Search Results

Search found 35343 results on 1414 pages for 'development tools'.

Page 546/1414 | < Previous Page | 542 543 544 545 546 547 548 549 550 551 552 553  | Next Page >

  • Object-Oriented OpenGL

    - by Sullivan
    I have been using OpenGL for a while and have read a large number of tutorials. Aside from the fact that a lot of them still use the fixed pipeline, they usually throw all the initialisation, state changes and drawing in one source file. This is fine for the limited scope of a tutorial, but I’m having a hard time working out how to scale it up to a full game. How do you split your usage of OpenGL across files? Conceptually, I can see the benefits of having, say, a rendering class that purely renders stuff to screen, but how would stuff like shaders and lights work? Should I have separate classes for things like lights and shaders?

    Read the article

  • Basics of drawing in 2d with OpenGL 3 shaders

    - by davidism
    I am new to OpenGL 3 and graphics programming, and want to create some basic 2d graphics. I have the following scenario of how I might go about drawing a basic (but general) 2d rectangle. I'm not sure if this is the correct way to think about it, or, if it is, how to implement it. In my head, here's how I imagine doing it: t = make_rectangle(width, height) build general VBO, centered at 0, 0 optionally: t.set_scale(2) optionally: t.set_angle(30) t.draw_at(x, y) calculates some sort of scale/rotate/translate matrix (or matrices), passes the VBO and the matrix to a shader program Something happens to clip the world to the view visible on screen. I'm really unclear on how 4 and 5 will work. The main problem is that all the tutorials I find either: use fixed function pipeline, are for 3d, or are unclear how to do something this "simple". Can someone provide me with either a better way to think of / do this, or some concrete code detailing performing the transformations in a shader and constructing and passing the data required for this shader transformation?

    Read the article

  • How do I draw video frames onto the screen permanently using XNA?

    - by izb
    I have an app that plays back a video and draws the video onto the screen at a moving position. When I run the app, the video moves around the screen as it plays. Here is my Draw method... protected override void Draw(GameTime gameTime) { Texture2D videoTexture = null; if (player.State != MediaState.Stopped) videoTexture = player.GetTexture(); if (videoTexture != null) { spriteBatch.Begin(); spriteBatch.Draw( videoTexture, new Rectangle(x++, 0, 400, 300), /* Where X is a class member */ Color.White); spriteBatch.End(); } base.Draw(gameTime); } The video moves horizontally acros the screen. This is not exactly as I expected since I have no lines of code that clear the screen. My question is why does it not leave a trail behind? Also, how would I make it leave a trail behind?

    Read the article

  • Finding shapes in 2D Array, then optimising

    - by assemblism
    I'm new so I can't do an image, but below is a diagram for a game I am working on, moving bricks into patterns, and I currently have my code checking for rotated instances of a "T" shape of any colour. The X and O blocks would be the same colour, and my last batch of code would find the "T" shape where the X's are, but what I wanted was more like the second diagram, with two "T"s Current result      Desired Result [X][O][O]                [1][1][1] [X][X][_]                [2][1][_] [X][O][_]                [2][2][_] [O][_][_]                [2][_][_] My code loops through x/y, marks blocks as used, rotates the shape, repeats, changes colour, repeats. I have started trying to fix this checking with great trepidation. The current idea is to: loop through the grid and make note of all pattern occurrences (NOT marking blocks as used), and putting these to an array loop through the grid again, this time noting which blocks are occupied by which patterns, and therefore which are occupied by multiple patterns. looping through the grid again, this time noting which patterns obstruct which patterns That much feels right... What do I do now? I think I would have to try various combinations of conflicting shapes, starting with those that obstruct the most other patterns first.How do I approach this one? use the rational that says I have 3 conflicting shapes occupying 8 blocks, and the shapes are 4 blocks each, therefore I can only have a maximum of two shapes. (I also intend to incorporate other shapes, and there will probably be score weighting which will need to be considered when going through the conflicting shapes, but that can be another day) I don't think it's a bin packing problem, but I'm not sure what to look for. Hope that makes sense, thanks for your help

    Read the article

  • Can I use PBOs for textures in iOS?

    - by Radu
    As far as I can see, there is no GL_PIXEL_UNPACK_BUFFER. Also, the OpenGL ES 2.0 specification (and as far as I know, no iOS device currently supports OpenGL ES 2.0) states that glMapBufferOES() can only use GL_ARRAY_BUFFER as a target, yet glTexImage2D() and glTexSubImage2D() only seem to use PBOs if GL_PIXEL_UNPACK_BUFFER is bound. The OpenGL documentation for glBindBuffer() also states that: GL_PIXEL_PACK_BUFFER and GL_PIXEL_UNPACK_BUFFER are available only if the GL version is 2.1 or greater. So, can I use PBOs for textures? Am I missing something obvious?

    Read the article

  • how to transform child elements position into a world position

    - by MrGreg
    So Im making a 2d space game and I have a bunch of spaceships that have turrets. Objects have a position and orientation, the ships being in world coordinates while the turrets are children and coordinates are relative to their parents. How do I efficiently calculate the position of a turret in world coordinates (i.e. when it fires and I need to know where to place a bullet in the world)? Calculating the turrets orientation is trivial - I just add the turrets relative angle to its parents. For position though, I guess I could do a bunch of trigonometry but this MUST be a common problem with a good/fast general solution? Should I be relearning how to do matrix math again? :) btw - Im creating the game in javascript+canvas but its the math/algorithm im interested in here Cheers, Greg

    Read the article

  • Shadowmap first phase and shaders

    - by KaiserJohaan
    I am using OpenGL 3.3 and am tryin to implement shadow mapping using cube maps. I have a framebuffer with a depth attachment and a cube map texture. My question is how to design the shaders for the first pass, when creating the shadowmap. This is my vertex shader: in vec3 position; uniform mat4 lightWVP; void main() { gl_Position = lightWVP * vec4(position, 1.0); } Now, do I even need a fragment shader in this shader pass? from what I understand after reading http://www.opengl.org/wiki/Fragment_Shader, by default gl_FragCoord.z is written to the currently attached depth component (to which my cubemap texture is bound to). Thus I shouldnt even need a fragment shader for this pass and from what I understand, there is no other work to do in the fragment shader other than writing this value. Is this correct?

    Read the article

  • (Unity)Getting a mirrored mesh from my data structure

    - by Steve
    Here's the background: I'm in the beginning stages of an RTS game in Unity. I have a procedurally generated terrain with a perlin-noise height map, as well as a function to generate a river. The problem is that the graphical creation of the map is taking the data structure of the map and rotating it by 180 degrees. I noticed this problem when i was creating my rivers. I would set the River's height to flat, and noticed that the actual tiles that were flat in the graphical representation were flipped and mirrored. Here's 3 screenshots of the map from different angles: http://imgur.com/a/VLHHq As you can see, if you flipped (graphically) the river by 180 degrees on the z axis, it would fit where the terrain is flattened. I have a suspicion it is being caused by a misunderstanding on my part of how vertices work. Alas, here is a snippet of the code that is used: This code here creates a new array of Tile objects, which hold the information for each tile, including its type, coordinate, height, and it's 4 vertices public DTileMap (int size_x, int size_y) { this.size_x = size_x; this.size_y = size_y; //Initialize Map_Data Array of Tile Objects map_data = new Tile[size_x, size_y]; for (int j = 0; j < size_y; j++) { for (int i = 0; i < size_x; i++) { map_data [i, j] = new Tile (); map_data[i,j].coordinate.x = (int)i; map_data[i,j].coordinate.y = (int)j; map_data[i,j].vertices[0] = new Vector3 (i * GTileMap.TileMap.tileSize, map_data[i,j].Height, -j * GTileMap.TileMap.tileSize); map_data[i,j].vertices[1] = new Vector3 ((i+1) * GTileMap.TileMap.tileSize, map_data[i,j].Height, -(j) * GTileMap.TileMap.tileSize); map_data[i,j].vertices[2] = new Vector3 (i * GTileMap.TileMap.tileSize, map_data[i,j].Height, -(j-1) * GTileMap.TileMap.tileSize); map_data[i,j].vertices[3] = new Vector3 ((i+1) * GTileMap.TileMap.tileSize, map_data[i,j].Height, -(j-1) * GTileMap.TileMap.tileSize); } } This code sets the river tiles to height 0 foreach (Tile t in map_data) { if (t.realType == "Water") { t.vertices[0].y = 0f; t.vertices[1].y = 0f; t.vertices[2].y = 0f; t.vertices[3].y = 0f; } } And below is the code to generate the actual graphics from the data: public void BuildMesh () { DTileMap.DTileMap map = new DTileMap.DTileMap (size_x, size_z); int numTiles = size_x * size_z; int numTris = numTiles * 2; int vsize_x = size_x + 1; int vsize_z = size_z + 1; int numVerts = vsize_x * vsize_z; // Generate the mesh data Vector3[] vertices = new Vector3[ numVerts ]; Vector3[] normals = new Vector3[numVerts]; Vector2[] uv = new Vector2[numVerts]; int[] triangles = new int[ numTris * 3 ]; int x, z; for (z=0; z < vsize_z; z++) { for (x=0; x < vsize_x; x++) { normals [z * vsize_x + x] = Vector3.up; uv [z * vsize_x + x] = new Vector2 ((float)x / size_x, 1f - (float)z / size_z); } } for (z=0; z < vsize_z; z+=1) { for (x=0; x < vsize_x; x+=1) { if (x == vsize_x - 1 && z == vsize_z - 1) { vertices [z * vsize_x + x] = DTileMap.DTileMap.map_data [x - 1, z - 1].vertices [3]; } else if (z == vsize_z - 1) { vertices [z * vsize_x + x] = DTileMap.DTileMap.map_data [x, z - 1].vertices [2]; } else if (x == vsize_x - 1) { vertices [z * vsize_x + x] = DTileMap.DTileMap.map_data [x - 1, z].vertices [1]; } else { vertices [z * vsize_x + x] = DTileMap.DTileMap.map_data [x, z].vertices [0]; vertices [z * vsize_x + x+1] = DTileMap.DTileMap.map_data [x, z].vertices [1]; vertices [(z+1) * vsize_x + x] = DTileMap.DTileMap.map_data [x, z].vertices [2]; vertices [(z+1) * vsize_x + x+1] = DTileMap.DTileMap.map_data [x, z].vertices [3]; } } } } for (z=0; z < size_z; z++) { for (x=0; x < size_x; x++) { int squareIndex = z * size_x + x; int triOffset = squareIndex * 6; triangles [triOffset + 0] = z * vsize_x + x + 0; triangles [triOffset + 2] = z * vsize_x + x + vsize_x + 0; triangles [triOffset + 1] = z * vsize_x + x + vsize_x + 1; triangles [triOffset + 3] = z * vsize_x + x + 0; triangles [triOffset + 5] = z * vsize_x + x + vsize_x + 1; triangles [triOffset + 4] = z * vsize_x + x + 1; } } // Create a new Mesh and populate with the data Mesh mesh = new Mesh (); mesh.vertices = vertices; mesh.triangles = triangles; mesh.normals = normals; mesh.uv = uv; // Assign our mesh to our filter/renderer/collider MeshFilter mesh_filter = GetComponent<MeshFilter> (); MeshCollider mesh_collider = GetComponent<MeshCollider> (); mesh_filter.mesh = mesh; mesh_collider.sharedMesh = mesh; calculateMeshTangents (mesh); BuildTexture (map); } If this looks familiar to you, its because i got most of it from Quill18. I've been slowly adapting it for my uses. And please include any suggestions you have for my code. I'm still in the very early prototyping stage.

    Read the article

  • Google Cloud Messaging (GCM) for turn-based mobile multiplayer server?

    - by Chris
    I'm designing a multiplayer turn-based game for Android (over 3g). I'm thinking the clients will send data to a central server over a socket or http, and receive data via GCM push messaging. I'd like to know if anyone has practical experience with GCM for pushing 'real-time' turn data to game clients. What kind of performance and limitations does it have? I'm also considering using a RESTful approach with GAE or Amazon EC2. Any advice about these approaches is appreciated.

    Read the article

  • Why does my int, booleans, doubles does not work?

    - by SystemNetworks
    As you see, my code does not work. When armor1 is true, it would add my life. goldA is another class. public void goldenArmor(GameContainer gc, StateBasedGame sbg, Graphics g) { if(armor1==true) { goldA.life = life; goldA.intelligence = intelligence; goldA.power = power; goldA.lifeLeft = lifeLeft; goldA.head(); goldA.body(); goldA.legs(); } } My other class: package javagame; import org.newdawn.slick.GameContainer; import org.newdawn.slick.Graphics; import org.newdawn.slick.Image; import org.newdawn.slick.Input; import org.newdawn.slick.SlickException; /* Note: Copyright(C)2012 System Networks | Square NET | Julius Bryan Gambe. You cannot copy the style, story of the game and gameplay! To programmers: The int,doubles,strings,booleans are properly sorted out. Please don't mess it up. */ /* NOTE: We have loops but not for programming. The loop is: 1.show the world to user 2.Obtain input from the user 3.Shows the update, repeat step 1 */ import org.newdawn.slick.*; import org.newdawn.slick.state.*; import org.lwjgl.input.Mouse; //contents: // public class GoldenArmor{ //get it from play public int life; public double intelligence; public int lifeLeft; public double power; public GoldenArmor() { // TODO Auto-generated constructor stub } //start here public void head() { life += 10; intelligence +=0.5; } public void body() { lifeLeft += 100; } public void legs() { power += 100; } } /* SYSTEM NETWORKS(C) 2012 NET FRONT */ The life, intelligence, power, lifeLeft are nothing but to use it as just reference to prevent stack overflow. And at my main class, it becomes my real booleans, int, doubles. How do I fix this? It does not add it to my normal int.

    Read the article

  • Switching between levels, re-initialize existing structure or create new one?

    - by Martino Wullems
    This is something I've been wondering for quite a while. When building games that exist out of multiple levels (platformers, shmups etc) what is the prefered method to switch between the levels? Let's say we have a level class that does the following: Load data for the level design (tiles), enemies, graphics etc. Setup all these elements in their appriopate locations and display them Start physics and game logic I'm stuck between the following 2 methods: 1: Throw away everything in the level class and make a new one, we have to load an entirely new level anyway! 2: pause the game logic and physics, unload all currents assets, then re-initialize those components with the level data for the new level. They both have their pros and cons. Method 1 is alot easier and seems to make sense since we have to redo everything anyway. But method 2 allows you to re-use exisiting elements which might save resources and allows for a smoother transfer to the new level.

    Read the article

  • What causes Box2D revolute joints to separate?

    - by nbolton
    I have created a rag doll using dynamic bodies (rectangles) and simple revolute joints (with lower and upper angles). When my rag doll hits the ground (which is a static body) the bodies seem to fidget and the joints separate. It looks like the bodies are sticking to the ground, and the momentum of the rag doll pulls the joint apart (see screenshot below). I'm not sure if it's related, but I'm using the Badlogic GDX Java wrapper for Box2D. Here's some snippets of what I think is the most relevant code: private RevoluteJoint joinBodyParts( Body a, Body b, Vector2 anchor, float lowerAngle, float upperAngle) { RevoluteJointDef jointDef = new RevoluteJointDef(); jointDef.initialize(a, b, a.getWorldPoint(anchor)); jointDef.enableLimit = true; jointDef.lowerAngle = lowerAngle; jointDef.upperAngle = upperAngle; return (RevoluteJoint)world.createJoint(jointDef); } private Body createRectangleBodyPart( float x, float y, float width, float height) { PolygonShape shape = new PolygonShape(); shape.setAsBox(width, height); BodyDef bodyDef = new BodyDef(); bodyDef.type = BodyType.DynamicBody; bodyDef.position.y = y; bodyDef.position.x = x; Body body = world.createBody(bodyDef); FixtureDef fixtureDef = new FixtureDef(); fixtureDef.shape = shape; fixtureDef.density = 10; fixtureDef.filter.groupIndex = -1; fixtureDef.filter.categoryBits = FILTER_BOY; fixtureDef.filter.maskBits = FILTER_STUFF | FILTER_WALL; body.createFixture(fixtureDef); shape.dispose(); return body; } I've skipped the method for creating the head, as it's pretty much the same as the rectangle method (just using a cricle shape). Those methods are used like so: torso = createRectangleBodyPart(x, y + 5, 0.25f, 1.5f); Body head = createRoundBodyPart(x, y + 7.4f, 1); Body leftLegTop = createRectangleBodyPart(x, y + 2.7f, 0.25f, 1); Body rightLegTop = createRectangleBodyPart(x, y + 2.7f, 0.25f, 1); Body leftLegBottom = createRectangleBodyPart(x, y + 1, 0.25f, 1); Body rightLegBottom = createRectangleBodyPart(x, y + 1, 0.25f, 1); Body leftArm = createRectangleBodyPart(x, y + 5, 0.25f, 1.2f); Body rightArm = createRectangleBodyPart(x, y + 5, 0.25f, 1.2f); joinBodyParts(torso, head, new Vector2(0, 1.6f), headAngle); leftLegTopJoint = joinBodyParts(torso, leftLegTop, new Vector2(0, -1.2f), 0.1f, legAngle); rightLegTopJoint = joinBodyParts(torso, rightLegTop, new Vector2(0, -1.2f), 0.1f, legAngle); leftLegBottomJoint = joinBodyParts(leftLegTop, leftLegBottom, new Vector2(0, -1), -legAngle * 1.5f, 0); rightLegBottomJoint = joinBodyParts(rightLegTop, rightLegBottom, new Vector2(0, -1), -legAngle * 1.5f, 0); leftArmJoint = joinBodyParts(torso, leftArm, new Vector2(0, 1), -armAngle * 0.7f, armAngle); rightArmJoint = joinBodyParts(torso, rightArm, new Vector2(0, 1), -armAngle * 0.7f, armAngle);

    Read the article

  • How to emulate Mode 13h in a modern 3D renderer?

    - by David Gouveia
    I was indulging in nostalgia and remembered the first game I created, which used Mode 13h. This mode was really simple to work with, since it was essentially just an array of bytes with an element for each pixel on the screen (using an indexed color scheme). So I thought it might be fun to create something nowadays under these restrictions, but on modern hardware. The API could be as simple as: public class Mode13h { public byte[] VideoMemory = new byte[320 * 200]; public Color[] Palette = new Color[256]; } Now I'm wondering what would be the best way to get this data on the screen, using something like XNA / DirectX / OpenGL. The only solution I could think of was to create a texture with the same size as the VideoMemory array, write the contents of VideoMemory to it every frame, then render that texture in a full screen quad with the correct aspect ratio and using point texture filtering for that retro look. Is there a better way?

    Read the article

  • Collision and Graphics integration

    - by Shlomi Atia
    I'm a little confused about the integration between collision and graphics. They both need to share the same position in the world. The most obvious choice is the center of the entity, which is good for bounding volumes and fixed sized sprites. However, for characters with variable height size sprites like this: http://gamemedia.wcgame.ru/data/2011-07-17/game-sprite-sheet.jpg This is no longer good. The character won't align to the ground if I'll draw it from the center. I can just make the sprites the same height, but it will be a waste of memory (the largest sprite is 4 times larger then the smallest one). Even then, this is not an option at all with skeletal sprites like this one: http://user-generated-content.java-gaming.org/img-vault/212a171fc1ebb27ab77608fb9b2dd9bd9205361ce6300b21a7f8d06d025fbbd8.png It seems that the graphics need to be drawn from the ground for characters, but not for other images such as scenery and obstacles. The only solution I could think of was having another position called draw-position, which is the entity center for images, and is the the bottom of the collision volume for characters. Then when I draw relative to that position, it should work properly. I haven't found any references for something like that, so I'm kinda insecure about it. Does anyone knows of a better approach for this problem? Thanks

    Read the article

  • Basic game architechture best practices in Cocos2D on iOS

    - by MrDatabase
    Consider the following simple game: 20 squares floating around an iPhone's screen. Tapping a square causes that square to disappear. What's the "best practices" way to set this up in Cocos2D? Here's my plan so far: One Objective-c GameState singleton class (maintains list of active squares) One CCScene (since there's no menus etc) One CCLayer (child node of the scene) Many CCSprite nodes (one for each square, all child nodes of the layer) Each sprite listens for a tap on itself. Receive tap = remove from GameState Since I'm relatively new to Cocos2D I'd like some feedback on this design. For example I'm unsure of the GameState singleton. Perhaps it's unnecessary.

    Read the article

  • Velocity collision detection (2D)

    - by ultifinitus
    Alright, so I have made a simple game engine (see youtube) And my current implementation of collision resolution has a slight problem, involving the velocity of a platform. Basically I run through all of the objects necessary to detect collisions on and resolve those collisions as I find them. Part of that resolution is setting the player's velocity = the platform's velocity. Which works great! Unless I have a row of platforms moving at different velocities or a platform between a stack of tiles.... (current system) bool player::handle_collisions() { collisions tcol; bool did_handle = false; bool thisObjectHandle = false; for (int temp = 0; temp < collideQueue.size(); temp++) { thisObjectHandle = false; tcol = get_collision(prevPos.x,y,get_img()->get_width(),get_img()->get_height(), collideQueue[temp]->get_position().x,collideQueue[temp]->get_position().y, collideQueue[temp]->get_img()->get_width(),collideQueue[temp]->get_img()->get_height()); if (prevPos.y >= collideQueue[temp]->get_prev_pos().y + collideQueue[temp]->get_img()->get_height()) if (tcol.top > 0) { add_pos(0,tcol.top); set_vel(get_vel().x,collideQueue[temp]->get_vel().y); thisObjectHandle = did_handle = true; } if (prevPos.y + get_img()->get_height() <= collideQueue[temp]->get_prev_pos().y) if (tcol.bottom > 0) { add_pos(collideQueue[temp]->get_vel().x,-tcol.bottom); set_vel(get_vel().x/*collideQueue[temp]->get_vel().x*/,collideQueue[temp]->get_vel().y); ableToJump = true; jumpTimes = maxjumpable; thisObjectHandle = did_handle = true; } /// /// ADD CODE FROM NEXT CODE BLOCK HERE (on forum, not in code) /// } for (int temp = 0; temp < collideQueue.size(); temp++) { thisObjectHandle = false; tcol = get_collision(x,y,get_img()->get_width(),get_img()->get_height(), collideQueue[temp]->get_position().x,collideQueue[temp]->get_position().y, collideQueue[temp]->get_img()->get_width(),collideQueue[temp]->get_img()->get_height()); if (prevPos.x + get_img()->get_width() <= collideQueue[temp]->get_prev_pos().x) if (tcol.left > 0) { add_pos(-tcol.left,0); set_vel(collideQueue[temp]->get_vel().x,get_vel().y); thisObjectHandle = did_handle = true; } if (prevPos.x >= collideQueue[temp]->get_prev_pos().x + collideQueue[temp]->get_img()->get_width()) if (tcol.right > 0) { add_pos(tcol.right,0); set_vel(collideQueue[temp]->get_vel().x,get_vel().y); thisObjectHandle = did_handle = true; } } return did_handle; } (if I add the following code {where the comment to do so is}, which is glitchy, the above problem doesn't happen, though it brings others) if (!thisObjectHandle) { if (tcol.bottom > tcol.top) { add_pos(collideQueue[temp]->get_vel().x,-tcol.bottom); set_vel(get_vel().x,collideQueue[temp]->get_vel().y); } else if (tcol.top > tcol.bottom) { add_pos(0,tcol.top); set_vel(get_vel().x,collideQueue[temp]->get_vel().y); } } How would you change my system to prevent this?

    Read the article

  • Relative cam movement and momentum on arbitrary surface

    - by user29244
    I have been working on a game for quite long, think sonic classic physics in 3D or tony hawk psx, with unity3D. However I'm stuck at the most fundamental aspect of movement. The requirement is that I need to move the character in mario 64 fashion (or sonic adventure) aka relative cam input: the camera's forward direction always point input forward the screen, left or right input point toward left or right of the screen. when input are resting, the camera direction is independent from the character direction and the camera can orbit the character when input are pressed the character rotate itself until his direction align with the direction the input is pointing at. It's super easy to do as long your movement are parallel to the global horizontal (or any world axis). However when you try to do this on arbitrary surface (think moving along complex curved surface) with the character sticking to the surface normal (basically moving on wall and ceiling freely), it seems harder. What I want is to achieve the same finesse of movement than in mario but on arbitrary angled surfaces. There is more problem (jumping and transitioning back to the real world alignment and then back on a surface while keeping momentum) but so far I didn't even take off the basics. So far I have accomplish moving along the curved surface and the relative cam input, but for some reason direction fail all the time (point number 3, the character align slowly to the input direction). Do you have an idea how to achieve that? Here is the code and some demo so far: The demo: https://dl.dropbox.com/u/24530447/flash%20build/litesonicengine/LiteSonicEngine5.html Camera code: using UnityEngine; using System.Collections; public class CameraDrive : MonoBehaviour { public GameObject targetObject; public Transform camPivot, camTarget, camRoot, relcamdirDebug; float rot = 0; //---------------------------------------------------------------------------------------------------------- void Start() { this.transform.position = targetObject.transform.position; this.transform.rotation = targetObject.transform.rotation; } void FixedUpdate() { //the pivot system camRoot.position = targetObject.transform.position; //input on pivot orientation rot = 0; float mouse_x = Input.GetAxisRaw( "camera_analog_X" ); // rot = rot + ( 0.1f * Time.deltaTime * mouse_x ); // wrapAngle( rot ); // //when the target object rotate, it rotate too, this should not happen UpdateOrientation(this.transform.forward,targetObject.transform.up); camRoot.transform.RotateAround(camRoot.transform.up,rot); //debug the relcam dir RelativeCamDirection() ; //this camera this.transform.position = camPivot.position; //set the camera to the pivot this.transform.LookAt( camTarget.position ); // } //---------------------------------------------------------------------------------------------------------- public float wrapAngle ( float Degree ) { while (Degree < 0.0f) { Degree = Degree + 360.0f; } while (Degree >= 360.0f) { Degree = Degree - 360.0f; } return Degree; } private void UpdateOrientation( Vector3 forward_vector, Vector3 ground_normal ) { Vector3 projected_forward_to_normal_surface = forward_vector - ( Vector3.Dot( forward_vector, ground_normal ) ) * ground_normal; camRoot.transform.rotation = Quaternion.LookRotation( projected_forward_to_normal_surface, ground_normal ); } float GetOffsetAngle( float targetAngle, float DestAngle ) { return ((targetAngle - DestAngle + 180)% 360) - 180; } //---------------------------------------------------------------------------------------------------------- void OnDrawGizmos() { Gizmos.DrawCube( camPivot.transform.position, new Vector3(1,1,1) ); Gizmos.DrawCube( camTarget.transform.position, new Vector3(1,5,1) ); Gizmos.DrawCube( camRoot.transform.position, new Vector3(1,1,1) ); } void OnGUI() { GUI.Label(new Rect(0,80,1000,20*10), "targetObject.transform.up : " + targetObject.transform.up.ToString()); GUI.Label(new Rect(0,100,1000,20*10), "target euler : " + targetObject.transform.eulerAngles.y.ToString()); GUI.Label(new Rect(0,100,1000,20*10), "rot : " + rot.ToString()); } //---------------------------------------------------------------------------------------------------------- void RelativeCamDirection() { float input_vertical_movement = Input.GetAxisRaw( "Vertical" ), input_horizontal_movement = Input.GetAxisRaw( "Horizontal" ); Vector3 relative_forward = Vector3.forward, relative_right = Vector3.right, relative_direction = ( relative_forward * input_vertical_movement ) + ( relative_right * input_horizontal_movement ) ; MovementController MC = targetObject.GetComponent<MovementController>(); MC.motion = relative_direction.normalized * MC.acceleration * Time.fixedDeltaTime; MC.motion = this.transform.TransformDirection( MC.motion ); //MC.transform.Rotate(Vector3.up, input_horizontal_movement * 10f * Time.fixedDeltaTime); } } Mouvement code: using UnityEngine; using System.Collections; public class MovementController : MonoBehaviour { public float deadZoneValue = 0.1f, angle, acceleration = 50.0f; public Vector3 motion ; //-------------------------------------------------------------------------------------------- void OnGUI() { GUILayout.Label( "transform.rotation : " + transform.rotation ); GUILayout.Label( "transform.position : " + transform.position ); GUILayout.Label( "angle : " + angle ); } void FixedUpdate () { Ray ground_check_ray = new Ray( gameObject.transform.position, -gameObject.transform.up ); RaycastHit raycast_result; Rigidbody rigid_body = gameObject.rigidbody; if ( Physics.Raycast( ground_check_ray, out raycast_result ) ) { Vector3 next_position; //UpdateOrientation( gameObject.transform.forward, raycast_result.normal ); UpdateOrientation( gameObject.transform.forward, raycast_result.normal ); next_position = GetNextPosition( raycast_result.point ); rigid_body.MovePosition( next_position ); } } //-------------------------------------------------------------------------------------------- private void UpdateOrientation( Vector3 forward_vector, Vector3 ground_normal ) { Vector3 projected_forward_to_normal_surface = forward_vector - ( Vector3.Dot( forward_vector, ground_normal ) ) * ground_normal; transform.rotation = Quaternion.LookRotation( projected_forward_to_normal_surface, ground_normal ); } private Vector3 GetNextPosition( Vector3 current_ground_position ) { Vector3 next_position; // //-------------------------------------------------------------------- // angle = 0; // Vector3 dir = this.transform.InverseTransformDirection(motion); // angle = Vector3.Angle(Vector3.forward, dir);// * 1f * Time.fixedDeltaTime; // // if(angle > 0) this.transform.Rotate(0,angle,0); // //-------------------------------------------------------------------- next_position = current_ground_position + gameObject.transform.up * 0.5f + motion ; return next_position; } } Some observation: I have the correct input, I have the correct translation in the camera direction ... but whenever I attempt to slowly lerp the direction of the character in direction of the input, all I get is wild spin! Sad Also discovered that strafing to the right (immediately at the beginning without moving forward) has major singularity trapping on the equator!! I'm totally lost and crush (I have already done a much more featured version which fail at the same aspect)

    Read the article

  • How to get the Exact Collision Point and ignore the collision (from 2 "ghost bodies")

    - by Moritz
    I have a very basic problem with Box2D. For a arenatype game where you can throw scriptable "missiles" at other players I decided to use Box2D for the collision detection between the players and the missiles. Players and missiles have their own circular shape with a specific size (varying). But I don´t want to use dynamic bodies because the missiles need to move themselve in any way they want to (defined in the script) and shouldnt be resolved unless the script wants it. The behavior I look for is as following (for each time step): velocity of missiles is set by the specific missile script each missile is moved according to that velocity if a collision accurs now, I want to get the exact position of impact, and now I need a mechanism to decide if the missile should just ignore the collision (for example collision between two fireballs which shouldnt interact) or take it (so they are resolved and dont overlap anymore) So is there a way in Box2D to create Ghost bodies and listen to collisions from them, then deciding if they should ignore the collision or should take them and resolve their position? I hope I was clear enough and would be happy about any help!

    Read the article

  • Is it ok to initialize an RB_ConstraintActor in PostBeginPlay?

    - by Almo
    I have a KActorSpawnable subclass that acts weird. In PostBeginPlay, I initialize an RB_ConstraintActor; the default is not to allow rotation. If I create one in the editor, it's fine, and won't rotate. If I spawn one, it rotates. Here's the class: class QuadForceKActor extends KActorSpawnable placeable; var(Behavior) bool bConstrainRotation; var(Behavior) bool bConstrainX; var(Behavior) bool bConstrainY; var(Behavior) bool bConstrainZ; var RB_ConstraintActor PhysicsConstraintActor; simulated event PostBeginPlay() { Super.PostBeginPlay(); PhysicsConstraintActor = Spawn(class'RB_ConstraintActorSpawnable', self, '', Location, rot(0, 0, 0)); if(bConstrainRotation) { PhysicsConstraintActor.ConstraintSetup.bSwingLimited = true; PhysicsConstraintActor.ConstraintSetup.bTwistLimited = true; } SetLinearConstraints(bConstrainX, bConstrainY, bConstrainZ); PhysicsConstraintActor.InitConstraint(self, None); } function SetLinearConstraints(bool InConstrainX, bool InConstrainY, bool InConstrainZ) { if(InConstrainX) { PhysicsConstraintActor.ConstraintSetup.LinearXSetup.bLimited = 1; } else { PhysicsConstraintActor.ConstraintSetup.LinearXSetup.bLimited = 0; } if(InConstrainY) { PhysicsConstraintActor.ConstraintSetup.LinearYSetup.bLimited = 1; } else { PhysicsConstraintActor.ConstraintSetup.LinearYSetup.bLimited = 0; } if(InConstrainZ) { PhysicsConstraintActor.ConstraintSetup.LinearZSetup.bLimited = 1; } else { PhysicsConstraintActor.ConstraintSetup.LinearZSetup.bLimited = 0; } } DefaultProperties { bConstrainRotation=true bConstrainX=false bConstrainY=false bConstrainZ=false bSafeBaseIfAsleep=false bNoEncroachCheck=false } Here's the code I use to spawn one. It's a subclass of the one above, but it doesn't reference the constraint at all. local QuadForceKCreateBlock BlockActor; BlockActor = spawn(class'QuadForceKCreateBlock', none, 'PowerCreate_Block', BlockLocation(), m_PreparedRotation, , false); BlockActor.SetDuration(m_BlockDuration); BlockActor.StaticMeshComponent.SetNotifyRigidBodyCollision(true); BlockActor.StaticMeshComponent.ScriptRigidBodyCollisionThreshold = 0.001; BlockActor.StaticMeshComponent.SetStaticMesh(m_ValidCreationBlock.StaticMesh); BlockActor.StaticMeshComponent.AddImpulse(m_InitialVelocity); I used to initialize an RB_ConstraintActor where I spawned it from the outside. This worked, which is why I'm pretty sure it has nothing to do with the other code in QuadForceKCreateBlock. I then added the internal constraint in QuadForceKActor for other purposes. When I realized I had two constraints on the CreateBlock doing the same thing, I removed the constraint code from the place where I spawn it. Then it started rotating. Is there a reason I should not be initializing an RB_ConstraintActor in PostBeginPlay? I feel like there's some basic thing about how the engine works that I'm missing.

    Read the article

  • Strategies to Defeat Memory Editors for Cheating - Desktop Games

    - by ashes999
    I'm assuming we're talking about desktop games -- something the player downloads and runs on their local computer. Many are the memory editors that allow you to detect and freeze values, like your player's health. How do you prevent cheating? What strategies are effective to combat this kind of cheating? I'm looking for some good ones. Two I use that are mediocre are: Displaying values as a percentage instead of the number (eg. 46/50 = 92% health) A low-level class that holds values in an array and moves them with each change

    Read the article

  • Assets.getBytes returns null in test environment

    - by ashes999
    I'm using the latest Haxe (2.10), NME (3.4.3), and MUnit. I've written some unit tests that need to fetch bitmap data from SWF symbols. The first step is to actually load the SWF data. To do this, I use NME's getByteArray along with the swf library, like so: var blah:SWF = new SWF(Assets.getBytes("assets/swf/test.swf")); The call to Assets.getBytes returns null when I'm running this under MUnit. When running my actual game code, I'm able to get the byte array (and consequentially, instantiate the SWF class). Am I doing something wrong? What am I missing? Edit: My directory structure is: . (root .\assets .\assets\*.png (other images) .\assets\swf\*.swf (SWFs) .\Source\*.hx (source code) .\Test\*.hx (tests)

    Read the article

  • Exporting .jar files with Jarsplice

    - by SystemNetworks
    Help! I'm Using Mac OS X 10.8 Mountain Lion and Using Eclipse. I'm using the library called Slick and Lwjgl. When i first exported it, it has a .jar file. I followed some You Tube Tutorials (Different, they don't have slick) It worked for them. I don't know why it dosen't work for me. Should i put Slick-util too? I didn't even use lwjgl btw. Please help!!! Jars I used(Libraries) Slick LWJGL(I didn't use it) Tutorials I followed TheCodingUniverse(Exporting) TheNewBoston(The Code and Set-up) Programs I used Eclipse IDE Java Jarsplice No warnings found or errors. It is perfect! But Nothing shows up in the screen everytime I pressed the jar(After Jarsplice) Help!!!

    Read the article

  • Managing constant buffers without FX interface

    - by xcrypt
    I am aware that there is a sample on working without FX in the samplebrowser, and I already checked that one. However, some questions arise: In the sample: D3DXMATRIXA16 mWorldViewProj; D3DXMATRIXA16 mWorld; D3DXMATRIXA16 mView; D3DXMATRIXA16 mProj; mWorld = g_World; mView = g_View; mProj = g_Projection; mWorldViewProj = mWorld * mView * mProj; VS_CONSTANT_BUFFER* pConstData; g_pConstantBuffer10->Map( D3D10_MAP_WRITE_DISCARD, NULL, ( void** )&pConstData ); pConstData->mWorldViewProj = mWorldViewProj; pConstData->fTime = fBoundedTime; g_pConstantBuffer10->Unmap(); They are copying their D3DXMATRIX'es to D3DXMATRIXA16. Checked on msdn, these new matrices are 16 byte aligned and optimised for intel pentium 4. So as my first question: 1) Is it necessary to copy matrices to D3DXMATRIXA16 before sending them to the constant buffer? And if no, why don't we just use D3DXMATRIXA16 all the time? I have another question about managing multiple constant buffers within one shader. Suppose that, within your shader, you have multiple constant buffers that need to be updated at different times: cbuffer cbNeverChanges { matrix View; }; cbuffer cbChangeOnResize { matrix Projection; }; cbuffer cbChangesEveryFrame { matrix World; float4 vMeshColor; }; Then how would I set these buffers all at different times? g_pd3dDevice->VSSetConstantBuffers( 0, 1, &g_pConstantBuffer10 ); gives me the possibility to set multiple buffers, but that is within one call. 2) Is that okay even if my constant buffers are updated at different times? And do I suppose I have to make sure the constantbuffers are in the same position in the array as the order they appear in the shader?

    Read the article

  • Register Game Object Components in Game Subsystems? (Component-based Game Object design)

    - by topright
    I'm creating a component-based game object system. Some tips: GameObject is simply a list of Components. There are GameSubsystems. For example, rendering, physics etc. Each GameSubsystem contains pointers to some of Components. GameSubsystem is a very powerful and flexible abstraction: it represents any slice (or aspect) of the game world. There is a need in a mechanism of registering Components in GameSubsystems (when GameObject is created and composed). There are 4 approaches: 1: Chain of responsibility pattern. Every Component is offered to every GameSubsystem. GameSubsystem makes a decision which Components to register (and how to organize them). For example, GameSubsystemRender can register Renderable Components. pro. Components know nothing about how they are used. Low coupling. A. We can add new GameSubsystem. For example, let's add GameSubsystemTitles that registers all ComponentTitle and guarantees that every title is unique and provides interface to quering objects by title. Of course, ComponentTitle should not be rewrited or inherited in this case. B. We can reorganize existing GameSubsystems. For example, GameSubsystemAudio, GameSubsystemRender, GameSubsystemParticleEmmiter can be merged into GameSubsystemSpatial (to place all audio, emmiter, render Components in the same hierarchy and use parent-relative transforms). con. Every-to-every check. Very innefficient. con. Subsystems know about Components. 2: Each Subsystem searches for Components of specific types. pro. Better performance than in Approach 1. con. Subsystems still know about Components. 3: Component registers itself in GameSubsystem(s). We know at compile-time that there is a GameSubsystemRenderer, so let's ComponentImageRender will call something like GameSubsystemRenderer::register(ComponentRenderBase*). pro. Performance. No unnecessary checks as in Approach 1. con. Components are badly coupled with GameSubsystems. 4: Mediator pattern. GameState (that contains GameSubsystems) can implement registerComponent(Component*). pro. Components and GameSubystems know nothing about each other. con. In C++ it would look like ugly and slow typeid-switch. Questions: Which approach is better and mostly used in component-based design? What Practice says? Any suggestions about implementation of Approach 4? Thank you.

    Read the article

  • determine collision angle on a rotating body

    - by jorb
    update: new diagram and updated description I have a contact listener set up to try and determine the side that a collision happened at relative to the a bodies rotation. One way to solve this is to find the value of the yellow angle between the red and blue vectors drawn above. The angle can be found by taking the arc cosine of the dot product of the two vectors (Evan pointed this out). One of my points of confusion is the difference in domain of the atan2 function html canvas coordinates and the Box2d rotation information. I know I have to account for this somehow... SS below questions: Does Box2D provide these angles more directly in the collision information? Am I even on the right track? If so, any hints? I have the following javascript so far: Ship.prototype.onCollide = function (other_ent,cx,cy) { var pos = this.body.GetPosition(); //collision position relative to body var d_cx = pos.x - cx; var d_cy = pos.y - cy; //length of initial vector var len = Math.sqrt(Math.pow(pos.x -cx,2) + Math.pow(pos.y-cy,2)); //body angle - can over rotate hence mod 2*Pi var ang = this.body.GetAngle() % (Math.PI * 2); //vector representing body's angle - same magnitude as the first var b_vx = len * Math.cos(ang); var b_vy = len * Math.sin(ang); //dot product of the two vectors var dot_prod = d_cx * b_vx + d_cy * b_vy; //new calculation of difference in angle - NOT WORKING! var d_ang = Math.acos(dot_prod); var side; if (Math.abs(d_ang) < Math.PI/2 ) side = "front"; else side = "back"; console.log("length",len); console.log("pos:",pos.x,pos.y); console.log("offs:",d_cx,d_cy); console.log("body vec",b_vx,b_vy); console.log("body angle:",ang); console.log("dot product",dot_prod); console.log("result:",d_ang); console.log("side",side); console.log("------------------------"); }

    Read the article

< Previous Page | 542 543 544 545 546 547 548 549 550 551 552 553  | Next Page >