Search Results

Search found 1457 results on 59 pages for 'bullet physics'.

Page 6/59 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • How can I scale movement physics functions to frames per second (in a game engine)?

    - by Richard
    I am working on a game in Javascript (HTML5 Canvas). I implemented a simple algorithm that allows an object to follow another object with basic physics mixed in (a force vector to drive the object in the right direction, and the velocity stacks momentum, but is slowed by a constant drag force). At the moment, I set it up as a rectangle following the mouse (x, y) coordinates. Here's the code: // rectangle x, y position var x = 400; // starting x position var y = 250; // starting y position var FPS = 60; // frames per second of the screen // physics variables: var velX = 0; // initial velocity at 0 (not moving) var velY = 0; // not moving var drag = 0.92; // drag force reduces velocity by 8% per frame var force = 0.35; // overall force applied to move the rectangle var angle = 0; // angle in which to move // called every frame (at 60 frames per second): function update(){ // calculate distance between mouse and rectangle var dx = mouseX - x; var dy = mouseY - y; // calculate angle between mouse and rectangle var angle = Math.atan(dy/dx); if(dx < 0) angle += Math.PI; else if(dy < 0) angle += 2*Math.PI; // calculate the force (on or off, depending on user input) var curForce; if(keys[32]) // SPACE bar curForce = force; // if pressed, use 0.35 as force else curForce = 0; // otherwise, force is 0 // increment velocty by the force, and scaled by drag for x and y velX += curForce * Math.cos(angle); velX *= drag; velY += curForce * Math.sin(angle); velY *= drag; // update x and y by their velocities x += velX; y += velY; And that works fine at 60 frames per second. Now, the tricky part: my question is, if I change this to a different framerate (say, 30 FPS), how can I modify the force and drag values to keep the movement constant? That is, right now my rectangle (whose position is dictated by the x and y variables) moves at a maximum speed of about 4 pixels per second, and accelerates to its max speed in about 1 second. BUT, if I change the framerate, it moves slower (e.g. 30 FPS accelerates to only 2 pixels per frame). So, how can I create an equation that takes FPS (frames per second) as input, and spits out correct "drag" and "force" values that will behave the same way in real time? I know it's a heavy question, but perhaps somebody with game design experience, or knowledge of programming physics can help. Thank you for your efforts. jsFiddle: http://jsfiddle.net/BadDB

    Read the article

  • 2D character controller in unity (trying to get old-school platformers back)

    - by Notbad
    This days I'm trying to create a 2D character controller with unity (using phisics). I'm fairly new to physic engines and it is really hard to get the control feel I'm looking for. I would be really happy if anyone could suggest solution for a problem I'm finding: This is my FixedUpdate right now: public void FixedUpdate() { Vector3 v=new Vector3(0,-10000*Time.fixedDeltaTime,0); _body.AddForce(v); v.y=0; if(state(MovementState.Left)) { v.x=-_walkSpeed*Time.fixedDeltaTime+v.x; if(Mathf.Abs(v.x)>_maxWalkSpeed) v.x=-_maxWalkSpeed; } else if(state(MovementState.Right)) { v.x= _walkSpeed*Time.fixedDeltaTime+v.x; if(Mathf.Abs(v.x)>_maxWalkSpeed) v.x=_maxWalkSpeed; } _body.velocity=v; Debug.Log("Velocity: "+_body.velocity); } I'm trying here to just move the rigid body applying a gravity and a linear force for left and right. I have setup a physic material that makes no bouncing and 0 friction when moving and 1 friction with stand still. The main problem is that I have colliders with slopes and the velocity changes from going up (slower) , going down the slope (faster) and walk on a straight collider (normal). How could this be fixed? As you see I'm applying allways same velocity for x axis. For the player I have it setup with a sphere at feet position that is the rigidbody I'm applying forces to. Any other tip that could make my life easier with this are welcomed :). P.D. While coming home I have noticed I could solve this applying a constant force parallel to the surface the player is walking, but don't know if it is best method.

    Read the article

  • simple collision detection with box2dweb

    - by skywalker
    im beginner in box2dweb that version of box2d for javascript i wrote simple gravity system and i want to detect the collision between the box and the ground , when the falling box hit the ground execute simple function like function sucs(){alert("the box on the floor !")}; this is my code var CANVAS_WIDTH = 1024, CANVAS_HEIGHT = 700, SCALE = 30; var b2Vec2 = Box2D.Common.Math.b2Vec2 , b2BodyDef = Box2D.Dynamics.b2BodyDef , b2Body = Box2D.Dynamics.b2Body , b2FixtureDef = Box2D.Dynamics.b2FixtureDef , b2Fixture = Box2D.Dynamics.b2Fixture , b2World = Box2D.Dynamics.b2World , b2MassData = Box2D.Collision.Shapes.b2MassData , b2PolygonShape = Box2D.Collision.Shapes.b2PolygonShape , b2CircleShape = Box2D.Collision.Shapes.b2CircleShape , b2DebugDraw = Box2D.Dynamics.b2DebugDraw; var canvas = document.getElementById("canvas"); var context = canvas.getContext("2d"); var world = new b2World(new b2Vec2(0, 8), true); var fixDef = new b2FixtureDef(); var bodyDef = new b2BodyDef(); fixDef.density = 1.0; fixDef.friction = 0.5; bodyDef.type = b2Body.b2_staticBody; fixDef.shape = new b2PolygonShape; fixDef.shape.SetAsBox(20, 2); bodyDef.position.Set(10, 400 / 30 + 1.8); world.CreateBody(bodyDef).CreateFixture(fixDef); fixDef.density = 1.0; fixDef.friction = 0.5; fixDef.restitution = 0.3; bodyDef.type = b2Body.b2_dynamicBody; bodyDef.position.Set(50 / SCALE, 0 / SCALE); //bodyDef.linearVelocity.Set((Math.random() * 12) + 2, (Math.random() * 12) + 2); fixDef.shape = new b2PolygonShape(); fixDef.shape.SetAsBox(25 / SCALE, 25 / SCALE); world.CreateBody(bodyDef).CreateFixture(fixDef); var debugDraw = new b2DebugDraw(); debugDraw.SetSprite(document.getElementById("canvas").getContext("2d")); debugDraw.SetDrawScale(30.0); debugDraw.SetFillAlpha(0.5); debugDraw.SetLineThickness(1.0); debugDraw.SetFlags(b2DebugDraw.e_shapeBit | b2DebugDraw.e_jointBit); world.SetDebugDraw(debugDraw); var image = new Image(); image.src = "image.png"; window.setInterval(gameLoop, 1000 / 60); function gameLoop() { world.Step(1 / 60, 8, 3); world.ClearForces(); context.clearRect(0, 0, CANVAS_WIDTH, CANVAS_HEIGHT); b = world.GetBodyList() var pos = b.GetPosition(); context.save(); context.translate(pos.x * SCALE, pos.y * SCALE); context.rotate(b.GetAngle()); context.drawImage(image, -25, -25); context.restore(); b = b.GetNext(); pos = b.GetPosition(); context.save(); context.translate(pos.x * SCALE, pos.y * SCALE); //b.GetAngle()++; context.rotate(b.GetAngle()); context.drawImage(image, -25, -25); context.restore(); world.DrawDebugData(); };

    Read the article

  • How to apply numerical integration on a graph layout

    - by Cumatru
    I've done some basic 1 D integration, but i can't wrap my head around things and apply it to my graph layout. So, consider the picture below: if i drag the red node to the right, i'm forcing his position to my mouse position the other nodes will "follow" him, but how ? For Verlet, to compute the newPosition, i need the acceleration for every node and the currentPosition. That is what i don't understand. How to i compute the acceleration and the currentPosition ? The currentPosition will be the position of the RedNode ? If yes, doesn't that means that they will all overlap ? http://i.stack.imgur.com/NCKmO.jpg

    Read the article

  • Axis-Aligned Bounding Boxes vs Bounding Ellipse

    - by Griffin
    Why is it that most, if not all collision detection algorithms today require each body to have an AABB for the use in the broad phase only? It seems to me like simply placing a circle at the body's centroid, and extending the radius to where the circle encompasses the entire body would be optimal. This would not need to be updated after the body rotates and broad overlap-calculation would be faster to. Correct? Bonus: Would a bounding ellipse be practical for broad phase calculations also, since it would better represent long, skinny shapes? Or would it require extensive calculations, defeating the purpose of broad-phase?

    Read the article

  • Collision filtering techniques

    - by Griffin
    I was wondering what efficient techniques are out there for mapping collision filtering between various bodies, sub-bodies, and so forth. I'm familiar with the simple idea of having different layers of 2D bodies, but this is not sufficient for more complex mapping: (Think of having sub-bodies of a body, such as limbs, collide with each other by placing them on the same layer, and then wanting to only have the legs collide with the ground while the arms would not) This can be solved with a multidimensional layer setup, but I would probably end up just creating more and more layers to the point where the simplicity and efficiency of layer filtering would be gone. Are there any more complex ways to solve even more complex situations than this?

    Read the article

  • How to implement physical effect, perspective effect on Android

    - by asedra_le
    I'm researching about 2D game for Android to implement an Android Game Project. My project looks nearly like PaperToss. Instance of throwing a page, my game will throw a coin. Suppose that I have a coin put in three-dimensional that have coordinates at A(x,y,z). I throw that point ahead, after 1/100 second, that coin move from A(x,y,z) to A'(x',y',z'). By this way, I have two problems need to solve. Determine the formulas can be used to compute the coordinates of the coin at time t. This problem is under-researching. I have no idea to solve this problem. Mapping three-dimensional points to a two-dimensional and use those new coordinates (a two-dimensional coordinates) to draw our coin on screen. I have found two solutions for this problem: Orthographic projection & Perspective projection However, my old friend said that OpenGL supports to solve problems like my problems. Any body have experiences about my problems? Help me please :) Thank for reading my question.

    Read the article

  • 2D game collision response: SAT & minimum displacement along a given axis?

    - by Archagon
    I'm trying to implement a collision system in a 2D game I'm making. The separating axis theorem (as described by metanet's collision tutorial) seems like an efficient and robust way of handling collision detection, but I don't quite like the collision response method they use. By blindly displacing along the axis of least overlap, the algorithm simply ignores the previous position of the moving object, which means that it doesn't collide with the stationary object so much as it enters it and then bounces out. Here's an example of a situation where this would matter: According to the SAT method described above, the rectangle would simply pop out of the triangle perpendicular to its hypotenuse: However, realistically, the rectangle should stop at the lower right corner of the triangle, as that would be the point of first collision if it were moving continuously along its displacement vector: Now, this might not actually matter during gameplay, but I'd love to know if there's a way of efficiently and generally attaining accurate displacements in this manner. I've been racking my brains over it for the past few days, and I don't want to give up yet! (Cross-posted from StackOverflow, hope that's not against the rules!)

    Read the article

  • How to simulate pressure with particles?

    - by BeachRunnerJoe
    I'm trying to simulate pressure with a collection of spherical particles in a Unity game I'm building. A couple notes about the problem: The goal is to fill a constantly changing 2d space/void with small, frictionless spheres. The game is trying to simulate the ever-growing pressure of more objects being shoved into this space. The level itself is constantly scrolling from left to right, meaning if the space's dimensions are not changed by the user it will automatically get smaller (the leftmost part of the space will continually scroll off-screen). I'm wondering what some approaches are that I can take to tackling these problems... Knowing when to detect when there is space to fill and then add spheres to the space. Removing spheres from the space when it is shrinking. Strategies to simulate pressure on the spheres such that they "explode outwards" when more space is created. The current approach I am contemplating is using a constantly moving wall, that is off screen and moves with the screen, as this image illustrates: . This moving wall will push and trap the spheres into the space. As for adding new spheres, I was going to have either (1) spheres replicate themselves upon detecting free space, OR (2) spawn them at the left side of the space (where the wall is) - pushing the rest of the spheres to fill the space. I foresee problems with idea #1 because this likely wouldn't really create/simulate pressure; idea #2 seems more promising, but raises the question of how to provide a location for these new sphere particles to spawn (and the ramifications of spawning them when there IS no space). Thanks so much in advance for your wisdom!

    Read the article

  • Adding 'swerve' to a direction

    - by Skoder
    Hey. I'm not much of a maths expert, so this is probably quite straight forward. I was playing a soccer flash game where you take free kicks. You provide Power, Swerve and Direction. I'm reading up on vectors and such so I can use the direction and power information to shoot the ball with the correct velocity. What I don't understand is how the 'Swerve' information is used. What formula connects the Swerve information with the Direction and Power? (This is all in 2D) Thanks for any advice.

    Read the article

  • Rope Colliding with a Rectangle

    - by Colton
    I have my rope, and I have my rectangles. The rope is similar to the implementation found here: http://nehe.gamedev.net/tutorial/rope_physics/17006/ Now, I want to make the rope properly collide with the rectangle such that the rope will not pass through a rectangle, and wrap around the rectangle and all that good stuff. Currently, I have it set so no rope node can pass through a rect (successfully), however, this means a rope segment can still pass through a block. Ex: So the question is, what can I do to fix this? What I have tried: I create a rectangle between two nodes of a rope, calculate rotation between the nodes, and get myself a transformed rectangle. I can successfully detect a collision between rope segments and a (non-transformed) rectangle. Create a new node or pivot point around the corner of the block, and rearrange nodes to point to the corner node. Trouble is determining what corner the rope segment is passing through. And then the current rope setup goes wonky (based on verlet integration, so a sudden change in position causes the rope to wiggle like a seismograph during a magnitude 8 earth quake.) Among other issues that might be solvable, but its turning into a case by case thing, which doesn't seem right. I think the best answer here would just be a link to a tutorial (I simply can't find any, most lead to box2D or farseer, but I want to at least learn how it works before I hide behind an engine).

    Read the article

  • Implementing a wheeled character controller

    - by Lazlo
    I'm trying to implement Boxycraft's character controller in XNA (with Farseer), as Bryan Dysmas did (minus the jumping part, yet). My current implementation seems to sometimes glitch in between two parallel planes, and fails to climb 45 degree slopes. (YouTube videos in links, plane glitch is subtle). How can I fix it? From the textual description, I seem to be doing it right. Here is my implementation (it seems like a huge wall of text, but it's easy to read. I wish I could simplify and isolate the problem more, but I can't): public Body TorsoBody { get; private set; } public PolygonShape TorsoShape { get; private set; } public Body LegsBody { get; private set; } public Shape LegsShape { get; private set; } public RevoluteJoint Hips { get; private set; } public FixedAngleJoint FixedAngleJoint { get; private set; } public AngleJoint AngleJoint { get; private set; } ... this.TorsoBody = BodyFactory.CreateRectangle(this.World, 1, 1.5f, 1); this.TorsoShape = new PolygonShape(1); this.TorsoShape.SetAsBox(0.5f, 0.75f); this.TorsoBody.CreateFixture(this.TorsoShape); this.TorsoBody.IsStatic = false; this.LegsBody = BodyFactory.CreateCircle(this.World, 0.5f, 1); this.LegsShape = new CircleShape(0.5f, 1); this.LegsBody.CreateFixture(this.LegsShape); this.LegsBody.Position -= 0.75f * Vector2.UnitY; this.LegsBody.IsStatic = false; this.Hips = JointFactory.CreateRevoluteJoint(this.TorsoBody, this.LegsBody, Vector2.Zero); this.Hips.MotorEnabled = true; this.AngleJoint = new AngleJoint(this.TorsoBody, this.LegsBody); this.FixedAngleJoint = new FixedAngleJoint(this.TorsoBody); this.Hips.MaxMotorTorque = float.PositiveInfinity; this.World.AddJoint(this.Hips); this.World.AddJoint(this.AngleJoint); this.World.AddJoint(this.FixedAngleJoint); ... public void Move(float m) // -1, 0, +1 { this.Hips.MotorSpeed = 0.5f * m; }

    Read the article

  • Smooth waypoint traversing

    - by TheBroodian
    There are a dozen ways I could word this question, but to keep my thoughts in line, I'm phrasing it in line with my problem at hand. So I'm creating a floating platform that I would like to be able to simply travel from one designated point to another, and then return back to the first, and just pass between the two in a straight line. However, just to make it a little more interesting, I want to add a few rules to the platform. I'm coding it to travel multiples of whole tile values of world data. So if the platform is not stationary, then it will travel at least one whole tile width or tile height. Within one tile length, I would like it to accelerate from a stop to a given max speed. Upon reaching one tile length's distance, I would like it to slow to a stop at given tile coordinate and then repeat the process in reverse. The first two parts aren't too difficult, essentially I'm having trouble with the third part. I would like the platform to stop exactly at a tile coordinate, but being as I'm working with acceleration, it would seem easy to simply begin applying acceleration in the opposite direction to a value storing the platform's current speed once it reaches one tile's length of distance (assuming that the tile is traveling more than one tile-length, but to keep things simple, let's just assume it is)- but then the question is what would the correct value be for acceleration to increment from to produce this effect? How would I find that value?

    Read the article

  • Continuous Collision Detection Techniques

    - by Griffin
    I know there are quite a few continuous collision detection algorithms out there , but I can't find a list or summary of different 2D techniques; only tutorials on specific algorithms. What techniques are out there for calculating when different 2D bodies will collide and what are the advantages / disadvantages of each? I say techniques and not algorithms because I have not yet decided on how I will store different polygons which might be concave or even have holes. I plan to make a decision on this based on what the algorithm requires (for instance if an algorithm breaks down a polygon into triangles or convex shapes I will simply store the polygon data in this form).

    Read the article

  • Box2D platformer movement. Should i mess with velocity?

    - by Romeo
    I have a platformer game in which I implemented the movement using a wheel attached to the hero. For jumping I use this: player.body.applyLinearImpulse(new Vec2(0, 30000000), player.body.getPosition()); The problem is that the xVelocity doesn't remain the same during the jump so it isn't looking natural. Is there any way to modify only the x velocity of the body so that before jumping I store it in a variable and after jumping I apply it to the body? I hope you understand what I am trying to say.

    Read the article

  • Determining relative velocities on impact?

    - by meds
    I'm trying to figure out a way to determine the relative velocity of a body colliding with another in a 2D environment. For example if one body is moving at (1,0) and another traveling behind it collides with it from behind at (2,0) the velocity of the impact relative to the first body was (1,0). I need a method which takes in two velocities, one velocity belonging to the body the velocity is being measured against, and the other for the impacting body and return the relative velocity.

    Read the article

  • JBox2D applyLinearImpulse doesn't work

    - by Romeo
    So i have this line of code: if(input.isKeyDown(Input.KEY_W)&&canJump()) { body.applyLinearImpulse(new Vec2(0, 30), cam.screenToWorld(body.getPosition())); System.out.println("I can jump!"); } My problem is that the console display I can jump! but the body doesn't do that. Can you explain to me if i do something wrong? Some more code. This function creates my 'hero' the one supposed to jump. private Body setDynamic(float width, float height, float x, float y) { PolygonShape shape = new PolygonShape(); shape.setAsBox(width/2, height/2); BodyDef bd = new BodyDef(); bd.allowSleep = true; bd.position = new Vec2(cam.screenToWorld(new Vec2(x + width / 2, y + height / 2))); bd.type = BodyType.DYNAMIC; bd.userData = new BodyInfo(width, height); Body body = world.createBody(bd); body.createFixture(shape, 10); return body; } And this is the main update loop: if(input.isKeyDown(Input.KEY_A)) { body.setLinearVelocity(new Vec2(-10*delta, body.getLinearVelocity().y)); } else if (input.isKeyDown(Input.KEY_D)) { body.setLinearVelocity(new Vec2(10*delta, body.getLinearVelocity().y)); } else { body.setLinearVelocity(new Vec2(0, body.getLinearVelocity().y)); } if(input.isKeyDown(Input.KEY_W)&&canJump()) { body.applyLinearImpulse(new Vec2(0, 30), body.getPosition()); System.out.println("I can jump!"); } world.step(delta * 0.001f, 10, 5); }

    Read the article

  • Find angle for projectile to meet target in parabolic arc

    - by TheBroodian
    I'm making a thing that launches projectiles in 2D. Its projectiles are fired with a set initial velocity, and are only affected by gravity. Assuming that its target is within range, and that there aren't any obstacles, how would my thing find the appropriate angle at which to launch its projectile (in radians)? The equation for this is found here: Wikipedia: Angle Required to Hit Coordinate Sadly, I'm not a physicist (a.k.a. can't read smart people math) and am having a hard time reading its breakdown. If not only for the sake of anybody else that might read this other than myself, would anybody be kind enough to break the equation down into baby words please?

    Read the article

  • Reflection velocity

    - by MindSeeker
    I'm trying to get a moving circular object to bounce (elastically) off of an immovable circular object. Am I doing this right? (The results look right, but I hate to trust that alone, and I can't find a tutorial that tackles this problem and includes the nitty gritty math/code to verify what I'm doing). If it is right, is there a better/faster/more elegant way to do this? Note that the object (this) is the moving circle, and the EntPointer object is the immovable circle. //take vector separating the two centers <x, y>, and then get unit vector of the result: MathVector2d unitnormal = MathVector2d(this -> Retxpos() - EntPointer -> Retxpos(), this -> Retypos() - EntPointer -> Retypos()).UnitVector(); //take tangent <-y, x> of the unitnormal: MathVector2d unittangent = MathVector2d(-unitnormal.ycomp, unitnormal.xcomp); MathVector2d V1 = MathVector2d(this -> Retxvel(), this -> Retyvel()); //Calculate the normal and tangent vector lengths of the velocity: (the normal changes, the tangent stays the same) double LengthNormal = DotProduct(unitnormal, V1); double LengthTangent = DotProduct(unittangent, V1); MathVector2d VelVecNewNormal = unitnormal.ScalarMultiplication(-LengthNormal); //the negative of what it was before MathVector2d VelVecNewTangent = unittangent.ScalarMultiplication(LengthTangent); //this stays the same MathVector2d NewVel = VectorAddition(VelVecNewNormal, VelVecNewTangent); //combine them xvel = NewVel.xcomp; //and then apply them yvel = NewVel.ycomp; Note also that this question is just about velocity, the position code is handled elsewhere (in other words, assume that this code is implemented at the exact moment that the circles begin to overlap). Thanks in advance for your help and time!

    Read the article

  • How do I calculate the motion of 2 massive bodies in space?

    - by 1224
    I'm writing code simulating the 2-dimensional motion of two massive bodies with gravitational fields. The bodies' masses are known and I have a gravitational force equation. I know from that force I can get a differential equation for coordinates. I know that I once I solve this equation I will get the coordinates. I will need to make up some initial position and some initial velocity. I'd like to end up with a numeric solver for the ordinal differential equation for coordinates to get the formulas that I can write in code. Could someone break down how from laws and initial conditions we get to the formulas that calculate x and y at time t?

    Read the article

  • Box2d contant speed before and after collision

    - by bobenko
    I want to make my body fly at constant speed, how to make it fly at constant speed before and after collision? I set restitution of my body to 1.0 but after some direct and powerful collisions my objects begins to slow, I want it to fly same speed as before. I heard this can be done by setting liner damping of the object, I think it can prevent only from fast flying objects not slow. Thanks in advance.

    Read the article

  • How can I stop my Jitter physics meshes being offset?

    - by ben1066
    I'm developing a C# game engine and have hit a snag trying to add physics. I'm using XNA for graphics and Jitter for physics. I am trying to split the XNA model into it's meshes, then create a ConvexHull for each mesh. I then attempt to combine those into a CompoundObject, this however isn't working and depending upon the model the meshes are offset by different amounts. This is the code I'm currently using and it gives me: Any ideas?

    Read the article

  • Sprite and Physics components or sub-components?

    - by ashes999
    I'm taking my first dive into creating a very simple entity framework. The key concepts (classes) are: Entity (has 0+ components, can return components by type) SpriteEntity (everything you need to draw on screen, including lighting info) PhysicsEntity (velocity, acceleration, collision detection) I started out with physics notions in my sprite component, and then later removed them to a sub-component. The separation of concerns makes sense; a sprite is enough information to draw anything (X, Y, width, height, lighting, etc.) and physics piggybacks (uses the parent sprite to get X/Y/W/H) while adding physics notions of velocity and collisions. The problem is that I would like collisions to be on an entity level -- meaning "no matter what your representation is (be it sprites, text, or something else), collide against this entity." So I refactored and redirected collision handling from entities to sprite.physics, while mapping and returning the right entity on physics collisions. The problem is that writing code like this.GetComponent<SpriteComponent>().physics is a violation of abstraction. Which made me think (this is the TLDR): should I keep physics as a separate component from sprites, or a sub-component, or something else? How should I share data and separate concerns?

    Read the article

  • how get collision callback of two specific objects using bullet physics?

    - by sebap123
    I have got problem implementing collision callback into my project. I would like to have detection between two specific objects. I have got normall collision but I want one object to stop or change color or whatever when colides with another. I wrote code from bullet wiki: int numManifolds = dynamicsWorld->getDispatcher()->getNumManifolds(); for (int i=0;i<numManifolds;i++) { btPersistentManifold* contactManifold = dynamicsWorld->getDispatcher()->getManifoldByIndexInternal(i); btCollisionObject* obA = static_cast<btCollisionObject*>(contactManifold->getBody0()); btCollisionObject* obB = static_cast<btCollisionObject*>(contactManifold->getBody1()); int numContacts = contactManifold->getNumContacts(); for (int j=0;j<numContacts;j++) { btManifoldPoint& pt = contactManifold->getContactPoint(j); if (pt.getDistance()<0.f) { const btVector3& ptA = pt.getPositionWorldOnA(); const btVector3& ptB = pt.getPositionWorldOnB(); const btVector3& normalOnB = pt.m_normalWorldOnB; bool x = (ContactProcessedCallback)(pt,fallRigidBody,earthRigidBody); if(x) printf("collision\n"); } } } where fallRigidBody is a dynamic body - a sphere and earthRigiBody is static body - StaticPlaneShape and sphere isn't touching earthRigidBody all the time. I have got also other objects that are colliding with sphere and it works fine. But the program detects collision all the time. It doesn't matter if the objects are or aren't colliding. I have also added after declarations of rigid body: earthRigidBody->setCollisionFlags(earthRigidBody->getCollisionFlags() | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK); fallRigidBody->setCollisionFlags(fallRigidBody->getCollisionFlags() | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK); So can someone tell me what I am doing wrong? Maybe it is something simple?

    Read the article

  • How do 2D physics engines solve the problem of resolving collisions along tiled walls/floors in non-grid-based worlds?

    - by ssb
    I've been working on implementing my SAT algorithm which has been coming along well, but I've found that I'm at a wall when it comes to its actual use. There are plenty of questions regarding this issue on this site, but most of them either have no clear, good answer or have a solution based on checking grid positions. To restate the problem that I and many others are having, if you have a tiled surface, like a wall or a floor, consisting of several smaller component rectangles, and you traverse along them with another rectangle with force being applied into that structure, there are cases where the object gets caught on a false collision on an edge that faces the inside of the shape. I have spent a lot of time thinking about how I could possibly solve this without having to resort to a grid-based system, and I realized that physics engines do this properly. What I want to know is how they do this. What do physics engines do beyond basic SAT that allows this kind of proper collision resolution in complex environments? I've been looking through the source code to Box2D trying to find out how they do it but it's not quite as easy as looking at a Collision() method. I think I'm not good enough at physics to know what they're doing mathematically and not good enough at programming to know what they're doing programmatically. This is what I aim to fix.

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >