Search Results

Search found 4461 results on 179 pages for 'availability groups'.

Page 60/179 | < Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >

  • How common are power supply failures in comparison to hard disk failures?

    - by Adrian Grigore
    Hi, My webhost offers two different types of high availability options for dedicated servers: Redundant hard disks (RAID1) Redundant hard disks (RAID1) plus redundant power supply How common is a power supply failure in comparison to hard disk failure? I know it's not possible to know the exact figures without knowing the exact hardware, but ballpark figures are good enough for me at the moment. Thanks, Adrian

    Read the article

  • Mac OS X Server Open Directory does not push Software Update settings to clients

    - by joxl
    I have an Xserve G5 running Mac OS X Server 10.5.8 configured as an Open Directory master. I have also enabled and configured Software Update service on the machine. The SUS is configured to serve Tiger, Leopard and Snow Leopard clients (see http://discussions.apple.com/message.jspa?messageID=10297359#10297359) The clients bound to the OD are a variety of Mac's running OS X 10.4, 10.5 or 10.6. In Workgroup Manager, I have created 3 machine groups for each client OS. Each group is configured with a custom SUS URL, and the managed client computers are members accordingly (see http://discussions.apple.com/thread.jspa?messageID=10493154#10493154) My problem is that the server pushes the SUS settings to some of the client machines, but not all. When I first configured all this stuff on the server (a few weeks ago) I was closely monitoring a few of the client machines to confirm that they received the custom settings. I noticed that some of the clients (10.4/5/6 alike) seemed to get the settings immediately, others didn't show the new settings until after a reboot. As I said, results are mixed across OS's, but some clients will not "sync" at all. My immediate thought was to unbind/rebind the problematic machines. I did this on several client computers with no success. For example, today I was working on one of the Tiger clients. I noticed it was not pointed at my local SUS, so I checked the OD binding; it was fine. Just to be sure I unbound the machine. Next, I checked WM and confirmed the computer record was gone. I noticed the machine group still had a residual (broken?) member from the unbound client; I manually removed this. Finally, I re-bound the client to OD and re-added the machine to it's correct group in WM. Unfortunately, the client still pings apple's SUS for updates. Just to play it safe I rebooted the client, but to no avail, it will not see my local SUS. To confirm that there is nothing wrong with the server, or the client's connection to it, forcefully pointed the machine at my SUS: sudo defaults write /Library/Preferences/com.apple.SoftwareUpdate CatalogURL "$LOCAL_SUS_URL" and the machine successfully updated off my local server. Great, successful updates, but problem not solved. I've done exhaustive reading on discussions.apple.com (not saying I read everything, I'm just saying I have read a lot) without a good answer. The discouraging thing is that a lot of OD problems I've read about only result in the sysadmin completely reinstalling the server, or OD, or some other similarly heavy-handed operation. At this point, I am not willing to go that route. I still have hope that I can find the reason for this flaky behavior. If anyone can point me in a helpful direction it would be much appreciated. EDIT: Indeed, some files are being pushed to the client: # from client machine: $ sudo find /Library -type f -name com.apple.SoftwareUpdate.plist /Library/Managed Preferences/com.apple.SoftwareUpdate.plist /Library/Managed Preferences/username/com.apple.SoftwareUpdate.plist /Library/Preferences/com.apple.SoftwareUpdate.plist A few weeks ago, prior to my (previously mentioned) modifications, the SUS was still running "stock". Which meant it could not serve SL (10.6) machines. At that time, the Software Update settings were setup in WM under User Groups. This didn't make any sense because some users work on multiple machines with different OS's. Before creating Machine Groups in WM, I deleted all the SU settings from the User Group Preferences. This just makes the whole thing more confusing, because when I see a file here: /Library/Managed Preferences/username/com.apple.SoftwareUpdate.plist I assume it's still remaining from the "old" settings, because I wouldn't think a Machine Setting belongs there. Despite all the com.apple.SoftwareUpdate.plist hanging around under the Managed Preferences, why does the client machine still call home to Apple and not my SUS? # on client machine: $ date Tue Jan 25 17:01:46 EST 2011 $ softwareupdate --list Software Update Tool Copyright 2002-2005 Apple No new software available. switch terminals... # on server: $ tail -n1 /var/log/swupd/swupd_access_log 10.x.x.x - - [25/Jan/2011:15:54:29 -0500] XXXX POST "/cgi-bin/SoftwareUpdateServerStats" 200 13 ... Notice the date of the client softwareupdate and the latest access to the SUS server; the server never heard a peep from that client.

    Read the article

  • How do you transfer AWS RDS snap shot to a different AWS account

    - by Webmonger
    Hi I have an RDS database that I need to transfer a snapshot of to another AWS account. I understand there are issues being able to do this between availability zones so I'm really unsure if this is possible. The RDS instance is mySql. If it's not possible to transfer the snapshot please could you explain how to transfer the data from one RDS instance to another without downloading any if the contents(The DB is over 200GB). Thanks in advance

    Read the article

  • squid3 auth thru samba using ntlm to AD doesn't work

    - by derty
    some users here are spending to much time exploring the WWW. So big boss whats to get this under control. We use a squid3 just for some security reason and chace benefits. and now i'm trying to set up a new proxy on a different server (Debian 6) Permissions are defined in AC and the squid3 should get the auth thru samba/winbind by using the ntlm protocol. but i'll get all the time Access, denited. it only works by using LDAP but thats not the way i need it. here some log and confs squid access.log 1326878095.784 1 192.168.15.27 TCP_DENIED/407 4049 GET http://at.msn.com/? -NONE/- text/html 1326878095.791 1 192.168.15.27 TCP_DENIED/407 4294 GET http://at.msn.com/? - NONE/- text/html 1326878095.803 9 192.168.15.27 TCP_DENIED/403 4028 GET http://at.msn.com/? kavan NONE/- text/html 1326878095.848 0 192.168.15.27 TCP_DENIED/403 3881 GET http://www.squid-cache.org/Artwork/SN.png kavan NONE/- text/html 1326878100.279 0 192.168.15.27 TCP_DENIED/403 3735 GET http://www.google.at/ kavan NONE/- text/html 1326878100.296 0 192.168.15.27 TCP_DENIED/403 3870 GET http://www.squid-cache.org/Artwork/SN.png kavan NONE/- text/html 1326878155.700 0 192.168.15.27 TCP_DENIED/407 4072 GET http://ie9cvlist.ie.microsoft.com/IE9CompatViewList.xml - NONE/- text/html 1326878155.705 2 192.168.15.27 TCP_DENIED/407 4317 GET http://ie9cvlist.ie.microsoft.com/IE9CompatViewList.xml - NONE/- text/html 1326878155.709 3 192.168.15.27 TCP_DENIED/403 4026 GET http://ie9cvlist.ie.microsoft.com/IE9CompatViewList.xml kavan NONE/- text/html squid chace 2012/01/18 10:12:49| Creating Swap Directories 2012/01/18 10:12:49| Starting Squid Cache version 3.1.6 for x86_64-pc-linux-gnu... 2012/01/18 10:12:49| Process ID 17236 2012/01/18 10:12:49| With 65535 file descriptors available 2012/01/18 10:12:49| Initializing IP Cache... 2012/01/18 10:12:49| DNS Socket created at [::], FD 7 2012/01/18 10:12:49| DNS Socket created at 0.0.0.0, FD 8 2012/01/18 10:12:49| Adding nameserver 192.168.15.2 from /etc/resolv.conf 2012/01/18 10:12:49| Adding nameserver 192.168.15.19 from /etc/resolv.conf 2012/01/18 10:12:49| Adding nameserver 192.168.15.1 from /etc/resolv.conf 2012/01/18 10:12:49| Adding domain schoenbrunn.local from /etc/resolv.conf 2012/01/18 10:12:49| helperOpenServers: Starting 5/5 'squid_ldap_auth' processes 2012/01/18 10:12:49| helperOpenServers: Starting 10/10 'ntlm_auth' processes 2012/01/18 10:12:49| helperOpenServers: Starting 10/10 'squid_kerb_auth' processes 2012/01/18 10:12:49| squid_kerb_auth: INFO: Starting version 1.0.5 2012/01/18 10:12:49| squid_kerb_auth: INFO: Starting version 1.0.5 2012/01/18 10:12:49| squid_kerb_auth: INFO: Starting version 1.0.5 2012/01/18 10:12:49| squid_kerb_auth: INFO: Starting version 1.0.5 2012/01/18 10:12:49| squid_kerb_auth: INFO: Starting version 1.0.5 2012/01/18 10:12:49| squid_kerb_auth: INFO: Starting version 1.0.5 2012/01/18 10:12:49| squid_kerb_auth: INFO: Starting version 1.0.5 2012/01/18 10:12:49| squid_kerb_auth: INFO: Starting version 1.0.5 2012/01/18 10:12:49| helperOpenServers: Starting 5/5 'squid_ldap_group' processes 2012/01/18 10:12:49| squid_kerb_auth: INFO: Starting version 1.0.5 2012/01/18 10:12:49| squid_kerb_auth: INFO: Starting version 1.0.5 2012/01/18 10:12:49| Unlinkd pipe opened on FD 73 2012/01/18 10:12:49| Local cache digest enabled; rebuild/rewrite every 3600/3600 sec 2012/01/18 10:12:49| Store logging disabled 2012/01/18 10:12:49| Swap maxSize 0 + 262144 KB, estimated 20164 objects 2012/01/18 10:12:49| Target number of buckets: 1008 2012/01/18 10:12:49| Using 8192 Store buckets 2012/01/18 10:12:49| Max Mem size: 262144 KB 2012/01/18 10:12:49| Max Swap size: 0 KB 2012/01/18 10:12:49| Using Least Load store dir selection 2012/01/18 10:12:49| Set Current Directory to /var/spool/squid3 2012/01/18 10:12:49| Loaded Icons. 2012/01/18 10:12:49| Accepting HTTP connections at [::]:3128, FD 74. 2012/01/18 10:12:49| HTCP Disabled. 2012/01/18 10:12:49| Squid modules loaded: 0 2012/01/18 10:12:49| Adaptation support is off. 2012/01/18 10:12:49| Ready to serve requests. 2012/01/18 10:12:50| storeLateRelease: released 0 objects smb.conf # Domain Authntication Settings workgroup = <WORKGROUP> security = ads password server = <DOMAINNAME>.LOCAL realm = <DOMAINNAME>.LOCAL ldap ssl = no # logging log level = 5 max log size = 50 # logs split per machine log file = /var/log/samba/%m.log # max 50KB per log file, then rotate ; max log size = 50 # User settings username map = /etc/samba/smbusers idmap uid = 10000-20000000 idmap gid = 10000-20000000 idmap backend = ad ; template primary group = <ad group> template shell = /sbin/nologin # Winbind Settings winbind separator = + winbind enum users = Yes winbind enum groups = Yes winbind netsted groups = Yes winbind nested groups = Yes winbind cache time = 10 winbind use default domain = Yes #Other Globals unix charset = LOCALE server string = <SERVERNAME> load printers = no printing = cups cups options = raw ; printcap name = /etc/printcap #obtain list of printers automatically on SystemV ; printcap name = lpstat ; printing = cups squid.conf auth_param ntlm program /usr/bin/ntlm_auth --require-membership-of=<DOMAINNAME>\\INTERNETZ --helper-protocol=squid-2.5-ntlmssp auth_param ntlm children 10 auth_param basic program /usr/lib/squid3/squid_ldap_auth -R -b "dc=<dcname>,dc=local" -D "cn=administrator,cn=Users,dc=<domainname>,dc=local" -w "******" -f sAMAccountName=%s -h 192.168.15.19:3268 auth_param basic realm "Proxy Authentifizierung. Bitte geben Sie Ihren Benutzername und Ihr Passwort ein!" #means insert you PW in an other language - # external_acl_type InetGroup %LOGIN /usr/lib/squid3/squid_ldap_group -R -b "dc=<domainname>,dc=local" -D "cn=administrator,cn=Users,dc=<domainname>,dc=local" -w "******" -f "(&(objectclass=person)(sAMAccountName=%v) (memberof=cn=%a,cn=internetz,dc=<domainname>,dc=local))" -h 192.168.15.19:3268 auth_param negotiate program /usr/lib/squid3/squid_kerb_auth -d auth_param negotiate children 10 auth_param negotiate keep_alive on acl localnet proxy_auth REQUIRED acl InetAccess external InetGroup Internetz http_access allow InetAccess http_access deny all acl auth proxy_auth REQUIRED http_access allow auth and a very suspicious is that by adding the proxy server to the Domain i see 2 new entries in the PC one with the original computer-name leopoldine and one with leopoldine CNF:f8efa4c4-ff0e-4217-939d-f1523b43464d ?!? I tried a lot, really... but i stuck on this problem... i actually i even reinstalled all dependent programs and reconfigured them from default. Group exists and has me in it. Firefox running on the old proxy and i use IE for testing the new one. But i'll get all the time Access-Denited and to be honest i'm quite a beginner, so please don't be to prude. I'll interested in improving, i'll get the information we need to fix this but i started working 2 month ago and got only 1 1/2 year's training and not a single sec. in linux ;)

    Read the article

  • Windows DFS File System Clustering

    - by tearman
    We're attempted to set up a high availability network for our file servers, and we're wanting to do a DFS file system cluster using the same back-end storage (our back-end storage has its own clustering mechanisms that it manages itself). The question being, A. how would one go about setting up DFS clustering, and B. how can we get Windows to cooperate with multiple servers accessing the same SAN volumes?

    Read the article

  • Remote boot and login with mac and iPhone?

    - by Moshe
    I need (free) software to login to my iMac from my iPod. TeamViewer works but the iMac puts itself to sleep. Are there any programs that can turn on my iMac remotely? Alternatively, are tere any settings that I can change to keep my iMac on at all times and ensure constant availability?

    Read the article

  • Voice on 4G Technologies such as LTE and WiMAX?

    - by Vaibhav Bajpai
    I understand that LTE and WiMAX are IP-based technologies that do NOT have a voice component unlike the current 3G technologies. So is it like, voice calls in 4G would be completely driven on top of IP? Wouldn't this break backward compatibility with existing 3G technologies? Is this why 4G is taking it took long to take ubiquitous availability?

    Read the article

  • Online Windows Server monitoring

    - by Khash
    To check a website's availability there is Pingdom (and many others). I'm looking for a similar service (online/web-based, easy to use with notifications) that monitors servers a bit more in detail. Things like Disk Space, Windows Services running, etc.... I am happy to install an agent on the box to facilitate that, but don't want to run the monitoring server as well.

    Read the article

  • Domino 8.5.3 forward room reservation request to external email

    - by Cividan
    I have created a room reservation database on my notes server. Now my problem is that we have 2 company that will use this room and I would like to forward the meeting request sent to this room to external email address so that the other company email server receive the reservation request and update the calendar on their side to see the accurate availability of the room. How can I achive this. Thanks !

    Read the article

  • How to integrate a mirror WS without client reconfiguration?

    - by tzup
    I have a web service hosted by IIS server 1 and another web service hosted by IIS server 2. Is there a way to have the WS on server 2 automatically pick up when the WS on server 1 is unavailable, without having to reconfigure the clients (which are desktop applications in this case). There must be some tools that perform such tasks, please help. Thank you. EDIT The two web services expose the same functionality, so basically I am trying to setup a high-availability cluster (ie failover cluster)

    Read the article

  • Unable to uninstall SQL 2008 Instance(s)

    - by ichoudhury
    Windows 2008 R2 High Availability Cluster and we were just going through the first phase of configuration. Somebody accidentally loaded the instance incorrectly, so I was hopping to uninstall and reinstall. But when I approach the uninstall process, it fails with the following msg: Object reference not set to an instance of an object SQL instance not yet clustered (FYI) Any idea?

    Read the article

  • Verizon FiOS Speed concerns

    - by Josh K
    I'm working on getting a separate internet connection to run out and I was looking into available options. FiOS claims to offer 25Mb up / 25 Mb down as a maximum rate. Do they have listed minimum rates? Is there anything with fiber I should be concerned about? Special hardware, special routers, availability concerns?

    Read the article

  • Exchange 2003 mailbox migrated to 2010 not showing up in Address book

    - by TJ
    I have migrated about 45 mailboxes at this point from our single instance of Exchange 2003 to a High Availability Exchange 2010 environment successfully. However one mailbox moved successfully and the user is able to send and receive e-mail internally and externally with no problems but they do not show up in the Global Address List. The OAB is owned by an Exchange 2010 mailbox server. What am I missing?

    Read the article

  • What OpenSource iSCSI appliances/apps support windows clusters?

    - by Jimsmithkka
    I have been wanting to experiment with Windows clustering systems in my spare time, so I need a free, preferably open source, iSCSI Target that can support 2k3 and 2k8 fail-over and possibly High availability clustering. I have tried the ubuntu iscsi target package in a vmware environment, but it fails at the 2k8 tests. In simple terms I want to build a "Poor man's San" for windows and have it be able to do more than just be drives.

    Read the article

  • Cross-reference of computers having virtualization technology [closed]

    - by msorens
    When considering obtaining a new computer one of my prerequisites is the ability to load Windows 8 in a virtual machine (using VirtualBox). A prerequisite for that is that the host computer have virtualization technology. I located an Intel cross reference of chips having virtualization technology but I am trying to find a "higher level" cross reference between computer models and virtualization technology availability, skipping the extra step of having to first look up what CPU chip is in a machine, then cross-referencing that on Intel's list.

    Read the article

  • How to optimally configure memcache running on 16 cores 144G ram server?

    - by Ivko Maksimovic
    Memcache is the only important app running on the server Server has 16 cores and 144G RAM Memcache is given 135G Memcache runs at 32 threads Gigabit network, test shows at least 300Mbit/s availability on network port 600 connections 3000 requests per second Say that memcache (memory) usage is at 50% - it's definitely not full As we increase number of requests towards server, requests slow down (from 8ms to 100ms per request) but server load remains 0.00. We suspect this can be solved by adjusting configuration but we don't understand many of the configuration parameters (besides, maybe, the number of threads). Any ideas?

    Read the article

  • subversion on a local drive problem

    - by mousey
    Hello guys, I am setting up subversion using this link http://svn.spears.at/ It says that "As the Subversion book warns, make sure to create all repositories on your local disks [FiberChannel is treated as a local disk]. Failing to do so, may result in repository corruption. " This us a big problem for me. Isnt there a way I can set subversion on shared drives. Is there a work around because availability is a major concern with local drives.

    Read the article

  • What DNS server to use for dynamic load-balancing of website?

    - by Marki555
    I will have 2 servers in different datacenters (different countries) and I want to use DNS load-balancing mainly for High Availability of website hosted on those 2 servers. It is just ad tracking site, which records hit in local database and returns few lines on html code. I want to return 2 A records each time because of DNS pinning in browsers (if one server fails, browser will try second A record which it has already cached). Both servers will be acting also as DNS servers for redundancy. Now comes my proposed solution: I will use BIND and have both servers as a master for that zone. On each server there will be running script, which will periodically test availability (http) of both servers and remove IP from DNS in case of failure. Now the questions :) 1) Is BIND suitable for this solution? I think BIND performance is good and it is easy to manipulate the zone file via script. And as I will modify the zone only in case of failure/maintenance, the modifications (and thus bind reload) won't be often. 2) I plan to use TTL of 5 minutes. The website will have about 1000-3000 req/s but from distinct clients (each IP only 1-3 requests), so I think the DNS load won't be too much. I suppose their ISPs will cache the responses for those 5 mins. Is there any reason to lower the TTL even more? 3) Is my master-master approach good? Or should I make one of the servers master and the other one slave? Right now each server can monitor both itself and the other one. If only webservice fails, both DNS nodes will notice it. If the whole server fails, then the remaining DNS node will notice it and the failed node will not answer DNS queries anyway. 4) Is it a big issue when one NS server does not respond to queries? If yes, I can make a third DNS, so anytime at least 2 of them would accept queries... 5) Should I rewrite the zone file via script, or just use dynamic DNS update (for example via nsupdateutility)?

    Read the article

  • Is it possible upgrade to Windows 8 from Windows OEM?

    - by Drake
    In a Microsoft's post about Windows 8 upgrade it is written: We set out to make it as easy as possible for everyone to upgrade to Windows 8. Starting at general availability, if your PC is running Windows XP, Windows Vista, or Windows 7 you will qualify to download an upgrade to Windows 8 Pro for just $39.99 in 131 markets. I am now interested in understanding if this upgrade options are available also for Windows XP/Vista/7 OEM versions. Do you have any idea?

    Read the article

  • MySQL for SQL Server DBAs

    - by SQL3D
    I've been tasked with taking over the administration of a MySQL installation (running on Red Hat Linux) that will become fairly critical to our business in the near future. I was wondering if anyone could recommend some resources in regards to administering MySQL for DBAs already experienced with other relational database (SQL Server and some Oracle in my case). Specifically I'm looking for information around disaster recovery as well as high availability to start with, but I do want to get well rounded with the entire system. Thanks in advance, Dan

    Read the article

  • Integration features enabled but drives not available

    - by dsjbirch
    Frustratingly, after a recent update to Windows XP mode integration features, the availability of shared disks from the hosts has been impaired. Does anyone know any kind of workaround or fix (excluding dropbox et al)? I have tried completely uninstalling and reinstalling as per http://www.sevenforums.com/virtualization/63710-refreshing-xp-mode.html#post568715 At one point restarting the machine appeared to have worked, but today again I am without access to my host. Interestingly audio and copy and paste to and from the machine are working.

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

< Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >