Search Results

Search found 29201 results on 1169 pages for 'game development'.

Page 576/1169 | < Previous Page | 572 573 574 575 576 577 578 579 580 581 582 583  | Next Page >

  • Sensor based vs. AABB based collision

    - by Hillel
    I'm trying to write a simple collision system, which will probably be primarily used for 2D platformers, and I've been planning out an AABB system for a few weeks now, which will work seamlessly with my grid data structure optimization. I picked AABB because I want a simple system, but I also want it to be perfect. Now, I've been hearing a lot lately about a different method to handle collision, using sensors, which are placed in the important parts of the entity. I understand it's a good way to handle slopes, better than AABB collision. The thing is, I can't find a basic explanation of how it works, let alone a comparison of it and the AABB method. If someone could explain it to me, or point me to a good tutorial, I'd very much appreciate it, and also a comparison of the advantages and disadvantages of the two techniques would be nice.

    Read the article

  • Simple 2 player server

    - by Sourabh Lal
    I have recently started learning javascript and html and have developed simple 2 player games such as tick-tack-toe, battleship, and dots&boxes. However these 2 player games can only be played on one computer (i.e. the 2 players must sit together) However, I want to modify this so that one can play with a friend on a different computer. Any suggestions on how this is possible? Also since I am a beginner please do not assume that I know all the jargon.

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Given a start and end point, how can I constrain the end point so the resulting line segment is horizontal, vertical, or 45 degrees?

    - by GloryFish
    I have a grid of letters. The player clicks on a letter and drags out a selection. Using Bresenham's Algorithm I can create a line of highlighted letters representing the player's selection. However, what I really want is to have the line segment be constrained to 45 degree angles (as is common for crossword-style games). So, given a start point and an end point, how can I find the line that passes through the start point and is closest to the end point? Bonus: To make things super sweet I'd like to get a list of points in the grid that the line passes through, and for super MEGA bonus points, I'd like to get them in order of selection (i.e. from start point to end point).

    Read the article

  • How can I replicate the look and limitations of the Super NES?

    - by Mikalichov
    I am looking to produce graphics with the same limitations / look that in the Super Nes era. I am specifically looking for graphics similar to Chrono Trigger / FF6. It would be a lot easier to do if I had an idea of the resolution / dpi I am supposed to use. I found that the technical specs for the SNES are: Progressive: 256 × 224, 512 × 224, 256 × 239, 512 × 239 Interlaced: 512 × 448, 512 × 478 But even by using these resolutions, it is pointless if I set it at 72dpi, as I will still have possibly very detailed graphics (that is the main thing, I don't want detailed graphics, I want to go pixelated). I figured it might be related to the sprite size limit, i.e.: Sprites can be 8 × 8, 16 × 16, 32 × 32, or 64 × 64 pixels, each using one of eight 16-color palettes and tiles from one of two blocks of 256 in VRAM. Up to 32 sprites and 34 8 × 8 sprite tiles may appear on any one line. This would work for sprites (characters, objects), but what about maps? Are they built entirely from 8x8 tiles? And then, at what resolution is the end result displayed? It might seem like I am giving the question and answers at the same time, but all of these are suppositions I am making, so could someone confirm or correct them?

    Read the article

  • AABB - AABB Collision, which face do I hit?

    - by PeeS
    To allow my objects to slide when they collide, I need to : Know which face of the AABB they collide with. Calculate the normal to that face. Return the normal and calculate the impulse that to apply to the player's velocity. Question How can I calculate which face of the AABB I collided with, knowing that I have two AABB's colliding? One is the player and the other is a world object. Here's what that looks like (problem collision circled in white): Thank you for your help.

    Read the article

  • How can be data oriented programming applied for GUI system?

    - by Miro
    I've just learned basics of Data oriented programming design, but I'm not very familiar with that yet. I've also read Pitfalls of Object Oriented Programming GCAP 09. It seems that data oriented programming is much better idea for games, than OOP. I'm just creating my own GUI system and it's completely OOP. I'm thinking if is data oriented programming design applicable for structured things like GUI. The main problem I see is that every type widget has different data, so I can hardly group them into arrays. Also every type of widget renders differently so I still need to call virtual functions.

    Read the article

  • Keypress Left is called twice in Update when key is pressed only once

    - by Simran kaur
    I have a piece of code that is changing the position of player when left key is pressed. It is inside of Update() function. I know, Update is called multiple times, but since I have an ifstatement to check if left arrow is pressed, it should update only once. I have tested using print statement that once pressed, it gets called twice. Problem: Position updated twice when key is pressed only once. Below given is the structure of my code: void Update() { if (Input.GetKeyDown (KeyCode.LeftArrow)) { print ("PRESSEEEEEEEEEEEEEEEEEEDDDDDDDDDDDDDD"); } } I looked up on web and what was suggested id this: if (Event.current.type == EventType.KeyDown && Event.current.keyCode == KeyCode.LeftArrow) { print("pressed"); } But, It gives me an error that says: Object reference not set to instance of an object How can I fix this?

    Read the article

  • Sprite/Tile Sheets Vs Single Textures

    - by Reanimation
    I'm making a race circuit which is constructed using various textures. To provide some background, I'm writing it in C++ and creating quads with OpenGL to which I assign a loaded .raw texture too. Currently I use 23 500px x 500px textures of which are all loaded and freed individually. I have now combined them all into a single sprite/tile sheet making it 3000 x 2000 pixels seems the number of textures/tiles I'm using is increasing. Now I'm wondering if it's more efficient to load them individually or write extra code to extract a certain tile from the sheet? Is it better to load the sheet, then extract 23 tiles and store them from one sheet, or load the sheet each time and crop it to the correct tile? There seems to be a number of way to implement it... Thanks in advance.

    Read the article

  • Improving the efficiency of frustum culling

    - by DeadMG
    I've got some code which performs frustum culling. However, this defines the "frustum" way too broadly- when I have ~10 objects on screen, the code returns 42 objects to be rendered. I've tried taking "slices" through the frustum to attempt to increase the accuracy of the technique, but it doesn't seem to have made much impact. I also significantly reduced the far plane, so that the objects are barely at the edge. Here's my code (where size is the size in screen space- the resolution of the client area of the window I'm rendering into). Any suggestions? auto&& size = GetDimensions(); D3DVIEWPORT9 vp = { 0, 0, size.x, size.y, 0, 1 }; D3DCALL(device->SetViewport(&vp)); static const int slices = 10; std::vector<Object*> result; for(int i = 0; i < slices; i++) { D3DXVECTOR3 WorldSpaceFrustrumPoints[8] = { D3DXVECTOR3(0, size.y, static_cast<float>(i) / slices), D3DXVECTOR3(size.x, 0, static_cast<float>(i) / slices), D3DXVECTOR3(size.x, size.y, static_cast<float>(i) / slices), D3DXVECTOR3(0, 0, static_cast<float>(i) / slices), D3DXVECTOR3(0, 0, static_cast<float>(i + 1) / slices), D3DXVECTOR3(size.x, 0, static_cast<float>(i + 1) / slices), D3DXVECTOR3(size.x, size.y, static_cast<float>(i + 1) / slices), D3DXVECTOR3(0, size.y, static_cast<float>(i + 1) / slices) }; D3DXMATRIXA16 Identity; D3DXMatrixIdentity(&Identity); D3DXVec3UnprojectArray( WorldSpaceFrustrumPoints, sizeof(D3DXVECTOR3), WorldSpaceFrustrumPoints, sizeof(D3DXVECTOR3), &vp, &Projection, &View, &Identity, 8 ); Math::AABB Frustrum; auto world_begin = std::begin(WorldSpaceFrustrumPoints); auto world_end = std::end(WorldSpaceFrustrumPoints); auto world_initial = WorldSpaceFrustrumPoints[0]; Frustrum.BottomLeftClosest.x = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.x < rhs.x ? lhs : rhs; }).x; Frustrum.BottomLeftClosest.y = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.y < rhs.y ? lhs : rhs; }).y; Frustrum.BottomLeftClosest.z = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.z < rhs.z ? lhs : rhs; }).z; Frustrum.TopRightFurthest.x = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.x > rhs.x ? lhs : rhs; }).x; Frustrum.TopRightFurthest.y = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.y > rhs.y ? lhs : rhs; }).y; Frustrum.TopRightFurthest.z = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.z > rhs.z ? lhs : rhs; }).z; auto slices_result = ObjectTree.collision(Frustrum); result.insert(result.end(), slices_result.begin(), slices_result.end()); } return result;

    Read the article

  • How can I make Maya export a mesh as double-sided?

    - by bobobobo
    I'm exporting from Maya 2009 to OBJ. The mesh I'm exporting has in it's Render Stats "Double Sided" checked, but when the polygon is exported, only a single side is actually exported. What really needs to happen is for each polygon that is double sided, two polygons need to be exported, facing in opposite directions.. I can do this manually, but is there a way to make the OBJ exporter do it for me?

    Read the article

  • HLSL Shader not working right?

    - by dvds414
    Okay so I have this shader for ambient occlusion. It loads to world correctly, but it just shows all the models as being white. I do not know why. I am just running the shader while the model is rendering, is that correct? or do I need to make a render target or something? if so then how? I'm using C++. Here is my shader. float sampleRadius; float distanceScale; float4x4 xProjection; float4x4 xView; float4x4 xWorld; float3 cornerFustrum; struct VS_OUTPUT { float4 pos : POSITION; float2 TexCoord : TEXCOORD0; float3 viewDirection : TEXCOORD1; }; VS_OUTPUT VertexShaderFunction( float4 Position : POSITION, float2 TexCoord : TEXCOORD0) { VS_OUTPUT Out = (VS_OUTPUT)0; float4 WorldPosition = mul(Position, xWorld); float4 ViewPosition = mul(WorldPosition, xView); Out.pos = mul(ViewPosition, xProjection); Position.xy = sign(Position.xy); Out.TexCoord = (float2(Position.x, -Position.y) + float2( 1.0f, 1.0f ) ) * 0.5f; float3 corner = float3(-cornerFustrum.x * Position.x, cornerFustrum.y * Position.y, cornerFustrum.z); Out.viewDirection = corner; return Out; } texture depthTexture; texture randomTexture; sampler2D depthSampler = sampler_state { Texture = <depthTexture>; ADDRESSU = CLAMP; ADDRESSV = CLAMP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; sampler2D RandNormal = sampler_state { Texture = <randomTexture>; ADDRESSU = WRAP; ADDRESSV = WRAP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; float4 PixelShaderFunction(VS_OUTPUT IN) : COLOR0 { float4 samples[16] = { float4(0.355512, -0.709318, -0.102371, 0.0 ), float4(0.534186, 0.71511, -0.115167, 0.0 ), float4(-0.87866, 0.157139, -0.115167, 0.0 ), float4(0.140679, -0.475516, -0.0639818, 0.0 ), float4(-0.0796121, 0.158842, -0.677075, 0.0 ), float4(-0.0759516, -0.101676, -0.483625, 0.0 ), float4(0.12493, -0.0223423, -0.483625, 0.0 ), float4(-0.0720074, 0.243395, -0.967251, 0.0 ), float4(-0.207641, 0.414286, 0.187755, 0.0 ), float4(-0.277332, -0.371262, 0.187755, 0.0 ), float4(0.63864, -0.114214, 0.262857, 0.0 ), float4(-0.184051, 0.622119, 0.262857, 0.0 ), float4(0.110007, -0.219486, 0.435574, 0.0 ), float4(0.235085, 0.314707, 0.696918, 0.0 ), float4(-0.290012, 0.0518654, 0.522688, 0.0 ), float4(0.0975089, -0.329594, 0.609803, 0.0 ) }; IN.TexCoord.x += 1.0/1600.0; IN.TexCoord.y += 1.0/1200.0; normalize (IN.viewDirection); float depth = tex2D(depthSampler, IN.TexCoord).a; float3 se = depth * IN.viewDirection; float3 randNormal = tex2D( RandNormal, IN.TexCoord * 200.0 ).rgb; float3 normal = tex2D(depthSampler, IN.TexCoord).rgb; float finalColor = 0.0f; for (int i = 0; i < 16; i++) { float3 ray = reflect(samples[i].xyz,randNormal) * sampleRadius; //if (dot(ray, normal) < 0) // ray += normal * sampleRadius; float4 sample = float4(se + ray, 1.0f); float4 ss = mul(sample, xProjection); float2 sampleTexCoord = 0.5f * ss.xy/ss.w + float2(0.5f, 0.5f); sampleTexCoord.x += 1.0/1600.0; sampleTexCoord.y += 1.0/1200.0; float sampleDepth = tex2D(depthSampler, sampleTexCoord).a; if (sampleDepth == 1.0) { finalColor ++; } else { float occlusion = distanceScale* max(sampleDepth - depth, 0.0f); finalColor += 1.0f / (1.0f + occlusion * occlusion * 0.1); } } return float4(finalColor/16, finalColor/16, finalColor/16, 1.0f); } technique SSAO { pass P0 { VertexShader = compile vs_3_0 VertexShaderFunction(); PixelShader = compile ps_3_0 PixelShaderFunction(); } }

    Read the article

  • How do I pass vertex and color positions to OpenGL shaders?

    - by smoth190
    I've been trying to get this to work for the past two days, telling myself I wouldn't ask for help. I think you can see where that got me... I thought I'd try my hand at a little OpenGL, because DirectX is complex and depressing. I picked OpenGL 3.x, because even with my OpenGL 4 graphics card, all my friends don't have that, and I like to let them use my programs. There aren't really any great tutorials for OpenGL 3, most are just "type this and this will happen--the end". I'm trying to just draw a simple triangle, and so far, all I have is a blank screen with my clear color (when I set the draw type to GL_POINTS I just get a black dot). I have no idea what the problem is, so I'll just slap down the code: Here is the function that creates the triangle: void CEntityRenderable::CreateBuffers() { m_vertices = new Vertex3D[3]; m_vertexCount = 3; m_vertices[0].x = -1.0f; m_vertices[0].y = -1.0f; m_vertices[0].z = -5.0f; m_vertices[0].r = 1.0f; m_vertices[0].g = 0.0f; m_vertices[0].b = 0.0f; m_vertices[0].a = 1.0f; m_vertices[1].x = 1.0f; m_vertices[1].y = -1.0f; m_vertices[1].z = -5.0f; m_vertices[1].r = 1.0f; m_vertices[1].g = 0.0f; m_vertices[1].b = 0.0f; m_vertices[1].a = 1.0f; m_vertices[2].x = 0.0f; m_vertices[2].y = 1.0f; m_vertices[2].z = -5.0f; m_vertices[2].r = 1.0f; m_vertices[2].g = 0.0f; m_vertices[2].b = 0.0f; m_vertices[2].a = 1.0f; //Create the VAO glGenVertexArrays(1, &m_vaoID); //Bind the VAO glBindVertexArray(m_vaoID); //Create a vertex buffer glGenBuffers(1, &m_vboID); //Bind the buffer glBindBuffer(GL_ARRAY_BUFFER, m_vboID); //Set the buffers data glBufferData(GL_ARRAY_BUFFER, sizeof(m_vertices), m_vertices, GL_STATIC_DRAW); //Set its usage glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex3D), 0); glVertexAttribPointer(1, 4, GL_FLOAT, GL_TRUE, sizeof(Vertex3D), (void*)(3*sizeof(float))); //Enable glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); //Check for errors if(glGetError() != GL_NO_ERROR) { Error("Failed to create VBO: %s", gluErrorString(glGetError())); } //Unbind... glBindVertexArray(0); } The Vertex3D struct is as such... struct Vertex3D { Vertex3D() : x(0), y(0), z(0), r(0), g(0), b(0), a(1) {} float x, y, z; float r, g, b, a; }; And finally the render function: void CEntityRenderable::RenderEntity() { //Render... glBindVertexArray(m_vaoID); //Use our attribs glDrawArrays(GL_POINTS, 0, m_vertexCount); glBindVertexArray(0); //unbind OnRender(); } (And yes, I am binding and unbinding the shader. That is just in a different place) I think my problem is that I haven't fully wrapped my mind around this whole VertexAttribArray thing (the only thing I like better in DirectX was input layouts D:). This is my vertex shader: #version 330 //Matrices uniform mat4 projectionMatrix; uniform mat4 viewMatrix; uniform mat4 modelMatrix; //In values layout(location = 0) in vec3 position; layout(location = 1) in vec3 color; //Out values out vec3 frag_color; //Main shader void main(void) { //Position in world gl_Position = vec4(position, 1.0); //gl_Position = projectionMatrix * viewMatrix * modelMatrix * vec4(in_Position, 1.0); //No color changes frag_color = color; } As you can see, I've disable the matrices, because that just makes debugging this thing so much harder. I tried to debug using glslDevil, but my program just crashes right before the shaders are created... so I gave up with that. This is my first shot at OpenGL since the good old days of LWJGL, but that was when I didn't even know what a shader was. Thanks for your help :)

    Read the article

  • How should I determine direction from a phone's orientation & accelerometer?

    - by Manoj Kumar
    I have an Android application which moves a ball based on the orientation of the phone. I've been using the following code to extract the data - but how do I use it to determine what direction the ball should actually travel in? public void onSensorChanged(int sensor, float[] values) { // TODO Auto-generated method stub synchronized (this) { Log.d("HIIIII :- ", "onSensorChanged: " + sensor + ", x: " + values[0] + ", y: " + values[1] + ", z: " + values[2]); if (sensor == SensorManager.SENSOR_ORIENTATION) { System.out.println("Orientation X: " + values[0]); System.out.println("Orientation Y: " + values[1]); System.out.println("Orientation Z: " + values[2]); } if (sensor == SensorManager.SENSOR_ACCELEROMETER) { System.out.println("Accel X: " + values[0]); System.out.println("Accel Y: " + values[1]); System.out.println("Accel Z: " + values[2]); } } }

    Read the article

  • Image first loaded, then it isn't? (XNA)

    - by M0rgenstern
    I am very confused at the Moment. I have the following Class: (Just a part of the class): public class GUIWindow { #region Static Fields //The standard image for windows. public static IngameImage StandardBackgroundImage; #endregion } IngameImage is just one of my own classes, but actually it contains a Texture2D (and some other things). In another class I load a list of GUIButtons by deserializing a XML file. public static GUI Initializazion(string pXMLPath, ContentManager pConMan) { GUI myGUI = pConMan.Load<GUI>(pXMLPath); GUIWindow.StandardBackgroundImage = new IngameImage(pConMan.Load<Texture2D>(myGUI.WindowStandardBackgroundImagePath), Vector2.Zero, 1024, 600, 1, 0, Color.White, 1.0f, true, false, false); System.Console.WriteLine("Image loaded? " + (GUIWindow.StandardBackgroundImage.ImageStrip != null)); myGUI.Windows = pConMan.Load<List<GUIWindow>>(myGUI.GUIFormatXMLPath); System.Console.WriteLine("Windows loaded"); return myGUI; } Here this line: System.Console.WriteLine("Image loaded? " + (GUIWindow.StandardBackgroundImage.ImageStrip != null)); Prints "true". To load the GUIWindows I need an "empty" constructor, which looks like that: public GUIWindow() { Name = ""; Buttons = new List<Button>(); ImagePath = ""; System.Console.WriteLine("Image loaded? (In win) " + (GUIWindow.StandardBackgroundImage.ImageStrip != null)); //Image = new IngameImage(StandardBackgroundImage); //System.Console.WriteLine( //Image.IsActive = false; SelectedButton = null; IsActive = false; } As you can see, I commented lines out in the constructor. Because: Otherwise this would crash. Here the line System.Console.WriteLine("Image loaded? (In win) " + (GUIWindow.StandardBackgroundImage.ImageStrip != null)); Doesn't print anything, it just crashes with the following errormessage: Building content threw NullReferenceException: Object reference not set to an object instance. Why does this happen? Before the program wants to load the List, it prints "true". But in the constructor, so in the loading of the list it prints "false". Can anybody please tell me why this happens and how to fix it?

    Read the article

  • most efficient AABB vs Ray collision algorithms

    - by Asher Einhorn
    Is there a known 'most efficient' algorithm for AABB vs Ray collision detection? I recently stumbled accross Arvo's AABB vs Sphere collision algorithm, and I am wondering if there is a similarly noteworthy algorithm for this. One must have condition for this algorithm is that I need to have the option of querying the result for the distance from the ray's origin to the point of collision. having said this, if there is another, faster algorithm which does not return distance, then in addition to posting one that does, also posting that algorithm would be very helpful indeed. Please also state what the function's return argument is, and how you use it to return distance or a 'no-collision' case. For example, does it have an out parameter for the distance as well as a bool return value? or does it simply return a float with the distance, vs a value of -1 for no collision? (For those that don't know: AABB = Axis Aligned Bounding Box)

    Read the article

  • PhysX Capsule Character Controller floating above ground

    - by Jannie
    I am using PhysX Version 3.0.2 in the simulation package I'm working on, and I've encountered some bizarre behavior with the capsule character controller. When I set the controller's height and radius to the appropriate values (r = 0.25, h = 1.86)it behaves correctly (moving along the ground, colliding with other objects, and so on) except that the capsule itself is floating above the ground. The actor will then bump his head when trying to get through a door, since the capsule is the correct height but also floating above the ground. This image should illustrate what I'm going on about: One can clearly see that the rest of the scene has their collision bodies wrapped correctly, it's just the capsule that's going wrong! The stop-gap I've implemented is creating a smaller capsule and giving it an offset, but I need to implement ray-picking for the controller next so the capsule has to surround the character model properly. Here's my character creation code (with height = 1.86f and radius = 0.25f): NxController* D3DPhysXManager::CreateCharacterController( std::string l_stdsControllerName, float l_fHeight, float l_fRadius, D3DXVECTOR3 l_v3Position ) { NxCapsuleControllerDesc l_CapsuleControllerDescription; l_CapsuleControllerDescription.height = l_fHeight; l_CapsuleControllerDescription.radius = l_fRadius; l_CapsuleControllerDescription.position.set( l_v3Position.x, l_v3Position.y, l_v3Position.z ); l_CapsuleControllerDescription.callback = &this->m_ControllerHitReport; NxController* l_pController = this->m_pControllerManager->createController( this->m_pScene, l_CapsuleControllerDescription ); this->m_pControllerMap.insert( l_ControllerValuePair( l_stdsControllerName, l_pController ) ); return l_pController; } Any help at all would be appreciated, I just can't figure this one out! P.S. I've found a couple of (rather old) threads describing the same issue, but it seems they couldn't find a solution either. Here are the links: http://forum-archive.developer.nvidia.com/index.php?showtopic=6409 http://forum-archive.developer.nvidia.com/index.php?showtopic=3272 http://www.ogre3d.org/addonforums/viewtopic.php?f=8&t=23003

    Read the article

  • Better way to go up/down slope based on yaw?

    - by CyanPrime
    Alright, so I got a bit of movement code and I'm thinking I'm going to need to manually input when to go up/down a slope. All I got to work with is the slope's normal, and vector, and My current and previous position, and my yaw. Is there a better way to rotate whether I go up or down the slope based on my yaw? Vector3f move = new Vector3f(0,0,0); move.x = (float)-Math.toDegrees(Math.cos(Math.toRadians(yaw))); move.z = (float)-Math.toDegrees(Math.sin(Math.toRadians(yaw))); move.normalise(); if(move.z < 0 && slopeNormal.z > 0 || move.z > 0 && slopeNormal.z < 0){ if(move.x < 0 && slopeNormal.x > 0 || move.x > 0 && slopeNormal.x < 0){ move.y += slopeVec.y; } } if(move.z > 0 && slopeNormal.z > 0 || move.z < 0 && slopeNormal.z < 0){ if(move.x > 0 && slopeNormal.x > 0 || move.x < 0 && slopeNormal.x < 0){ move.y -= slopeVec.y; } } move.scale(movementSpeed * delta); Vector3f.add(pos, move, pos);

    Read the article

  • how to keep display tick rate steady when using continuous collision detection?

    - by nas Ns
    (I've just found about this forum). I hope it is ok to repost my question again here. I posted this question at stackoverflow, but it looks like I might get better help here. Here is the question: I've implemented basic particles motion simulation with continuous collision detection. But there is small issue in display. Assume simple case of circles moving inside square. All elastic collisions. no firction. All motion is constant speed. No forces are involved, no gravity. So when a particle is moving, it is always moving at constant speed (in between collisions) What I do now is this: Let the simulation time step be 1 second (for example). This is the time step simulation is advanced before displaying the new state (unless there is a collision sooner than this). At start of each time step, time for the next collision between any particles or a particle with a wall is determined. Call this the TOC time; let’s say TOC was .5 seconds in this case. Since TOC is smaller than the standard time step, then the system is moved by TOC and the new system is displayed so that the new display shows any collisions as just taking place (say 2 circles just touched each other’s, or a circle just touched a wall) Next, the collision(s) are resolved (i.e. speeds updated, changed directions etc..). A new step is started. The same thing happens. Now assume there is no collision detected within the next 1 second (those 2 circles above will not be in collision any more, even though they are still touching, due to their speeds showing they are moving apart now), Hence, simulation time is advanced now by the full one second, the standard time step, and particles are moved on the screen using 1 second simulation time and new display is shown. You see what has just happened: One frame ran for .5 seconds, but the next frame runs for 1 second, may be the 3rd frame is displayed after 2 seconds, may be the 4th frame is displayed after 2.8 seconds (because TOC was .8 seconds then) and so on. What happens is that the motion of a particle on the screen appears to speed up or slow down, even though it is moving at constant speed and was not even involved in a collision. i.e. Looking at one particle on its own, I see it suddenly speeding up or slowing down, becuase another particle had hit a wall. This is because the display tick is not uniform. i.e. the frame rate update is changing, giving the false illusion that a particle is moving at non-constant speed while in fact it is moving at constant speed. The motion on the screen is not smooth, since the screen is not updating at constant rate. I am not able to figure how to fix this. If I want to show 2 particles at the moment of the collision, I must draw the screen at different times. Drawing the screen always at the same tick interval, results in seeing 2 particles before the collision, and then after the collision, and not just when they colliding, which looked bad when I tried it. So, how do real games handle this issue? How to display things in order to show collisions when it happen, yet keep the display tick constant? These 2 requirements seem to contradict each other’s.

    Read the article

  • Design: How to model / where to store relational data between classes

    - by Walker
    I'm trying to figure out the best design here, and I can see multiple approaches, but none that seems "right." There are three relevant classes here: Base, TradingPost, and Resource. Each Base has a TradingPost which can offer various Resources depending on the Base's tech level. Where is the right place to store the minimum tech level a base must possess to offer any given resource? A database seems like overkill. Putting it in each subclass of Resource seems wrong--that's not an intrinsic property of the Resource. Do I have a mediating class, and if so, how does it work? It's important that I not be duplicating code; that I have one place where I set the required tech level for a given item. Essentially, where does this data belong? P.S. Feel free to change the title; I struggled to come up with one that fits.

    Read the article

  • How can I make a 32 bit render target with a 16 bit alpha channel in DirectX?

    - by J Junker
    I want to create a render target that is 32-bit, with 16 bits each for alpha and luminance. The closest surface formats I can find in the DirectX SDK are: D3DFMT_A8L8 // 16-bit using 8 bits each for alpha and luminance. D3DFMT_G16R16F // 32-bit float format using 16 bits for the red channel and 16 bits for the green channel. But I don't think either of these will work, since D3DFMT_A8L8 doesn't have the precision and D3DFMT_G16R16F doesn't have an alpha channel (I need a separate blend state for alpha). How can I create a render target that allows a separate blend state for luminance and alpha, with 16 bit precision on each channel, that doesn't exceed 32 bits per pixel?

    Read the article

  • Pathfinding with MicroPather : costs calculations with sectors and portals

    - by Adan
    Hello, I'm considering using micropather to help me with pathfinding. I'm not using a discrete map : I'm working in 2d with sectors and portales. However, I'm just wondering what is the best way to compute costs with this library in this context. Just to be more clear about geometrical shapes I'm using : sectors are basically convex polygons, and portals are segments that lies on sector's edge. Micropather exposes a pure virtual Graph class that you must inherate and overrides 3 functions. I understand how pathfinding works, so there's no problem in overriding those functions. Right now, my implementation give me results, i.e I'm able to find a path in my map, but I'm not sure I'm using an optimal solution. For the AdjacentCost method : I just take the distance between sector's centers as the cost. I think a better solution should be to use the portal between the two sectors, compute its center, and then the cost should be : distance( sector A center, portal center ) + distance ( sector B center, portal center ). I'm pretty sure the approximation I'm using with just sector's center is enough for most cases, but maybe with thin and long sectors that are perpendicular, this approximation could mislead the A* algorithm. For the LeastCostEstimate method : I just take the midpoint of the two sectors. So, as you understand, I'm always working with sectors' centers, and it's working fine. And I'm pretty sure there's a better way to work. Any suggestions or feedbacks? Thanks in advance!

    Read the article

  • How do I implement a selectable world map?

    - by Clay
    I want to have a selectable map of the world, preferably zoomable, in a cocos2d project. When I tap on a country, I want that country to be selected so that I can perform some other operations with it. It seems that the best approach would be to use a vector world map, but I'm unsure how to implement this with cocos2d. Other options include using map tiles, but it seems that still would require the implementation of country polygons for tap/click detection. Depending on user input, I want to add icons to various countries on the map. What is a good way to approach the implementation of this type of map?

    Read the article

  • Rotation matrix for a 3D vector

    - by Shashwat
    I have a direction vector on which I have to apply some rotation to align it to positive z-axis. To use Matrix.CreateRotationX(angle) of XNA, I need the angle for which I'd have to compute cos or tan inverse. I think this is a complex task to do. Also, eventually those are also converted to sin(angle) and cos(angle) in the matrix. Is there any inbuilt way to create rotation matrix from a 3D vector? However, I can write the function but still asking if there is one already there.

    Read the article

  • Implement Fast Inverse Square Root in Javascript?

    - by BBz
    The Fast Inverse Square Root from Quake III seems to use a floating-point trick. As I understand, floating-point representation can have some different implementations. So is it possible to implement the Fast Inverse Square Root in Javascript? Would it return the same result? float Q_rsqrt(float number) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; i = 0x5f3759df - ( i >> 1 ); y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); return y; }

    Read the article

< Previous Page | 572 573 574 575 576 577 578 579 580 581 582 583  | Next Page >