Search Results

Search found 401 results on 17 pages for 'uniform'.

Page 6/17 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • OpenGL - Cascaded shadow mapping - Texture lookup

    - by Silverlan
    I'm trying to implement cascaded shadow mapping in my engine, but I'm somewhat stuck at the last step. For testing purposes I've made sure all cascades encompass my entire scene. The result is currently this: The different intensity of the cascades is not on purpose, it's actually the problem. This is how I do the texture lookup for the shadow maps inside the fragment shader: layout(std140) uniform CSM { vec4 csmFard; // far distances for each cascade mat4 csmVP[4]; // View-Projection Matrix int numCascades; // Number of cascades to use. In this example it's 4. }; uniform sampler2DArrayShadow csmTextureArray; // The 4 shadow maps in vec4 csmPos[4]; // Vertex position in shadow MVP space float GetShadowCoefficient() { int index = numCascades -1; vec4 shadowCoord; for(int i=0;i<numCascades;i++) { if(gl_FragCoord.z < csmFard[i]) { shadowCoord = csmPos[i]; index = i; break; } } shadowCoord.w = shadowCoord.z; shadowCoord.z = float(index); shadowCoord.x = shadowCoord.x *0.5f +0.5f; shadowCoord.y = shadowCoord.y *0.5f +0.5f; return shadow2DArray(csmTextureArray,shadowCoord).x; } I then use the return value and simply multiply it with the diffuse color. That explains the different intensity of the cascades, since I'm grabbing the depth value directly from the texture. I've tried to do a depth comparison instead, but with limited success: [...] // Same code as above shadowCoord.w = shadowCoord.z; shadowCoord.z = float(index); shadowCoord.x = shadowCoord.x *0.5f +0.5f; shadowCoord.y = shadowCoord.y *0.5f +0.5f; float z = shadow2DArray(csmTextureArray,shadowCoord).x; if(z < shadowCoord.w) return 0.25f; return 1.f; } While this does give me the same shadow value everywhere, it only works for the first cascade, all others are blank: (I colored the cascades because otherwise the transitions wouldn't be visible in this case) What am I missing here?

    Read the article

  • Using LINQ Lambda Expressions to Design Customizable Generic Components

    LINQ makes code easier to write and maintain by abstracting the data source. It provides a uniform way to handle widely diverse data structures within an application. LINQ’s Lambda syntax is clever enough to even allow you to create generic building blocks with hooks, into which you can inject arbitrary functions. Michael Sorens explains, and demonstrates with examples. span.fullpost {display:none;}

    Read the article

  • Using LINQ Lambda Expressions to Design Customizable Generic Components

    LINQ makes code easier to write and maintain by abstracting the data source. It provides a uniform way to handle widely diverse data structures within an application. LINQ’s Lambda syntax is clever enough even to allow you to create generic building blocks with hooks into which you can inject arbitrary functions. Michael Sorens explains, and demonstrates with examples.

    Read the article

  • Map and fill texture using PBO (OpenGL 3.3)

    - by NtscCobalt
    I'm learning OpenGL 3.3 trying to do the following (as it is done in D3D)... Create Texture of Width, Height, Pixel Format Map texture memory Loop write pixels Unmap texture memory Set Texture Render Right now though it renders as if the entire texture is black. I can't find a reliable source for information on how to do this though. Almost every tutorial I've found just uses glTexSubImage2D and passes a pointer to memory. Here is basically what my code does... (In this case it is generating an 1-byte Alpha Only texture but it is rendering it as the red channel for debugging) GLuint pixelBufferID; glGenBuffers(1, &pixelBufferID); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pixelBufferID); glBufferData(GL_PIXEL_UNPACK_BUFFER, 512 * 512 * 1, nullptr, GL_STREAM_DRAW); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); GLuint textureID; glGenTextures(1, &textureID); glBindTexture(GL_TEXTURE_2D, textureID); glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, 512, 512, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr); glBindTexture(GL_TEXTURE_2D, 0); glBindTexture(GL_TEXTURE_2D, textureID); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pixelBufferID); void *Memory = glMapBuffer(GL_PIXEL_UNPACK_BUFFER, GL_WRITE_ONLY); // Memory copied here, I know this is valid because it is the same loop as in my working D3D version glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); And then here is the render loop. // This chunk left in for completeness glUseProgram(glProgramId); glBindVertexArray(glVertexArrayId); glBindBuffer(GL_ARRAY_BUFFER, glVertexBufferId); glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 20, 0); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 20, 12); GLuint transformLocationID = glGetUniformLocation(3, 'transform'); glUniformMatrix4fv(transformLocationID , 1, true, somematrix) // Not sure if this is all I need to do glBindTexture(GL_TEXTURE_2D, pTex->glTextureId); GLuint textureLocationID = glGetUniformLocation(glProgramId, "texture"); glUniform1i(textureLocationID, 0); glDrawArrays(GL_TRIANGLES, Offset*3, Triangles*3); Vertex Shader #version 330 core in vec3 Position; in vec2 TexCoords; out vec2 TexOut; uniform mat4 transform; void main() { TexOut = TexCoords; gl_Position = vec4(Position, 1.0) * transform; } Pixel Shader #version 330 core uniform sampler2D texture; in vec2 TexCoords; out vec4 fragColor; void main() { // Output color fragColor.r = texture2D(texture, TexCoords).r; fragColor.g = 0.0f; fragColor.b = 0.0f; fragColor.a = 1.0; }

    Read the article

  • Google I/O 2012 - Building Android Applications that Use Web APIs

    Google I/O 2012 - Building Android Applications that Use Web APIs Yaniv Inbar Google offers a large and growing set of back-end services, from AdSense to Tasks to Calendar to Google+, that can enrich your app, and increasingly they have a uniform set of APIs. This session discusses how to use them efficiently and securely, including authenticating safely and with good user experience, and describes Android-specific app-level optimizations. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 563 12 ratings Time: 55:14 More in Science & Technology

    Read the article

  • Masking OpenGL texture by a pattern

    - by user1304844
    Tiled terrain. User wants to build a structure. He presses build and for each tile there is an "allow" or "disallow" tile sprite added to the scene. FPS drops right away, since there are 600+ tiles added to the screen. Since map equals screen, there is no scrolling. I came to an idea to make an allow grid covering the whole map and mask the disallow fields. Approach 1: Create allow and disallow grid textures. Draw a polygon on screen. Pass both textures to the fragment shader. Determine the position inside the polygon and use color from allowTexture if the fragment belongs to the allow field, disallow otherwise Problem: How do I know if I'm on the field that isn't allowed if I cannot pass the matrix representing the map (enum FieldStatus[][] (Allow / Disallow)) to the shader? Therefore, inside the shader I don't know which fragments should be masked. Approach 2: Create allow texture. Create an empty texture buffer same size as the allow texture Memset the pixels of the empty texture to desired color for each pixel that doesn't allow building. Draw a polygon on screen. Pass both textures to the fragment shader. Use texture2 color if alpha 0, texture1 color otherwise. Problem: I'm not sure what is the right way to manipulate pixels on a texture. Do I just make a buffer with width*height*4 size and memcpy the color[] to desired coordinates or is there anything else to it? Would I have to call glTexImage2D after every change to the texture? Another problem with this approach is that it takes a lot more work to get a prettier effect since I'm manipulating the color pixels instead of just masking two textures. varying vec2 TexCoordOut; uniform sampler2D Texture1; uniform sampler2D Texture2; void main(void){ vec4 allowColor = texture2D(Texture1, TexCoordOut); vec4 disallowColor = texture2D(Texture2, TexCoordOut); if(disallowColor.a > 0){ gl_FragColor= disallowColor; }else{ gl_FragColor= allowColor; }} I'm working with OpenGL on Windows. Any other suggestion is welcome.

    Read the article

  • cocos2d-x simple shader usage [on hold]

    - by Narek
    I want to obtain color ramp effect from this tutorial: http://www.raywenderlich.com/10862/how-to-create-cool-effects-with-custom-shaders-in-opengl-es-2-0-and-cocos2d-2-x Here is my code in cocos2d-x 3: bool HelloWorld::init() { ////////////////////////////// // 1. super init first if ( !Layer::init() ) { return false; } Vec2 origin = Director::getInstance()->getVisibleOrigin(); sprite = Sprite::create("HelloWorld.png"); sprite->setAnchorPoint(Vec2(0, 0)); sprite->setRotation(3); sprite->setPosition(origin); addChild(sprite); std::string str = FileUtils::getInstance()->getStringFromFile("CSEColorRamp.fsh"); const GLchar * fragmentSource = str.c_str(); GLProgram* p = GLProgram::createWithByteArrays(ccPositionTextureA8Color_vert, fragmentSource); p->bindAttribLocation(GLProgram::ATTRIBUTE_NAME_POSITION, GLProgram::VERTEX_ATTRIB_POSITION); p->bindAttribLocation(GLProgram::ATTRIBUTE_NAME_TEX_COORD, GLProgram::VERTEX_ATTRIB_TEX_COORD); p->link(); p->updateUniforms(); sprite->setGLProgram(p); // 3 colorRampUniformLocation = glGetUniformLocation(sprite->getGLProgram()->getProgram(), "u_colorRampTexture"); glUniform1i(colorRampUniformLocation, 1); // 4 colorRampTexture = Director::getInstance()->getTextureCache()->addImage("colorRamp.png"); colorRampTexture->setAliasTexParameters(); // 5 sprite->getGLProgram()->use(); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, colorRampTexture->getName()); glActiveTexture(GL_TEXTURE0); return true; } And here is the fragment shader as it is in the tutorial: #ifdef GL_ES precision mediump float; #endif // 1 varying vec2 v_texCoord; uniform sampler2D u_texture; uniform sampler2D u_colorRampTexture; void main() { // 2 vec3 normalColor = texture2D(u_texture, v_texCoord).rgb; // 3 float rampedR = texture2D(u_colorRampTexture, vec2(normalColor.r, 0)).r; float rampedG = texture2D(u_colorRampTexture, vec2(normalColor.g, 0)).g; float rampedB = texture2D(u_colorRampTexture, vec2(normalColor.b, 0)).b; // 4 gl_FragColor = vec4(rampedR, rampedG, rampedB, 1); } As a result I get a black screen with 2 draw calls. What is wrong? Do I miss something?

    Read the article

  • Very basic OpenGL ES 2 error

    - by user16547
    This is an incredibly simple shader, yet I'm having a lot of trouble understanding what's wrong with it. I'm trying to send a float to my fragment shader. Its purpose is to adjust the alpha of the fragment colour. Here is my fragment shader: precision mediump float; uniform sampler2D u_Texture; uniform float u_Alpha; varying vec2 v_TexCoordinate; void main() { gl_FragColor = texture2D(u_Texture, v_TexCoordinate); gl_FragColor.a *= u_Alpha; } and below is my rendering method. I get a 1282 (invalid operation) on the GLES20.glUniform1f(u_Alpha, alpha); line. alpha is 1 (but I tried other values as well) and transparent is true: public void render() { GLES20.glUseProgram(mProgram); if(transparent) { GLES20.glEnable(GLES20.GL_BLEND); GLES20.glBlendFunc(GLES20.GL_SRC_ALPHA, GLES20.GL_ONE_MINUS_SRC_ALPHA); GLES20.glUniform1f(u_Alpha, alpha); } Matrix.setIdentityM(mModelMatrix, 0); Matrix.rotateM(mModelMatrix, 0, angle, 0, 0, 1); Matrix.translateM(mModelMatrix, 0, x, y, z); Matrix.multiplyMM(mMVPMatrix, 0, mViewMatrix, 0, mModelMatrix, 0); Matrix.multiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0, mMVPMatrix, 0); GLES20.glUniformMatrix4fv(u_MVPMatrix, 1, false, mMVPMatrix, 0); GLES20.glBindBuffer(GLES20.GL_ARRAY_BUFFER, vbo[0]); GLES20.glVertexAttribPointer(a_Position, 3, GLES20.GL_FLOAT, false, 12, 0); GLES20.glBindBuffer(GLES20.GL_ARRAY_BUFFER, vbo[1]); GLES20.glVertexAttribPointer(a_TexCoordinate, 2, GLES20.GL_FLOAT, false, 8, 0); //snowTexture start GLES20.glActiveTexture(GLES20.GL_TEXTURE0); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureHandle[0]); GLES20.glUniform1i(u_Texture, 0); GLES20.glBindBuffer(GLES20.GL_ELEMENT_ARRAY_BUFFER, ibo[0]); GLES20.glDrawElements(GLES20.GL_TRIANGLE_STRIP, indices.capacity(), GLES20.GL_UNSIGNED_BYTE, 0); GLES20.glBindBuffer(GLES20.GL_ARRAY_BUFFER, 0); GLES20.glBindBuffer(GLES20.GL_ELEMENT_ARRAY_BUFFER, 0); if(transparent) { GLES20.glDisable(GLES20.GL_BLEND); } GLES20.glUseProgram(0); }

    Read the article

  • What is the recommended way to output values to FBO targets? (OpenGL 3.3 + GLSL 330)

    - by datSilencer
    I'll begin by apologizing for any dumb assumptions you might find in the code below since I'm still pretty much green when it comes to OpenGL programming. I'm currently trying to implement deferred shading by using FBO's and their associated targets (textures in my case). I have a simple (I think :P) geometry+fragment shader program and I'd like to write its Fragment Shader stage output to three different render targets (previously bound by a call to glDrawBuffers()), like so: #version 330 in vec3 WorldPos0; in vec2 TexCoord0; in vec3 Normal0; in vec3 Tangent0; layout(location = 0) out vec3 WorldPos; layout(location = 1) out vec3 Diffuse; layout(location = 2) out vec3 Normal; uniform sampler2D gColorMap; uniform sampler2D gNormalMap; vec3 CalcBumpedNormal() { vec3 Normal = normalize(Normal0); vec3 Tangent = normalize(Tangent0); Tangent = normalize(Tangent - dot(Tangent, Normal) * Normal); vec3 Bitangent = cross(Tangent, Normal); vec3 BumpMapNormal = texture(gNormalMap, TexCoord0).xyz; BumpMapNormal = 2 * BumpMapNormal - vec3(1.0, 1.0, -1.0); vec3 NewNormal; mat3 TBN = mat3(Tangent, Bitangent, Normal); NewNormal = TBN * BumpMapNormal; NewNormal = normalize(NewNormal); return NewNormal; } void main() { WorldPos = WorldPos0; Diffuse = texture(gColorMap, TexCoord0).xyz; Normal = CalcBumpedNormal(); } If my render target textures are configured as: RT1:(GL_RGB32F, GL_RGB, GL_FLOAT, GL_TEXTURE0, GL_COLOR_ATTACHMENT0) RT2:(GL_RGB32F, GL_RGB, GL_FLOAT, GL_TEXTURE1, GL_COLOR_ATTACHMENT1) RT3:(GL_RGB32F, GL_RGB, GL_FLOAT, GL_TEXTURE2, GL_COLOR_ATTACHMENT2) And assuming that each texture has an internal format capable of contaning the incoming data, will the fragment shader write the corresponding values to the expected texture targets? On a related note, do the textures need to be bound to the OpenGL context when they are Multiple Render Targets? From some Googling, I think there are two other ways to output to MRTs: 1: Output each component to gl_FragData[n]. Some forum posts say this method is deprecated. However, looking at the latest OpenGL 3.3 and 4.0 specifications at opengl.org, the core profiles still mention this approach. 2: Use a typed output array variable for the expected type. In this case, I think it would be something like this: out vec3 [3] output; void main() { output[0] = WorldPos0; output[1] = texture(gColorMap, TexCoord0).xyz; output[2] = CalcBumpedNormal(); } So which is then the recommended approach? Is there a recommended approach at all if I plan to code on top of OpenGL 3.3? Thanks for your time and help!

    Read the article

  • Multiplication for MVP matrices: Any benefits to doing so within the vertex shader?

    - by Nick Wiggill
    I'd like to understand under what circumstances (if any) it is worth doing MVP matrix multiplication inside a vertex shader. The vertex shader is run once per vertex, and a single mesh typically contains many vertices. All MVP inputs remain the same for each vertex in the vertex batch relating to a given draw call (model). Surely then, you're always better off keeping the multiplications in the client code, such that you pass in the whole MVP precalculated as a uniform? (avoiding redundant ops between individual vertices)

    Read the article

  • Top Tips For SEO

    Here's another five tips to avoid SEO mistakes that might get you banned by search engines. Do Use Uniform URL Structures - Use URL rewrite in an .htaccess file to maintain uniformity in customized dynamic websites.

