Search Results

Search found 29201 results on 1169 pages for 'game development'.

Page 575/1169 | < Previous Page | 571 572 573 574 575 576 577 578 579 580 581 582  | Next Page >

  • How can I replicate the look and limitations of the Super NES?

    - by Mikalichov
    I am looking to produce graphics with the same limitations / look that in the Super Nes era. I am specifically looking for graphics similar to Chrono Trigger / FF6. It would be a lot easier to do if I had an idea of the resolution / dpi I am supposed to use. I found that the technical specs for the SNES are: Progressive: 256 × 224, 512 × 224, 256 × 239, 512 × 239 Interlaced: 512 × 448, 512 × 478 But even by using these resolutions, it is pointless if I set it at 72dpi, as I will still have possibly very detailed graphics (that is the main thing, I don't want detailed graphics, I want to go pixelated). I figured it might be related to the sprite size limit, i.e.: Sprites can be 8 × 8, 16 × 16, 32 × 32, or 64 × 64 pixels, each using one of eight 16-color palettes and tiles from one of two blocks of 256 in VRAM. Up to 32 sprites and 34 8 × 8 sprite tiles may appear on any one line. This would work for sprites (characters, objects), but what about maps? Are they built entirely from 8x8 tiles? And then, at what resolution is the end result displayed? It might seem like I am giving the question and answers at the same time, but all of these are suppositions I am making, so could someone confirm or correct them?

    Read the article

  • Whats a good way to do Collision with 2D Rectangles? can someone give me a tip?

    - by Javier
    using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; namespace BreakOut { class Field { public static Field generateField() { List<Block> blocks = new List<Block>(); for (int j = 0; j < BlockType.BLOCK_TYPES.Length; j++) for (int i = 0; i < (Game1.WIDTH / Block.WIDTH); i++) { Block b = new Block(BlockType.BLOCK_TYPES[j], new Vector2(i * Block.WIDTH, (Block.HEIGHT + 2) * j + 5)); blocks.Add(b); } return new Field(blocks); } List<Block> blocks; public Field(List<Block> blocks) { this.blocks = blocks; } public void Update(GameTime gameTime, Ball b) { List<Block> removals = new List<Block>(); foreach (Block o in blocks) { if (o.BoundingBox.Intersects(new Rectangle((int)b.pos.X, (int)b.pos.Y, Ball.WIDTH, Ball.HEIGHT))) //collision with blocks { removals.Add(o); } } foreach(Block o in removals) blocks.Remove(o); //removes the blocks, but i need help hitting one at a time } public void Draw(GameTime gameTime) { foreach (Block b in blocks) b.Draw(gameTime); } } } My problem is that My collision in this sucks. I'm trying to add collision with a ball and hitting against a block and then one of the blocks dissapear. The problem i'm having is: When the ball hits the block, it removes it all in one instance. Please people don't be mean and say mean answers to me, im just in highschool, still a nooby and trying to learn more c#/XNA..

    Read the article

  • Contricted A* problem

    - by Ragekit
    I've got a little problem with an A* algorithm that I need to constrict a little bit. Basically : I use an A* to find the shortest path between 2 randomly placed room in 3D space, and then build a corridor between them. The problem I found is that sometimes it makes chimney like corridors that are not ideal, so I constrict the A* so that if the last movement was up or down, you go sideways. Everything is fine, but in some corner cases, it fails to find a path (when there is obviously one). Like here between the blue and red dot : (i'm in unity btw, but i don't think it matters) Here is the code of the actual A* (a bit long, and some redundency) while(current != goal) { //add stair up / stair down foreach(Node<GridUnit> test in current.Neighbors) { if(!test.Data.empty && test != goal) continue; //bug at arrival; if(test == goal && penul !=null) { Vector3 currentDiff = current.Data.bounds.center - test.Data.bounds.center; if(!Mathf.Approximately(currentDiff.y,0)) { //wanna drop on the last if(!coplanar(test.Data.bounds.center,current.Data.bounds.center,current.Data.parentUnit.bounds.center,to.Data.bounds.center)) { continue; } else { if(Mathf.Approximately(to.Data.bounds.center.x, current.Data.parentUnit.bounds.center.x) && Mathf.Approximately(to.Data.bounds.center.z, current.Data.parentUnit.bounds.center.z)) { continue; } } } } if(current.Data.parentUnit != null) { Vector3 previousDiff = current.Data.parentUnit.bounds.center - current.Data.bounds.center; Vector3 currentDiff = current.Data.bounds.center - test.Data.bounds.center; if(!Mathf.Approximately(previousDiff.y,0)) { if(!Mathf.Approximately(currentDiff.y,0)) { //you wanna drop now : continue; } if(current.Data.parentUnit.parentUnit != null) { if(!coplanar(test.Data.bounds.center,current.Data.bounds.center,current.Data.parentUnit.bounds.center,current.Data.parentUnit.parentUnit.bounds.center)) { continue; }else { if(Mathf.Approximately(test.Data.bounds.center.x, current.Data.parentUnit.parentUnit.bounds.center.x) && Mathf.Approximately(test.Data.bounds.center.z, current.Data.parentUnit.parentUnit.bounds.center.z)) { continue; } } } } } g = current.Data.g + HEURISTIC(current.Data,test.Data); h = HEURISTIC(test.Data,goal.Data); f = g + h; if(open.Contains(test) || closed.Contains(test)) { if(test.Data.f > f) { //found a shorter path going passing through that point test.Data.f = f; test.Data.g = g; test.Data.h = h; test.Data.parentUnit = current.Data; } } else { //jamais rencontré test.Data.f = f; test.Data.h = h; test.Data.g = g; test.Data.parentUnit = current.Data; open.Add(test); } } closed.Add (current); if(open.Count == 0) { Debug.Log("nothingfound"); //nothing more to test no path found, stay to from; List<GridUnit> r = new List<GridUnit>(); r.Add(from.Data); return r; } //sort open from small to biggest travel cost open.Sort(delegate(Node<GridUnit> x, Node<GridUnit> y) { return (int)(x.Data.f-y.Data.f); }); //get the smallest travel cost node; Node<GridUnit> smallest = open[0]; current = smallest; open.RemoveAt(0); } //build the path going backward; List<GridUnit> ret = new List<GridUnit>(); if(penul != null) { ret.Insert(0,to.Data); } GridUnit cur = goal.Data; ret.Insert(0,cur); do{ cur = cur.parentUnit; ret.Insert(0,cur); } while(cur != from.Data); return ret; You see at the start of the foreach i constrict the A* like i said. If you have any insight it would be cool. Thanks

    Read the article

  • Box 2D Collision Question

    - by Farooq Arshed
    I am very new to Box 2D Physics world. I wanted to know how to collide 2 bodies when one is Dynamic and other is Kinematic. The whole Scenario is explained below: I have 3 balls in total. I want to balls to remain in their places and the third ball to be able to move. When the third ball hits the other two balls then they should move according to the speed and direction from which they were hit. My gravity of the world is 0 because I only want z-axis gravity. I would also like some one to point me towards some good tutorials regarding Box 2D basics which is language independent. I hope I have explained my scenario well. Thanks for the help in advance.

    Read the article

  • How do I do random isometric paths?

    - by user406470
    I'm working on an Isometric city generator, and I am looking for a little push in the right direction. I'm looking to randomly generate roads on a isometric plane. I have never done pathfinding before, and I've googled it and didn't find any articles relating to what I am trying to do. Basically, my program generates a random isometric city and, I am hoping to add roads to that. Any help is appreciated!

    Read the article

  • A* how make natural look path?

    - by user11177
    I've been reading this: http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html But there are some things I don't understand, for example the article says to use something like this for pathfinding with diagonal movement: function heuristic(node) = dx = abs(node.x - goal.x) dy = abs(node.y - goal.y) return D * max(dx, dy) I don't know how do set D to get a natural looking path like in the article, I set D to the lowest cost between adjacent squares like it said, and I don't know what they meant by the stuff about the heuristic should be 4*D, that does not seem to change any thing. This is my heuristic function and move function: def heuristic(self, node, goal): D = 10 dx = abs(node.x - goal.x) dy = abs(node.y - goal.y) return D * max(dx, dy) def move_cost(self, current, node): cross = abs(current.x - node.x) == 1 and abs(current.y - node.y) == 1 return 19 if cross else 10 Result: The smooth sailing path we want to happen: The rest of my code: http://pastebin.com/TL2cEkeX

    Read the article

  • How can I simulate a rigid body bounced from a wall in 3D world?

    - by HyperGroups
    How can I simulate a rigid sword bounced from a wall and hit the ground (like in physical world)? I want to use this for a simple animation. I can detect the figure and the size of the sword (maybe needed in doing bounce). Rotation can be controlled by quaternions/matrix/euler angles. It should turn the head and do rotations and fly to the ground. How can I simulate this physical process? Maybe what I need is an equation and some parameters? I need these data, and would combine them into my movie file, I use Mathematica to do the thing that generate the movie file(If I have the data, I can also export it into a 3DSMax script for example).

    Read the article

  • Sprite/Tile Sheets Vs Single Textures

    - by Reanimation
    I'm making a race circuit which is constructed using various textures. To provide some background, I'm writing it in C++ and creating quads with OpenGL to which I assign a loaded .raw texture too. Currently I use 23 500px x 500px textures of which are all loaded and freed individually. I have now combined them all into a single sprite/tile sheet making it 3000 x 2000 pixels seems the number of textures/tiles I'm using is increasing. Now I'm wondering if it's more efficient to load them individually or write extra code to extract a certain tile from the sheet? Is it better to load the sheet, then extract 23 tiles and store them from one sheet, or load the sheet each time and crop it to the correct tile? There seems to be a number of way to implement it... Thanks in advance.

    Read the article

  • How to make my sprite jump properly?

    - by Matthew Morgan
    I'm currently working on a 2D platformer in XNA. I have, however been having some trouble with creating a fully functional jumping algorithm. This is what I have so far: if (keystate.IsKeyDown(Keys.W)) if (onGround = true) //"onground" is true when the collision between the main sprite and the ground is detected { spritePosition.Y = velocity.Y = -5; } So, the problem I am now having is that as soon as the jump starts the variable "onGround" = false and the sprite is brought back the ground by the simple gravity I have implemented. The other problem I have is creating a limit to the height after which the sprite should automatically return to the ground. Any advice or suggestions would be greatly appreciated.

    Read the article

  • Keypress Left is called twice in Update when key is pressed only once

    - by Simran kaur
    I have a piece of code that is changing the position of player when left key is pressed. It is inside of Update() function. I know, Update is called multiple times, but since I have an ifstatement to check if left arrow is pressed, it should update only once. I have tested using print statement that once pressed, it gets called twice. Problem: Position updated twice when key is pressed only once. Below given is the structure of my code: void Update() { if (Input.GetKeyDown (KeyCode.LeftArrow)) { print ("PRESSEEEEEEEEEEEEEEEEEEDDDDDDDDDDDDDD"); } } I looked up on web and what was suggested id this: if (Event.current.type == EventType.KeyDown && Event.current.keyCode == KeyCode.LeftArrow) { print("pressed"); } But, It gives me an error that says: Object reference not set to instance of an object How can I fix this?

    Read the article

  • Rendering Texture Quad to Screen or FBO (OpenGL ES)

    - by Usman.3D
    I need to render the texture on the iOS device's screen or a render-to-texture frame buffer object. But it does not show any texture. It's all black. (I am loading texture with image myself for testing purpose) //Load texture data UIImage *image=[UIImage imageNamed:@"textureImage.png"]; GLuint width = FRAME_WIDTH; GLuint height = FRAME_HEIGHT; //Create context void *imageData = malloc(height * width * 4); CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB(); CGContextRef context = CGBitmapContextCreate(imageData, width, height, 8, 4 * width, colorSpace, kCGImageAlphaPremultipliedLast | kCGBitmapByteOrder32Big); CGColorSpaceRelease(colorSpace); //Prepare image CGContextClearRect(context, CGRectMake(0, 0, width, height)); CGContextDrawImage(context, CGRectMake(0, 0, width, height), image.CGImage); glGenTextures(1, &texture); glBindTexture(GL_TEXTURE_2D, texture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageData); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); Simple Texture Quad drawing code mentioned here //Bind Texture, Bind render-to-texture FBO and then draw the quad const float quadPositions[] = { 1.0, 1.0, 0.0, -1.0, 1.0, 0.0, -1.0, -1.0, 0.0, -1.0, -1.0, 0.0, 1.0, -1.0, 0.0, 1.0, 1.0, 0.0 }; const float quadTexcoords[] = { 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0 }; // stop using VBO glBindBuffer(GL_ARRAY_BUFFER, 0); // setup buffer offsets glVertexAttribPointer(ATTRIB_VERTEX, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), quadPositions); glVertexAttribPointer(ATTRIB_TEXCOORD0, 2, GL_FLOAT, GL_FALSE, 2*sizeof(float), quadTexcoords); // ensure the proper arrays are enabled glEnableVertexAttribArray(ATTRIB_VERTEX); glEnableVertexAttribArray(ATTRIB_TEXCOORD0); //Bind Texture and render-to-texture FBO. glBindTexture(GL_TEXTURE_2D, GLid); //Actually wanted to render it to render-to-texture FBO, but now testing directly on default FBO. //glBindFramebuffer(GL_FRAMEBUFFER, textureFBO[pixelBuffernum]); // draw glDrawArrays(GL_TRIANGLES, 0, 2*3); What am I doing wrong in this code? P.S. I'm not familiar with shaders yet, so it is difficult for me to make use of them right now.

    Read the article

  • Drag camera/view in a 3D world

    - by Dono
    I'm trying to make a Draggable view in a 3D world. Currently, I've made it using mouse position on the screen, but, when I move the distance traveled by my mouse is not equal to the distance traveled in the 3D world. So, I've tried to do that : Compute a ray from mouse position to 3D world. Calculate intersection with the ground. Check intersection difference old position <- new position. Translate camera with the difference. I've got a problem with this method: The ray is computed with the current camera's position I move the camera I compute the new ray with new camera position. The difference between old ray and new ray is now invalid. So, graphically my camera don't stop to move to previous/new position everytime. How can I do a draggable camera with another solution ? Thanks!

    Read the article

  • 2D Collision in Canvas - Balls Overlapping When Velocity is High

    - by kushsolitary
    I am doing a simple experiment in canvas using Javascript in which some balls will be thrown on the screen with some initial velocity and then they will bounce on colliding with each other or with the walls. I managed to do the collision with walls perfectly but now the problem is with the collision with other balls. I am using the following code for it: //Check collision between two bodies function collides(b1, b2) { //Find the distance between their mid-points var dx = b1.x - b2.x, dy = b1.y - b2.y, dist = Math.round(Math.sqrt(dx*dx + dy*dy)); //Check if it is a collision if(dist <= (b1.r + b2.r)) { //Calculate the angles var angle = Math.atan2(dy, dx), sin = Math.sin(angle), cos = Math.cos(angle); //Calculate the old velocity components var v1x = b1.vx * cos, v2x = b2.vx * cos, v1y = b1.vy * sin, v2y = b2.vy * sin; //Calculate the new velocity components var vel1x = ((b1.m - b2.m) / (b1.m + b2.m)) * v1x + (2 * b2.m / (b1.m + b2.m)) * v2x, vel2x = (2 * b1.m / (b1.m + b2.m)) * v1x + ((b2.m - b1.m) / (b2.m + b1.m)) * v2x, vel1y = v1y, vel2y = v2y; //Set the new velocities b1.vx = vel1x; b2.vx = vel2x; b1.vy = vel1y; b2.vy = vel2y; } } You can see the experiment here. The problem is, some balls overlap each other and stick together while some of them rebound perfectly. I don't know what is causing this issue. Here's my balls object if that matters: function Ball() { //Random Positions this.x = 50 + Math.random() * W; this.y = 50 + Math.random() * H; //Random radii this.r = 15 + Math.random() * 30; this.m = this.r; //Random velocity components this.vx = 1 + Math.random() * 4; this.vy = 1 + Math.random() * 4; //Random shade of grey color this.c = Math.round(Math.random() * 200); this.draw = function() { ctx.beginPath(); ctx.fillStyle = "rgb(" + this.c + ", " + this.c + ", " + this.c + ")"; ctx.arc(this.x, this.y, this.r, 0, Math.PI*2, false); ctx.fill(); ctx.closePath(); } }

    Read the article

  • Engine for 2D Top-Down Physics-Based Skeletal Animation

    - by RylandAlmanza
    I just watched at the Sui Generis video, and was completely amazed. Specifically, the part where the big troll thing is beating up the player with his flail. This got me really excited, and I would like to try implementing something like this in a 2D Top-Down format. Something like this. That atloria example seems simple enough, but it's not exactly what I'm looking to make. I think atloria is using predefined animations, where as I would like to make something more physics-based like the Sui Generis engine does. So, I'm wondering what physics engines might work for something like this, and if I'd need to implement my own skeletal system, or if I could just use "joints" and such from the engine. The only experience I have in terms of physics engines is Box2D, which I've heard shouldn't be used for top-down settings, and I can think of a few reasons it wouldn't work out well. One of those reasons being gravity. In box 2D, gravity pulls towards a side of the screen (usually the bottom.) I wouldn't want my player's forearms constantly being pulled to one side. :) Also should mention that the programming language doesn't matter all that much to me. I'm currently playing with HTML5 stuff, though. :) Thanks in advance!

    Read the article

  • SDL 2.0: is there a library to create 2D particle effects rapidly?

    - by mm24
    I would like to create an light/explosion particle effect using some in built library. I am used to Cocos2D where there are specific classes that you can simply initialize in a certain position and producing a certain particle effect. Is there a way to do so in SDL 2.0 C++? I have found this tutorial but it seems to go for a "build it yoursefl" solution, which is ok but I do not want to re-invent the wheel if someone else has already built it.

    Read the article

  • AABB - AABB Collision, which face do I hit?

    - by PeeS
    To allow my objects to slide when they collide, I need to : Know which face of the AABB they collide with. Calculate the normal to that face. Return the normal and calculate the impulse that to apply to the player's velocity. Question How can I calculate which face of the AABB I collided with, knowing that I have two AABB's colliding? One is the player and the other is a world object. Here's what that looks like (problem collision circled in white): Thank you for your help.

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Design: How to model / where to store relational data between classes

    - by Walker
    I'm trying to figure out the best design here, and I can see multiple approaches, but none that seems "right." There are three relevant classes here: Base, TradingPost, and Resource. Each Base has a TradingPost which can offer various Resources depending on the Base's tech level. Where is the right place to store the minimum tech level a base must possess to offer any given resource? A database seems like overkill. Putting it in each subclass of Resource seems wrong--that's not an intrinsic property of the Resource. Do I have a mediating class, and if so, how does it work? It's important that I not be duplicating code; that I have one place where I set the required tech level for a given item. Essentially, where does this data belong? P.S. Feel free to change the title; I struggled to come up with one that fits.

    Read the article

  • Perminantly Sync a wiimote with a computer

    - by Adam Geisweit
    i have tried to look up many ways to sync up my wiimotes to my computer so that i can program games with it, but every time it only syncs them up temporarily, or if it says it can permanently sync it, it doesn't actually do it. it gets tiresome when i have to keep on reconnecting it every time i want to save battery life. how would i be able to sync up my wiimote to my computer so that if i turn off my wiimote, i can just hit any button and it will automatically sync it up?

    Read the article

  • How can be data oriented programming applied for GUI system?

    - by Miro
    I've just learned basics of Data oriented programming design, but I'm not very familiar with that yet. I've also read Pitfalls of Object Oriented Programming GCAP 09. It seems that data oriented programming is much better idea for games, than OOP. I'm just creating my own GUI system and it's completely OOP. I'm thinking if is data oriented programming design applicable for structured things like GUI. The main problem I see is that every type widget has different data, so I can hardly group them into arrays. Also every type of widget renders differently so I still need to call virtual functions.

    Read the article

  • How can I make a 32 bit render target with a 16 bit alpha channel in DirectX?

    - by J Junker
    I want to create a render target that is 32-bit, with 16 bits each for alpha and luminance. The closest surface formats I can find in the DirectX SDK are: D3DFMT_A8L8 // 16-bit using 8 bits each for alpha and luminance. D3DFMT_G16R16F // 32-bit float format using 16 bits for the red channel and 16 bits for the green channel. But I don't think either of these will work, since D3DFMT_A8L8 doesn't have the precision and D3DFMT_G16R16F doesn't have an alpha channel (I need a separate blend state for alpha). How can I create a render target that allows a separate blend state for luminance and alpha, with 16 bit precision on each channel, that doesn't exceed 32 bits per pixel?

    Read the article

  • what is the easiest way to make a hitbox that rotates with it's texture

    - by Matthew Optional Meehan
    In xna when you have a sprite that doesnt rotate it's very easy to get the four corner of a sprite to make a hitbox, but when you do a rotation the points get moved and I assume there is some kind of math that I can use to aquire them. I am using the four points to draw a rectangle that visually represents the hitboxes. I have seen some per-pixel collission examples but I can forsee they would be hard to draw a box/'convex hull' around. I have also seen physics like farseer but I'm not sure if there is a quick tutorial to do what I want. What do you guys think is the best approach becuase I am looking to complete this work by the end of the week.

    Read the article

  • Connecting 2 Vertices in 3DS Max?

    - by Reanimation
    How do you connect two vertices in 3DS Max 2013? I have two vertices which I wish to connect with a line to create an edge. (actually several) I have tried all I can think and done several Google searches but it only comes up with older versions method which say use the "connect" button... But I can't find the connect button on my version (see below) This is what my menu looks like: These are the vertices I'm trying to connect: Basically, I've edited an STL file and deleted some edges and vertices. Now I want to fill the gaps and triangulate what's left. Thanks.

    Read the article

  • How to reference or connect a variable to another class without stack overflow?

    - by SystemNetworks
    I really need to re-arrange all my functions. I created a class. All my var, booleans, int, doubles and other things. I created every new variable so they can reference it and so they don't have an error. If your asking why I never just reference my main class vars to my sub-class becuase it will give me stack overflow! When in my main class i link my sub-class. subClass s = new subClass(); Then I reference my fake variable to my real variable for example: This is my sub-class variable(I call it fake) public int x = 0; In my main class, I put it like this: s.x = x; The problem is, it does not work! Maybe this is not the right place but I cant ask any questions on stack overflow because they banned me. If I connect my main class and connect my sub-class it will give me stack overflow. How do I stop it?

    Read the article

< Previous Page | 571 572 573 574 575 576 577 578 579 580 581 582  | Next Page >