Search Results

Search found 38203 results on 1529 pages for 'library development'.

Page 596/1529 | < Previous Page | 592 593 594 595 596 597 598 599 600 601 602 603  | Next Page >

  • GLSL: Strange light reflections

    - by Tom
    According to this tutorial I'm trying to make a normal mapping using GLSL, but something is wrong and I can't find the solution. The output render is in this image: Image1 in this image is a plane with two triangles and each of it is different illuminated (that is bad). The plane has 6 vertices. In the upper left side of this plane are 2 identical vertices (same in the lower right). Here are some vectors same for each vertice: normal vector = 0, 1, 0 (red lines on image) tangent vector = 0, 0,-1 (green lines on image) bitangent vector = -1, 0, 0 (blue lines on image) here I have one question: The two identical vertices does need to have the same tangent and bitangent? I have tried to make other values to the tangents but the effect was still similar. Here are my shaders Vertex shader: #version 130 // Input vertex data, different for all executions of this shader. in vec3 vertexPosition_modelspace; in vec2 vertexUV; in vec3 vertexNormal_modelspace; in vec3 vertexTangent_modelspace; in vec3 vertexBitangent_modelspace; // Output data ; will be interpolated for each fragment. out vec2 UV; out vec3 Position_worldspace; out vec3 EyeDirection_cameraspace; out vec3 LightDirection_cameraspace; out vec3 LightDirection_tangentspace; out vec3 EyeDirection_tangentspace; // Values that stay constant for the whole mesh. uniform mat4 MVP; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Output position of the vertex, in clip space : MVP * position gl_Position = MVP * vec4(vertexPosition_modelspace,1); // Position of the vertex, in worldspace : M * position Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz; // Vector that goes from the vertex to the camera, in camera space. // In camera space, the camera is at the origin (0,0,0). vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz; EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace; // Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity. vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz; LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace; // UV of the vertex. No special space for this one. UV = vertexUV; // model to camera = ModelView vec3 vertexTangent_cameraspace = MV3x3 * vertexTangent_modelspace; vec3 vertexBitangent_cameraspace = MV3x3 * vertexBitangent_modelspace; vec3 vertexNormal_cameraspace = MV3x3 * vertexNormal_modelspace; mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); // You can use dot products instead of building this matrix and transposing it. See References for details. LightDirection_tangentspace = TBN * LightDirection_cameraspace; EyeDirection_tangentspace = TBN * EyeDirection_cameraspace; } Fragment shader: #version 130 // Interpolated values from the vertex shaders in vec2 UV; in vec3 Position_worldspace; in vec3 EyeDirection_cameraspace; in vec3 LightDirection_cameraspace; in vec3 LightDirection_tangentspace; in vec3 EyeDirection_tangentspace; // Ouput data out vec3 color; // Values that stay constant for the whole mesh. uniform sampler2D DiffuseTextureSampler; uniform sampler2D NormalTextureSampler; uniform sampler2D SpecularTextureSampler; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Light emission properties // You probably want to put them as uniforms vec3 LightColor = vec3(1,1,1); float LightPower = 40.0; // Material properties vec3 MaterialDiffuseColor = texture2D( DiffuseTextureSampler, vec2(UV.x,-UV.y) ).rgb; vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor; //vec3 MaterialSpecularColor = texture2D( SpecularTextureSampler, UV ).rgb * 0.3; vec3 MaterialSpecularColor = vec3(0.5,0.5,0.5); // Local normal, in tangent space. V tex coordinate is inverted because normal map is in TGA (not in DDS) for better quality vec3 TextureNormal_tangentspace = normalize(texture2D( NormalTextureSampler, vec2(UV.x,-UV.y) ).rgb*2.0 - 1.0); // Distance to the light float distance = length( LightPosition_worldspace - Position_worldspace ); // Normal of the computed fragment, in camera space vec3 n = TextureNormal_tangentspace; // Direction of the light (from the fragment to the light) vec3 l = normalize(LightDirection_tangentspace); // Cosine of the angle between the normal and the light direction, // clamped above 0 // - light is at the vertical of the triangle -> 1 // - light is perpendicular to the triangle -> 0 // - light is behind the triangle -> 0 float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(EyeDirection_tangentspace); // Direction in which the triangle reflects the light vec3 R = reflect(-l,n); // Cosine of the angle between the Eye vector and the Reflect vector, // clamped to 0 // - Looking into the reflection -> 1 // - Looking elsewhere -> < 1 float cosAlpha = clamp( dot( E,R ), 0,1 ); color = // Ambient : simulates indirect lighting MaterialAmbientColor + // Diffuse : "color" of the object MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) + // Specular : reflective highlight, like a mirror MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance); //color.xyz = E; //color.xyz = LightDirection_tangentspace; //color.xyz = EyeDirection_tangentspace; } I have replaced the original color value by EyeDirection_tangentspace vector and then I got other strange effect but I can not link the image (not eunogh reputation) Is it possible that with this shaders is something wrong, or maybe in other place in my code e.g with my matrices? SOLVED Solved... 3 days needed for changing one letter from this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(12*sizeof(float)) // array buffer offset ); to this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(11*sizeof(float)) // array buffer offset ); see difference? :)

    Read the article

  • Kinect Click counter function

    - by Sweta Dwivedi
    So i have the following kinect click function which will check if the hand is within the bounds then it will click with a counter . . however there is a slight problem . .the first few button clicks work fine.. but after it clicks one of the buttons it changes the game state and immediately clicks the other button without the counter reaching 200. . . Kinect click is a method in the button class. . .and each button inside a list can access the Kinect click method. . . public bool KinectClick(int x,int y) { if ((x >= position.X && x <= position.X + position.Width) && (y >= position.Y && y <= position.Y + position.Height)) { counter++; if (counter > 200) { counter = 0; return true; } } else { counter = 0; } return false; } I call to check if this property is true in the Game update method to act as a button click. . foreach(Button g_t in Game_theme) { if ((g_t.KinectClick(x_c, y_c) == true || g_t.ButtonClicked() == true) && g_t.name == "animoe") { Selected_anim = true; currentGameState = GameState.InGame; } if ((g_t.KinectClick(x_c, y_c) == true || g_t.ButtonClicked() == true) && g_t.name == "planet") { Selected_planet = true; currentGameState = GameState.InGame; }

    Read the article

  • Random/Procedural vs. Previously Made Level Generation

    - by PythonInProgress
    I am making a game (called "Glory") that is a top-down explorer game, and am wondering what the advantages/disadvantages of using random/procedural generation vs. pre-made levels are. There seems to be few that i can think of, other than the fact that items may be a problem to distribute in randomly generated terrain, and that the generated terrain may look weird. The downside to previously made levels is that I would need to make a level editor, though. I cannot decide what is better to use.

    Read the article

  • Java keyboard input [on hold]

    - by dØd
    I'm trying to implement a input system that can detect whether a certain key was held or was only pressed briefly. So far I have this: KEY_INTERACTION_TRESHOLD = 400ms //inside a constructor shouldMeasure = true; @Override public void keyPressed(KeyEvent e) { if (shouldMeasure) { startTime = System.currentTimeMillis(); shouldMeasure = false; return; } System.out.println("Button is held down"); e.consume(); } @Override public void keyReleased(KeyEvent e) { if (System.currentTimeMillis() - startTime < KEY_INTERACTION_TRESHOLD) { System.out.println("Button was only pressed briefly"); } startTime = 0; shouldMeasure = true; e.consume(); } Now this works, but the problem is that there is this delay between when I press a key to hold and when the message 'Button is held down' gets displayed. I understand why this delay occurs (for example when you press and hold a letter there will be a similar delay between the first and the second letter printed out), but I would like to somehow avoid it. I'm using only the Java API.

    Read the article

  • How to make an Actor follow my finger

    - by user48352
    I'm back with another question that may be really simple. I've a texture drawn on my spritebatch and I'm making it move up or down (y-axis only) with Libgdx's Input Handler: touchDown and touchUp. @Override public boolean touchDown(int screenX, int screenY, int pointer, int button) { myWhale.touchDownY = screenY; myWhale.isTouched = true; return true; } @Override public boolean touchUp(int screenX, int screenY, int pointer, int button) { myWhale.isTouched = false; return false; } myWhale is an object from Whale Class where I move my texture position: public void update(float delta) { this.delta = delta; if(isTouched){ dragWhale(); } } public void dragWhale() { if(Gdx.input.getY(0) - touchDownY < 0){ if(Gdx.input.getY(0)<position.y+height/2){ position.y = position.y - velocidad*delta; } } else{ if(Gdx.input.getY(0)>position.y+height/2){ position.y = position.y + velocidad*delta; } } } So the object moves to the center of the position where the person is pressing his/her finger and most of the time it works fine but the object seems to take about half a second to move up or down and sometimes when I press my finger it wont move. Maybe there's another simplier way to do this. I'd highly appreciate if someone points me on the right direction.

    Read the article

  • In concept how is Animation done?

    - by sharethis
    The first approaches in animation for my game relied mostly on sine and cosine functions with the time as parameter. As a jump a perfect sine function is acceptable but for motions of arms, weapons or face it would look quite unnatural. Moreover patching every animation out of sine and cosine is stretched to its limits soon. I head of skeletons and rigging already. Although I could not implement skeletal animations I can't imagine that quite natural animations in major games are made of static predefined motion states. So how in general is animation done today?

    Read the article

  • Camera doesn't move

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but I couldn't make it move. #define PI_OVER_180 0.0174532925f #define GL_CLAMP_TO_EDGE 0x812F #include "metinalifeyyaz.h" #include <GL/glu.h> #include <GL/glut.h> #include <QTimer> #include <cmath> #include <QKeyEvent> #include <QWidget> #include <QDebug> metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • Defining the track in a 2D racing game

    - by Ivan
    I am designing a top-down racing game using canvas (html5) which takes a lot of inspiration from Micro Machines. In MM, cars can move off the track, but they are reset/destroyed if they go too far. My maths knowledge isn't great, so I'm finding it hard to separate 3D/complex concepts from those which are directly relevant to my situation. For example, I have seen "splines" mentioned, is this something I should read up on or is that overkill for a 2D game? Could I use a single path which defines the centre of the track and check a car's distance from this line? A second path might be required as a "racing line" for AI. Any advice on methods/techniques/terms to read up on would be greatly appreciated.

    Read the article

  • Linear search vs Octree (Frustum cull)

    - by Dave
    I am wondering whether I should look into implementing an octree of some kind. I have a very simple game which consists of a 3d plane for the floor. There are multiple objects scattered around on the ground, each one has an aabb in world space. Currently I just do a loop through the list of all these objects and check if its bounding box intersects with the frustum, it works great but I am wondering if if it would be a good investment in an octree. I only have max 512 of these objects on the map and they all contain bounding boxes. I am not sure if an octree would make it faster since I have so little objects in the scene.

    Read the article

  • Moving objects colliding when using unalligned collision avoidance (steering)

    - by James Bedford
    I'm having trouble with unaligned collision avoidance for what I think is a rare case. I have set two objects to move towards each other but with a slight offset, so one of the objects is moving slightly upwards, and one of the objects is moving slightly downwards. In my unaligned collision avoidance steering algorithm I'm finding the points on the object's forward line and the other object's forward line where these two lines are the closest. If these closest points are within a collision avoidance distance, and if the distance between them is smaller than the two radii of the two object's bounding spheres, then the objects should steer away in the appropriate direction. The problem is that for my case, the closest points on the lines are calculated to be really far away from the actual collision point. This is because the two forward lines for each object are moving away from each other as the objects pass. The problem is that because of this, no steering takes place, and the two objects partially collide. Does anyone have any suggestions as to how I can correctly calculate the point of collision? Perhaps by somehow taking into account the size of the two objects?

    Read the article

  • Lighting with VBO

    - by nkint
    I'm using a Java JOGL wrapper called processing.org. I have coded some enviroment on it and I'm quite proud of it even if it has some ready stuffs that I didn't know anything about it (==LIGHTS). Then, for some geometry, I've decided to use a VBO. I had to pass in the hard way and recode all lights. But I can't achieve the same result. This is the original light system: And this with VBO: With this code: Vec3D l; gl.glEnable(GL.GL_LIGHTING); gl.glEnable(GL.GL_LIGHT0); gl.glEnable(GL.GL_COLOR_MATERIAL); gl.glMaterialfv(GL.GL_FRONT_AND_BACK, GL.GL_AMBIENT, new float[]{0.8f,0f,0f}, 0); l = new Vec3D(0,0,-10); gl.glColor3f(0.8f,0f,0f); gl.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, new float[] { l.x, l.y, l.z, 0 }, 0); gl.glLightfv(GL.GL_LIGHT0, GL.GL_SPOT_DIRECTION, new float[] { 1, 1, 1, 1 }, 0); I can't achive the same light, the same color material, and the same wireframe stuffs. If needed I can also post the code I use for VBO, but it is quite standard vertex array grabbed on the net that uses glDrawArrays

    Read the article

  • The purpose of using invert and transpose

    - by user699215
    In openGl ES and the World of 3D - why use the invers matrix? The thing is that I dont have any intuition to, why it is used, therefore please correct me: As fare as I understand, it is used in shaders - and can help you to figure out the opposite direction of the normals? Invers in ordinary numbers is like; The product of a number and its multiplicative inverse is 1. Observe that 3/5 * 5/3 = 1. In a matrix this will give you the Identity Matrix, which is the base coordinate system or the orion of the World space - right. But the invers is - some other coordinate system? You can use the transpose(Row-major order to Column-major order) of a square matrix to find the inverted matrix, as calculating the invers is process heavy - and the transpose is giving you the inverted matrix as a bi product? Again, I am looking for getting some intuition of this - and therefore be able to use it as intended. Thank you for any reply that will guide me in the right direction. Regards

    Read the article

  • Use PathModifier of MoveModifier for Tower of Defense Game

    - by Siddharth
    In my game I want to move enemy on the fixed path so that I have establish manual grid structure for that purpose not used tile map. Game contain multiple level and the path will be different for each level and also multiple fixed path exist for each level. So my question is, What I have to use MoveModifier or PathModifier for my game ? Also mention I have to use WayPoint or not. Further detail you all are free to ask. Please help me to decide what to do.

    Read the article

  • Will making players pay a virtual currency before entering a match discourage them from playing?

    - by Bane
    I'm making a multiplayer match-making game, and by my current design, people will need to pay a small fee before joining a match. At the end of the match, the team that won will get the money. That will be a virtual currency, but still, will it discourage people to enter matches? I introduced it to make the matches matter more, because there's always a fear that you will loose your investments. I'm not talking about anything big here, but even a small amount might have a similar psychological effect as a bigger one.

    Read the article

  • What are the pro/cons of Unity3D as a choice to make games?

    - by jokoon
    We are doing our school project with Unity3d, since they were using Shiva the previous year (which seems horrible to me), and I wanted to know your point of view for this tool. Pros: multi platform, I even heard Google is going to implement it in Chrome everything you need is here scripting languages makes it a good choice for people who are not programming gurus Cons: multiplayer ? proprietary, you are totally dependent of unity and its limit and can't extend it it's less "making a game from scratch" C++ would have been a cool thing I really think this kind of tool is interesting, but is it worth it to use at school for a project that involves more than 3 programming persons ? What do we really learn in term of programming from using this kind of tool (I'm ok with python and js, but I hate C#) ? We could have use Ogre instead, even if we were learning direct x starting january...

    Read the article

  • Physics from other games

    - by Carlosrdz1
    I'm making a platform engine with XNA Game Studio, and I've solved almost everything about colliding stuff. But now, I'm searching for good physics for the player, I'm trying to emulate characters from other games like Mario from Super Mario World, or MegaMan X... do you know a website or something, where the physics from that games are revealed? I remember seen a page with something like that. Or what's the process you think is the best to emulate physics from other games? Just trial and error? Thank you.

    Read the article

  • How do I implement SkyBox in xna 4.0 Reach Profile (for Windows Phone 7)?

    - by Biny
    I'm trying to Implement SkyBox in my phone game. Most of the samples in the web are for HiDef profile, and they are using custom effects (that not supported on Windows Phone). I've tried to follow this guide. But for some reason my SkyBox is not rendered. This is my SkyBox class: using System; using System.Collections.Generic; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using Rocuna.Core; using Rocuna.GameEngine.Graphics; using Rocuna.GameEngine.Graphics.Components; namespace Rocuna.GameEngine.Extension.WP7.Graphics { /// <summary> /// Sky box element for phone games. /// </summary> public class SkyBox : SkyBoxBase { /// <summary> /// Initializes a new instance of the <see cref="SkyBoxBase"/> class. /// </summary> /// <param name="game">The Game that the game component should be attached to.</param> public SkyBox(TextureCube cube, Game game) : base(game) { Cube = cube; CubeFaces = new Texture2D[6]; PositionOffset = new Vector3(20, 20, 20); CreateGraphic(512); StripTexturesFromCube(); InitializeData(Game.GraphicsDevice); } #region Properties /// <summary> /// Gets or sets the position offset. /// </summary> /// <value> /// The position offset. /// </value> public Vector3 PositionOffset { get; set; } /// <summary> /// Gets or sets the position. /// </summary> /// <value> /// The position. /// </value> public Vector3 Position { get; set; } /// <summary> /// Gets or sets the cube. /// </summary> /// <value> /// The cube. /// </value> public TextureCube Cube { get; set; } /// <summary> /// Gets or sets the pixel array. /// </summary> /// <value> /// The pixel array. /// </value> public Color[] PixelArray { get; set; } /// <summary> /// Gets or sets the cube faces. /// </summary> /// <value> /// The cube faces. /// </value> public Texture2D[] CubeFaces { get; set; } /// <summary> /// Gets or sets the vertex buffer. /// </summary> /// <value> /// The vertex buffer. /// </value> public VertexBuffer VertexBuffer { get; set; } /// <summary> /// Gets or sets the index buffer. /// </summary> /// <value> /// The index buffer. /// </value> public IndexBuffer IndexBuffer { get; set; } /// <summary> /// Gets or sets the effect. /// </summary> /// <value> /// The effect. /// </value> public BasicEffect Effect { get; set; } #endregion protected override void LoadContent() { } public override void Update(GameTime gameTime) { var camera = Game.GetService<GraphicManager>().CurrentCamera; this.Position = camera.Position + PositionOffset; base.Update(gameTime); } public override void Draw(GameTime gameTime) { DrawOrder = int.MaxValue; var graphics = Effect.GraphicsDevice; graphics.DepthStencilState = new DepthStencilState() { DepthBufferEnable = false }; graphics.RasterizerState = new RasterizerState() { CullMode = CullMode.None }; graphics.BlendState = new BlendState(); graphics.SamplerStates[0] = SamplerState.AnisotropicClamp; graphics.SetVertexBuffer(VertexBuffer); graphics.Indices = IndexBuffer; Effect.Texture = CubeFaces[0]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 0, 2); Effect.Texture = CubeFaces[1]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 6, 2); Effect.Texture = CubeFaces[2]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 12, 2); Effect.Texture = CubeFaces[3]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 18, 2); Effect.Texture = CubeFaces[4]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 24, 2); Effect.Texture = CubeFaces[5]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 30, 2); base.Draw(gameTime); } #region Fields private List<VertexPositionNormalTexture> _vertices = new List<VertexPositionNormalTexture>(); private List<ushort> _indices = new List<ushort>(); #endregion #region Private methods private void InitializeData(GraphicsDevice graphicsDevice) { VertexBuffer = new VertexBuffer(graphicsDevice, typeof(VertexPositionNormalTexture), _vertices.Count, BufferUsage.None); VertexBuffer.SetData<VertexPositionNormalTexture>(_vertices.ToArray()); // Create an index buffer, and copy our index data into it. IndexBuffer = new IndexBuffer(graphicsDevice, typeof(ushort), _indices.Count, BufferUsage.None); IndexBuffer.SetData<ushort>(_indices.ToArray()); // Create a BasicEffect, which will be used to render the primitive. Effect = new BasicEffect(graphicsDevice); Effect.TextureEnabled = true; Effect.EnableDefaultLighting(); } private void CreateGraphic(float size) { Vector3[] normals = { Vector3.Right, Vector3.Left, Vector3.Up, Vector3.Down, Vector3.Backward, Vector3.Forward, }; Vector2[] textureCoordinates = { Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, }; var index = 0; foreach (var normal in normals) { var side1 = new Vector3(normal.Z, normal.X, normal.Y); var side2 = Vector3.Cross(normal, side1); AddIndex(CurrentVertex + 0); AddIndex(CurrentVertex + 1); AddIndex(CurrentVertex + 2); AddIndex(CurrentVertex + 0); AddIndex(CurrentVertex + 2); AddIndex(CurrentVertex + 3); AddVertex((normal - side1 - side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal - side1 + side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal + side1 + side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal + side1 - side2) * size / 2, normal, textureCoordinates[index++]); } } protected void StripTexturesFromCube() { PixelArray = new Color[Cube.Size * Cube.Size]; for (int s = 0; s < CubeFaces.Length; s++) { CubeFaces[s] = new Texture2D(Game.GraphicsDevice, Cube.Size, Cube.Size, false, SurfaceFormat.Color); switch (s) { case 0: Cube.GetData<Color>(CubeMapFace.PositiveX, PixelArray); CubeFaces[s].SetData<Color>(PixelArray); break; case 1: Cube.GetData(CubeMapFace.NegativeX, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 2: Cube.GetData(CubeMapFace.PositiveY, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 3: Cube.GetData(CubeMapFace.NegativeY, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 4: Cube.GetData(CubeMapFace.PositiveZ, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 5: Cube.GetData(CubeMapFace.NegativeZ, PixelArray); CubeFaces[s].SetData(PixelArray); break; } } } protected void AddVertex(Vector3 position, Vector3 normal, Vector2 textureCoordinates) { _vertices.Add(new VertexPositionNormalTexture(position, normal, textureCoordinates)); } protected void AddIndex(int index) { if (index > ushort.MaxValue) throw new ArgumentOutOfRangeException("index"); _indices.Add((ushort)index); } protected int CurrentVertex { get { return _vertices.Count; } } #endregion } }

    Read the article

  • How to utilize miniMax algorrithm in Checkers game

    - by engineer
    I am sorry...as there are too many articles about it.But I can't simple get this. I am confused in the implementation of AI. I have generated all possible moves of computer's type pieces. Now I can't decide the flow. Whether I need to start a loop for the possible moves of each piece and assign score to it.... or something else is to be done. Kindly tell me the proper flow/algorithm for this. Thanks

    Read the article

  • How do I find the closest points(thereby forming a polygon) enclosing a particular point?(see image)

    - by nilspin
    I am working with a game engine, and my task is to add code for simulating fracture of rigid meshes. Right now I'm only working on breaking a cube. I am using Voronoi's algorithm to make a (realistic)fractured shard and I am using the half-plane method to generate a voronoi cell. Now the way I do this is for every seed point, I make planes that are perpendicular bisector planes(the straight black lines in the image) with rest of the seed points and I calculate the intersections of all these planes to give me distinct points(all the orange dots). I've gotten this far. Out of all these calculated intersection points, I only need the ones that are closest and enclosing the seed point(the points encircled in red) and I need to discard all the rest. Information that I have : 1) Plane equations of all planes(defined by normalized normal vectors and their distance from origin) 2) Points of intersection(that I've calculated) Can anybody help me find out how I can find the points encircled in red? Thanks.

    Read the article

  • Optimized algorithm for line-sphere intersection in GLSL

    - by fernacolo
    Well, hello then! I need to find intersection between line and sphere in GLSL. Right now my solution is based on Paul Bourke's page and was ported to GLSL this way: // The line passes through p1 and p2: vec3 p1 = (...); vec3 p2 = (...); // Sphere center is p3, radius is r: vec3 p3 = (...); float r = ...; float x1 = p1.x; float y1 = p1.y; float z1 = p1.z; float x2 = p2.x; float y2 = p2.y; float z2 = p2.z; float x3 = p3.x; float y3 = p3.y; float z3 = p3.z; float dx = x2 - x1; float dy = y2 - y1; float dz = z2 - z1; float a = dx*dx + dy*dy + dz*dz; float b = 2.0 * (dx * (x1 - x3) + dy * (y1 - y3) + dz * (z1 - z3)); float c = x3*x3 + y3*y3 + z3*z3 + x1*x1 + y1*y1 + z1*z1 - 2.0 * (x3*x1 + y3*y1 + z3*z1) - r*r; float test = b*b - 4.0*a*c; if (test >= 0.0) { // Hit (according to Treebeard, "a fine hit"). float u = (-b - sqrt(test)) / (2.0 * a); vec3 hitp = p1 + u * (p2 - p1); // Now use hitp. } It works perfectly! But it seems slow... I'm new at GLSL. You can answer this questions in two ways: Tell me there is no solution, showing some proof or strong evidence. Tell me about GLSL features (vector APIs, primitive operations) that makes the above algorithm faster, showing some example. Thanks a lot!

    Read the article

  • Does XNA/MonoGame have a text caching mechanism, or has an open source one been implemented?

    - by Casey
    I'm playing around with MonoGame, and I've noticed the SpriteFont class draws static text very inefficiently. Each time the text is drawn the spacing is recalculated. This isn't a big deal on my quad core PC, but on mobile applications it might be a problem. Before I go and program some text which caches the arrangement of its letters in an array and then feeds that array to the SpriteBatch, I would like to make sure there isn't something available to do this already, either in MonoGame itself or a class someone has implemented and made available for general use.

    Read the article

  • How do I implement Unreal-like object serialization?

    - by MrWiggels
    Recently, I've been working on the core of my engine, and as I'm moving forward I find myself developing throwaway code to read files and simple data into the engine. This got me thinking about how I should implement a file management system. After a bit of googleing I came across the Unreal Package format, and boy does it look like the perfect one. I think it's good because the way how it allows you to separate different assets into different packages and allow something like a level to reference the different packages. I was just wondering, is this possible with C#? Because the built-in serialization API in .NET does not seem to support any form of this, only reading and writing to a single file.

    Read the article

  • Ignore collisions with some objects in certain contexts

    - by Paul Manta
    I'm making a racing game with cars in Unity. The car has a boost/nitro powerup. While boosting, I wouldn't want to be deviated when colliding with zombies, but I do want to be deviated when colliding with walls. On the other hand, I don't want to ignore collision with zombies, because I still want to hit them on impact. How should I handle this? Basically, what I want is for the car to not rotate when colliding with certain objects.

    Read the article

  • Circle-Line Collision Detection Problem

    - by jazzdawg
    I am currently developing a breakout clone and I have hit a roadblock in getting collision detection between a ball (circle) and a brick (convex polygon) working correctly. I am using a Circle-Line collision detection test where each line represents and edge on the convex polygon brick. For the majority of the time the Circle-Line test works properly and the points of collision are resolved correctly. Collision detection working correctly. However, occasionally my collision detection code returns false due to a negative discriminant when the ball is actually intersecting the brick. Collision detection failing. I am aware of the inefficiency with this method and I am using axis aligned bounding boxes to cut down on the number of bricks tested. My main concern is if there are any mathematical bugs in my code below. /* * from and to are points at the start and end of the convex polygons edge. * This function is called for every edge in the convex polygon until a * collision is detected. */ bool circleLineCollision(Vec2f from, Vec2f to) { Vec2f lFrom, lTo, lLine; Vec2f line, normal; Vec2f intersectPt1, intersectPt2; float a, b, c, disc, sqrt_disc, u, v, nn, vn; bool one = false, two = false; // set line vectors lFrom = from - ball.circle.centre; // localised lTo = to - ball.circle.centre; // localised lLine = lFrom - lTo; // localised line = from - to; // calculate a, b & c values a = lLine.dot(lLine); b = 2 * (lLine.dot(lFrom)); c = (lFrom.dot(lFrom)) - (ball.circle.radius * ball.circle.radius); // discriminant disc = (b * b) - (4 * a * c); if (disc < 0.0f) { // no intersections return false; } else if (disc == 0.0f) { // one intersection u = -b / (2 * a); intersectPt1 = from + (lLine.scale(u)); one = pointOnLine(intersectPt1, from, to); if (!one) return false; return true; } else { // two intersections sqrt_disc = sqrt(disc); u = (-b + sqrt_disc) / (2 * a); v = (-b - sqrt_disc) / (2 * a); intersectPt1 = from + (lLine.scale(u)); intersectPt2 = from + (lLine.scale(v)); one = pointOnLine(intersectPt1, from, to); two = pointOnLine(intersectPt2, from, to); if (!one && !two) return false; return true; } } bool pointOnLine(Vec2f p, Vec2f from, Vec2f to) { if (p.x >= min(from.x, to.x) && p.x <= max(from.x, to.x) && p.y >= min(from.y, to.y) && p.y <= max(from.y, to.y)) return true; return false; }

    Read the article

  • Alpha From PNGs Butchered

    - by ashes999
    I have a pretty vanilla Monogame game. I'm using PNG for all my sprites (made in Photoshop). I noticed that XNA is butchering the aliasing; no matter what I do, my graphics appear jaggedy. Below is a screenshot. The bottom half is what XNA shows me when I zoom in 2X using a Matrix on my GraphicsDevice (to make the effect more obvious). The top is when I pasted the same sprites from Photoshop and scaled them to 200%. Note that partially transparent pixels are turning whiteish. Is there a way to fix this? What am I doing wrong? Here's the relevant call to draw to the SpriteBatch: spriteBatch.Draw(this.texture, this.positionVector, null, Color.White, this.Angle, this.originVector, 1f, SpriteEffects.None, 0f); (this.positionVector can easily be Vector.Zero; Color.White as 100% alpha, I think; this.Angle can be a real angle (small > in the image) or zero (the orb itself).

    Read the article

< Previous Page | 592 593 594 595 596 597 598 599 600 601 602 603  | Next Page >