Search Results

Search found 2086 results on 84 pages for 'pixel shader'.

Page 3/84 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • How are vertex shader outs sent as inputs to the fragment shader?

    - by Jeffrey
    I'm learning some OpenGL 3.2 way of doing things and I think it's quite great, I'm actually understanding more of shaders and non-fixed pipeline in 1 week rather than those 2 years I tried to learn OpenGL fixed pipeline functions. But here's my question: From what I think I've understood the vertex shader is run for each vertexes in the VBO. But the fragments shader is run per each pixel (is that right?) which is a huge number compared to let's say 3 vertexes of a triangle. Now it seems that in the vertex shader the out variables (like colors and stuff) are passed 1 to 1 to the fragment shader. But let's say that I pass to the fragment shader the position of the vertex in the vertex shader. How is all executed? What vertex (A, B or C of the hipothetical triangle) is passed per each fragment and why?

    Read the article

  • Why i can not load a simple pixel shader effect (. fx) file in xna?

    - by Mehdi Bugnard
    I just want to load a simple *.fx file into my project to make a (pixel shader) effect. But whenever I try to compile my project, I get the following error in visual studio Error List: Errors compiling .. ID3DXEffectCompiler: There were no techniques ID3DXEffectCompiler: Compilation failed I already searched on google and found many people with the same problem. And I realized that it was a problem of encoding. With the return lines unrecognized '\ n' . I tried to copy and paste to notepad and save as with ASCII or UTF8 encoding. But the result is always the same. Do you have an idea please ? Thanks a looot :-) Here is my [.fx] file : sampler BaseTexture : register(s0); sampler MaskTexture : register(s1) { addressU = Clamp; addressV = Clamp; }; //All of these variables are pixel values //Feel free to replace with float2 variables float MaskLocationX; float MaskLocationY; float MaskWidth; float MaskHeight; float BaseTextureLocationX; //This is where your texture is to be drawn float BaseTextureLocationY; //texCoord is different, it is the current pixel float BaseTextureWidth; float BaseTextureHeight; float4 main(float2 texCoord : TEXCOORD0) : COLOR0 { //We need to calculate where in terms of percentage to sample from the MaskTexture float maskPixelX = texCoord.x * BaseTextureWidth + BaseTextureLocationX; float maskPixelY = texCoord.y * BaseTextureHeight + BaseTextureLocationY; float2 maskCoord = float2((maskPixelX - MaskLocationX) / MaskWidth, (maskPixelY - MaskLocationY) / MaskHeight); float4 bitMask = tex2D(MaskTexture, maskCoord); float4 tex = tex2D(BaseTexture, texCoord); //It is a good idea to avoid conditional statements in a pixel shader if you can use math instead. return tex * (bitMask.a); //Alternate calculation to invert the mask, you could make this a parameter too if you wanted //return tex * (1.0 - bitMask.a); }

    Read the article

  • Pixel Shader Giving Black output

    - by Yashwinder
    I am coding in C# using Windows Forms and the SlimDX API to show the effect of a pixel shader. When I am setting the pixel shader, I am getting a black output screen but if I am not using the pixel shader then I am getting my image rendered on the screen. I have the following C# code using System; using System.Collections.Generic; using System.Linq; using System.Windows.Forms; using System.Runtime.InteropServices; using SlimDX.Direct3D9; using SlimDX; using SlimDX.Windows; using System.Drawing; using System.Threading; namespace WindowsFormsApplication1 { // Vertex structure. [StructLayout(LayoutKind.Sequential)] struct Vertex { public Vector3 Position; public float Tu; public float Tv; public static int SizeBytes { get { return Marshal.SizeOf(typeof(Vertex)); } } public static VertexFormat Format { get { return VertexFormat.Position | VertexFormat.Texture1; } } } static class Program { public static Device D3DDevice; // Direct3D device. public static VertexBuffer Vertices; // Vertex buffer object used to hold vertices. public static Texture Image; // Texture object to hold the image loaded from a file. public static int time; // Used for rotation caculations. public static float angle; // Angle of rottaion. public static Form1 Window =new Form1(); public static string filepath; static VertexShader vertexShader = null; static ConstantTable constantTable = null; static ImageInformation info; [STAThread] static void Main() { filepath = "C:\\Users\\Public\\Pictures\\Sample Pictures\\Garden.jpg"; info = new ImageInformation(); info = ImageInformation.FromFile(filepath); PresentParameters presentParams = new PresentParameters(); // Below are the required bare mininum, needed to initialize the D3D device. presentParams.BackBufferHeight = info.Height; // BackBufferHeight, set to the Window's height. presentParams.BackBufferWidth = info.Width+200; // BackBufferWidth, set to the Window's width. presentParams.Windowed =true; presentParams.DeviceWindowHandle = Window.panel2 .Handle; // DeviceWindowHandle, set to the Window's handle. // Create the device. D3DDevice = new Device(new Direct3D (), 0, DeviceType.Hardware, Window.Handle, CreateFlags.HardwareVertexProcessing, presentParams); // Create the vertex buffer and fill with the triangle vertices. (Non-indexed) // Remember 3 vetices for a triangle, 2 tris per quad = 6. Vertices = new VertexBuffer(D3DDevice, 6 * Vertex.SizeBytes, Usage.WriteOnly, VertexFormat.None, Pool.Managed); DataStream stream = Vertices.Lock(0, 0, LockFlags.None); stream.WriteRange(BuildVertexData()); Vertices.Unlock(); // Create the texture. Image = Texture.FromFile(D3DDevice,filepath ); // Turn off culling, so we see the front and back of the triangle D3DDevice.SetRenderState(RenderState.CullMode, Cull.None); // Turn off lighting D3DDevice.SetRenderState(RenderState.Lighting, false); ShaderBytecode sbcv = ShaderBytecode.CompileFromFile("C:\\Users\\yashwinder singh\\Desktop\\vertexShader.vs", "vs_main", "vs_1_1", ShaderFlags.None); constantTable = sbcv.ConstantTable; vertexShader = new VertexShader(D3DDevice, sbcv); ShaderBytecode sbc = ShaderBytecode.CompileFromFile("C:\\Users\\yashwinder singh\\Desktop\\pixelShader.txt", "ps_main", "ps_3_0", ShaderFlags.None); PixelShader ps = new PixelShader(D3DDevice, sbc); VertexDeclaration vertexDecl = new VertexDeclaration(D3DDevice, new[] { new VertexElement(0, 0, DeclarationType.Float3, DeclarationMethod.Default, DeclarationUsage.PositionTransformed, 0), new VertexElement(0, 12, DeclarationType.Float2 , DeclarationMethod.Default, DeclarationUsage.TextureCoordinate , 0), VertexElement.VertexDeclarationEnd }); Application.EnableVisualStyles(); MessagePump.Run(Window, () => { // Clear the backbuffer to a black color. D3DDevice.Clear(ClearFlags.Target | ClearFlags.ZBuffer, Color.Black, 1.0f, 0); // Begin the scene. D3DDevice.BeginScene(); // Setup the world, view and projection matrices. //D3DDevice.VertexShader = vertexShader; //D3DDevice.PixelShader = ps; // Render the vertex buffer. D3DDevice.SetStreamSource(0, Vertices, 0, Vertex.SizeBytes); D3DDevice.VertexFormat = Vertex.Format; // Setup our texture. Using Textures introduces the texture stage states, // which govern how Textures get blended together (in the case of multiple // Textures) and lighting information. D3DDevice.SetTexture(0, Image); // Now drawing 2 triangles, for a quad. D3DDevice.DrawPrimitives(PrimitiveType.TriangleList , 0, 2); // End the scene. D3DDevice.EndScene(); // Present the backbuffer contents to the screen. D3DDevice.Present(); }); if (Image != null) Image.Dispose(); if (Vertices != null) Vertices.Dispose(); if (D3DDevice != null) D3DDevice.Dispose(); } private static Vertex[] BuildVertexData() { Vertex[] vertexData = new Vertex[6]; vertexData[0].Position = new Vector3(-1.0f, 1.0f, 0.0f); vertexData[0].Tu = 0.0f; vertexData[0].Tv = 0.0f; vertexData[1].Position = new Vector3(-1.0f, -1.0f, 0.0f); vertexData[1].Tu = 0.0f; vertexData[1].Tv = 1.0f; vertexData[2].Position = new Vector3(1.0f, 1.0f, 0.0f); vertexData[2].Tu = 1.0f; vertexData[2].Tv = 0.0f; vertexData[3].Position = new Vector3(-1.0f, -1.0f, 0.0f); vertexData[3].Tu = 0.0f; vertexData[3].Tv = 1.0f; vertexData[4].Position = new Vector3(1.0f, -1.0f, 0.0f); vertexData[4].Tu = 1.0f; vertexData[4].Tv = 1.0f; vertexData[5].Position = new Vector3(1.0f, 1.0f, 0.0f); vertexData[5].Tu = 1.0f; vertexData[5].Tv = 0.0f; return vertexData; } } } And my pixel shader and vertex shader code are as following // Pixel shader input structure struct PS_INPUT { float4 Position : POSITION; float2 Texture : TEXCOORD0; }; // Pixel shader output structure struct PS_OUTPUT { float4 Color : COLOR0; }; // Global variables sampler2D Tex0; // Name: Simple Pixel Shader // Type: Pixel shader // Desc: Fetch texture and blend with constant color // PS_OUTPUT ps_main( in PS_INPUT In ) { PS_OUTPUT Out; //create an output pixel Out.Color = tex2D(Tex0, In.Texture); //do a texture lookup Out.Color *= float4(0.9f, 0.8f, 0.0f, 1); //do a simple effect return Out; //return output pixel } // Vertex shader input structure struct VS_INPUT { float4 Position : POSITION; float2 Texture : TEXCOORD0; }; // Vertex shader output structure struct VS_OUTPUT { float4 Position : POSITION; float2 Texture : TEXCOORD0; }; // Global variables float4x4 WorldViewProj; // Name: Simple Vertex Shader // Type: Vertex shader // Desc: Vertex transformation and texture coord pass-through // VS_OUTPUT vs_main( in VS_INPUT In ) { VS_OUTPUT Out; //create an output vertex Out.Position = mul(In.Position, WorldViewProj); //apply vertex transformation Out.Texture = In.Texture; //copy original texcoords return Out; //return output vertex }

    Read the article

  • Error X3650 when compiling shader in XNA

    - by Saikai
    I'm attempting to convert the XBDEV.NET Mosaic Shader for use in my XNA project and having trouble. The compiler errors out because of the half globals. At first I tried replacing the globals and just writing the variables explicitly in the code, but that garbles the Output. Next I tried replacing all the half with float vars, but that still garbles the resulting Image. I call the effect file from SpriteBatch.Begin(). Is there a way to convert this shader to the new pixel shader conventions? Are there any good tutorials for this topic? Here is the shader file for reference: /*****************************************************************************/ /* File: tiles.fx Details: Modified version of the NVIDIA Composer FX Demo Program 2004 Produces a tiled mosaic effect on the output. Requires: Vertex Shader 1.1 Pixel Shader 2.0 Modified by: [email protected] (www.xbdev.net) */ /*****************************************************************************/ float4 ClearColor : DIFFUSE = { 0.0f, 0.0f, 0.0f, 1.0f}; float ClearDepth = 1.0f; /******************************** TWEAKABLES *********************************/ half NumTiles = 40.0; half Threshhold = 0.15; half3 EdgeColor = {0.7f, 0.7f, 0.7f}; /*****************************************************************************/ texture SceneMap : RENDERCOLORTARGET < float2 ViewportRatio = { 1.0f, 1.0f }; int MIPLEVELS = 1; string format = "X8R8G8B8"; string UIWidget = "None"; >; sampler SceneSampler = sampler_state { texture = <SceneMap>; AddressU = CLAMP; AddressV = CLAMP; MIPFILTER = NONE; MINFILTER = LINEAR; MAGFILTER = LINEAR; }; /***************************** DATA STRUCTS **********************************/ struct vertexInput { half3 Position : POSITION; half3 TexCoord : TEXCOORD0; }; /* data passed from vertex shader to pixel shader */ struct vertexOutput { half4 HPosition : POSITION; half2 UV : TEXCOORD0; }; /******************************* Vertex shader *******************************/ vertexOutput VS_Quad( vertexInput IN) { vertexOutput OUT = (vertexOutput)0; OUT.HPosition = half4(IN.Position, 1); OUT.UV = IN.TexCoord.xy; return OUT; } /********************************** pixel shader *****************************/ half4 tilesPS(vertexOutput IN) : COLOR { half size = 1.0/NumTiles; half2 Pbase = IN.UV - fmod(IN.UV,size.xx); half2 PCenter = Pbase + (size/2.0).xx; half2 st = (IN.UV - Pbase)/size; half4 c1 = (half4)0; half4 c2 = (half4)0; half4 invOff = half4((1-EdgeColor),1); if (st.x > st.y) { c1 = invOff; } half threshholdB = 1.0 - Threshhold; if (st.x > threshholdB) { c2 = c1; } if (st.y > threshholdB) { c2 = c1; } half4 cBottom = c2; c1 = (half4)0; c2 = (half4)0; if (st.x > st.y) { c1 = invOff; } if (st.x < Threshhold) { c2 = c1; } if (st.y < Threshhold) { c2 = c1; } half4 cTop = c2; half4 tileColor = tex2D(SceneSampler,PCenter); half4 result = tileColor + cTop - cBottom; return result; } /*****************************************************************************/ technique tiles { pass p0 { VertexShader = compile vs_1_1 VS_Quad(); ZEnable = false; ZWriteEnable = false; CullMode = None; PixelShader = compile ps_2_0 tilesPS(); } }

    Read the article

  • Issues passing values to shader

    - by numerical25
    I am having issues passing values to my shader. My application compiles fine, but my cube object won't shade. Below is majority of my code. Most of my code for communicating with my shader is in createObject method myGame.cpp #include "MyGame.h" #include "OneColorCube.h" /* This code sets a projection and shows a turning cube. What has been added is the project, rotation and a rasterizer to change the rasterization of the cube. The issue that was going on was something with the effect file which was causing the vertices not to be rendered correctly.*/ typedef struct { ID3D10Effect* pEffect; ID3D10EffectTechnique* pTechnique; //vertex information ID3D10Buffer* pVertexBuffer; ID3D10Buffer* pIndicesBuffer; ID3D10InputLayout* pVertexLayout; UINT numVertices; UINT numIndices; }ModelObject; ModelObject modelObject; // World Matrix D3DXMATRIX WorldMatrix; // View Matrix D3DXMATRIX ViewMatrix; // Projection Matrix D3DXMATRIX ProjectionMatrix; ID3D10EffectMatrixVariable* pProjectionMatrixVariable = NULL; ID3D10EffectVectorVariable* pLightVarible = NULL; bool MyGame::InitDirect3D() { if(!DX3dApp::InitDirect3D()) { return false; } D3D10_RASTERIZER_DESC rastDesc; rastDesc.FillMode = D3D10_FILL_WIREFRAME; rastDesc.CullMode = D3D10_CULL_FRONT; rastDesc.FrontCounterClockwise = true; rastDesc.DepthBias = false; rastDesc.DepthBiasClamp = 0; rastDesc.SlopeScaledDepthBias = 0; rastDesc.DepthClipEnable = false; rastDesc.ScissorEnable = false; rastDesc.MultisampleEnable = false; rastDesc.AntialiasedLineEnable = false; ID3D10RasterizerState *g_pRasterizerState; mpD3DDevice->CreateRasterizerState(&rastDesc, &g_pRasterizerState); //mpD3DDevice->RSSetState(g_pRasterizerState); // Set up the World Matrix D3DXMatrixIdentity(&WorldMatrix); D3DXMatrixLookAtLH(&ViewMatrix, new D3DXVECTOR3(0.0f, 10.0f, -20.0f), new D3DXVECTOR3(0.0f, 0.0f, 0.0f), new D3DXVECTOR3(0.0f, 1.0f, 0.0f)); // Set up the projection matrix D3DXMatrixPerspectiveFovLH(&ProjectionMatrix, (float)D3DX_PI * 0.5f, (float)mWidth/(float)mHeight, 0.1f, 100.0f); if(!CreateObject()) { return false; } return true; } //These are actions that take place after the clearing of the buffer and before the present void MyGame::GameDraw() { static float rotationAngleY = 15.0f; static float rotationAngleX = 0.0f; static D3DXMATRIX rotationXMatrix; static D3DXMATRIX rotationYMatrix; // create the rotation matrix using the rotation angle D3DXMatrixRotationY(&rotationYMatrix, rotationAngleY); D3DXMatrixRotationX(&rotationXMatrix, rotationAngleX); //rotationAngleY += (float)D3DX_PI * 0.002f; //rotationAngleX += (float)D3DX_PI * 0.001f; WorldMatrix = rotationYMatrix * rotationXMatrix; // Set the input layout mpD3DDevice->IASetInputLayout(modelObject.pVertexLayout); // Set vertex buffer UINT stride = sizeof(VertexPos); UINT offset = 0; mpD3DDevice->IASetVertexBuffers(0, 1, &modelObject.pVertexBuffer, &stride, &offset); // Set primitive topology mpD3DDevice->IASetPrimitiveTopology(D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST); //ViewMatrix._43 += 0.005f; // Combine and send the final matrix to the shader D3DXMATRIX finalMatrix = (WorldMatrix * ViewMatrix * ProjectionMatrix); pProjectionMatrixVariable->SetMatrix((float*)&finalMatrix); // make sure modelObject is valid // Render a model object D3D10_TECHNIQUE_DESC techniqueDescription; modelObject.pTechnique->GetDesc(&techniqueDescription); // Loop through the technique passes for(UINT p=0; p < techniqueDescription.Passes; ++p) { modelObject.pTechnique->GetPassByIndex(p)->Apply(0); // draw the cube using all 36 vertices and 12 triangles mpD3DDevice->Draw(36,0); } } //Render actually incapsulates Gamedraw, so you can call data before you actually clear the buffer or after you //present data void MyGame::Render() { DX3dApp::Render(); } bool MyGame::CreateObject() { //Create Layout D3D10_INPUT_ELEMENT_DESC layout[] = { {"POSITION",0,DXGI_FORMAT_R32G32B32_FLOAT, 0 , 0, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"COLOR",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 12, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"NORMAL",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 24, D3D10_INPUT_PER_VERTEX_DATA, 0} }; UINT numElements = (sizeof(layout)/sizeof(layout[0])); modelObject.numVertices = sizeof(vertices)/sizeof(VertexPos); for(int i = 0; i < modelObject.numVertices; i += 3) { D3DXVECTOR3 out; D3DXVECTOR3 v1 = vertices[0 + i].pos; D3DXVECTOR3 v2 = vertices[1 + i].pos; D3DXVECTOR3 v3 = vertices[2 + i].pos; D3DXVECTOR3 u = v2 - v1; D3DXVECTOR3 v = v3 - v1; D3DXVec3Cross(&out, &u, &v); D3DXVec3Normalize(&out, &out); vertices[0 + i].normal = out; vertices[1 + i].normal = out; vertices[2 + i].normal = out; } //Create buffer desc D3D10_BUFFER_DESC bufferDesc; bufferDesc.Usage = D3D10_USAGE_DEFAULT; bufferDesc.ByteWidth = sizeof(VertexPos) * modelObject.numVertices; bufferDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER; bufferDesc.CPUAccessFlags = 0; bufferDesc.MiscFlags = 0; D3D10_SUBRESOURCE_DATA initData; initData.pSysMem = vertices; //Create the buffer HRESULT hr = mpD3DDevice->CreateBuffer(&bufferDesc, &initData, &modelObject.pVertexBuffer); if(FAILED(hr)) return false; /* //Create indices DWORD indices[] = { 0,1,3, 1,2,3 }; ModelObject.numIndices = sizeof(indices)/sizeof(DWORD); bufferDesc.ByteWidth = sizeof(DWORD) * ModelObject.numIndices; bufferDesc.BindFlags = D3D10_BIND_INDEX_BUFFER; initData.pSysMem = indices; hr = mpD3DDevice->CreateBuffer(&bufferDesc, &initData, &ModelObject.pIndicesBuffer); if(FAILED(hr)) return false;*/ ///////////////////////////////////////////////////////////////////////////// //Set up fx files LPCWSTR effectFilename = L"effect.fx"; modelObject.pEffect = NULL; hr = D3DX10CreateEffectFromFile(effectFilename, NULL, NULL, "fx_4_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, mpD3DDevice, NULL, NULL, &modelObject.pEffect, NULL, NULL); if(FAILED(hr)) return false; pProjectionMatrixVariable = modelObject.pEffect->GetVariableByName("Projection")->AsMatrix(); pLightVarible = modelObject.pEffect->GetVariableByName("lightSource")->AsVector(); //Dont sweat the technique. Get it! LPCSTR effectTechniqueName = "Render"; D3DXVECTOR3 vLight(10.0f, 10.0f, 10.0f); pLightVarible->SetFloatVector(vLight); modelObject.pTechnique = modelObject.pEffect->GetTechniqueByName(effectTechniqueName); if(modelObject.pTechnique == NULL) return false; //Create Vertex layout D3D10_PASS_DESC passDesc; modelObject.pTechnique->GetPassByIndex(0)->GetDesc(&passDesc); hr = mpD3DDevice->CreateInputLayout(layout, numElements, passDesc.pIAInputSignature, passDesc.IAInputSignatureSize, &modelObject.pVertexLayout); if(FAILED(hr)) return false; return true; } And below is my shader effect.fx matrix Projection; float3 lightSource; float4 lightColor = {0.5, 0.5, 0.5, 0.5}; // PS_INPUT - input variables to the pixel shader // This struct is created and fill in by the // vertex shader struct PS_INPUT { float4 Pos : SV_POSITION; float4 Color : COLOR0; float4 Normal : NORMAL; }; //////////////////////////////////////////////// // Vertex Shader - Main Function /////////////////////////////////////////////// PS_INPUT VS(float4 Pos : POSITION, float4 Color : COLOR, float4 Normal : NORMAL) { PS_INPUT psInput; // Pass through both the position and the color psInput.Pos = mul( Pos, Projection ); psInput.Color = Color; psInput.Normal = Normal; return psInput; } /////////////////////////////////////////////// // Pixel Shader /////////////////////////////////////////////// float4 PS(PS_INPUT psInput) : SV_Target { float4 finalColor = 0; finalColor = saturate(dot(lightSource, psInput.Normal) * lightColor); return finalColor; } // Define the technique technique10 Render { pass P0 { SetVertexShader( CompileShader( vs_4_0, VS() ) ); SetGeometryShader( NULL ); SetPixelShader( CompileShader( ps_4_0, PS() ) ); } }

    Read the article

  • Why does setting a geometry shader cause my sprites to vanish?

    - by ChaosDev
    My application has multiple screens with different tasks. Once I set a geometry shader to the device context for my custom terrain, it works and I get the desired results. But then when I get back to the main menu, all sprites and text disappear. These sprites don't dissappear when I use pixel and vertex shaders. The sprites are being drawn through D3D11, of course, with specified view and projection matrices as well an input layout, vertex, and pixel shader. I'm trying DeviceContext->ClearState() but it does not help. Any ideas? void gGeometry::DrawIndexedWithCustomEffect(gVertexShader*vs,gPixelShader* ps,gGeometryShader* gs=nullptr) { unsigned int offset = 0; auto context = mp_D3D->mp_Context; //set topology context->IASetPrimitiveTopology(m_Topology); //set input layout context->IASetInputLayout(mp_inputLayout); //set vertex and index buffers context->IASetVertexBuffers(0,1,&mp_VertexBuffer->mp_Buffer,&m_VertexStride,&offset); context->IASetIndexBuffer(mp_IndexBuffer->mp_Buffer,mp_IndexBuffer->m_DXGIFormat,0); //send constant buffers to shaders context->VSSetConstantBuffers(0,vs->m_CBufferCount,vs->m_CRawBuffers.data()); context->PSSetConstantBuffers(0,ps->m_CBufferCount,ps->m_CRawBuffers.data()); if(gs!=nullptr) { context->GSSetConstantBuffers(0,gs->m_CBufferCount,gs->m_CRawBuffers.data()); context->GSSetShader(gs->mp_D3DGeomShader,0,0);//after this call all sprites disappear } //set shaders context->VSSetShader( vs->mp_D3DVertexShader, 0, 0 ); context->PSSetShader( ps->mp_D3DPixelShader, 0, 0 ); //draw context->DrawIndexed(m_indexCount,0,0); } //sprites void gSpriteDrawer::Draw(gTexture2D* texture,const RECT& dest,const RECT& source, const Matrix& spriteMatrix,const float& rotation,Vector2d& position,const Vector2d& origin,const Color& color) { VertexPositionColorTexture* verticesPtr; D3D11_MAPPED_SUBRESOURCE mappedResource; unsigned int TriangleVertexStride = sizeof(VertexPositionColorTexture); unsigned int offset = 0; float halfWidth = ( float )dest.right / 2.0f; float halfHeight = ( float )dest.bottom / 2.0f; float z = 0.1f; int w = texture->Width(); int h = texture->Height(); float tu = (float)source.right/(w); float tv = (float)source.bottom/(h); float hu = (float)source.left/(w); float hv = (float)source.top/(h); Vector2d t0 = Vector2d( hu+tu, hv); Vector2d t1 = Vector2d( hu+tu, hv+tv); Vector2d t2 = Vector2d( hu, hv+tv); Vector2d t3 = Vector2d( hu, hv+tv); Vector2d t4 = Vector2d( hu, hv); Vector2d t5 = Vector2d( hu+tu, hv); float ex=(dest.right/2)+(origin.x); float ey=(dest.bottom/2)+(origin.y); Vector4d v4Color = Vector4d(color.r,color.g,color.b,color.a); VertexPositionColorTexture vertices[] = { { Vector3d( dest.right-ex, -ey, z),v4Color, t0}, { Vector3d( dest.right-ex, dest.bottom-ey , z),v4Color, t1}, { Vector3d( -ex, dest.bottom-ey , z),v4Color, t2}, { Vector3d( -ex, dest.bottom-ey , z),v4Color, t3}, { Vector3d( -ex, -ey , z),v4Color, t4}, { Vector3d( dest.right-ex, -ey , z),v4Color, t5}, }; auto mp_context = mp_D3D->mp_Context; // Lock the vertex buffer so it can be written to. mp_context->Map(mp_vertexBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource); // Get a pointer to the data in the vertex buffer. verticesPtr = (VertexPositionColorTexture*)mappedResource.pData; // Copy the data into the vertex buffer. memcpy(verticesPtr, (void*)vertices, (sizeof(VertexPositionColorTexture) * 6)); // Unlock the vertex buffer. mp_context->Unmap(mp_vertexBuffer, 0); //set vertex shader mp_context->IASetVertexBuffers( 0, 1, &mp_vertexBuffer, &TriangleVertexStride, &offset); //set texture mp_context->PSSetShaderResources( 0, 1, &texture->mp_SRV); //set matrix to shader mp_context->UpdateSubresource(mp_matrixBuffer, 0, 0, &spriteMatrix, 0, 0 ); mp_context->VSSetConstantBuffers( 0, 1, &mp_matrixBuffer); //draw sprite mp_context->Draw( 6, 0 ); }

    Read the article

  • HLSL How can one pass data between shaders / read existing colour value?

    - by RJFalconer
    Hello all, I have 2 HLSL ps2.0 shaders. Simplified, they are: Shader 1 Reads texture Outputs colour value based on this texture Shader 2 Needs to read in existing colour (or have it passed in/read from a register) Outputs the final colour which is a function of the previous colour (They need to be different shaders as I've reached the maximum vertex-shader outputs for 1 shader) My problem is I cannot work out how Shader 2 can access the existing fragment/pixel colour. Is the only way for shaders to interact really just the alpha blending options? These aren't sufficient if I want to use the colour as input to my function.

    Read the article

  • Calculating distance from viewer to object in a shader

    - by Jay
    Good morning, I'm working through creating the spherical billboards technique outlined in this paper. I'm trying to create a shader that calculates the distance from the camera to all objects in the scene and stores the results in a texture. I keep getting either a completely black or white texture. Here are my questions: I assume the position that's automatically sent to the vertex shader from ogre is in object space? The gpu interpolates the output position from the vertex shader when it sends it to the fragment shader. Does it do the same for my depth calculation or do I need to move that calculation to the fragment shader? Is there a way to debug shaders? I have no errors but I'm not sure I'm getting my parameters passed into the shaders correctly. Here's my shader code: void DepthVertexShader( float4 position : POSITION, uniform float4x4 worldViewProjMatrix, uniform float3 eyePosition, out float4 outPosition : POSITION, out float Depth ) { // position is in object space // outPosition is in camera space outPosition = mul( worldViewProjMatrix, position ); // calculate distance from camera to vertex Depth = length( eyePosition - position ); } void DepthFragmentShader( float Depth : TEXCOORD0, uniform float fNear, uniform float fFar, out float4 outColor : COLOR ) { // clamp output using clip planes float fColor = 1.0 - smoothstep( fNear, fFar, Depth ); outColor = float4( fColor, fColor, fColor, 1.0 ); } fNear is the near clip plane for the scene fFar is the far clip plane for the scene

    Read the article

  • Pixel Shader Effect Examples

    - by Chris Nicol
    I've seen a number of pixel-shader effect examples, stuff like swirl on an image. But I'm wondering if anyone knows of any examples or tutorials for more practical uses of shader effects? I'm not saying that a swirl effect doesn't have it's uses, it's just that many of the examples I've found have the basic effect explained and don't go into how it might be used subtly with another effect or transition to produce a wonderful effect. There's a video here, that outlines all the WPF Effects Library, but I'm not sure how I would use some of them in a practical context. For example, when Flash 8 came out with effects like blur, I found a wonderful video that showed how to use the blur effect to create a cool effect with speeding text, that video inspired many ideas of what I could do with the effects in Flash 8. I'm looking for something similar with Pixel Shader Effects.

    Read the article

  • How to run Cg vertex/fragment shader on CPU?

    - by Andy
    Hi all, I'm playing about with some vertex and fragment shaders using Cg on my little netbook (running Linux). Clearly I'm going to frequently hit resource limits for my graphics controller, so was wondering if there's a nice way to run the shaders on the CPU, just to test them. Something like D3D's refrast... TIA Andy

    Read the article

  • Can I see shader preprocessor output?

    - by GLaddict
    I am using #defines, which I pass runtime to my shader sources based on program state, to optimize my huge shaders to be less complex. I would like to write the optimized shader to a file so that next time I run my program, I do not have to pass the #defines again, but I can straight compile the optimized shaders during program startup because now I know what kind of shaders by program needs. Is there a way to get the result from shader preprocessor? I can of course store the #define values to a file and based on that compile the shaders during program startup but that would not be as elegant.

    Read the article

  • How to send multiple MVP matrices to a vertex shader in OpenGL ES 2.0

    - by Carbon Crystal
    I'm working my way through optimizing the rendering of sprites in a 2D game using OpenGL ES and I've hit the limit of my knowledge when it comes to GLSL and vertex shaders. I have two large float buffers containing my vertex coordinates and texture coordinates (eventually this will be one buffer) for multiple sprites in order to perform a single glDrawArrays call. This works but I've hit a snag when it comes to passing the transformation matrix into the vertex shader. My shader code is: uniform mat4 u_MVPMatrix; attribute vec4 a_Position; attribute vec2 a_TexCoordinate; varying vec2 v_TexCoordinate; void main() { v_TexCoordinate = a_TexCoordinate; gl_Position = u_MVPMatrix * a_Position; } In Java (Android) I am using a FloatBuffer to store the vertex/texture data and this is provided to the shader like so: mGlEs20.glVertexAttribPointer(mVertexHandle, Globals.GL_POSITION_VERTEX_COUNT, GLES20.GL_FLOAT, false, 0, mVertexCoordinates); mGlEs20.glVertexAttribPointer(mTextureCoordinateHandle, Globals.GL_TEXTURE_VERTEX_COUNT, GLES20.GL_FLOAT, false, 0, mTextureCoordinates); (The Globals.GL_POSITION_VERTEX_COUNT etc are just integers with the value of 2 right now) And I'm passing the MVP (Model/View/Projection) matrix buffer like this: GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mModelCoordinates); (mModelCoordinates is a FloatBuffer containing 16-float sequences representing the MVP matrix for each sprite) This renders my scene but all the sprites share the same transformation, so it's obviously only picking the first 16 elements from the buffer which makes sense since I am passing in "1" as the second parameter. The documentation for this method says: "This should be 1 if the targeted uniform variable is not an array of matrices, and 1 or more if it is an array of matrices." So I tried modifying the shader with a fixed size array large enough to accomodate most of my scenarios: uniform mat4 u_MVPMatrix[1000]; But this lead to an error in the shader: cannot convert from 'uniform array of 4X4 matrix of float' to 'Position 4-component vector of float' This just seems wrong anyway as it's not clear to me how the shader would know when to transition to the next matrix anyway. Anyone have an idea how I can get my shader to pick up a different MVP matrix (i.e. the NEXT 16 floats) from my MVP buffer for every 4 vertices it encounters? (I am using GL_TRIANGLE_STRIP so each sprite has 4 vertices). Thanks!

    Read the article

  • In HLSL pixel shader , why is SV_POSITION different to other semantics?

    - by tina nyaa
    In my HLSL pixel shader, SV_POSITION seems to have different values to any other semantic I use. I don't understand why this is. Can you please explain it? For example, I am using a triangle with the following coordinates: (0.0f, 0.5f) (0.5f, -0.5f) (-0.5f, -0.5f) The w and z values are 0 and 1, respectively. This is the pixel shader. struct VS_IN { float4 pos : POSITION; }; struct PS_IN { float4 pos : SV_POSITION; float4 k : LOLIMASEMANTIC; }; PS_IN VS( VS_IN input ) { PS_IN output = (PS_IN)0; output.pos = input.pos; output.k = input.pos; return output; } float4 PS( PS_IN input ) : SV_Target { // screenshot 1 return input.pos; // screenshot 2 return input.k; } technique10 Render { pass P0 { SetGeometryShader( 0 ); SetVertexShader( CompileShader( vs_4_0, VS() ) ); SetPixelShader( CompileShader( ps_4_0, PS() ) ); } } Screenshot 1: http://i.stack.imgur.com/rutGU.png Screenshot 2: http://i.stack.imgur.com/NStug.png (Sorry, I'm not allowed to post images until I have a lot of 'reputation') When I use the first statement (result is first screenshot), the one that uses the SV_POSITION semantic, the result is completely unexpected and is yellow, whereas using any other semantic will produce the expected result. Why is this?

    Read the article

  • Computing pixel's screen position in a vertex shader: right or wrong?

    - by cubrman
    I am building a deferred rendering engine and I have a question. The article I took the sample code from suggested computing screen position of the pixel as follows: VertexShaderFunction() { ... output.Position = mul(worldViewProj, input.Position); output.ScreenPosition = output.Position; } PixelShaderFunction() { input.ScreenPosition.xy /= input.ScreenPosition.w; float2 TexCoord = 0.5f * (float2(input.ScreenPosition.x,-input.ScreenPosition.y) + 1); ... } The question is what if I compute the position in the vertex shader (which should optimize the performance as VSF is launched significantly less number of times than PSF) would I get the per-vertex lighting insted. Here is how I want to do this: VertexShaderFunction() { ... output.Position = mul(worldViewProj, input.Position); output.ScreenPosition.xy = output.Position / output.Position.w; } PixelShaderFunction() { float2 TexCoord = 0.5f * (float2(input.ScreenPosition.x,-input.ScreenPosition.y) + 1); ... } What exactly happens with the data I pass from VS to PS? How exactly is it interpolated? Will it give me the right per-pixel result in this case? I tried launching the game both ways and saw no visual difference. Is my assumption right? Thanks. P.S. I am optimizing the point light shader, so I actually pass a sphere geometry into the VS.

    Read the article

  • Fragment Shader Eye-Space unscaled depth coordinate

    - by Ben Jones
    I'm trying to use the unscaled (true distance from the front clipping plane) distance to objects in my scene in a GLSL fragment shader. The gl_FragCoord.z value is smaller than I expect. In my vertex shader, I just use ftransform() to set gl_Position. I'm seeing values between 2 and 3 when I expect them to be between 15 and 20. How can I get the real eye-space depth? Thanks!

    Read the article

  • WebGL pass array shader

    - by user987058
    I'm new to WebGL and I'm facing some problems of the shaders. I wanna do multiple light sources in the scene. I searched online and knew that in WebGL, you can't pass an array into the fragment shader, so the only way is use the texture. Here is the problem I can't figure out. First, I create a 32x32 texture using the following code: var pix = []; for(var i=0;i<32;i++) { for(var j=0;j<32;j++) pix.push(0.8,0.8,0.1); } gl.activeTexture(gl.TEXTURE0); gl.bindTexture(gl.TEXTURE_2D, lightMap); gl.pixelStorei(gl.UNPACK_ALIGNMENT,1); gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGB, 32,32,0, gl.RGB, gl.UNSIGNED_BYTE,new Float32Array(pix)); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR); gl.uniform1i(g_loader.program.set_uniform["u_texture2"],0); But however, when I tried to access the texture in the shader: [Fragment Shader] varying vec2 v_texcoord; uniform sampler2D u_texture2; void main(void) { vec3 lightLoc = texture2D(u_texture, v_texcoord).rgb; gl_FragData[0] = vec4(lightLoc,1.0); } The result is totally black. Is there anyone knows how to acces or create the texture correctly?

    Read the article

  • pixel difference

    - by J J
    i m a beginner in java programming. i have to submit project of server- client and stuck in pixel comparision .acc to code it accepts buffered image and compares pixel how to store pixel difference in 2nd image itself and return it?? do help with code?

    Read the article

  • Problems implementing a screen space shadow ray tracing shader

    - by Grieverheart
    Here I previously asked for the possibility of ray tracing shadows in screen space in a deferred shader. Several problems were pointed out. One of the most important problem is that only visible objects can cast shadows and objects between the camera and the shadow caster can interfere. Still I thought it'd be a fun experiment. The idea is to calculate the view coordinates of pixels and cast a ray to the light. The ray is then traced pixel by pixel to the light and its depth is compared with the depth at the pixel. If a pixel is in front of the ray, a shadow is casted at the original pixel. At first I thought that I could use the DDA algorithm in 2D to calculate the distance 't' (in p = o + t d, where o origin, d direction) to the next pixel and use it in the 3D ray equation to find the ray's z coordinate at that pixel's position. For the 2D ray, I would use the projected and biased 3D ray direction and origin. The idea was that 't' would be the same in both 2D and 3D equations. Unfortunately, this is not the case since the projection matrix is 4D. Thus, some tweak needs to be done to make this work this way. I would like to ask if someone knows of a way to do what I described above, i.e. from a 2D ray in texture coordinate space to get the 3D ray in screen space. I did implement a simple version of the idea which you can see in the following video: video here Shadows may seem a bit pixelated, but that's mostly because of the size of the step in 't' I chose. And here is the shader: #version 330 core uniform sampler2D DepthMap; uniform vec2 projAB; uniform mat4 projectionMatrix; const vec3 light_p = vec3(-30.0, 30.0, -10.0); noperspective in vec2 pass_TexCoord; smooth in vec3 viewRay; layout(location = 0) out float out_AO; vec3 CalcPosition(void){ float depth = texture(DepthMap, pass_TexCoord).r; float linearDepth = projAB.y / (depth - projAB.x); vec3 ray = normalize(viewRay); ray = ray / ray.z; return linearDepth * ray; } void main(void){ vec3 origin = CalcPosition(); if(origin.z < -60) discard; vec2 pixOrigin = pass_TexCoord; //tex coords vec3 dir = normalize(light_p - origin); vec2 texel_size = vec2(1.0 / 600.0); float t = 0.1; ivec2 pixIndex = ivec2(pixOrigin / texel_size); out_AO = 1.0; while(true){ vec3 ray = origin + t * dir; vec4 temp = projectionMatrix * vec4(ray, 1.0); vec2 texCoord = (temp.xy / temp.w) * 0.5 + 0.5; ivec2 newIndex = ivec2(texCoord / texel_size); if(newIndex != pixIndex){ float depth = texture(DepthMap, texCoord).r; float linearDepth = projAB.y / (depth - projAB.x); if(linearDepth > ray.z + 0.1){ out_AO = 0.2; break; } pixIndex = newIndex; } t += 0.5; if(texCoord.x < 0 || texCoord.x > 1.0 || texCoord.y < 0 || texCoord.y > 1.0) break; } } As you can see, here I just increment 't' by some arbitrary factor, calculate the 3D ray and project it to get the pixel coordinates, which is not really optimal. Hopefully, I would like to optimize the code as much as possible and compare it with shadow mapping and how it scales with the number of lights. PS: Keep in mind that I reconstruct position from depth by interpolating rays through a full screen quad.

    Read the article

  • Error when compiling FXAA shader

    - by mulletdevil
    I am getting the following error when compiling the FXAA shader downloaded from here http://timothylottes.blogspot.co.uk/2011/07/fxaa-311-released.html Fxaa3_11.h(934,5): error x4000: Use of potentially uninitialized variable (FxaaPixelShader) Here is the line in the shader if(earlyExit) #if (FXAA_DISCARD == 1) FxaaDiscard; #else return rgbyM; #endif Does anyone know what may be causing this? I have not changed any values in that shader. Here is a snippet from my current pixel shader #define FXAA_GREEN_AS_LUMA 1 #define FXAA_HLSL_4 1 #define FXAA_PC 1 #define FXAA_QUALITY__PRESET 12 #include "Fxaa3_11.h" PS_OUTPUT main(PS_INPUT fragment) { PS_OUTPUT output; const float2 pos = fragment.hPosition.xy; const float4 notUsedFloat4 = float4(0.0f, 0.0f, 0.0f, 0.0f); const float fxaaQualitySubpix = 0; const float fxaaQualityEdgeThreshold = 0.333; const float fxaaQualityEdgeThresholdMin = 0.0833; const float notUsedFloat = 0.0f; FxaaTex fxaaTex; fxaaTex.smpl = SampleType; fxaaTex.tex = inputTexture; output.colour = FxaaPixelShader(pos, //1 notUsedFloat4, //2 fxaaTex, //3 fxaaTex, //4 fxaaTex, //5 rcpFrame, //6 notUsedFloat4, //7 rcpFrameOpt, //8 notUsedFloat4, //9 fxaaQualitySubpix, //10 fxaaQualityEdgeThreshold, //11 fxaaQualityEdgeThresholdMin, //12 notUsedFloat, //13 notUsedFloat, //14 notUsedFloat, //15 notUsedFloat //16 ); return output; } Am I passing a wrong value into the shader?

    Read the article

  • Defaulting the HLSL Vertex and Pixel Shader Levels to Feature Level 9_1 in VS 2012

    - by Michael B. McLaughlin
    I love Visual Studio 2012. But this is not a post about that. This is a post about tweaking one particular parameter that I’ve found a bit annoying. Disclaimer: You will be modifying important MSBuild files. If you screw up you will break your build tools. And maybe your computer will catch fire. I’m not responsible. No warranties or guaranties of any sort. This info is provided “as is”. By default, if you add a new vertex shader or pixel shader item to a project, it will be set to build with shader profile 4.0_level_9_3. If you need 9_3 functionality, this is all well and good. But (especially for Windows Store apps) you really want to target the lowest shader profile possible so that your game will run on as many computers as possible. So it’s a good idea to default to 9_1. To do this you could add in new HLSL files via “Add->New Item->Visual C++->HLSL->______ Shader File (.hlsl)” and then edit the shader files’ properties to set them manually to use 9_1 via “Properties->HLSL Compiler->General->Shader Model”. This is fine unless you forget to do this once and then submit your game with 9_3 shaders instead of 9_1 shaders to the Windows Store or to some other game store. Then you’d wind up with either rejection or angry “this doesn’t work on my computer! ripoff!” messages. There’s another option though. In “Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\ItemTemplates\VC\HLSL\1033\VertexShader” (note the path might vary slightly for you if you are using a 32-bit system or have a non-ENU version of Visual Studio 2012) you will find a “VertexShader.vstemplate” file. If you open this file in a text editor (e.g. Notepad++), then inside the CustomParameters tag within the TemplateContent tag you should see a CustomParameter tag for the ShaderType, i.e.: <CustomParameter Name="$ShaderType$" Value="Vertex"/> On a new line, we are going to add another CustomParameter tag to the CustomParameters tag. It will look like this: <CustomParameter Name="$ShaderModel$" Value="4.0_level_9_1"/> such that we now have:     <CustomParameters>       <CustomParameter Name="$ShaderType$" Value="Vertex"/>       <CustomParameter Name="$ShaderModel$" Value="4.0_level_9_1"/>     </CustomParameters> You can then save the file (you will need to be an Administrator or have Administrator access). Back in the 1033 directory (or whatever the number is for your language), go into the “PixelShader” directory. Edit the “PixelShader.vstemplate” file and make the same change (note that this time $ShaderType$ is “Pixel” not “Vertex”; you shouldn’t be changing that line anyway, but if you were to just copy and replace the above four lines then you will wind up creating pixel shaders that the HLSL compiler would try to compile as vertex shaders, with all sort of weird errors as a result). Once you’ve added the $ShaderModel$ line to “PixelShader.vstemplate” and have saved it, everything should be done. Since Feature Level 9_1 and 9_3 don’t support any of the other shader types, those are set to default to their appropriate minimums already (Compute and Geometry are set to “4.0” and Domain and Hull are set to “5.0”, which are their respective minimums (though not all 4.0 cards support Compute shaders; they were an optional feature added with DirectX 10.1 and only became required for DirectX 11 hardware). In case you are wondering where these magic values come from, you can find them all in the “fxc.xml” file in the “\Program Files (x86)\MSBuild\Microsoft.CPP\v4.0\V110\1033” directory (or whatever your language number is; 1033 is ENU and various other product languages have their own respective numbers (see: http://msdn.microsoft.com/en-us/goglobal/bb964664.aspx ) such that Japanese is 1041 (for example), though for all I know MSBuild tasks might be 1033 for everyone). If, like me, you installed VS 2012 to a drive other than the C:\ drive, you will find the vstemplate files in the drive to which you installed VS 2012 (D:\ in my case) but you will find the fxc.xml file on the C:\ drive. You should not edit fxc.xml. You will almost definitely break things by doing that; it’s just something you can look through to see all the other options that the FXC task takes such that you could, if needed, add further CustomParameter tags if you wanted to default to other supported options. I haven’t tried any others though so I don’t have any advice on how to set them.

    Read the article

  • DX10 sprite and pixel shader

    - by Alex Farber
    I am using ID3DX10Sprite to draw 2D image on the screen. 3D scene contains only one textured sprite placed over the whole window area. Render method looks like this: m_pDevice-ClearRenderTargetView(...); m_pSprite-Begin(D3DX10_SPRITE_SORT_TEXTURE); m_pSprite-DrawSpritesImmediate(&m_SpriteDefinition, 1, 0, 0); m_pSprite-End(); Now I want to make some transformations with the sprite texture in a shader. Currently the program doesn't work with shader. How it is possible to add pixel shader to the program with this structure? Inside the shader, I need to set all colors equal to red, and multiply pixel values by some coefficient. Something like this: float4 TexturePixelShader(PixelInputType input) : SV_Target { float4 textureColor; textureColor = shaderTexture.Sample(SampleType, input.tex); textureColor.x = textureColor.x * coefficient; textureColor.y = textureColor.x; textureColor.z = textureColor.x; return textureColor; }

    Read the article

  • Pixel Shader Issues :

    - by Morphex
    I have issues with a pixel shader, my issue is mostly that I get nothing draw on the screen. float4x4 MVP; // TODO: add effect parameters here. struct VertexShaderInput { float4 Position : POSITION; float4 normal : NORMAL; float2 TEXCOORD : TEXCOORD; }; struct VertexShaderOutput { float4 Position : POSITION; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { input.Position.w = 0; VertexShaderOutput output; output.Position = mul(input.Position, MVP); // TODO: add your vertex shader code here. return output; } float4 PixelShaderFunction(VertexShaderOutput input) : SV_TARGET { return float4(1, 0, 0, 1); } technique { pass { Profile = 11.0; VertexShader = VertexShaderFunction; PixelShader = PixelShaderFunction; } } My matrix is calculated like this : Matrix MVP = Matrix.Multiply(Matrix.Multiply(Matrix.Identity, Matrix.LookAtLH(new Vector3(-10, 10, -10), new Vector3(0), new Vector3(0, 1, -0))), Camera.Projection); VoxelEffect.Parameters["MVP"].SetValue(MVP); Visual Studio Graphics Debug shows me that my vertex shader is actually working, but not the PixelShader. I striped the Shader to the bare minimums so that I was sure the shader was correct. But why is my screen still black?

    Read the article

  • Shadow volume shader optimization (GLSL)

    - by Soubok
    I wondering if there is a way to optimize this vertex shader. This vertex shader projects (in the light direction) a vertex to the far plane if it is in the shadow. void main(void) { vec3 lightDir = (gl_ModelViewMatrix * gl_Vertex - gl_LightSource[0].position).xyz; // if the vertex is lit if ( dot(lightDir, gl_NormalMatrix * gl_Normal) < 0.01 ) { // don't move it gl_Position = ftransform(); } else { // move it far, is the light direction vec4 fin = gl_ProjectionMatrix * ( gl_ModelViewMatrix * gl_Vertex + vec4(normalize(lightDir) * 100000.0, 0.0) ); if ( fin.z > fin.w ) // if fin is behind the far plane fin.z = fin.w; // move to the far plane (needed for z-fail algo.) gl_Position = fin; } }

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >