Search Results

Search found 29201 results on 1169 pages for 'game development'.

Page 576/1169 | < Previous Page | 572 573 574 575 576 577 578 579 580 581 582 583  | Next Page >

  • Locomotion-system with irregular IK

    - by htaunay
    Im having some trouble with locomtions (Unity3D asset) IK feet placement. I wouldn't call it "very bad", but it definitely isn't as smooth as the Locomotion System Examples. The strangest behavior (that is probably linked to the problem) are the rendered foot markers that "guess" where the characters next step will be. In the demo, they are smooth and stable. However, in my project, they keep flickering, as if Locomotion changed its "guess" every frame, and sometimes, the automatic defined step is too close to the previous step, or sometimes, too distant, creating a very irregular pattern. The configuration is (apparently)Identical to the human example in the demo, so I guessing the problem is my model and/or animation. Problem is, I can't figure out was it is =S Has anyone experienced the same problem? I uploaded a video of the bug to help interpreting the issue (excuse the HORRIBLE quality, I was in a hurry).

    Read the article

  • (Where) Can I learn creating art for my 2D games?

    - by Poorly paid coder
    I'm currently bad at drawing. If I want to create something looking acceptable, it usually takes me hours and hours to fiddle around just to get the basic looks right. I think that I'm not completely skill-less, I just lack simple drawing techniques.. Am I a hopeless case? Where is a good place to start out in drawing for 2D games? I'd like to be able to create acceptably good backgrounds, terrains / tilemaps, characters and weapons

    Read the article

  • Normal vector of a face loaded from an FBX model during collision?

    - by Corey Ogburn
    I'm loading a simple 6 sided cube from a UV-mapped FBX model and I'm using a BoundingBox to test for collisions. Once I determine there's a collision, I want to use the normal vector of the collided surface to correct the movement of whatever collided with the cube. I suppose this is a two-part question: 1) How can I determine which face of the cube was collided with in a collision? 2) How can I get the normal vector of that surface?

    Read the article

  • How can I make a 32 bit render target with a 16 bit alpha channel in DirectX?

    - by J Junker
    I want to create a render target that is 32-bit, with 16 bits each for alpha and luminance. The closest surface formats I can find in the DirectX SDK are: D3DFMT_A8L8 // 16-bit using 8 bits each for alpha and luminance. D3DFMT_G16R16F // 32-bit float format using 16 bits for the red channel and 16 bits for the green channel. But I don't think either of these will work, since D3DFMT_A8L8 doesn't have the precision and D3DFMT_G16R16F doesn't have an alpha channel (I need a separate blend state for alpha). How can I create a render target that allows a separate blend state for luminance and alpha, with 16 bit precision on each channel, that doesn't exceed 32 bits per pixel?

    Read the article

  • Scan-Line Z-Buffering Dilemma

    - by Belgin
    I have a set of vertices in 3D space, and for each I retain the following information: Its 3D coordinates (x, y, z). A list of pointers to some of the other vertices with which it's connected by edges. Right now, I'm doing perspective projection with the projecting plane being XY and the eye placed somewhere at (0, 0, d), with d < 0. By doing Z-Buffering, I need to find the depth of the point of a polygon (they're all planar) which corresponds to a certain pixel on the screen so I can hide the surfaces that are not visible. My questions are the following: How do I determine to which polygon does a pixel belong to so I could use the formula of the plane which contains the polygon to find the Z-coordinate? Are my data structures correct? Do I need to store something else entirely in order for this to work? I'm just projecting the vertices onto the projection plane and joining them with lines based on the pointer lists.

    Read the article

  • Why my collision detection is not accurate?

    - by optimisez
    After trying and trying, I still cannot understand why the leg of character exceeds the wall but no clipping issue when I hit the wall from below. How should I fix it to make him standstill on the wall? void initPlayer() { // Create texture. hr = D3DXCreateTextureFromFileEx(d3dDevice, "player.png", 169, 44, D3DX_DEFAULT, NULL, D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, D3DX_DEFAULT, D3DX_DEFAULT, D3DCOLOR_XRGB(255, 255, 255), NULL, NULL, &player); playerRect.left = playerRect.top = 0; playerRect.right = 29; playerRect.bottom = 36; playerDest.X = 0; playerDest.Y = 564; playerDest.length = playerRect.right - playerRect.left; playerDest.height = playerRect.bottom - playerRect.top; } void initBox() { hr = D3DXCreateTextureFromFileEx(d3dDevice, "brock.png", 330, 132, D3DX_DEFAULT, NULL, D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, D3DX_DEFAULT, D3DX_DEFAULT, D3DCOLOR_XRGB(255, 255, 255), NULL, NULL, &box); boxRect.left = 33; boxRect.top = 0; boxRect.right = 63; boxRect.bottom = 30; boxDest.X = boxDest.Y = 300; boxDest.length = boxRect.right - boxRect.left; boxDest.height = boxRect.bottom - boxRect.top; } bool spriteCollide(Entity player, Entity target) { float left1, left2; float right1, right2; float top1, top2; float bottom1, bottom2; left1 = player.X; left2 = target.X; right1 = player.X + player.length; right2 = target.X + target.length; top1 = player.Y; top2 = target.Y; bottom1 = player.Y + player.height; bottom2 = target.Y + target.height; if (bottom1 < top2) return false; if (top1 > bottom2) return false; if (right1 < left2) return false; if (left1 > right2) return false; return true; } void collideWithBox() { if ( spriteCollide(playerDest, boxDest) && keyArr[VK_UP]) //playerDest.Y += 50; playerDest.Y = boxDest.Y + boxDest.height; else if ( spriteCollide(playerDest, boxDest) && !keyArr[VK_UP]) playerDest.Y = boxDest.Y - boxDest.height; }

    Read the article

  • How to render a retro-like pixel graphics from 3d models?

    - by momijigari
    I was wondering if there's a possibility to render a retro-pixel-like graphics from 3d model in real time? I'm talking about the Starfarer-like graphics. I know it's hand drawn, and it's 2d. But if I need a 3d objects with the same aesthetics? I'm currently working with Flash. But I don't need any ready-solutions, I just want to understand the principle from any other platform if there is one. So if anybody met anything like this I would appreciate your help. (If it's not possible to do in real time, I could at least pre-render a sequence of sprites. It would be much better than creating hundreds of hand-drawn ones)

    Read the article

  • How to reference or connect a variable to another class without stack overflow?

    - by SystemNetworks
    I really need to re-arrange all my functions. I created a class. All my var, booleans, int, doubles and other things. I created every new variable so they can reference it and so they don't have an error. If your asking why I never just reference my main class vars to my sub-class becuase it will give me stack overflow! When in my main class i link my sub-class. subClass s = new subClass(); Then I reference my fake variable to my real variable for example: This is my sub-class variable(I call it fake) public int x = 0; In my main class, I put it like this: s.x = x; The problem is, it does not work! Maybe this is not the right place but I cant ask any questions on stack overflow because they banned me. If I connect my main class and connect my sub-class it will give me stack overflow. How do I stop it?

    Read the article

  • what is the easiest way to make a hitbox that rotates with it's texture

    - by Matthew Optional Meehan
    In xna when you have a sprite that doesnt rotate it's very easy to get the four corner of a sprite to make a hitbox, but when you do a rotation the points get moved and I assume there is some kind of math that I can use to aquire them. I am using the four points to draw a rectangle that visually represents the hitboxes. I have seen some per-pixel collission examples but I can forsee they would be hard to draw a box/'convex hull' around. I have also seen physics like farseer but I'm not sure if there is a quick tutorial to do what I want. What do you guys think is the best approach becuase I am looking to complete this work by the end of the week.

    Read the article

  • Rotation matrix for a 3D vector

    - by Shashwat
    I have a direction vector on which I have to apply some rotation to align it to positive z-axis. To use Matrix.CreateRotationX(angle) of XNA, I need the angle for which I'd have to compute cos or tan inverse. I think this is a complex task to do. Also, eventually those are also converted to sin(angle) and cos(angle) in the matrix. Is there any inbuilt way to create rotation matrix from a 3D vector? However, I can write the function but still asking if there is one already there.

    Read the article

  • Optimizing hierarchical transform

    - by Geotarget
    I'm transforming objects in 3D space by transforming each vector with the object's 4x4 transform matrix. In order to achieve hierarchical transform, I transform the child by its own matrix, and then the child by the parent matrix. This becomes costly because objects deeper in the display tree have to be transformed by all the parent objects. This is what's happening, in summary: Root -- transform its verts by Root matrix Parent -- transform its verts by Parent, Root matrix Child -- transform its verts by Child, Parent, Root matrix Is there a faster way to transform vertices to achieve hierarchical transform? What If I first concatenated each transform matrix with the parent matrices, and then transform verts by that final resulting matrix, would that work and wouldn't that be faster? Root -- transform its verts by Root matrix Parent -- concat Parent, Root matrices, transform its verts by Concated matrix Child -- concat Child, Parent, Root matrices, transform its verts by Concated matrix

    Read the article

  • Getting a texture from a renderbuffer in OpenGL?

    - by Rushyo
    I've got a renderbuffer (DepthStencil) in an FBO and I need to get a texture from it. I can't have both a DepthComponent texture and a DepthStencil renderbuffer in the FBO, it seems, so I need some way to convert the renderbuffer to a DepthComponent texture after I'm done with it for use later down the pipeline. I've tried plenty of techniques to grab the depth component from the renderbuffer for weeks but I always come out with junk. All I want at the end is the same texture I'd get from an FBO if I wasn't using a renderbuffer. Can anyone post some comprehensive instructions or code that covers this seemingly simple operation? EDIT: Linky to an extract version of the code http://dl.dropbox.com/u/9279501/fbo.cs Screeny of the Depth of Field effect + FBO - without depth(!) http://i.stack.imgur.com/Hj9Oe.jpg Screeny without Depth of Field effect + FBO - depth working fine http://i.stack.imgur.com/boOm1.jpg

    Read the article

  • Button click event in the Ogre3d for ios

    - by user1184398
    Is it possible to access the button click event by using the cursor? These are the steps I followed for the button click event using the SDK trays m_pTrayMgr = new OgreBites::SdkTrayManager("TrayMgr", m_pRenderWnd, m_pMouse, this); I create the buttons m_LeftBtn = tray->createButton(OgreBites:: TL_LEFT, "sdk_button_down", "Left"); m_RightBtn = tray->createButton(OgreBites::TL_RIGHT, "sdk_button_up", "Right"); And I am calling this function void OgreFramework::buttonHit(OgreBites::Button* button) { if(button->getName().compare("sdk_button_down") == 0 ) { printf("XXX"); } } But the button hit function is not getting called... Could somebody provide some sample code? I'm not using any cursor for the click.

    Read the article

  • The most efficent ways for drawing lines all day long with OpenGL

    - by nkint
    I'd like to put a computer screen that is running an OpenGL programs in a room. It has to run all day long (not in the night). I'd like to draw lines that are slowly fading in the background. The setting is simple: a uniform color background (say, black) and colored lines (say, white) that are slowly fading out. With slowly I mean.. hours. Say that the first line I draw is with alpha 255 (fully visible), after one hours is 240. After 10 hours is 105. One line could have 250 points and there will be like 300 line in one day. For now I have done a prototype with very rudimentary method like: glBegin( GL_LINE_STRIP ); iterator = point_list.begin(); for (++iterator, end = point_list.end(); iterator != end; ++iterator) { const Vec3D &v = *iterator; glVertex2f(v.x(), v.y()); } glEnd(); More efficient method?

    Read the article

  • Implement Fast Inverse Square Root in Javascript?

    - by BBz
    The Fast Inverse Square Root from Quake III seems to use a floating-point trick. As I understand, floating-point representation can have some different implementations. So is it possible to implement the Fast Inverse Square Root in Javascript? Would it return the same result? float Q_rsqrt(float number) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; i = 0x5f3759df - ( i >> 1 ); y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); return y; }

    Read the article

  • Blender 2.64, what are the actual hot-keys for certain actions

    - by Shivan Dragon
    I know this sounds mega lame but I've looked for hotkeys for certain actions, first in the appliation's User Settings (where I didn't find them) then in the official documentation (where I did find some of them but they're not the right ones): http://wiki.blender.org/index.php/Doc:2.4/Manual/3D_interaction/Transform_Control/Manipulators (Ctrl - Alt - S is recommended for Scale, but instead it opens the Save As... window - I think these changed in the latest versions, but they forgot to update the docs) So then, what are the hot keys for: selecting translate manipulator selecting rotate manipulator selecting scale manipulator In Edit mode: select vertex (editing) select edges (editing) select faces (editing) thanks.

    Read the article

  • Better way to go up/down slope based on yaw?

    - by CyanPrime
    Alright, so I got a bit of movement code and I'm thinking I'm going to need to manually input when to go up/down a slope. All I got to work with is the slope's normal, and vector, and My current and previous position, and my yaw. Is there a better way to rotate whether I go up or down the slope based on my yaw? Vector3f move = new Vector3f(0,0,0); move.x = (float)-Math.toDegrees(Math.cos(Math.toRadians(yaw))); move.z = (float)-Math.toDegrees(Math.sin(Math.toRadians(yaw))); move.normalise(); if(move.z < 0 && slopeNormal.z > 0 || move.z > 0 && slopeNormal.z < 0){ if(move.x < 0 && slopeNormal.x > 0 || move.x > 0 && slopeNormal.x < 0){ move.y += slopeVec.y; } } if(move.z > 0 && slopeNormal.z > 0 || move.z < 0 && slopeNormal.z < 0){ if(move.x > 0 && slopeNormal.x > 0 || move.x < 0 && slopeNormal.x < 0){ move.y -= slopeVec.y; } } move.scale(movementSpeed * delta); Vector3f.add(pos, move, pos);

    Read the article

  • A* how make natural look path?

    - by user11177
    I've been reading this: http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html But there are some things I don't understand, for example the article says to use something like this for pathfinding with diagonal movement: function heuristic(node) = dx = abs(node.x - goal.x) dy = abs(node.y - goal.y) return D * max(dx, dy) I don't know how do set D to get a natural looking path like in the article, I set D to the lowest cost between adjacent squares like it said, and I don't know what they meant by the stuff about the heuristic should be 4*D, that does not seem to change any thing. This is my heuristic function and move function: def heuristic(self, node, goal): D = 10 dx = abs(node.x - goal.x) dy = abs(node.y - goal.y) return D * max(dx, dy) def move_cost(self, current, node): cross = abs(current.x - node.x) == 1 and abs(current.y - node.y) == 1 return 19 if cross else 10 Result: The smooth sailing path we want to happen: The rest of my code: http://pastebin.com/TL2cEkeX

    Read the article

  • Engine for 2D Top-Down Physics-Based Skeletal Animation

    - by RylandAlmanza
    I just watched at the Sui Generis video, and was completely amazed. Specifically, the part where the big troll thing is beating up the player with his flail. This got me really excited, and I would like to try implementing something like this in a 2D Top-Down format. Something like this. That atloria example seems simple enough, but it's not exactly what I'm looking to make. I think atloria is using predefined animations, where as I would like to make something more physics-based like the Sui Generis engine does. So, I'm wondering what physics engines might work for something like this, and if I'd need to implement my own skeletal system, or if I could just use "joints" and such from the engine. The only experience I have in terms of physics engines is Box2D, which I've heard shouldn't be used for top-down settings, and I can think of a few reasons it wouldn't work out well. One of those reasons being gravity. In box 2D, gravity pulls towards a side of the screen (usually the bottom.) I wouldn't want my player's forearms constantly being pulled to one side. :) Also should mention that the programming language doesn't matter all that much to me. I'm currently playing with HTML5 stuff, though. :) Thanks in advance!

    Read the article

  • CCSpriteHole in cocos2d 2.0?

    - by rakkarage
    i was using this cocos2d class CCSpriteHole in cocos2d 1.0 fine... http://jpsarda.tumblr.com/post/15779708304/new-cocos2d-iphone-extensions-a-progress-bar-and-a i am trying to convert it to cocos2d 2.0... i got it to compile by changing glVertexPointer to glVertexAttribPointer like in the 2.0 version of CCSpriteScale9 here http://jpsarda.tumblr.com/post/9162433577/scale9grid-for-cocos2d and changing contentSizeInPixels_ to contentSize_... -(id) init { if( (self=[super init]) ) { opacityModifyRGB_ = YES; opacity_ = 255; color_ = colorUnmodified_ = ccWHITE; capSize=capSizeInPixels=CGSizeZero; //Not used blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; // update texture (calls updateBlendFunc) [self setTexture:nil]; // default transform anchor anchorPoint_ = ccp(0.5f, 0.5f); vertexDataCount=24; vertexData = (ccV2F_C4F_T2F*) malloc(vertexDataCount * sizeof(ccV2F_C4F_T2F)); [self setTextureRectInPixels:CGRectZero untrimmedSize:CGSizeZero]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture rect:(CGRect)rect { NSAssert(texture!=nil, @"Invalid texture for sprite"); // IMPORTANT: [self init] and not [super init]; if( (self = [self init]) ) { [self setTexture:texture]; [self setTextureRect:rect]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture { NSAssert(texture!=nil, @"Invalid texture for sprite"); CGRect rect = CGRectZero; rect.size = texture.contentSize; return [self initWithTexture:texture rect:rect]; } -(id) initWithFile:(NSString*)filename { NSAssert(filename!=nil, @"Invalid filename for sprite"); CCTexture2D *texture = [[CCTextureCache sharedTextureCache] addImage: filename]; if( texture ) return [self initWithTexture:texture]; return nil; } +(id)spriteWithFile:(NSString*)f { return [[self alloc] initWithFile:f]; } - (void) dealloc { if (vertexData) free(vertexData); } -(void) updateColor { ccColor4F color4; color4.r=(float)color_.r/255.0f; color4.g=(float)color_.g/255.0f; color4.b=(float)color_.b/255.0f; color4.a=(float)opacity_/255.0f; for (int i=0; i<vertexDataCount; i++) { vertexData[i].colors=color4; } } -(void)updateTextureCoords:(CGRect)rect { CCTexture2D *tex = texture_; if(!tex) return; float atlasWidth = (float)tex.pixelsWide; float atlasHeight = (float)tex.pixelsHigh; float left,right,top,bottom; left = rect.origin.x/atlasWidth; right = left + rect.size.width/atlasWidth; top = rect.origin.y/atlasHeight; bottom = top + rect.size.height/atlasHeight; // // |/|/|/| // CGSize capTexCoordsSize=CGSizeMake(capSizeInPixels.width/atlasWidth, capSizeInPixels.height/atlasHeight); // From left to right //Top band // Left vertexData[0].texCoords=(ccTex2F){left,top}; vertexData[1].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[2].texCoords=(ccTex2F){left+capTexCoordsSize.width,top}; vertexData[3].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[4].texCoords=(ccTex2F){right-capTexCoordsSize.width,top}; vertexData[5].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[6].texCoords=(ccTex2F){right,top}; vertexData[7].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Center band // Left vertexData[8].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[9].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[10].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[11].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[12].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[13].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[14].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; vertexData[15].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Bottom band //Left vertexData[16].texCoords=(ccTex2F){left,bottom}; vertexData[17].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[18].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom}; vertexData[19].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Center vertexData[20].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom}; vertexData[21].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Right vertexData[22].texCoords=(ccTex2F){right,bottom}; vertexData[23].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; } -(void) updateVertices { float left=0; //-spriteSizeInPixels.width*0.5f; float right=left+contentSize_.width; float bottom=0; //-spriteSizeInPixels.height*0.5f; float top=bottom+contentSize_.height; float holeLeft=holeRect.origin.x*CC_CONTENT_SCALE_FACTOR(); float holeRight=holeLeft+holeRect.size.width*CC_CONTENT_SCALE_FACTOR(); float holeBottom=holeRect.origin.y*CC_CONTENT_SCALE_FACTOR(); float holeTop=holeBottom+holeRect.size.height*CC_CONTENT_SCALE_FACTOR(); // // |/|/|/| // // From left to right //Top band // Left vertexData[0].vertices=(ccVertex2F){left,top}; vertexData[1].vertices=(ccVertex2F){left,holeTop}; vertexData[2].vertices=(ccVertex2F){holeLeft,top}; vertexData[3].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[4].vertices=(ccVertex2F){holeRight,top}; vertexData[5].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[6].vertices=(ccVertex2F){right,top}; vertexData[7].vertices=(ccVertex2F){right,holeTop}; //Center band // Left vertexData[8].vertices=(ccVertex2F){left,holeBottom}; vertexData[9].vertices=(ccVertex2F){left,holeTop}; vertexData[10].vertices=(ccVertex2F){holeLeft,holeBottom}; vertexData[11].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[12].vertices=(ccVertex2F){holeRight,holeBottom}; vertexData[13].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[14].vertices=(ccVertex2F){right,holeBottom}; vertexData[15].vertices=(ccVertex2F){right,holeTop}; //Bottom band //Left vertexData[16].vertices=(ccVertex2F){left,bottom}; vertexData[17].vertices=(ccVertex2F){left,holeBottom}; vertexData[18].vertices=(ccVertex2F){holeLeft,bottom}; vertexData[19].vertices=(ccVertex2F){holeLeft,holeBottom}; // Center vertexData[20].vertices=(ccVertex2F){holeRight,bottom}; vertexData[21].vertices=(ccVertex2F){holeRight,holeBottom}; // Right vertexData[22].vertices=(ccVertex2F){right,bottom}; vertexData[23].vertices=(ccVertex2F){right,holeBottom}; } -(void) setHole:(CGRect)r inRect:(CGRect)totalSurface { holeRect=r; self.contentSize=totalSurface.size; holeRect.origin=ccpSub(holeRect.origin,totalSurface.origin); CGPoint holeCenter=ccp(holeRect.origin.x+holeRect.size.width*0.5f,holeRect.origin.y+holeRect.size.height*0.5f); self.anchorPoint=ccp(holeCenter.x/contentSize_.width,holeCenter.y/contentSize_.height); //[self updateTextureCoords:rectInPixels_]; [self updateVertices]; [self updateColor]; } -(void) draw { BOOL newBlend = NO; if( blendFunc_.src != CC_BLEND_SRC || blendFunc_.dst != CC_BLEND_DST ) { newBlend = YES; glBlendFunc( blendFunc_.src, blendFunc_.dst ); } glBindTexture(GL_TEXTURE_2D, [texture_ name]); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); if( newBlend ) glBlendFunc(CC_BLEND_SRC, CC_BLEND_DST); } -(void)setTextureRectInPixels:(CGRect)rect untrimmedSize:(CGSize)untrimmedSize { rectInPixels_ = rect; rect_ = CC_RECT_PIXELS_TO_POINTS( rect ); //[self setContentSizeInPixels:untrimmedSize]; [self updateTextureCoords:rectInPixels_]; } -(void)setTextureRect:(CGRect)rect { CGRect rectInPixels = CC_RECT_POINTS_TO_PIXELS( rect ); [self setTextureRectInPixels:rectInPixels untrimmedSize:rectInPixels.size]; } // // RGBA protocol // #pragma mark CCSpriteHole - RGBA protocol -(GLubyte) opacity { return opacity_; } -(void) setOpacity:(GLubyte) anOpacity { opacity_ = anOpacity; // special opacity for premultiplied textures if( opacityModifyRGB_ ) [self setColor: (opacityModifyRGB_ ? colorUnmodified_ : color_ )]; [self updateColor]; } - (ccColor3B) color { if(opacityModifyRGB_){ return colorUnmodified_; } return color_; } -(void) setColor:(ccColor3B)color3 { color_ = colorUnmodified_ = color3; if( opacityModifyRGB_ ){ color_.r = color3.r * opacity_/255; color_.g = color3.g * opacity_/255; color_.b = color3.b * opacity_/255; } [self updateColor]; } -(void) setOpacityModifyRGB:(BOOL)modify { ccColor3B oldColor = self.color; opacityModifyRGB_ = modify; self.color = oldColor; } -(BOOL) doesOpacityModifyRGB { return opacityModifyRGB_; } #pragma mark CCSpriteHole - CocosNodeTexture protocol -(void) updateBlendFunc { if( !texture_ || ! [texture_ hasPremultipliedAlpha] ) { blendFunc_.src = GL_SRC_ALPHA; blendFunc_.dst = GL_ONE_MINUS_SRC_ALPHA; [self setOpacityModifyRGB:NO]; } else { blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; [self setOpacityModifyRGB:YES]; } } -(void) setTexture:(CCTexture2D*)texture { // accept texture==nil as argument NSAssert( !texture || [texture isKindOfClass:[CCTexture2D class]], @"setTexture expects a CCTexture2D. Invalid argument"); texture_ = texture; [self updateBlendFunc]; } -(CCTexture2D*) texture { return texture_; } @end but now positioning and scaling seem to not work? and it starts in the wrong position... but changing the opacity still works. so i was wondering if anyone can see why my 2.0 version is not working? or if maybe there is a better way to do a sprite hole with cocos2d/opengl 2.0? shaders? thanks

    Read the article

  • GLSL, all in one or many shader programs?

    - by stjepano
    I am doing some 3D demos using OpenGL and I noticed that GLSL is somewhat "limited" (or is it just me?). Anyway I have many different types of materials. Some materials have ambient and diffuse color, some materials have ambient occlusion map, some have specular map and bump map etc. Is it better to support everything in one vertex/fragment shader pair or is it better to create many vertex/fragment shaders and select them based on currently selected material? What is the usual shader strategy in OpenGL or D3D?

    Read the article

  • Selection of a mesh with arbitrary region

    - by Tigran
    Considering example: I have a mesh(es) on the OpenGL screen and would like to select a part of it (say for delete purpose). There is a clear way to do the selction via Ray Tracing, or via Selection provided by OpenGL itself. But, for my users, considering that meshes can get wired surfaces, I need to implement a selection via a Arbitrary closed region, so all triangles that appears present inside that region has to be selected. To be more clear, here is screen shot: I want all triangles inside black polygon to be selected, identified, whatever in some way. How can I achieve that ?

    Read the article

  • Switching between Discrete and Integrated GPUs

    - by void-pointer
    Hello everyone, I develop CUDA applications on my Alienware M17x portable back-breaker, which has two discrete GTX 285M GPUs and one integrated GeForce 9400M GPU. I can currently switch between them using NVIDIA's software, but I would like the ability to do so within my applications for purposes of benchmarking and general convenience. Apparently this requires the "NDA version" of NVIDIA's Driver API, which I know not how to obtain. Would using this API be the only way to accomplish what I seek, and if so, how would I obtain it? A solution using Windows APIs would also be acceptable, though less preferable to one which would leverage a cross-platform API. I have created a similar thread concerning the matter on NVIDIA's forum, which is down at the time of this writing. Thanks for reading my question; it is much appreciated!

    Read the article

  • How can I make Maya export a mesh as double-sided?

    - by bobobobo
    I'm exporting from Maya 2009 to OBJ. The mesh I'm exporting has in it's Render Stats "Double Sided" checked, but when the polygon is exported, only a single side is actually exported. What really needs to happen is for each polygon that is double sided, two polygons need to be exported, facing in opposite directions.. I can do this manually, but is there a way to make the OBJ exporter do it for me?

    Read the article

  • Understanding dot notation

    - by Starkers
    Here's my interpretation of dot notation: a = [2,6] b = [1,4] c = [0,8] a . b . c = (2*6)+(1*4)+(0*8) = 12 + 4 + 0 = 16 What is the significance of 16? Apparently it's a scalar. Am I right in thinking that a scalar is the number we times a unit vector by to get a vector that has a scaled up magnitude but the same direction as the unit vector? So again, what is the relevance of 16? When is it used? It's not the magnitude of all the vectors added up. The magnitude of all of them is calculated as follows: sqrt( ax * ax + ay * ay ) + sqrt( bx * bx + by * by ) + sqrt( cx * cx + cy * cy) sqrt( 2 * 2 + 6 * 6 ) + sqrt( 1 * 1 + 4 * 4 ) + sqrt( 0 * 0 + 8 * 8) sqrt( 4 + 36 ) + sqrt( 1 + 16 ) + sqrt( 0 + 64) sqrt( 40 ) + sqrt( 17 ) + sqrt( 64) 6.3 + 4.1 + 8 10.4 + 8 18.4 So I don't really get this diagram: Attempting with sensible numbers: a = [1,0] b = [4,3] a . b = (1*0) + (4*3) = 0 + 12 = 12 So what exactly is a . b describing here? The magnitude of that vector? Because that isn't right: the 'a.b' vector = [4,0] sqrt( x*x + y*y ) sqrt( 4*4 + 0*0 ) sqrt( 16 + 0 ) 4 So what is 12 describing?

    Read the article

< Previous Page | 572 573 574 575 576 577 578 579 580 581 582 583  | Next Page >