Search Results

Search found 2238 results on 90 pages for 'boost variant'.

Page 55/90 | < Previous Page | 51 52 53 54 55 56 57 58 59 60 61 62  | Next Page >

  • Refactor the following two C++ methods to move out duplicate code

    - by ossandcad
    I have the following two methods that (as you can see) are similar in most of its statements except for one (see below for details) unsigned int CSWX::getLineParameters(const SURFACE & surface, vector<double> & params) { VARIANT varParams; surface->getPlaneParams(varParams); // this is the line of code that is different SafeDoubleArray sdParams(varParams); for( int i = 0 ; i < sdParams.getSize() ; ++i ) { params.push_back(sdParams[i]); } if( params.size() > 0 ) return 0; return 1; } unsigned int CSWX::getPlaneParameters(const CURVE & curve, vector<double> & params) { VARIANT varParams; curve->get_LineParams(varParams); // this is the line of code that is different SafeDoubleArray sdParams(varParams); for( int i = 0 ; i < sdParams.getSize() ; ++i ) { params.push_back(sdParams[i]); } if( params.size() > 0 ) return 0; return 1; } Is there any technique that I can use to move the common lines of code of the two methods out to a separate method, that could be called from the two variations - OR - possibly combine the two methods to a single method? The following are the restrictions: The classes SURFACE and CURVE are from 3rd party libraries and hence unmodifiable. (If it helps they are both derived from IDispatch) There are even more similar classes (e.g. FACE) that could fit into this "template" (not C++ template, just the flow of lines of code) I know the following could (possibly?) be implemented as solutions but am really hoping there is a better solution: I could add a 3rd parameter to the 2 methods - e.g. an enum - that identifies the 1st parameter (e.g. enum::input_type_surface, enum::input_type_curve) I could pass in an IDispatch and try dynamic_cast< and test which cast is NON_NULL and do an if-else to call the right method (e.g. getPlaneParams() vs. get_LineParams()) The following is not a restriction but would be a requirement because of my teammates resistance: Not implement a new class that inherits from SURFACE/CURVE etc. (They would much prefer to solve it using the enum solution I stated above)

    Read the article

  • PRINTER SET UP IN EXCEL VISUAL BASIC

    - by Gina
    I am trying to assign a cell in excel for the user to type the printer name where they want the print out to go and then use that value in the Application.ActivePrinter = (use the cell value) Even though I have done the programming assigning a name to the cell and using it in a variable it is giving me an error. I have set my variable as string, text, object and variant already and it's not working. Do you know what code should I use to be able to do this?

    Read the article

  • Inline in aspx, stripping date off of datetime

    - by DJGray
    I think if I just show you the following what I'm asking will make sense. In a link in my aspx, this works: ' title='<%# Container.DataItem["EventTime"].ToString() But the above contains the date portion of the string. This does not work (nor does any variant of it): ' title='<%# Container.DataItem["EventTime"].ToString("hh:mm:ss tt", CultureInfo.InvariantCulture) % Evantually, we want the title/hover for the link to read something like "4:30 PM : @Forbes Field" Everything is working with the exception of the 1/1/1900 being in front of the 4:30 How do I get the date off that EventTime datetime field?

    Read the article

  • [Drupal] SQL error reporting by mail

    - by Paul
    I was wondering if its possible to have some kind of SQL error reporting that sends me an email that includes the error and the website that it's been found on. I'd like to take this precaution because of hosting multiple drupal systems. There is a PHP error variant: http://drupal.org/project/php_errors Hope you guys know a way to become aware of any possible SQL errors by not loggin in to check the error report.

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Le C++ expressif n° 3 : pourquoi les erreurs de templates posent problèmes, un article d'Eric Niebler traduit par Guillaume Belz

    Bienvenue dans le troisième article de la série « le C++ expressif », une série d'articles consacrés aux Domain-Specific Embedded Language (DSEL) et à Boost.Proto, une bibliothèque pour les implémenter en C++. Dans cet article, Eric Niebler aborde le problème délicat des messages d'erreurs générés par les templates et surtout le fait que ce n'est pas une fatalité. Il insiste en particulier sur le fait qu'il est de la responsabilités des concepteurs de bibliothèques de faire en sorte que les messages d'erreurs soient compréhensibles par les utilisateurs. Le C++ expressif n° 3 : pourquoi les erreurs des templates posent des problèmes et qu'est-ce que vous pouvez faire pour ça ?

    Read the article

  • Increase Security by Enabling Two-Factor Authentication on Your Google Account

    - by Jason Fitzpatrick
    You can easily increase the security of your Google account by enabling two-factor authentication; flip it on today for a free security boost. It’s not a new feature but it’s a feature worth giving a second look. Watch the above video for a quick overview of Google’s two-factor authentication system. Essentially your mobile phone becomes the second authentication tool–you use your password + a code sent to your phone to log into your account. It’s a great way to easily increase the security of your Google account, it’s free, and you can set it so that you only have to validate your home computer once every 30 days. Google Two-Step Verification [via Google+] HTG Explains: When Do You Need to Update Your Drivers? How to Make the Kindle Fire Silk Browser *Actually* Fast! Amazon’s New Kindle Fire Tablet: the How-To Geek Review

    Read the article

  • Cheatsheet: 2010 04.01 ~ 04.07

    - by gOODiDEA
    Web Web Performance Best Practices: How masters.com re-designed their site to boost performance – and what that re-design missed What’s wrong with extending the DOM John Resig on Advanced Javascript to Improve your Web App .NET Hammock for REST - a REST library for .NET Programming Windows Phone 7 Series by Charlez Petzold – Free EBook Testing the Lock-Free Queue Some Last-Minute New C# 4.0 Features - while (x --> 0) { Console.WriteLine("x = {0}", x); } Better Coding with Visual Studio 2010 Revisiting Asynchronous ASP.NET Pages Database Understanding RAID for SQL Server – Part 2 Cassandra Jump Start For The Windows Developer Cassandra Internals – Writing - Cassandra Write Operation Performance Explained Cassandra Internals – Reading - Cassandra Reads Performance Explained MongoDB Growing Up: Release 1.4 and Commercial Support by 10gen Why NoSQL Will Not Die How Many Hard Drives Do I Need to Support SQL Server? Other Presentation: CouchDB and Lucene MongoDB Cacti Graphs HBase vs Cassandra: why we moved How to use the DedicatedDumpFile registry value to overcome space limitations on the system drive when capturing a system memory dump

    Read the article

  • Look for Oracle at the 2010 ISM San Diego Conference

    - by [email protected]
    Oracle is sponsoring and exhibiting at ISM's 95th Annual International Supply Management Conference and Educational Exhibit on April 25th through 28th.   Be sure to catch our presentation with Hackett that explores how procurement can use payables to boost an organization's balance and income statements. Pierre Mitchell from Hackett will be sharing groundbreaking new research that identifies explicit links between a strategic approach to supplier payments and world-class performance.   If your organization can benefit from increased margin, improved working capital, greater efficiency, and reduced risk, then you can't afford to miss this session. We'll be presenting on Monday at 5:00pm in Exhibit  Hall D.       Some of Oracle's top talent will be available to answer your questions in booth number 527. It is a great opportunity to learn about Oracle's innovations for supplier management, spend classification, invoice automation, and On Demand delivery of procurement applications.  

    Read the article

  • Maximize Your Quadcopter’s Range with a Wi-Fi Repeater

    - by Jason Fitzpatrick
    The majority of commercial quadcopters use Wi-Fi for remote control and suffer from a fairly limited range. This simple hack uses an Wi-Fi router as an extender to radically expand the range of your copter. There’s no heavy modification or code tweaking required, all you need is a power source for the router and the ability to set it up as a repeater. The extra signal boost provided by the repeater extends the range from an average of 50 meters to over 250 meters. Check out the video above to see it in action. If you’re looking for a more dependable but more labor intensive way to extend the range of your copter, you can also retrofit it with a traditional radio-controlled remote. [via Hack A Day] HTG Explains: Is UPnP a Security Risk? How to Monitor and Control Your Children’s Computer Usage on Windows 8 What Happened to Solitaire and Minesweeper in Windows 8?

    Read the article

  • Last chance to enter! Exceptional DBA Awards 2011

    - by Rebecca Amos
    Only 1 day left to enter the Exceptional DBA Awards! Get started on your entry today, and you could be heading to Seattle for the PASS Summit in October. All you need to do is visit the Exceptional DBA website and answer a few questions about: Your career and achievements as a SQL Server DBAAny mistakes you've made along the way (and how you tackled them)Activities you're involved in within the SQL Server community – for example writing, blogging, contributing to forums, speaking at events, or organising user groupsWhy you think you should be the Exceptional DBA of 2011 As well as the respect and recognition of your peers – and a great boost to your CV – you could win full conference registration to this year's PASS Summit in Seattle (including accommodation and $300 towards travel expenses) – where the award will be presented, as well as a copy of Red Gate's SQL DBA Bundle, and a chance to be featured here, on Simple-Talk.com. So why not give it a shot? Start your entry now at www.exceptionaldba.com (nominations close on 30 June).

    Read the article

  • How to achieve best performance in DirectX 9.0 while rendering on multiple monitors

    - by Vibhore Tanwer
    I am new to DirectX, and trying to learn best practice. Please suggest what are the best practices for rendering on multiple monitors different things at the same time? how can I boost performance of application? I have gone through this article http://msdn.microsoft.com/en-us/library/windows/desktop/bb147263%28v=vs.85%29.aspx . I am making use of some pixel shaders to achieve some effects. At most 4 effect(4 shader effects) can be applied at same time. What are the best practices to achieve best performance with DirectX 9.0. I read somewhere that DirectX 11 provides support for parallel rendering, but I am not able to get any working sample for DirectX 11.0. Please help me with this, Any help would be of great value. Thanks

    Read the article

  • Week in Geek: 50 Million Viruses and More on the Way Edition

    - by Asian Angel
    This week we learned how to backup and copy data between iOS devices, use Linux commands in Windows with Cygwin, boost email writing productivity with Microsoft Word Mail Merge, be more productive in Ubuntu using keyboard shortcuts, “restore the FTP service in XBMC, rename downloaded TV shows, access the Android Market in emulation”, and more Latest Features How-To Geek ETC How To Create Your Own Custom ASCII Art from Any Image How To Process Camera Raw Without Paying for Adobe Photoshop How Do You Block Annoying Text Message (SMS) Spam? How to Use and Master the Notoriously Difficult Pen Tool in Photoshop HTG Explains: What Are the Differences Between All Those Audio Formats? How To Use Layer Masks and Vector Masks to Remove Complex Backgrounds in Photoshop Enjoy Clutter-Free YouTube Video Viewing in Opera with CleanTube Bring Summer Back to Your Desktop with the LandscapeTheme for Chrome and Iron The Prospector – Home Dash Extension Creates a Whole New Browsing Experience in Firefox KinEmote Links Kinect to Windows Why Nobody Reads Web Site Privacy Policies [Infographic] Asian Temple in the Snow Wallpaper

    Read the article

  • Iron Speed Designer Review

    While Visual Studio allows developers to get productive fast by providing great design tools for a UI, it still lacks the ability to do smart layouts, data connections and queries. It is in this area that RAD suite of applications can tremendously boost productivity by abstracting away some of these issues and saving developer time to focus on business intelligence instead of data extraction and presentation. When it comes to RAD application suites for managed web applications, there is non better than Iron Speed Designer. The ease with which you can create a data-centric web application and have different reports of your data within minutes are unparalleled. This review delves into what Iron Speed Designer has to offer as well as some of its limitations. Iron Speed works with .NET 2.0, 3.0, 3.5 and even the latest version .NET 4.0. Read More >

    Read the article

  • Windows Azure: Caching

    - by xamlnotes
    I was poking around today and found this great article on caching: http://www.cloudcomputingdevelopment.net/cache-management-with-windows-azure/ Caching is a great way to boost application performance and keep down overhead on a database or file system. Its also great when you have say 3 web roles as shown in this articles Figure 2 that can share the same cache. If one of the roles goes offline then the cache is still there and can be used. You can change out your asp.net caching to use this pretty easy. Its pretty cool. There’s a sample that’s mentioned in the article that shows how to use this. You can download the cache here.

    Read the article

  • Your free invitation to new CodeAsIs developer community portal

    Hello Friends, Your free invitation to new CodeAsIs developer community portal ! One stop free portal for articles, code,blogs, feeds, discussion forums,news, links and downloads. Register Now !! Be a community star author submit articles. Register as a member and follow the guidelines or Use our article submission wizard link on home page. The benefits of submitting articles to www.codeasis.com : 1.Free advertising2.Boost your personal and business credibility3.Become part of a great community4.Massive...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Python library for scripting (C++ integration)

    - by Edward83
    Please advise me good wrapper/library for python. I need to implement simple scripting in c++ app; Under "good" I mean pretty understandable, well documented, no memory leaking, fast. For creating base interface of GameObject on Python and C++; Your own experience and useful links will be nice!!! I found link about it, but I need more specific within gamedev context. What combinations of libraries you used for python integration into c++? For example about ogre-python it said built using Py++ and Boost.Python library And one more question, maybe someone of you know how Python was integrated into BigWorld engine (it's own port or some library)? Thank you!!!

    Read the article

  • Larry Ellison cikk, tervek a Sun-nal, az ember az Iron Man 2-bol

    - by Fekete Zoltán
    2010. május 12-én jelent meg a következo cikk az Oracle-rol és Larry Ellisonról (az Oracle CEO-ja): Special Report: Can That Guy in Ironman 2 Whip IBM in Real Life?. Larry szerepel az Iron Man 2 c. filmben is, ahogyan korábbi blogbejegyzésemben már írtam róla: Larry Ellison is szerepel az Iron Man 2 c. filmben, a nyúlfarknyi 3 másodperces szerepben önmagát alakítja. A következokben a cikkbol idézek. "...Sun under Oracle should be larger than Sun ever was", azaz a Sun az Oracle kezében sokkal jobban fog muzsikálni, mint korábban önállóan. "He added that he expects profit from Sun's operations to boost Oracle's earnings in the current quarter, which ends May 31.", azaz Larry már a két hét múlva végetéro pénzügyi negyedévben is profitot remél a Sun termékekbol.

    Read the article

  • How can I adjust system volume from within XBMC?

    - by d3vid
    While running XBMC, I can adjust the volume of the XBMC application itself. However, this volume is limited by the current system volume. For example, if the system volume is at 80% and XBMC is at 100%, I am effectively at 80% and cannot go higher. Or if the sound is too soft and needs a boost, I would normally increase the system volume beyond 100%. XBMC takes over the whole screen, so the system volume is not accessible. Pressing the Super key brings up the dash and top menu, but clicking on it is difficult and inconsistent, and very quickly XBMC takes over the screen again. How can I adjust the system volume without having to quit XBMC?

    Read the article

  • Setting effects variables in XNA

    - by Badescu Alexandru
    Hello ! I am currently reading a book named "3D Graphics with XNA Game Studio 4.0" by Sean James and have some questions to ask : If i create a effect parameter named lets say SpecularPower and have in my effect a variable named SpecularPower , if i do something like effect.Parameters["SpecularPower"].SetValue(3) That wil change the SpecularPower variable in my effect ? And a second question, not regarding the book : If i have a spaceship and i've created a "boost" functionality that speeds up my spaceship, what effects should i implement to create the impresion oh high speed ? I was thinking of making everything except my spaceship blurry but i think there would be something missing . Any ideas ? Regards, Alex Badescu

    Read the article

  • System Wide Performance Sanity Check Procedures

    - by user702295
    Do you need to boost your overall implementation performance? Do you need a direction to pinpoint possible performance opportunities? Are you looking for a general performance guide? Try MOS note 69565.1.  This paper describes a holistic methodology that defines a systematic approach to resolve complex Application performance problems.  It has been successfully used on many critical accounts.  The 'end-to-end' tuning approach encompasses the client, network and database and has proven far more effective than isolated tuning exercises.  It has been used to define and measure targets to ensure success.  Even though it was checked for relevance on 13-Oct-2008, the procedure is still very valuable. Regards!  

    Read the article

  • Effects to make a speeding spaceship look faster

    - by Badescu Alexandru
    I have a spaceship and I've created a "boost" functionality that speeds up my spaceship, what effects should I implement to create the impression of high speed? I was thinking of making everything except my spaceship blurry but I think there would be something missing. Any ideas? Btw. I am working in XNA C# but if you aren't familiar to XNA describing some effects is still useful. The Game is 3d and i've attached some printscreens of the game This is in normal mode ( none boosted ) and here is the boosted mode ( the craft speeds up forward while the camera speeds in its normal speed , the non boosted speed )

    Read the article

< Previous Page | 51 52 53 54 55 56 57 58 59 60 61 62  | Next Page >