    Read the article

  • Server setup scripts, patches and migrations

    - by Ben Swinburne
    I have written some scripts which I use to configure various servers in a uniform way. Each time I deploy a server I run the relevant scripts so that I know they're all configured the same. I then have some patch scripts, which are changes to the originals which I can then run to ensure that modifications to the original set up can be run on each server. E.g. disable.sh - Disable SELinux etc to ensure other scripts all run correctly general.sh - Jailkit, AV, Repos, RKHunter, security tweaks, uninstall unused bits etc web.sh - Installs and configures Apache2 001_update_nr_licence_key.sh - Update a licence key for a piece of software which has changed since its install in general.sh I can run the first 3 without a problem, but when it comes to running patches I am a bit stuck. Is there a sensible way of doing these with some software? My current thought is write to a log file the role of the server be it web or db for example and then note the name of the patch which has run. It could then iterate through a folder to find all patches for that role which it has not yet run and execute them. This seems a bit long winded however. Could someone advise me as to the best way I can keep my servers uniform?

    Read the article

  • Block filters using fragment shaders

    - by Nils
    I was following this tutorial using Apple's OpenGL Shader Builder (tool similar to Nvidia's fx composer, but simpler). I could easily apply the filters, but I don't understand if they worked correct (and if so how can I improve the output). For example the blur filter: OpenGL itself does some image processing on the textures, so if they are displayed in a higher resolution than the original image, they are blurred already by OpenGL. Second the blurred part is brighter then the part not processed, I think this does not make sense, since it just takes pixels from the direct neighborhood. This is defined by float step_w = (1.0/width); Which I don't quite understand: The pixels are indexed using floating point values?? Edit: I forgot to attach the exact code I used: Fragment Shader // Originally taken from: http://www.ozone3d.net/tutorials/image_filtering_p2.php#part_2 #define KERNEL_SIZE 9 float kernel[KERNEL_SIZE]; uniform sampler2D colorMap; uniform float width; uniform float height; float step_w = (1.0/width); float step_h = (1.0/height); // float step_w = 20.0; // float step_h = 20.0; vec2 offset[KERNEL_SIZE]; void main(void) { int i = 0; vec4 sum = vec4(0.0); offset[0] = vec2(-step_w, -step_h); // south west offset[1] = vec2(0.0, -step_h); // south offset[2] = vec2(step_w, -step_h); // south east offset[3] = vec2(-step_w, 0.0); // west offset[4] = vec2(0.0, 0.0); // center offset[5] = vec2(step_w, 0.0); // east offset[6] = vec2(-step_w, step_h); // north west offset[7] = vec2(0.0, step_h); // north offset[8] = vec2(step_w, step_h); // north east // Gaussian kernel // 1 2 1 // 2 4 2 // 1 2 1 kernel[0] = 1.0; kernel[1] = 2.0; kernel[2] = 1.0; kernel[3] = 2.0; kernel[4] = 4.0; kernel[5] = 2.0; kernel[6] = 1.0; kernel[7] = 2.0; kernel[8] = 1.0; // TODO make grayscale first // Laplacian Filter // 0 1 0 // 1 -4 1 // 0 1 0 /* kernel[0] = 0.0; kernel[1] = 1.0; kernel[2] = 0.0; kernel[3] = 1.0; kernel[4] = -4.0; kernel[5] = 1.0; kernel[6] = 0.0; kernel[7] = 2.0; kernel[8] = 0.0; */ // Mean Filter // 1 1 1 // 1 1 1 // 1 1 1 /* kernel[0] = 1.0; kernel[1] = 1.0; kernel[2] = 1.0; kernel[3] = 1.0; kernel[4] = 1.0; kernel[5] = 1.0; kernel[6] = 1.0; kernel[7] = 1.0; kernel[8] = 1.0; */ if(gl_TexCoord[0].s<0.5) { // For every pixel sample the neighbor pixels and sum up for( i=0; i<KERNEL_SIZE; i++ ) { // select the pixel with the concerning offset vec4 tmp = texture2D(colorMap, gl_TexCoord[0].st + offset[i]); sum += tmp * kernel[i]; } sum /= 16.0; } else if( gl_TexCoord[0].s>0.51 ) { sum = texture2D(colorMap, gl_TexCoord[0].xy); } else // Draw a red line { sum = vec4(1.0, 0.0, 0.0, 1.0); } gl_FragColor = sum; } Vertex Shader void main(void) { gl_TexCoord[0] = gl_MultiTexCoord0; gl_Position = ftransform(); }

    Read the article

  • opengl 3d texture issue

    - by user1478217
    Hi i'm trying to use a 3d texture in opengl to implement volume rendering. Each voxel has an rgba colour value and is currently rendered as a screen facing quad.(for testing purposes). I just can't seem to get the sampler to give me a colour value in the shader. The quads always end up black. When I change the shader to generate a colour (based on xyz coords) then it works fine. I'm loading the texture with the following code: glGenTextures(1, &tex3D); glBindTexture(GL_TEXTURE_3D, tex3D); unsigned int colours[8]; colours[0] = Colour::AsBytes<unsigned int>(Colour::Blue); colours[1] = Colour::AsBytes<unsigned int>(Colour::Red); colours[2] = Colour::AsBytes<unsigned int>(Colour::Green); colours[3] = Colour::AsBytes<unsigned int>(Colour::Magenta); colours[4] = Colour::AsBytes<unsigned int>(Colour::Cyan); colours[5] = Colour::AsBytes<unsigned int>(Colour::Yellow); colours[6] = Colour::AsBytes<unsigned int>(Colour::White); colours[7] = Colour::AsBytes<unsigned int>(Colour::Black); glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA, 2, 2, 2, 0, GL_RGBA, GL_UNSIGNED_BYTE, colours); The colours array contains the correct data, i.e. the first four bytes have values 0, 0, 255, 255 for blue. Before rendering I bind the texture to the 2nd texture unit like so: glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_3D, tex3D); And render with the following code: shaders["DVR"]->Use(); shaders["DVR"]->Uniforms["volTex"].SetValue(1); shaders["DVR"]->Uniforms["World"].SetValue(Mat4(vl_one)); shaders["DVR"]->Uniforms["viewProj"].SetValue(cam->GetViewTransform() * cam->GetProjectionMatrix()); QuadDrawer::DrawQuads(8); I have used these classes for setting shader params before and they work fine. The quaddrawer draws eight instanced quads. The vertex shader code looks like this: #version 330 layout(location = 0) in vec2 position; layout(location = 1) in vec2 texCoord; uniform sampler3D volTex; ivec3 size = ivec3(2, 2, 2); uniform mat4 World; uniform mat4 viewProj; smooth out vec4 colour; void main() { vec3 texCoord3D; int num = gl_InstanceID; texCoord3D.x = num % size.x; texCoord3D.y = (num / size.x) % size.y; texCoord3D.z = (num / (size.x * size.y)); texCoord3D /= size; texCoord3D *= 2.0; texCoord3D -= 1.0; colour = texture(volTex, texCoord3D); //colour = vec4(texCoord3D, 1.0); gl_Position = viewProj * World * vec4(texCoord3D, 1.0) + (vec4(position.x, position.y, 0.0, 0.0) * 0.05); } uncommenting the line where I set the colour value equal to the texcoord works fine, and makes the quads coloured. The fragment shader is simply: #version 330 smooth in vec4 colour; out vec4 outColour; void main() { outColour = colour; } So my question is, what am I doing wrong, why is the sampler not getting any colour values from the 3d texture? [EDIT] Figured it out but can't self answer (new user): As soon as I posted this I figured it out, I'll put the answer up to help anyone else (it's not specifically a 3d texture issue, and i've also fallen afoul of it before, D'oh!). I didn't generate mipmaps for the texture, and the default magnification/minification filters weren't set to either GL_LINEAR, or GL_NEAREST. Boom! no textures. Same thing happens with 2d textures.

    Read the article

  • Improving performance of a particle system (OpenGL ES)

    - by Jason
    I'm in the process of implementing a simple particle system for a 2D mobile game (using OpenGL ES 2.0). It's working, but it's pretty slow. I start getting frame rate battering after about 400 particles, which I think is pretty low. Here's a summary of my approach: I start with point sprites (GL_POINTS) rendered in a batch just using a native float buffer (I'm in Java-land on Android, so that translates as a java.nio.FloatBuffer). On GL context init, the following are set: GLES20.glViewport(0, 0, width, height); GLES20.glClearColor(0.0f, 0.0f, 0.0f, 0.0f); GLES20.glEnable(GLES20.GL_CULL_FACE); GLES20.glDisable(GLES20.GL_DEPTH_TEST); Each draw frame sets the following: GLES20.glEnable(GLES20.GL_BLEND); GLES20.glBlendFunc(GLES20.GL_ONE, GLES20.GL_ONE_MINUS_SRC_ALPHA); And I bind a single texture: GLES20.glActiveTexture(GLES20.GL_TEXTURE0); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureHandle); GLES20.glUniform1i(mUniformTextureHandle, 0); Which is just a simple circle with some blur (and hence some transparency) http://cl.ly/image/0K2V2p2L1H2x Then there are a bunch of glVertexAttribPointer calls: mBuffer.position(position); mGlEs20.glVertexAttribPointer(mAttributeRGBHandle, valsPerRGB, GLES20.GL_FLOAT, false, stride, mBuffer); ...4 more of these Then I'm drawing: GLES20.glUniformMatrix4fv(mUniformProjectionMatrixHandle, 1, false, Camera.mProjectionMatrix, 0); GLES20.glDrawArrays(GLES20.GL_POINTS, 0, drawCalls); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0); My vertex shader does have some computation in it, but given that they're point sprites (with only 2 coordinate values) I'm not sure this is the problem: #ifdef GL_ES // Set the default precision to low. precision lowp float; #endif uniform mat4 u_ProjectionMatrix; attribute vec4 a_Position; attribute float a_PointSize; attribute vec3 a_RGB; attribute float a_Alpha; attribute float a_Burn; varying vec4 v_Color; void main() { vec3 v_FGC = a_RGB * a_Alpha; v_Color = vec4(v_FGC.x, v_FGC.y, v_FGC.z, a_Alpha * (1.0 - a_Burn)); gl_PointSize = a_PointSize; gl_Position = u_ProjectionMatrix * a_Position; } My fragment shader couldn't really be simpler: #ifdef GL_ES // Set the default precision to low. precision lowp float; #endif uniform sampler2D u_Texture; varying vec4 v_Color; void main() { gl_FragColor = texture2D(u_Texture, gl_PointCoord) * v_Color; } That's about it. I had read that transparent pixels in point sprites can cause issues, but surely not at only 400 points? I'm running on a fairly new device (12 month old Galaxy Nexus). My question is less about my approach (although I'm open to suggestion) but more about whether there are any specific OpenGL "no no's" that have leaked into my code. I'm sure there's GL master out there facepalming right now... I'd love to hear any critique.

    Read the article

  • 2D Rendering with OpenGL ES 2.0 on Android (matrices not working)

    - by TranquilMarmot
    So I'm trying to render two moving quads, each at different locations. My shaders are as simple as possible (vertices are only transformed by the modelview-projection matrix, there's only one color). Whenever I try and render something, I only end up with slivers of color! I've only done work with 3D rendering in OpenGL before so I'm having issues with 2D stuff. Here's my basic rendering loop, simplified a bit (I'm using the Matrix manipulation methods provided by android.opengl.Matrix and program is a custom class I created that just calls GLES20.glUniformMatrix4fv()): Matrix.orthoM(projection, 0, 0, windowWidth, 0, windowHeight, -1, 1); program.setUniformMatrix4f("Projection", projection); At this point, I render the quads (this is repeated for each quad): Matrix.setIdentityM(modelview, 0); Matrix.translateM(modelview, 0, quadX, quadY, 0); program.setUniformMatrix4f("ModelView", modelview); quad.render(); // calls glDrawArrays and all I see is a sliver of the color each quad is! I'm at my wits end here, I've tried everything I can think of and I'm at the point where I'm screaming at my computer and tossing phones across the room. Anybody got any pointers? Am I using ortho wrong? I'm 100% sure I'm rendering everything at a Z value of 0. I tried using frustumM instead of orthoM, which made it so that I could see the quads but they would get totally skewed whenever they got moved, which makes sense if I correctly understand the way frustum works (it's more for 3D rendering, anyway). If it makes any difference, I defined my viewport with GLES20.glViewport(0, 0, windowWidth, windowHeight); Where windowWidth and windowHeight are the same values that are pased to orthoM It might be worth noting that the android.opengl.Matrix methods take in an offset as the second parameter so that multiple matrices can be shoved into one array, so that'w what the first 0 is for For reference, here's my vertex shader code: uniform mat4 ModelView; uniform mat4 Projection; attribute vec4 vPosition; void main() { mat4 mvp = Projection * ModelView; gl_Position = vPosition * mvp; } I tried swapping Projection * ModelView with ModelView * Projection but now I just get some really funky looking shapes... EDIT Okay, I finally figured it out! (Note: Since I'm new here (longtime lurker!) I can't answer my own question for a few hours, so as soon as I can I'll move this into an actual answer to the question) I changed Matrix.orthoM(projection, 0, 0, windowWidth, 0, windowHeight, -1, 1); to float ratio = windowWwidth / windowHeight; Matrix.orthoM(projection, 0, 0, ratio, 0, 1, -1, 1); I then had to scale my projection matrix to make it a lot smaller with Matrix.scaleM(projection, 0, 0.05f, 0.05f, 1.0f);. I then added an offset to the modelview translations to simulate a camera so that I could center on my action (so Matrix.translateM(modelview, 0, quadX, quadY, 0); was changed to Matrix.translateM(modelview, 0, quadX + camX, quadY + camY, 0);) Thanks for the help, all!

    Read the article

  • OpenGL/GLSL: Render to cube map?

    - by BobDole
    I'm trying to figure out how to render my scene to a cube map. I've been stuck on this for a bit and figured I would ask you guys for some help. I'm new to OpenGL and this is the first time I'm using a FBO. I currently have a working example of using a cubemap bmp file, and the samplerCube sample type in the fragment shader is attached to GL_TEXTURE1. I'm not changing the shader code at all. I'm just changing the fact that I wont be calling the function that was loading the cubemap bmp file and trying to use the below code to render to a cubemap. You can see below that I'm also attaching the texture again to GL_TEXTURE1. This is so when I set the uniform: glUniform1i(getUniLoc(myProg, "Cubemap"), 1); it can access it in my fragment shader via uniform samplerCube Cubemap. I'm calling the below function like so: cubeMapTexture = renderToCubeMap(150, GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE); Now, I realize in the draw loop below that I'm not changing the view direction to look down the +x, -x, +y, -y, +z, -z axis. I really was just wanting to see something working first before implemented that. I figured I should at least see something on my object the way the code is now. I'm not seeing anything, just straight black. I've made my background white still the object is black. I've removed lighting, and coloring to just sample the cubemap texture and still black. I'm thinking the problem might be the format types when setting my texture which is GL_RGB8, GL_RGBA but I've also tried: GL_RGBA, GL_RGBA GL_RGB, GL_RGB I thought this would be standard since we are rendering to a texture attached to a framebuffer, but I've seen different examples that use different enum values. I've also tried binding the cube map texture in every draw call that I'm wanting to use the cube map: glBindTexture(GL_TEXTURE_CUBE_MAP, cubeMapTexture); Also, I'm not creating a depth buffer for the FBO which I saw in most examples, because I'm only wanting the color buffer for my cube map. I actually added one to see if that was the problem and still got the same results. I could of fudged that up when I tried. Any help that can point me in the right direction would be appreciated. GLuint renderToCubeMap(int size, GLenum InternalFormat, GLenum Format, GLenum Type) { // color cube map GLuint textureObject; int face; GLenum status; //glEnable(GL_TEXTURE_2D); glActiveTexture(GL_TEXTURE1); glGenTextures(1, &textureObject); glBindTexture(GL_TEXTURE_CUBE_MAP, textureObject); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); for (face = 0; face < 6; face++) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, 0, InternalFormat, size, size, 0, Format, Type, NULL); } // framebuffer object glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X, textureObject, 0); status = glCheckFramebufferStatus(GL_FRAMEBUFFER); printf("%d\"\n", status); printf("%d\n", GL_FRAMEBUFFER_COMPLETE); glViewport(0,0,size, size); for (face = 1; face < 6; face++) { drawSpheres(); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, textureObject, 0); } //Bind 0, which means render to back buffer, as a result, fb is unbound glBindFramebuffer(GL_FRAMEBUFFER, 0); return textureObject; }

    Read the article

  • Texture errors in CubeMap

    - by shade4159
    I am trying to apply this texture as a cubemap. This is my result: Clearly I am doing something with my texture coordinates, but I cannot for the life of me figure out what. I don't even see a pattern to the texture fragments. They just seem like a jumble of different faces. Can anyone shed some light on this? Vertex shader: #version 400 in vec4 vPosition; in vec3 inTexCoord; smooth out vec3 texCoord; uniform mat4 projMatrix; void main() { texCoord = inTexCoord; gl_Position = projMatrix * vPosition; } My fragment shader: #version 400 smooth in vec3 texCoord; out vec4 fColor; uniform samplerCube textures void main() { fColor = texture(textures,texCoord); } Vertices of cube: point4 worldVerts[8] = { vec4( 15, 15, 15, 1 ), vec4( -15, 15, 15, 1 ), vec4( -15, 15, -15, 1 ), vec4( 15, 15, -15, 1 ), vec4( -15, -15, 15, 1 ), vec4( 15, -15, 15, 1 ), vec4( 15, -15, -15, 1 ), vec4( -15, -15, -15, 1 ) }; Cube rendering: void worldCube(point4* verts, int& Index, point4* points, vec3* texVerts) { quadInv( verts[0], verts[1], verts[2], verts[3], 1, Index, points, texVerts); quadInv( verts[6], verts[3], verts[2], verts[7], 2, Index, points, texVerts); quadInv( verts[4], verts[5], verts[6], verts[7], 3, Index, points, texVerts); quadInv( verts[4], verts[1], verts[0], verts[5], 4, Index, points, texVerts); quadInv( verts[5], verts[0], verts[3], verts[6], 5, Index, points, texVerts); quadInv( verts[4], verts[7], verts[2], verts[1], 6, Index, points, texVerts); } Backface function (since this is the inside of the cube): void quadInv( const point4& a, const point4& b, const point4& c, const point4& d , int& Index, point4* points, vec3* texVerts) { quad( a, d, c, b, Index, points, texVerts, a.to_3(), b.to_3(), c.to_3(), d.to_3()); } And the quad drawing function: void quad( const point4& a, const point4& b, const point4& c, const point4& d, int& Index, point4* points, vec3* texVerts, const vec3& tex_a, const vec3& tex_b, const vec3& tex_c, const vec3& tex_d) { texVerts[Index] = tex_a.normalized(); points[Index] = a; Index++; texVerts[Index] = tex_b.normalized(); points[Index] = b; Index++; texVerts[Index] = tex_c.normalized(); points[Index] = c; Index++; texVerts[Index] = tex_a.normalized(); points[Index] = a; Index++; texVerts[Index] = tex_c.normalized(); points[Index] = c; Index++; texVerts[Index] = tex_d.normalized(); points[Index] = d; Index++; } Edit: I forgot to mention, in the image, the camera is pointed directly at the back face of the cube. You can kind of see the diagonals leading out of the corners, if you squint.

    Read the article

  • YUV Textures and Shaders

    - by Luca
    I've always used RGB textures. Now comes up the need of use of YUV textures (a set of three texture, specifying 1 luminance and 2 chrominance channels). Of course the YUV texture could be converted on CPU, getting the RGB texture usable as usual... but I need to get RGB pixel directly on GPU, to avoid unnecessary processor load... The problem became strange, since I require to specifyin the shader source, because a single texture, the following items: Three samplers uniforms, one for each channel Two integer uniforms, for specifying the chrominance channels sampling a mat3 uniform, for specific YUV to RGB conversion matrix. This should be done for each YUV texture... Is it possible to "compress" required uniforms, and getting RGB values quite easily? Actually i think this could aid: Texture sizes, including mipmaps, could be queried. With this, its possible to save the two integer uniforms, since the uniform values are derived the ratio between texture extents The mat3 uniforms could be collected as globals, and with preprocessor could be selected. But what design should I use for specify three (related) textures? Is it possible to use textures levels for accessing multiple textures? Texture arrays could be usable? And what about using rectangle textures, which doesn't supports mipmaps? Maybe a shader abstraction (struct definition and related function) could aid? Thank you.

    Read the article

  • Sample uniformly at random from an n-dimensional unit simplex.

    - by dreeves
    Sampling uniformly at random from an n-dimensional unit simplex is the fancy way to say that you want n random numbers such that they are all non-negative, they sum to one, and every possible vector of n non-negative numbers that sum to one are equally likely. In the n=2 case you want to sample uniformly from the segment of the line x+y=1 (ie, y=1-x) that is in the positive quadrant. In the n=3 case you're sampling from the triangle-shaped part of the plane x+y+z=1 that is in the positive octant of R3: (Image from http://en.wikipedia.org/wiki/Simplex.) Note that picking n uniform random numbers and then normalizing them so they sum to one does not work. You end up with a bias towards less extreme numbers. Similarly, picking n-1 uniform random numbers and then taking the nth to be one minus the sum of them also introduces bias. Wikipedia gives two algorithms to do this correctly: http://en.wikipedia.org/wiki/Simplex#Random_sampling (Though the second one currently claims to only be correct in practice, not in theory. I'm hoping to clean that up or clarify it when I understand this better. I initially stuck in a "WARNING: such-and-such paper claims the following is wrong" on that Wikipedia page and someone else turned it into the "works only in practice" caveat.) Finally, the question: What do you consider the best implementation of simplex sampling in Mathematica (preferably with empirical confirmation that it's correct)? Related questions http://stackoverflow.com/questions/2171074/generating-a-probability-distribution http://stackoverflow.com/questions/3007975/java-random-percentages

    Read the article

  • Open source gravatar-like implementations?

    - by Tauren
    I'm already using gravatar icons for the users of my web service. However, I'm finding several problems with this approach: Only a small percentage of the users take the time to set up a gravatar profile. My users are not tech-savvy, but would be likely to add a dedicated photo to my site. Users of my service are encouraged to use images that depict them in proper uniform for the industry my service relates to. They wouldn't want that same picture to be used for personal purposes throughout the internet. They would not take the time or effort to manage a separate email address and gravatar account just to have an "in-uniform" profile photo for my service. Before I implement my own profile image feature, I was wondering if there are any open-source solutions that I could leverage with similar features to gravatar. Specifically: The ability to display any size thumbnail (up to 512px would be fine) Takes care of caching different sized thumbnails Has support for something like identicons, preferably pluggable with different style algorithms (monsters, etc.), even better if I can customize these Ability to fall-back to gravatar if no photo found Does anything like this exist? I haven't found it yet if it does.

    Read the article

  • GLSL point inside box test

    - by wcochran
    Below is a GLSL fragment shader that outputs a texel if the given texture coord is inside a box, otherwise a color is output. This just feels silly and the there must be a way to do this without branching? uniform sampler2D texUnit; varying vec4 color; varying vec2 texCoord; void main() { vec4 texel = texture2D(texUnit, texCoord); if (any(lessThan(texCoord, vec2(0.0, 0.0))) || any(greaterThan(texCoord, vec2(1.0, 1.0)))) gl_FragColor = color; else gl_FragColor = texel; } Below is a version without branching, but it still feels clumsy. What is the best practice for "texture coord clamping"? uniform sampler2D texUnit; varying vec4 color; varying vec4 labelColor; varying vec2 texCoord; void main() { vec4 texel = texture2D(texUnit, texCoord); bool outside = any(lessThan(texCoord, vec2(0.0, 0.0))) || any(greaterThan(texCoord, vec2(1.0, 1.0))); gl_FragColor = mix(texel*labelColor, color, vec4(outside,outside,outside,outside)); } I am clamping texels to the region with the label is -- the texture s & t coordinates will be between 0 and 1 in this case. Otherwise, I use a brown color where the label ain't. Note that I could also construct a branching version of the code that does not perform a texture lookup when it doesn't need to. Would this be faster than a non-branching version that always performed a texture lookup? Maybe time for some tests...

    Read the article

  • Storing multiple discarded datas in a single variable using a string accumulator

    - by dan
    For an assignment for my intro to python course, we are to write a program that generates 100 sets of x,y coordinates. X must be a float between -100.0 and 100.0 inclusive, but not 0. Y is Y = ((1/x) * 3070) but if the absolute value of Y is greater than 100, both numbers must be discarded (BUT STORED) and another set generated. The results must be displayed in a table, and then after the table, the discarded results must be shown. The teacher said we should use a "string accumulator" to store the discarded data. This is what I have so far, and I'm stuck at storing the discarded data. # import random.py import random # import math.py import math # define main def main(): x = random.uniform(-100.0, 100.0) while x == 0: x = random.uniform(-100.0, 100.0) y = ((1/x) * 3070) while math.fabs(y) > 100: xDiscarded = yDiscarded = y = ((1/x) * 3070) As you can see, I run into the problem of when abs(y) 100, I'm not too sure how to store the discarded data and let it accumulate every time abs(y) 100. I'm cool with the data being stored as "351.2, 231.1, 152.2" I just don't know how to turn the variable into a string and store it. We haven't learned arrays yet so I can't do that. Any help would be much appreciated. Thanks!

    Read the article

  • Overlay an image over video using OpenGL ES shaders

    - by BlueVoodoo
    I am trying to understand the basic concepts of OpenGL. A week into it, I am still far from there. Once I am in glsl, I know what to do but I find getting there is the tricky bit. I am currently able to pass in video pixels which I manipulate and present. I have then been trying to add still image as an overlay. This is where I get lost. My end goal is to end up in the same fragment shader with pixel data from both my video and my still image. I imagine this means I need two textures and pass on two pixel buffers. I am currently passing the video pixels like this: glGenTextures(1, &textures[0]); //target, texture glBindTexture(GL_TEXTURE_2D, textures[0]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, buffer); Would I then repeat this process on textures[1] with the second buffer from the image? If so, do I then bind both GL_TEXTURE0 and GL_TEXTURE1? ...and would my shader look something like this? uniform sampler2D videoData; uniform sampler2D imageData; once I am in the shader? It seems no matter what combination I try, image and video always ends up being just video data in both these. Sorry for the many questions merged in here, just want to clear my many assumptions and move on. To clarify the question a bit, what do I need to do to add pixels from a still image in the process described? ("easy to understand" sample code or any types of hints would be appreciated).

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >