Search Results

Search found 2086 results on 84 pages for 'pixel shader'.

Page 6/84 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • Bloom shader makes it impossible to render black?

    - by Mathias Lykkegaard Lorenzen
    I am playing around with the bloom shader from the XNA sample page, to do some glow shading. I am rendering primitive vector-ish squares of linelists/linestrips, on a background. However, I am facing a few problems. With a black background and white squares, I can actually see the squares. However, with a white background and black squares, I can't see them at all. Why is this happening, and is there any way of me fixing it? Can I modify my bloom shader to also "glow" dark elements, if that's what is causing it?

    Read the article

  • OpenGL ES Basic Fragment Shader help with transparency

    - by Chris
    I have just spent my first half hour playing with the shader language. I have modified the basic program I have which renders the texture, to allow me to colour the texture. varying vec2 texCoord; uniform sampler2D texSampler; /* Given the texture coordinates, our pixel shader grabs the corresponding * color from the texture. */ void main() { //gl_FragColor = texture2D(texSampler, texCoord); gl_FragColor = vec4(0,1,0,1)*vec4(texture2D(texSampler,texCoord).xyz,1); } I have noticed how this affects my transparent textures, and I believe I am loosing the alpha channel which would explain why previously transparent area's appear totally black. If I use the following line instead, I am shown the transparent area's gl_FragColor = vec4(0,1,0,1)*vec4(texture2D(texSampler,texCoord).aaa,1); How can I retain the transparency after this modification to the colour? I have seen various things about a .w property, and also luminous, but my tweaks with those and the .aaa property are not working XD

    Read the article

  • Heightmap in Shader not working

    - by CSharkVisibleBasix
    I'm trying to implement GPU based geometry clipmapping and have problems to apply a simple heightmap to my terrain. For the heightmap I use a simple texture with the surface format "single". I've taken the texture from here. To apply it to my terrain, I use the following shader code: texture Heightmap; sampler2D HeightmapSampler = sampler_state { Texture = <Heightmap>; MinFilter = Point; MagFilter = Point; MipFilter = Point; AddressU = Mirror; AddressV = Mirror; }; Vertex Shader: float4 worldPos = mul(float4(pos.x,0.0f,pos.y, 1.0f), worldMatrix); float elevation = tex2Dlod(HeightmapSampler, float4(worldPos.x, worldPos.z,0,0)); worldPos.y = elevation * 128; The complete vertex shader (also containig clipmapping transforms) looks like this: float4x4 View : View; float4x4 Projection : Projection; float3 CameraPos : CameraPosition; float LODscale; //The LOD ring index 0:highest x:lowest float2 Position; //The position of the part in the world texture Heightmap; sampler2D HeightmapSampler = sampler_state { Texture = <Heightmap>; MinFilter = Point; MagFilter = Point; MipFilter = Point; AddressU = Mirror; AddressV = Mirror; }; //Accept only float2 because we extract 3rd dim out of Heightmap float4 wireframe_VS(float2 pos : POSITION) : POSITION{ float4x4 worldMatrix = float4x4( LODscale, 0, 0, 0, 0, LODscale, 0, 0, 0, 0, LODscale, 0, - Position.x * 64 * LODscale + CameraPos.x, 0, Position.y * 64 * LODscale + CameraPos.z, 1); float4 worldPos = mul(float4(pos.x,0.0f,pos.y, 1.0f), worldMatrix); float elevation = tex2Dlod(HeightmapSampler, float4(worldPos.x, worldPos.z,0,0)); worldPos.y = elevation * 128; float4 viewPos = mul(worldPos, View); float4 projPos = mul(viewPos, Projection); return projPos; }

    Read the article

  • 2D shader to draw representation of rotating sphere.

    - by TheBigO
    I want to display a 3D textured sphere, and then rotate it in one direction. The direction will never change, and the camera will never move. One way is to actually create a spherical mesh, map a texture to it, rotate the sphere, and render in 3D. My question is, is there a way to display a 2D circle, that looks like a rotating sphere, with just a 2D shader. In other words, can someone think of a trick, like mapping a texture to the circle in a particular way, to give the appearance of an in-place rotating sphere, that is always viewed from the side? I don't need exact shader code, I'm just looking for the right idea.

    Read the article

  • Writing to a structured buffer with a compute shader (D3D11)

    - by Vertexwahn
    I have some problems writing to a structured buffer. First I create a structured buffer that is filled with float values beginning from 0 to 99. Afterwards a copy the structured buffer to a CPU accessible buffer is made to print the content of the structured buffer to the console. The output is as expected (Numbers 0 to 99 appear on the console). Afterwards I use a compute shader that should change the contents of the structured buffer: RWStructuredBuffer<float> Result : register( u0 ); [numthreads(1, 1, 1)] void CS_main( uint3 GroupId : SV_GroupID ) { Result[GroupId.x] = GroupId.x * 10; } But the compute shader does not change the contents of the structured buffer. The source code can be found here (main.cpp): https://bitbucket.org/Vertexwahn/cmakedemos/src/4abb067afd5781b87a553c4c720956668adca22a/D3D11ComputeShader/src/main.cpp?at=default FillCS.hlsl: https://bitbucket.org/Vertexwahn/cmakedemos/src/4abb067afd5781b87a553c4c720956668adca22a/D3D11ComputeShader/src/FillCS.hlsl?at=default

    Read the article

  • GLSL, all in one or many shader programs?

    - by stjepano
    I am doing some 3D demos using OpenGL and I noticed that GLSL is somewhat "limited" (or is it just me?). Anyway I have many different types of materials. Some materials have ambient and diffuse color, some materials have ambient occlusion map, some have specular map and bump map etc. Is it better to support everything in one vertex/fragment shader pair or is it better to create many vertex/fragment shaders and select them based on currently selected material? What is the usual shader strategy in OpenGL or D3D?

    Read the article

  • Using a texture as an integer array (OpenGL 3.3, shader version 3.3)

    - by Cubic
    I'm trying to have something like an integer array uniform for my fragment shader (I only need read access). Since it's a fairly large chunk of data (not so large that uploading it in every frame would be impossible, but enough to make me want to rather not do it). Essentially I want to just pass it a uniform telling the shader where this "array" is. I believe I can use a 1D texture for this, but I don't know how (actually, I don't know how to do many things because I just can't seem to find a reference for GLSL 3.3, I only ever find references for the C API). This sounds like a rather basic question and I'm sure it's been answered already somewhere, but I keep searching and can't quite find what I'm looking for.

    Read the article

  • How to Fix a Stuck Pixel on an LCD Monitor

    - by Chris Hoffman
    Have you ever noticed that a pixel – a little dot on your computer’s LCD monitor – is staying a single color all of the time? You have a stuck pixel. Luckily, stuck pixels aren’t always permanent. Stuck and dead pixels are hardware problems. They’re often caused by manufacturing flaws – pixels aren’t supposed to get stuck or die over time. Image Credit: Alexi Kostibas on Flickr How to Fix a Stuck Pixel on an LCD Monitor How to Factory Reset Your Android Phone or Tablet When It Won’t Boot Our Geek Trivia App for Windows 8 is Now Available Everywhere

    Read the article

  • My vertex shader doesn't affect texture coords or diffuse info but works for position

    - by tina nyaa
    I am new to 3D and DirectX - in the past I have only used abstractions for 2D drawing. Over the past month I've been studying really hard and I'm trying to modify and adapt some of the shaders as part of my personal 'study project'. Below I have a shader, modified from one of the Microsoft samples. I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? // // Skinned Mesh Effect file // Copyright (c) 2000-2002 Microsoft Corporation. All rights reserved. // float4 lhtDir = {0.0f, 0.0f, -1.0f, 1.0f}; //light Direction float4 lightDiffuse = {0.6f, 0.6f, 0.6f, 1.0f}; // Light Diffuse float4 MaterialAmbient : MATERIALAMBIENT = {0.1f, 0.1f, 0.1f, 1.0f}; float4 MaterialDiffuse : MATERIALDIFFUSE = {0.8f, 0.8f, 0.8f, 1.0f}; // Matrix Pallette static const int MAX_MATRICES = 100; float4x3 mWorldMatrixArray[MAX_MATRICES] : WORLDMATRIXARRAY; float4x4 mViewProj : VIEWPROJECTION; /////////////////////////////////////////////////////// struct VS_INPUT { float4 Pos : POSITION; float4 BlendWeights : BLENDWEIGHT; float4 BlendIndices : BLENDINDICES; float3 Normal : NORMAL; float3 Tex0 : TEXCOORD0; }; struct VS_OUTPUT { float4 Pos : POSITION; float4 Diffuse : COLOR; float2 Tex0 : TEXCOORD0; }; float3 Diffuse(float3 Normal) { float CosTheta; // N.L Clamped CosTheta = max(0.0f, dot(Normal, lhtDir.xyz)); // propogate scalar result to vector return (CosTheta); } VS_OUTPUT VShade(VS_INPUT i, uniform int NumBones) { VS_OUTPUT o; float3 Pos = 0.0f; float3 Normal = 0.0f; float LastWeight = 0.0f; // Compensate for lack of UBYTE4 on Geforce3 int4 IndexVector = D3DCOLORtoUBYTE4(i.BlendIndices); // cast the vectors to arrays for use in the for loop below float BlendWeightsArray[4] = (float[4])i.BlendWeights; int IndexArray[4] = (int[4])IndexVector; // calculate the pos/normal using the "normal" weights // and accumulate the weights to calculate the last weight for (int iBone = 0; iBone < NumBones-1; iBone++) { LastWeight = LastWeight + BlendWeightsArray[iBone]; Pos += mul(i.Pos, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; Normal += mul(i.Normal, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; } LastWeight = 1.0f - LastWeight; // Now that we have the calculated weight, add in the final influence Pos += (mul(i.Pos, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); Normal += (mul(i.Normal, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); // transform position from world space into view and then projection space //o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Diffuse.x = 0.0f; o.Diffuse.y = 0.0f; o.Diffuse.z = 0.0f; o.Diffuse.w = 0.0f; o.Tex0 = float2(0,0); return o; } technique t0 { pass p0 { VertexShader = compile vs_3_0 VShade(4); } } I am currently using the SlimDX .NET wrapper around DirectX, but the API is extremely similar: public void Draw() { var device = vertexBuffer.Device; device.Clear(ClearFlags.Target | ClearFlags.ZBuffer, Color.White, 1.0f, 0); device.SetRenderState(RenderState.Lighting, true); device.SetRenderState(RenderState.DitherEnable, true); device.SetRenderState(RenderState.ZEnable, true); device.SetRenderState(RenderState.CullMode, Cull.Counterclockwise); device.SetRenderState(RenderState.NormalizeNormals, true); device.SetSamplerState(0, SamplerState.MagFilter, TextureFilter.Anisotropic); device.SetSamplerState(0, SamplerState.MinFilter, TextureFilter.Anisotropic); device.SetTransform(TransformState.World, Matrix.Identity * Matrix.Translation(0, -50, 0)); device.SetTransform(TransformState.View, Matrix.LookAtLH(new Vector3(-200, 0, 0), Vector3.Zero, Vector3.UnitY)); device.SetTransform(TransformState.Projection, Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); var material = new Material(); material.Ambient = material.Diffuse = material.Emissive = material.Specular = new Color4(Color.White); material.Power = 1f; device.SetStreamSource(0, vertexBuffer, 0, vertexSize); device.VertexDeclaration = vertexDeclaration; device.Indices = indexBuffer; device.Material = material; device.SetTexture(0, texture); var param = effect.GetParameter(null, "mWorldMatrixArray"); var boneWorldTransforms = bones.OrderedBones.OrderBy(x => x.Id).Select(x => x.CombinedTransformation).ToArray(); effect.SetValue(param, boneWorldTransforms); effect.SetValue(effect.GetParameter(null, "mViewProj"), Matrix.Identity);// Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); effect.SetValue(effect.GetParameter(null, "MaterialDiffuse"), material.Diffuse); effect.SetValue(effect.GetParameter(null, "MaterialAmbient"), material.Ambient); effect.Technique = effect.GetTechnique(0); var passes = effect.Begin(FX.DoNotSaveState); for (var i = 0; i < passes; i++) { effect.BeginPass(i); device.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, skin.Vertices.Length, 0, skin.Indicies.Length / 3); effect.EndPass(); } effect.End(); } Again, I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? Also, whatever I set in the bone transformation matrices doesn't seem to have an effect on my model. If I set every bone transformation to a zero matrix, the model still shows up as if nothing had happened, but changing the Pos field in shader output makes the model disappear. I don't understand why I'm getting this kind of behaviour. Thank you!

    Read the article

  • Ambient occlusion shader just shows models as all white

    - by dvds414
    Okay so I have this shader for ambient occlusion. It loads to world correctly, but it just shows all the models as being white. I do not know why. I am just running the shader while the model is rendering, is that correct? or do I need to make a render target or something? If so then how? I'm using C++. Here is my shader: float sampleRadius; float distanceScale; float4x4 xProjection; float4x4 xView; float4x4 xWorld; float3 cornerFustrum; struct VS_OUTPUT { float4 pos : POSITION; float2 TexCoord : TEXCOORD0; float3 viewDirection : TEXCOORD1; }; VS_OUTPUT VertexShaderFunction( float4 Position : POSITION, float2 TexCoord : TEXCOORD0) { VS_OUTPUT Out = (VS_OUTPUT)0; float4 WorldPosition = mul(Position, xWorld); float4 ViewPosition = mul(WorldPosition, xView); Out.pos = mul(ViewPosition, xProjection); Position.xy = sign(Position.xy); Out.TexCoord = (float2(Position.x, -Position.y) + float2( 1.0f, 1.0f ) ) * 0.5f; float3 corner = float3(-cornerFustrum.x * Position.x, cornerFustrum.y * Position.y, cornerFustrum.z); Out.viewDirection = corner; return Out; } texture depthTexture; texture randomTexture; sampler2D depthSampler = sampler_state { Texture = <depthTexture>; ADDRESSU = CLAMP; ADDRESSV = CLAMP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; sampler2D RandNormal = sampler_state { Texture = <randomTexture>; ADDRESSU = WRAP; ADDRESSV = WRAP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; float4 PixelShaderFunction(VS_OUTPUT IN) : COLOR0 { float4 samples[16] = { float4(0.355512, -0.709318, -0.102371, 0.0 ), float4(0.534186, 0.71511, -0.115167, 0.0 ), float4(-0.87866, 0.157139, -0.115167, 0.0 ), float4(0.140679, -0.475516, -0.0639818, 0.0 ), float4(-0.0796121, 0.158842, -0.677075, 0.0 ), float4(-0.0759516, -0.101676, -0.483625, 0.0 ), float4(0.12493, -0.0223423, -0.483625, 0.0 ), float4(-0.0720074, 0.243395, -0.967251, 0.0 ), float4(-0.207641, 0.414286, 0.187755, 0.0 ), float4(-0.277332, -0.371262, 0.187755, 0.0 ), float4(0.63864, -0.114214, 0.262857, 0.0 ), float4(-0.184051, 0.622119, 0.262857, 0.0 ), float4(0.110007, -0.219486, 0.435574, 0.0 ), float4(0.235085, 0.314707, 0.696918, 0.0 ), float4(-0.290012, 0.0518654, 0.522688, 0.0 ), float4(0.0975089, -0.329594, 0.609803, 0.0 ) }; IN.TexCoord.x += 1.0/1600.0; IN.TexCoord.y += 1.0/1200.0; normalize (IN.viewDirection); float depth = tex2D(depthSampler, IN.TexCoord).a; float3 se = depth * IN.viewDirection; float3 randNormal = tex2D( RandNormal, IN.TexCoord * 200.0 ).rgb; float3 normal = tex2D(depthSampler, IN.TexCoord).rgb; float finalColor = 0.0f; for (int i = 0; i < 16; i++) { float3 ray = reflect(samples[i].xyz,randNormal) * sampleRadius; //if (dot(ray, normal) < 0) // ray += normal * sampleRadius; float4 sample = float4(se + ray, 1.0f); float4 ss = mul(sample, xProjection); float2 sampleTexCoord = 0.5f * ss.xy/ss.w + float2(0.5f, 0.5f); sampleTexCoord.x += 1.0/1600.0; sampleTexCoord.y += 1.0/1200.0; float sampleDepth = tex2D(depthSampler, sampleTexCoord).a; if (sampleDepth == 1.0) { finalColor ++; } else { float occlusion = distanceScale* max(sampleDepth - depth, 0.0f); finalColor += 1.0f / (1.0f + occlusion * occlusion * 0.1); } } return float4(finalColor/16, finalColor/16, finalColor/16, 1.0f); } technique SSAO { pass P0 { VertexShader = compile vs_3_0 VertexShaderFunction(); PixelShader = compile ps_3_0 PixelShaderFunction(); } }

    Read the article

  • glsl shader to allow color change of skydome ogre3d

    - by Tim
    I'm still very new to all this but learning a lot. I'm putting together an application using Ogre3d as the rendering engine. So far I've got it running, with a simple scene, a day/night cycle system which is working okay. I'm now moving on to looking at changing the color of the skydome material based on the time of day. What I've done so far is to create a struct to hold the ColourValues for the different aspects of the scene. struct todColors { Ogre::ColourValue sky; Ogre::ColourValue ambient; Ogre::ColourValue sun; }; I created an array to store all the colours todColors sceneColours [4]; I populated the array with the colours I want to use for the various times of the day. For instance DayTime (when the sun is high in the sky) sceneColours[2].sky = Ogre::ColourValue(135/255, 206/255, 235/255, 255); sceneColours[2].ambient = Ogre::ColourValue(135/255, 206/255, 235/255, 255); sceneColours[2].sun = Ogre::ColourValue(135/255, 206/255, 235/255, 255); I've got code to work out the time of the day using a float currentHours to store the current hour of the day 10.5 = 10:30 am. This updates constantly and updates the sun as required. I am then calculating the appropriate colours for the time of day when relevant using else if( currentHour >= 4 && currentHour < 7) { // Lerp from night to morning Ogre::ColourValue lerp = Ogre::Math::lerp<Ogre::ColourValue, float>(sceneColours[GT_TOD_NIGHT].sky , sceneColours[GT_TOD_MORNING].sky, (currentHour - 4) / (7 - 4)); } My original attempt to get this to work was to dynamically generate a material with the new colour and apply that material to the skydome. This, as you can probably guess... didn't go well. I know it's possible to use shaders where you can pass information such as colour to the shader from the code but I am unsure if there is an existing simple shader to change a colour like this or if I need to create one. What is involved in creating a shader and material definition that would allow me to change the colour of a material without the overheads of dynamically generating materials all the time? EDIT : I've created a glsl vertex and fragment shaders as follows. Vertex uniform vec4 newColor; void main() { gl_FrontColor = newColor; gl_Position = ftransform(); } Fragment void main() { gl_FragColor = gl_Color; } I can pass a colour to it using ShaderDesigner and it seems to work. I now need to investigate how to use it within Ogre as a material. EDIT : I created a material file like this : vertex_program colour_vs_test glsl { source test.vert default_params { param_named newColor float4 0.0 0.0 0.0 1 } } fragment_program colour_fs_glsl glsl { source test.frag } material Test/SkyColor { technique { pass { lighting off fragment_program_ref colour_fs_glsl { } vertex_program_ref colour_vs_test { } } } } In the code I have tried : Ogre::MaterialPtr material = Ogre::MaterialManager::getSingleton().getByName("Test/SkyColor"); Ogre::GpuProgramParametersSharedPtr params = material->getTechnique(0)->getPass(0)->getVertexProgramParameters(); params->setNamedConstant("newcolor", Ogre::Vector4(0.7, 0.5, 0.3, 1)); I've set that as the Skydome material which seems to work initially. I am doing the same with the code that is attempting to lerp between colours, but when I include it there, it all goes black. Seems like there is now a problem with my colour lerping.

    Read the article

  • HLSL Shader not working right?

    - by dvds414
    Okay so I have this shader for ambient occlusion. It loads to world correctly, but it just shows all the models as being white. I do not know why. I am just running the shader while the model is rendering, is that correct? or do I need to make a render target or something? if so then how? I'm using C++. Here is my shader. float sampleRadius; float distanceScale; float4x4 xProjection; float4x4 xView; float4x4 xWorld; float3 cornerFustrum; struct VS_OUTPUT { float4 pos : POSITION; float2 TexCoord : TEXCOORD0; float3 viewDirection : TEXCOORD1; }; VS_OUTPUT VertexShaderFunction( float4 Position : POSITION, float2 TexCoord : TEXCOORD0) { VS_OUTPUT Out = (VS_OUTPUT)0; float4 WorldPosition = mul(Position, xWorld); float4 ViewPosition = mul(WorldPosition, xView); Out.pos = mul(ViewPosition, xProjection); Position.xy = sign(Position.xy); Out.TexCoord = (float2(Position.x, -Position.y) + float2( 1.0f, 1.0f ) ) * 0.5f; float3 corner = float3(-cornerFustrum.x * Position.x, cornerFustrum.y * Position.y, cornerFustrum.z); Out.viewDirection = corner; return Out; } texture depthTexture; texture randomTexture; sampler2D depthSampler = sampler_state { Texture = <depthTexture>; ADDRESSU = CLAMP; ADDRESSV = CLAMP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; sampler2D RandNormal = sampler_state { Texture = <randomTexture>; ADDRESSU = WRAP; ADDRESSV = WRAP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; float4 PixelShaderFunction(VS_OUTPUT IN) : COLOR0 { float4 samples[16] = { float4(0.355512, -0.709318, -0.102371, 0.0 ), float4(0.534186, 0.71511, -0.115167, 0.0 ), float4(-0.87866, 0.157139, -0.115167, 0.0 ), float4(0.140679, -0.475516, -0.0639818, 0.0 ), float4(-0.0796121, 0.158842, -0.677075, 0.0 ), float4(-0.0759516, -0.101676, -0.483625, 0.0 ), float4(0.12493, -0.0223423, -0.483625, 0.0 ), float4(-0.0720074, 0.243395, -0.967251, 0.0 ), float4(-0.207641, 0.414286, 0.187755, 0.0 ), float4(-0.277332, -0.371262, 0.187755, 0.0 ), float4(0.63864, -0.114214, 0.262857, 0.0 ), float4(-0.184051, 0.622119, 0.262857, 0.0 ), float4(0.110007, -0.219486, 0.435574, 0.0 ), float4(0.235085, 0.314707, 0.696918, 0.0 ), float4(-0.290012, 0.0518654, 0.522688, 0.0 ), float4(0.0975089, -0.329594, 0.609803, 0.0 ) }; IN.TexCoord.x += 1.0/1600.0; IN.TexCoord.y += 1.0/1200.0; normalize (IN.viewDirection); float depth = tex2D(depthSampler, IN.TexCoord).a; float3 se = depth * IN.viewDirection; float3 randNormal = tex2D( RandNormal, IN.TexCoord * 200.0 ).rgb; float3 normal = tex2D(depthSampler, IN.TexCoord).rgb; float finalColor = 0.0f; for (int i = 0; i < 16; i++) { float3 ray = reflect(samples[i].xyz,randNormal) * sampleRadius; //if (dot(ray, normal) < 0) // ray += normal * sampleRadius; float4 sample = float4(se + ray, 1.0f); float4 ss = mul(sample, xProjection); float2 sampleTexCoord = 0.5f * ss.xy/ss.w + float2(0.5f, 0.5f); sampleTexCoord.x += 1.0/1600.0; sampleTexCoord.y += 1.0/1200.0; float sampleDepth = tex2D(depthSampler, sampleTexCoord).a; if (sampleDepth == 1.0) { finalColor ++; } else { float occlusion = distanceScale* max(sampleDepth - depth, 0.0f); finalColor += 1.0f / (1.0f + occlusion * occlusion * 0.1); } } return float4(finalColor/16, finalColor/16, finalColor/16, 1.0f); } technique SSAO { pass P0 { VertexShader = compile vs_3_0 VertexShaderFunction(); PixelShader = compile ps_3_0 PixelShaderFunction(); } }

    Read the article

  • perl: tk: a way/widget that allows pixel level control over the output

    - by chhh
    I want something like a canvas, but where i'd be able to manipulate pixels easily in addition to all the provided geometries, that can be drawn on canvas. Is it possible to embed something like GD::Image into a canvas? So then I maybe could make the image transparent and set some pixels in it (GD::Image-setPixel()) positioning it over the canvas? ps: well, that doesn't necessarily have to be perl, as there seem to be bindings for all the libs for most scripting (and not only) languages.

    Read the article

  • Pixel Perfect Collision Detection in Cocos2dx

    - by Happybirthday
    I am trying to port the pixel perfect collision detection in Cocos2d-x the original version was made for Cocos2D and can be found here: http://www.cocos2d-iphone.org/forums/topic/pixel-perfect-collision-detection-using-color-blending/ Here is my code for the Cocos2d-x version bool CollisionDetection::areTheSpritesColliding(cocos2d::CCSprite *spr1, cocos2d::CCSprite *spr2, bool pp, CCRenderTexture* _rt) { bool isColliding = false; CCRect intersection; CCRect r1 = spr1-boundingBox(); CCRect r2 = spr2-boundingBox(); intersection = CCRectMake(fmax(r1.getMinX(),r2.getMinX()), fmax( r1.getMinY(), r2.getMinY()) ,0,0); intersection.size.width = fmin(r1.getMaxX(), r2.getMaxX() - intersection.getMinX()); intersection.size.height = fmin(r1.getMaxY(), r2.getMaxY() - intersection.getMinY()); // Look for simple bounding box collision if ( (intersection.size.width0) && (intersection.size.height0) ) { // If we're not checking for pixel perfect collisions, return true if (!pp) { return true; } unsigned int x = intersection.origin.x; unsigned int y = intersection.origin.y; unsigned int w = intersection.size.width; unsigned int h = intersection.size.height; unsigned int numPixels = w * h; //CCLog("Intersection X and Y %d, %d", x, y); //CCLog("Number of pixels %d", numPixels); // Draw into the RenderTexture _rt-beginWithClear( 0, 0, 0, 0); // Render both sprites: first one in RED and second one in GREEN glColorMask(1, 0, 0, 1); spr1-visit(); glColorMask(0, 1, 0, 1); spr2-visit(); glColorMask(1, 1, 1, 1); // Get color values of intersection area ccColor4B *buffer = (ccColor4B *)malloc( sizeof(ccColor4B) * numPixels ); glReadPixels(x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, buffer); _rt-end(); // Read buffer unsigned int step = 1; for(unsigned int i=0; i 0 && color.g 0) { isColliding = true; break; } } // Free buffer memory free(buffer); } return isColliding; } My code is working perfectly if I send the "pp" parameter as false. That is if I do only a bounding box collision but I am not able to get it working correctly for the case when I need Pixel Perfect collision. I think the opengl masking code is not working as I intended. Here is the code for "_rt" _rt = CCRenderTexture::create(visibleSize.width, visibleSize.height); _rt-setPosition(ccp(origin.x + visibleSize.width * 0.5f, origin.y + visibleSize.height * 0.5f)); this-addChild(_rt, 1000000); _rt-setVisible(true); //For testing I think I am making a mistake with the implementation of this CCRenderTexture Can anyone guide me with what I am doing wrong ? Thank you for your time :)

    Read the article

  • How add fog with pixel shader (HLSL) XNA?

    - by Mehdi Bugnard
    I started to make a small game in XNA . And recently i tried to add a "fog" on "pixel shader HLSL" with the class Effect from XNA . I search online about some tutorial and found many sample. But nothing want work on my game :-( . Before i already add a "fog" effect in my game and everything work, because i used the class "BasicEffect" but with the class "Effect" and HLSL, it's really more complicated. If somebody have an idea, it's will be wonderfull. Thanks again. Here is my code HLSL, i use. // Both techniques share this same pixel shader. float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { //return tex2D(Sampler, input.TextureCoordinate) * input.Color; float d = length(input.TextureCoordinate - cameraPos); float l = saturate((d-fogNear)/(fogFar-fogNear)); float fogFactory = clamp((d - fogNear) / (fogFar - fogNear), 0, 1) * l; return tex2D(Sampler, input.TextureCoordinate) * lerp(input.Color, fogColor, fogFactory); } Here is the screenShot With effect Without effect

    Read the article

  • Need to combine a color, mask, and sprite layer in a shader

    - by Donutz
    My task: to display a sprite using different team colors. I have a sprte graphic, part of which has to be displayed as a team color. The color isn't 'flat', i.e. it shades from brighter to darker. I can't "pre-build" the graphics because there are just too many, so I have to generate them at runtime. I've decided to use a shader, and supply it with a texture consisting of the team color, a texture consisting of a mask (black=no color, white=full color, gray=progressively dimmed color), and the sprite grapic, with the areas where the team color shows being transparent. So here's my shader code: // Effect attempts to merge a color layer, a mask layer, and a sprite layer // to produce a complete sprite sampler UnitSampler : register(s0); // the unit sampler MaskSampler : register(s1); // the mask sampler ColorSampler : register(s2); // the color float4 main(float4 color : COLOR0, float2 texCoord : TEXCOORD0) : COLOR0 { float4 tex1 = tex2D(ColorSampler, texCoord); // get the color float4 tex2 = tex2D(MaskSampler, texCoord); // get the mask float4 tex3 = tex2D(UnitSampler,texCoord); // get the unit float4 tex4 = tex1 * tex2.r * tex3; // color * mask * unit return tex4; } My problem is the calculations involving tex1 through tex4. I don't really understand how the manipulations work, so I'm just thrashing around, producing lots of different incorrect effects. So given tex1 through tex3, what calcs do I do in order to take the color (tex1), mask it (tex2), and apply the result to the unit if it's not zero? And would I be better off to make the mask just on/off (white/black) and put the color shading in the unit graphic?

    Read the article

  • Pixel tracking problem in PHP

    - by kash
    Let me first explain what i am trying to do: step 1 : domain-a.com - cookie is set using a redirecting PHP script(placed on domain-b.com) when a link to domain-b.com is clicked from this domain step 2 : domain-b.com-main website -after a certain browsing user reaches domain-c.com step 3 : domain-c.com - when user reaches the thankyou page I placed an img tag with src = PHP confirmation script. (which confirms the cookie-placed on domain-b.com) Everything is working like charm with Chrome and FF, but IE is not able detect or recognize the cookie inside the confirmation script on step-3. I am not able to find any specific reason for this. I will really appreciate if anyone can help on this.

    Read the article

  • Cheap ways to do scaling ops in shader?

    - by Nick Wiggill
    I've got an extensive world terrain that uses vec3 for the vertex position attribute. That's good, because the terrain has endless gradations due to the use of floating point. But I'm thinking about how to reduce the amount of data uploaded to the GPU. For my terrain, which uses discrete / grid-based vertex positions in x and z, it's pretty clear that I can replace my vec3s (floats, really) with shorts, halving the per-vertex position attribute cost from 12 bytes each to 6 bytes. Considering I've got little enough other vertex data, and an enormous amount of terrain data to push into the world, it's a major gain. Currently in my code, one unit in GLSL shaders is equal to 1m in the world. I like that scale. If I move over to using shorts, though, I won't be able to use the same scale, as I would then have a very blocky world where every step in height is an entire metre. So I see these potential solutions to scale the positional data correctly once it arrives at the vertex shader stage: Use 10:1 scaling, i.e. 1 short unit = 1 decimetre in CPU-side code. Do a division by 10 in the vertex shader to scale incoming decimetre values back to metres. Arbirary (non-PoT) divisions tend to be slow, however. Use (some-power-of-two):1 scaling (eg. 8:1), which enables the use of a bitshift (eg. val >> 3) to do the division... not sure how performant this is in shaders, though. Not as intuitive to read values, but possibly quite a bit faster than div by a non-PoT value. Use a texture as lookup table. I've heard that this is really fast. Or whatever solutions others can offer to achieve the same results -- minimal vertex data with sensible scaling.

    Read the article

  • Modern Shader Book?

    - by Michael Stum
    I'm interested in learning about Shaders: What are they, when/for what would I use them, and how to use them. (Specifically I'm interested in Water and Bloom effects, but I know close to 0 about Shaders, so I need a general introduction). I saw a lot of books that are a couple of years old, so I don't know if they still apply. I'm targeting XNA 4.0 at the moment (which I believe means HLSL Shaders for Shader Model 4.0), but anything that generally targets DirectX 11 and OpenGL 4 is helpful I guess.

    Read the article

  • XNA Shader Texture Memory

    - by Alex
    I was wondering about texture optimization in XNA 4.0. Will the the contentmanager send the texturedata to the GPU directly when the texture gets loaded or do I send the texture data to the GPU when I declare a texture in my shader. If that's the case, what happens if I have 5 shaders all using the same texture, does that mean that I send 5 instances of that texture data to the gpu or am I simply telling the GPU what preloaded texture to use? Or does XNA do the heavy lifting in the background?

    Read the article

  • Wine shader model 3.0 not detected

    - by LillyPopper
    I am trying to run eve off the latest version of wine. It was running just fine yesterday, now I go to start it and it tells me that I need shader model version 3.0. I followed this guide here for setting up wine: http://www.unixmen.com/install-and-configure-wine-to-play-latest-windows-games-in-linux-ubuntu-linuxmint-fedora/ I used a shortcut with the following command: wine "/media/gibbo/Games/EVE/eve.exe" Now it just seems to not work...after it was before Any ideas?

    Read the article

  • OpenGL quake 3 shader file for objects (for trees)

    - by mlodziaszka
    I decided to add to my game few trees, I already quake 3 model loader (md3) its for characters and method for texture drawing is store in *.ini file. I found a package of trees in MD3 and I have no problem with loading model alone, but there is a *.shader file and i have no idea how to load it to draw texture properly. Tree pack: http://www.custommapmakers.org/wiki/index.php/Models:GR_Trees_set I do not have to use exactly this format, I can write another loader, but trees in *.obj or .3ds look even harder

    Read the article

  • How do I create a curved line or filled circle or generally a circle using C++/SDL?

    - by NoobScratcher
    Hello I've been trying for ages to make a pixel circle using the putpixel function provided by SDL main website here is that function : void putpixel(int x,int y , int color , SDL_Surface* surface) { unsigned int *ptr = static_cast <unsigned int *> (surface->pixels); int offset = y * (surface->pitch/sizeof(unsigned int)); ptr[offset + x] = color; } and my question is how do I curve a line or create an circle arc of pixels or any other curved shape then a rectangle or singular pixel or line. for example here are some pictures filled pixel circle below enter link description here now my idea was too change the x and y value of the pixel position using + and - to create the curves but in practice didn't provide the correct results what my results are in this is to be able to create a circle that is made out of pixels only nothing else. thank you for anyone who takes the time to read this question thanks! :D

    Read the article

  • GLSL per pixel lighting with custom light type

    - by Justin
    Ok, I am having a big problem here. I just got into GLSL yesterday, so the code will be terrible, I'm sure. Basically, I am attempting to make a light that can be passed into the fragment shader (for learning purposes). I have four input values: one for the position of the light, one for the color, one for the distance it can travel, and one for the intensity. I want to find the distance between the light and the fragment, then calculate the color from there. The code I have gives me a simply gorgeous ring of light that get's twisted and widened as the matrix is modified. I love the results, but it is not even close to what I am after. I want the light to be moved with all of the vertices, so it is always in the same place in relation to the objects. I can easily take it from there, but getting that to work seems to be impossible with my current structure. Can somebody give me a few pointers (pun not intended)? Vertex shader: attribute vec4 position; attribute vec4 color; attribute vec2 textureCoordinates; varying vec4 colorVarying; varying vec2 texturePosition; varying vec4 fposition; varying vec4 lightPosition; varying float lightDistance; varying float lightIntensity; varying vec4 lightColor; void main() { vec4 ECposition = gl_ModelViewMatrix * gl_Vertex; vec3 tnorm = normalize(vec3 (gl_NormalMatrix * gl_Normal)); fposition = ftransform(); gl_Position = fposition; gl_TexCoord[0] = gl_MultiTexCoord0; fposition = ECposition; lightPosition = vec4(0.0, 0.0, 5.0, 0.0) * gl_ModelViewMatrix * gl_Vertex; lightDistance = 5.0; lightIntensity = 1.0; lightColor = vec4(0.2, 0.2, 0.2, 1.0); } Fragment shader: varying vec4 colorVarying; varying vec2 texturePosition; varying vec4 fposition; varying vec4 lightPosition; varying float lightDistance; varying float lightIntensity; varying vec4 lightColor; uniform sampler2D texture; void main() { float l_distance = sqrt((gl_FragCoord.x * lightPosition.x) + (gl_FragCoord.y * lightPosition.y) + (gl_FragCoord.z * lightPosition.z)); float l_value = lightIntensity / (l_distance / lightDistance); vec4 l_color = vec4(l_value * lightColor.r, l_value * lightColor.g, l_value * lightColor.b, l_value * lightColor.a); vec4 color; color = texture2D(texture, gl_TexCoord[0].st); gl_FragColor = l_color * color; //gl_FragColor = fposition; }

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >