothing relevant to this question. Basically, the biggest problem is that I iterate over around 5000 tiles (in this specific resolution) 60 times each second. I thought about rendering the visible portion of the map once and storing it into a BufferedImage and when the player moved move the whole image the same amount but to the opposite side and then drawn the tiles that appeared on the screen, but if I do it like that, I wont be able to have animated tiles (at least I think). That being said, any suggestions?

    Read the article

  • Where have the Direct3D 11 tutorials on MSDN have gone?

    - by Cam Jackson
    I've had this tutorial bookmarked for ages. I've just decided to give DX11 a real go, so I've gone through that tutorial, but I can't find where the next one in the series is! There are no links from that page to either the next in the series, or back up to the table of contents that lists all of the tutorials. These are just companion tutorials to the samples that come with the SDK, but I find them very helpful. Searching MSDN from google and the MSDN Bing search box has turned up nothing, it's like they've removed all links to these tutorials, but the pages are still there if you have the URLs. Unfortunately, MSDN URLs are akin to youtube URLs, so I can't just guess the URL of the next tutorial. Anyone have any idea what happened to these tutorials, or how I can find the others?

    Read the article

  • Deferred contexts and inheriting state from the immediate context

    - by dreijer
    I took my first stab at using deferred contexts in DirectX 11 today. Basically, I created my deferred context using CreateDeferredContext() and then drew a simple triangle strip with it. Early on in my test application, I call OMSetRenderTargets() on the immediate context in order to render to the swap chain's back buffer. Now, after having read the documentation on MSDN about deferred contexts, I assumed that calling ExecuteCommandList() on the immediate context would execute all of the deferred commands as "an extension" to the commands that had already been executed on the immediate context, i.e. the triangle strip I rendered in the deferred context would be rendered to the swap chain's back buffer. That didn't seem to be the case, however. Instead, I had to manually pull out the immediate context's render target (using OMGetRenderTargets()) and then set it on the deferred context with OMSetRenderTargets(). Am I doing something wrong or is that the way deferred contexts work?

    Read the article

  • What causes the iOS OpenGLES driver to allocate extra memory?

    - by Martin Linklater
    I'm trying to optimize the memory usage of our iOS game and I'm puzzled about when/why the iOS GLES driver allocates extra memory at runtime... When I run our game through Instruments with the OpenGL ES Driver instrument the gartUsedBytes value can fluctuate quite wildly. We preload all our textures and build the buffer objects up front, so it's not the game engine requesting extra memory from GL. Currently we are manually requesting around 50MB of GL memory, yet the gartUsedBytes value sits at around 90MB most of the time, peaking at 125MB from time to time. It seems to be linked to what you are rendering that frame - our PVS only submits VBO's for visible meshes. Can anyone shed some light on what the driver is doing in the background ? Like I said earlier, all our game engine allocations are done on level load, so in theory there shouldn't be any fluctuation on GL memory usage while the level is running. Thanks.

    Read the article

  • I love video games and know I want to work in the sector but hate programming

    - by normyp
    I just hate how I'll put in 8-10 hours in and get little to nothing back. The return results for your efforts seem to be pathetically small the majority of the time and I don't find that rewarding enough for me to put in the time and effort to learn programming and make myself better. I've heard game design is fun and I think I'd love that but apparently you can only get into that really if you can program, is that true? I feel a bit lost because I'm doing a degree in Games Technology and am worried that I'm sending myself into a job I'll hate.

    Read the article

  • How to solve problems with movement in simple tile based multiplayer game?

    - by Murlo
    I'm making a simple tile based 2D multiplayer game in JavaScript using socket.io where you can move one tile every 200 ms. The two solutions I've tried are as follows: The client sends "walk one tile north" every 200 ms. Problem: People can easily hack the client to send the action more often. The client sends "walking north" and "stopped walking". Problem: Sometimes the player moves extra steps when "stopped walking" doesn't arrive in time. Do you know a way around these problems or is there a better way to do it? EDIT: Regarding the first solution I've tried adding validation on the server to check if it has been 200 ms since last movement. The problem is that latency still encourages people just to spam the action as much as possible, giving them an unfair advantage.

    Read the article

  • Get collision details from Rectangle.Intersects()

    - by Daniel Ribeiro
    I have a Breakout game in which, at some point, I detect the collision between the ball and the paddle with something like this: // Ball class rectangle.Intersects(paddle.Rectangle); Is there any way I can get the exact coordinates of the collision, or any details about it, with the current XNA API? I thought of doing some basic calculations, such as comparing the exact coordinates of each object on the moment of the collision. It would look something like this: // Ball class if((rectangle.X - paddle.Rectangle.X) < (paddle.Rectangle.Width / 2)) // Collision happened on the left side else // Collision happened on the right side But I'm not sure this is the correct way to do it. Do you guys have any tips on maybe an engine I might have to use to achieve that? Or even good coding practices using this method?

    Read the article

< Previous Page | 538 539 540 541 542 543 544 545 546 547 548 549  | Next Page >