Search Results

Search found 3379 results on 136 pages for 'datetime'.

Page 60/136 | < Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >

  • SQLAlchemy introspection

    - by Shaman
    What I am trying to do is to get from SqlAlchemy entity definition all it's Column()'s, determine their types and constraints, to be able to pre-validate, convert data and display custom forms to user. How can I introspect it? Example: class Person(Base): ''' Represents Person ''' __tablename__ = 'person' # Columns id = Column(String(8), primary_key=True, default=uid_gen) title = Column(String(512), nullable=False) birth_date = Column(DateTime, nullable=False) I want to get this id, title, birth date, determine their restrictions (such as title is string and max length is 512 or birth_date is datetime etc) Thank you

    Read the article

  • Warning produced by f#: value has been copied to ensure the original is not mutated

    - by user1878761
    The first definition below produces the warning in the title when compiled with f# 3.0 and the warning level set to 5. The second definition compiles cleanly. I wondered if someone could please explain just what the compiler worries I might accidentally mutate, or how would splitting the expression with a let clause help avoid that. Many thanks. let ticks_with_warning () : int64 = System.DateTime.Now.Ticks let ticks_clean () : int64 = let t = System.DateTime.Now t.Ticks

    Read the article

  • Does UNIQ constraint mean also an index on that field(s)?

    - by Gremo
    As title, should i defined a separate index on email column (for searching purposes) or the index is "automatically" added along with UNIQ_EMAIL_USER constraint? CREATE TABLE IF NOT EXISTS `customer` ( `id` int(11) NOT NULL AUTO_INCREMENT, `user_id` int(11) NOT NULL, `first` varchar(255) NOT NULL, `last` varchar(255) NOT NULL, `slug` varchar(255) NOT NULL, `email` varchar(255) NOT NULL, `created_at` datetime NOT NULL, `updated_at` datetime NOT NULL, PRIMARY KEY (`id`), UNIQUE KEY `UNIQ_SLUG` (`slug`), UNIQUE KEY `UNIQ_EMAIL_USER` (`email`,`user_id`), KEY `IDX_USER` (`user_id`) ) ENGINE=InnoDB;

    Read the article

  • asp:TextBox write date in txt field

    - by senzacionale
    <asp:TextBox AutoPostBack="true" ID="txtDate" OnTextChanged="txtDate_TextChanged" runat="server" Value="<%= DateTime.Today.ToShortDateString() %>"></asp:TextBox> Value="<%= DateTime.Today.ToShortDateString() %" does not write date in txt field but whole string. What i am doing wrong?

    Read the article

  • Write date in asp:TextBox

    - by senzacionale
    <asp:TextBox ID="txtDate" runat="server" Value="<%= DateTime.Today.ToShortDateString() %>" /> Value="<%= DateTime.Today.ToShortDateString() %>" does not write date in txt field but whole string. What i am doing wrong?

    Read the article

  • Pure Server-Side Filtering with RadGridView and WCF RIA Services

    Those of you who are familiar with WCF RIA Services know that the DomainDataSource control provides a FilterDescriptors collection that enables you to filter data returned by the query on the server. We have been using this DomainDataSource feature in our RIA Services with DomainDataSource online example for almost an year now. In the example, we are listening for RadGridViews Filtering event in order to intercept any filtering that is performed on the client and translate it to something that the DomainDataSource will understand, in this case a System.Windows.Data.FilterDescriptor being added or removed from its FilterDescriptors collection. Think of RadGridView.FilterDescriptors as client-side filtering and of DomainDataSource.FilterDescriptors as server-side filtering. We no longer need the client-side one. With the introduction of the Custom Filtering Controls feature many new possibilities have opened. With these custom controls we no longer need to do any filtering on the client. I have prepared a very small project that demonstrates how to filter solely on the server by using a custom filtering control. As I have already mentioned filtering on the server is done through the FilterDescriptors collection of the DomainDataSource control. This collection holds instances of type System.Windows.Data.FilterDescriptor. The FilterDescriptor has three important properties: PropertyPath: Specifies the name of the property that we want to filter on (the left operand). Operator: Specifies the type of comparison to use when filtering. An instance of FilterOperator Enumeration. Value: The value to compare with (the right operand). An instance of the Parameter Class. By adding filters, you can specify that only entities which meet the condition in the filter are loaded from the domain context. In case you are not familiar with these concepts you might find Brad Abrams blog interesting. Now, our requirements are to create some kind of UI that will manipulate the DomainDataSource.FilterDescriptors collection. When it comes to collections, my first choice of course would be RadGridView. If you are not familiar with the Custom Filtering Controls concept I would strongly recommend getting acquainted with my step-by-step tutorial Custom Filtering with RadGridView for Silverlight and checking the online example out. I have created a simple custom filtering control that contains a RadGridView and several buttons. This control is aware of the DomainDataSource instance, since it is operating on its FilterDescriptors collection. In fact, the RadGridView that is inside it is bound to this collection. In order to display filters that are relevant for the current column only, I have applied a filter to the grid. This filter is a Telerik.Windows.Data.FilterDescriptor and is used to filter the little grid inside the custom control. It should not be confused with the DomainDataSource.FilterDescriptors collection that RadGridView is actually bound to. These are the RIA filters. Additionally, I have added several other features. For example, if you have specified a DataFormatString on your original column, the Value column inside the custom control will pick it up and format the filter values accordingly. Also, I have transferred the data type of the column that you are filtering to the Value column of the custom control. This will help the little RadGridView determine what kind of editor to show up when you begin edit, for example a date picker for DateTime columns. Finally, I have added four buttons two of them can be used to add or remove filters and the other two will communicate the changes you have made to the server. Here is the full source code of the DomainDataSourceFilteringControl. The XAML: <UserControl x:Class="PureServerSideFiltering.DomainDataSourceFilteringControl"    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"     xmlns:telerikGrid="clr-namespace:Telerik.Windows.Controls;assembly=Telerik.Windows.Controls.GridView"     xmlns:telerik="clr-namespace:Telerik.Windows.Controls;assembly=Telerik.Windows.Controls"     Width="300">     <Border x:Name="LayoutRoot"             BorderThickness="1"             BorderBrush="#FF8A929E"             Padding="5"             Background="#FFDFE2E5">           <Grid>             <Grid.RowDefinitions>                 <RowDefinition Height="Auto"/>                 <RowDefinition Height="150"/>                 <RowDefinition Height="Auto"/>             </Grid.RowDefinitions>               <StackPanel Grid.Row="0"                         Margin="2"                         Orientation="Horizontal"                         HorizontalAlignment="Center">                 <telerik:RadButton Name="addFilterButton"                                   Click="OnAddFilterButtonClick"                                   Content="Add Filter"                                   Margin="2"                                   Width="96"/>                 <telerik:RadButton Name="removeFilterButton"                                   Click="OnRemoveFilterButtonClick"                                   Content="Remove Filter"                                   Margin="2"                                   Width="96"/>             </StackPanel>               <telerikGrid:RadGridView Name="filtersGrid"                                     Grid.Row="1"                                     Margin="2"                                     ItemsSource="{Binding FilterDescriptors}"                                     AddingNewDataItem="OnFilterGridAddingNewDataItem"                                     ColumnWidth="*"                                     ShowGroupPanel="False"                                     AutoGenerateColumns="False"                                     CanUserResizeColumns="False"                                     CanUserReorderColumns="False"                                     CanUserFreezeColumns="False"                                     RowIndicatorVisibility="Collapsed"                                     IsFilteringAllowed="False"                                     CanUserSortColumns="False">                 <telerikGrid:RadGridView.Columns>                     <telerikGrid:GridViewComboBoxColumn DataMemberBinding="{Binding Operator}"                                                         UniqueName="Operator"/>                     <telerikGrid:GridViewDataColumn Header="Value"                                                     DataMemberBinding="{Binding Value.Value}"                                                     UniqueName="Value"/>                 </telerikGrid:RadGridView.Columns>             </telerikGrid:RadGridView>               <StackPanel Grid.Row="2"                         Margin="2"                         Orientation="Horizontal"                         HorizontalAlignment="Center">                 <telerik:RadButton Name="filterButton"                                   Click="OnApplyFiltersButtonClick"                                   Content="Apply Filters"                                   Margin="2"                                   Width="96"/>                 <telerik:RadButton Name="clearButton"                                   Click="OnClearFiltersButtonClick"                                   Content="Clear Filters"                                   Margin="2"                                   Width="96"/>             </StackPanel>           </Grid>       </Border> </UserControl>   And the code-behind: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Windows; using System.Windows.Controls; using System.Windows.Documents; using System.Windows.Input; using System.Windows.Media; using System.Windows.Media.Animation; using System.Windows.Shapes; using Telerik.Windows.Controls.GridView; using System.Windows.Data; using Telerik.Windows.Controls; using Telerik.Windows.Data;   namespace PureServerSideFiltering {     /// <summary>     /// A custom filtering control capable of filtering purely server-side.     /// </summary>     public partial class DomainDataSourceFilteringControl : UserControl, IFilteringControl     {         // The main player here.         DomainDataSource domainDataSource;           // This is the name of the property that this column displays.         private string dataMemberName;           // This is the type of the property that this column displays.         private Type dataMemberType;           /// <summary>         /// Identifies the <see cref="IsActive"/> dependency property.         /// </summary>         /// <remarks>         /// The state of the filtering funnel (i.e. full or empty) is bound to this property.         /// </remarks>         public static readonly DependencyProperty IsActiveProperty =             DependencyProperty.Register(                 "IsActive",                 typeof(bool),                 typeof(DomainDataSourceFilteringControl),                 new PropertyMetadata(false));           /// <summary>         /// Gets or sets a value indicating whether the filtering is active.         /// </summary>         /// <remarks>         /// Set this to true if you want to lit-up the filtering funnel.         /// </remarks>         public bool IsActive         {             get { return (bool)GetValue(IsActiveProperty); }             set { SetValue(IsActiveProperty, value); }         }           /// <summary>         /// Gets or sets the domain data source.         /// We need this in order to work on its FilterDescriptors collection.         /// </summary>         /// <value>The domain data source.</value>         public DomainDataSource DomainDataSource         {             get { return this.domainDataSource; }             set { this.domainDataSource = value; }         }           public System.Windows.Data.FilterDescriptorCollection FilterDescriptors         {             get { return this.DomainDataSource.FilterDescriptors; }         }           public DomainDataSourceFilteringControl()         {             InitializeComponent();         }           public void Prepare(GridViewBoundColumnBase column)         {             this.LayoutRoot.DataContext = this;               if (this.DomainDataSource == null)             {                 // Sorry, but we need a DomainDataSource. Can't do anything without it.                 return;             }               // This is the name of the property that this column displays.             this.dataMemberName = column.GetDataMemberName();               // This is the type of the property that this column displays.             // We need this in order to see which FilterOperators to feed to the combo-box column.             this.dataMemberType = column.DataType;               // We will use our magic Type extension method to see which operators are applicable for             // this data type. You can go to the extension method body and see what it does.             ((GridViewComboBoxColumn)this.filtersGrid.Columns["Operator"]).ItemsSource                 = this.dataMemberType.ApplicableFilterOperators();               // This is very nice as well. We will tell the Value column its data type. In this way             // RadGridView will pick up the best editor according to the data type. For example,             // if the data type of the value is DateTime, you will be editing it with a DatePicker.             // Nice!             ((GridViewDataColumn)this.filtersGrid.Columns["Value"]).DataType = this.dataMemberType;               // Yet another nice feature. We will transfer the original DataFormatString (if any) to             // the Value column. In this way if you have specified a DataFormatString for the original             // column, you will see all filter values formatted accordingly.             ((GridViewDataColumn)this.filtersGrid.Columns["Value"]).DataFormatString = column.DataFormatString;               // This is important. Since our little filtersGrid will be bound to the entire collection             // of this.domainDataSource.FilterDescriptors, we need to set a Telerik filter on the             // grid so that it will display FilterDescriptor which are relevane to this column ONLY!             Telerik.Windows.Data.FilterDescriptor columnFilter = new Telerik.Windows.Data.FilterDescriptor("PropertyPath"                 , Telerik.Windows.Data.FilterOperator.IsEqualTo                 , this.dataMemberName);             this.filtersGrid.FilterDescriptors.Add(columnFilter);               // We want to listen for this in order to activate and de-activate the UI funnel.             this.filtersGrid.Items.CollectionChanged += this.OnFilterGridItemsCollectionChanged;         }           /// <summary>         // Since the DomainDataSource is a little bit picky about adding uninitialized FilterDescriptors         // to its collection, we will prepare each new instance with some default values and then         // the user can change them later. Go to the event handler to see how we do this.         /// </summary>         void OnFilterGridAddingNewDataItem(object sender, GridViewAddingNewEventArgs e)         {             // We need to initialize the new instance with some values and let the user go on from here.             System.Windows.Data.FilterDescriptor newFilter = new System.Windows.Data.FilterDescriptor();               // This is a must. It should know what member it is filtering on.             newFilter.PropertyPath = this.dataMemberName;               // Initialize it with one of the allowed operators.             // TypeExtensions.ApplicableFilterOperators method for more info.             newFilter.Operator = this.dataMemberType.ApplicableFilterOperators().First();               if (this.dataMemberType == typeof(DateTime))             {                 newFilter.Value.Value = DateTime.Now;             }             else if (this.dataMemberType == typeof(string))             {                 newFilter.Value.Value = "<enter text>";             }             else if (this.dataMemberType.IsValueType)             {                 // We need something non-null for all value types.                 newFilter.Value.Value = Activator.CreateInstance(this.dataMemberType);             }               // Let the user edit the new filter any way he/she likes.             e.NewObject = newFilter;         }           void OnFilterGridItemsCollectionChanged(object sender, System.Collections.Specialized.NotifyCollectionChangedEventArgs e)         {             // We are active only if we have any filters define. In this case the filtering funnel will lit-up.             this.IsActive = this.filtersGrid.Items.Count > 0;         }           private void OnApplyFiltersButtonClick(object sender, RoutedEventArgs e)         {             if (this.DomainDataSource.IsLoadingData)             {                 return;             }               // Comment this if you want the popup to stay open after the button is clicked.             this.ClosePopup();               // Since this.domainDataSource.AutoLoad is false, this will take into             // account all filtering changes that the user has made since the last             // Load() and pull the new data to the client.             this.DomainDataSource.Load();         }           private void OnClearFiltersButtonClick(object sender, RoutedEventArgs e)         {             if (this.DomainDataSource.IsLoadingData)             {                 return;             }               // We want to remove ONLY those filters from the DomainDataSource             // that this control is responsible for.             this.DomainDataSource.FilterDescriptors                 .Where(fd => fd.PropertyPath == this.dataMemberName) // Only "our" filters.                 .ToList()                 .ForEach(fd => this.DomainDataSource.FilterDescriptors.Remove(fd)); // Bye-bye!               // Comment this if you want the popup to stay open after the button is clicked.             this.ClosePopup();               // After we did our housekeeping, get the new data to the client.             this.DomainDataSource.Load();         }           private void OnAddFilterButtonClick(object sender, RoutedEventArgs e)         {             if (this.DomainDataSource.IsLoadingData)             {                 return;             }               // Let the user enter his/or her requirements for a new filter.             this.filtersGrid.BeginInsert();             this.filtersGrid.UpdateLayout();         }           private void OnRemoveFilterButtonClick(object sender, RoutedEventArgs e)         {             if (this.DomainDataSource.IsLoadingData)             {                 return;             }               // Find the currently selected filter and destroy it.             System.Windows.Data.FilterDescriptor filterToRemove = this.filtersGrid.SelectedItem as System.Windows.Data.FilterDescriptor;             if (filterToRemove != null                 && this.DomainDataSource.FilterDescriptors.Contains(filterToRemove))             {                 this.DomainDataSource.FilterDescriptors.Remove(filterToRemove);             }         }           private void ClosePopup()         {             System.Windows.Controls.Primitives.Popup popup = this.ParentOfType<System.Windows.Controls.Primitives.Popup>();             if (popup != null)             {                 popup.IsOpen = false;             }         }     } }   Finally, we need to tell RadGridViews Columns to use this custom control instead of the default one. Here is how to do it: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Windows; using System.Windows.Controls; using System.Windows.Documents; using System.Windows.Input; using System.Windows.Media; using System.Windows.Media.Animation; using System.Windows.Shapes; using System.Windows.Data; using Telerik.Windows.Data; using Telerik.Windows.Controls; using Telerik.Windows.Controls.GridView;   namespace PureServerSideFiltering {     public partial class MainPage : UserControl     {         public MainPage()         {             InitializeComponent();             this.grid.AutoGeneratingColumn += this.OnGridAutoGeneratingColumn;               // Uncomment this if you want the DomainDataSource to start pre-filtered.             // You will notice how our custom filtering controls will correctly read this information,             // populate their UI with the respective filters and lit-up the funnel to indicate that             // filtering is active. Go ahead and try it.             this.employeesDataSource.FilterDescriptors.Add(new System.Windows.Data.FilterDescriptor("Title", System.Windows.Data.FilterOperator.Contains, "Assistant"));             this.employeesDataSource.FilterDescriptors.Add(new System.Windows.Data.FilterDescriptor("HireDate", System.Windows.Data.FilterOperator.IsGreaterThan, new DateTime(1998, 12, 31)));             this.employeesDataSource.FilterDescriptors.Add(new System.Windows.Data.FilterDescriptor("HireDate", System.Windows.Data.FilterOperator.IsLessThanOrEqualTo, new DateTime(1999, 12, 31)));               this.employeesDataSource.Load();         }           /// <summary>         /// First of all, we will need to replace the default filtering control         /// of each column with out custom filtering control DomainDataSourceFilteringControl         /// </summary>         private void OnGridAutoGeneratingColumn(object sender, GridViewAutoGeneratingColumnEventArgs e)         {             GridViewBoundColumnBase dataColumn = e.Column as GridViewBoundColumnBase;             if (dataColumn != null)             {                 // We do not like ugly dates.                 if (dataColumn.DataType == typeof(DateTime))                 {                     dataColumn.DataFormatString = "{0:d}"; // Short date pattern.                       // Notice how this format will be later transferred to the Value column                     // of the grid that we have inside the DomainDataSourceFilteringControl.                 }                   // Replace the default filtering control with our.                 dataColumn.FilteringControl = new DomainDataSourceFilteringControl()                 {                     // Let the control know about the DDS, after all it will work directly on it.                     DomainDataSource = this.employeesDataSource                 };                   // Finally, lit-up the filtering funnel through the IsActive dependency property                 // in case there are some filters on the DDS that match our column member.                 string dataMemberName = dataColumn.GetDataMemberName();                 dataColumn.FilteringControl.IsActive =                     this.employeesDataSource.FilterDescriptors                     .Where(fd => fd.PropertyPath == dataMemberName)                     .Count() > 0;             }         }     } } The best part is that we are not only writing filters for the DomainDataSource we can read and load them. If the DomainDataSource has some pre-existing filters (like I have created in the code above), our control will read them and will populate its UI accordingly. Even the filtering funnel will light-up! Remember, the funnel is controlled by the IsActive property of our control. While this is just a basic implementation, the source code is absolutely yours and you can take it from here and extend it to match your specific business requirements. Below the main grid there is another debug grid. With its help you can monitor what filter descriptors are added and removed to the domain data source. Download Source Code. (You will have to have the AdventureWorks sample database installed on the default SQLExpress instance in order to run it.) Enjoy!Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Stored Procedures with SSRS? Hmm… not so much

    - by Rob Farley
    Little Bobby Tables’ mother says you should always sanitise your data input. Except that I think she’s wrong. The SQL Injection aspect is for another post, where I’ll show you why I think SQL Injection is the same kind of attack as many other attacks, such as the old buffer overflow, but here I want to have a bit of a whinge about the way that some people sanitise data input, and even have a whinge about people who insist on using stored procedures for SSRS reports. Let me say that again, in case you missed it the first time: I want to have a whinge about people who insist on using stored procedures for SSRS reports. Let’s look at the data input sanitisation aspect – except that I’m going to call it ‘parameter validation’. I’m talking about code that looks like this: create procedure dbo.GetMonthSummaryPerSalesPerson(@eomdate datetime) as begin     /* First check that @eomdate is a valid date */     if isdate(@eomdate) != 1     begin         select 'Please enter a valid date' as ErrorMessage;         return;     end     /* Then check that time has passed since @eomdate */     if datediff(day,@eomdate,sysdatetime()) < 5     begin         select 'Sorry - EOM is not complete yet' as ErrorMessage;         return;     end         /* If those checks have succeeded, return the data */     select SalesPersonID, count(*) as NumSales, sum(TotalDue) as TotalSales     from Sales.SalesOrderHeader     where OrderDate >= dateadd(month,-1,@eomdate)         and OrderDate < @eomdate     group by SalesPersonID     order by SalesPersonID; end Notice that the code checks that a date has been entered. Seriously??!! This must only be to check for NULL values being passed in, because anything else would have to be a valid datetime to avoid an error. The other check is maybe fair enough, but I still don’t like it. The two problems I have with this stored procedure are the result sets and the small fact that the stored procedure even exists in the first place. But let’s consider the first one of these problems for starters. I’ll get to the second one in a moment. If you read Jes Borland (@grrl_geek)’s recent post about returning multiple result sets in Reporting Services, you’ll be aware that Reporting Services doesn’t support multiple results sets from a single query. And when it says ‘single query’, it includes ‘stored procedure call’. It’ll only handle the first result set that comes back. But that’s okay – we have RETURN statements, so our stored procedure will only ever return a single result set.  Sometimes that result set might contain a single field called ErrorMessage, but it’s still only one result set. Except that it’s not okay, because Reporting Services needs to know what fields to expect. Your report needs to hook into your fields, so SSRS needs to have a way to get that information. For stored procs, it uses an option called FMTONLY. When Reporting Services tries to figure out what fields are going to be returned by a query (or stored procedure call), it doesn’t want to have to run the whole thing. That could take ages. (Maybe it’s seen some of the stored procedures I’ve had to deal with over the years!) So it turns on FMTONLY before it makes the call (and turns it off again afterwards). FMTONLY is designed to be able to figure out the shape of the output, without actually running the contents. It’s very useful, you might think. set fmtonly on exec dbo.GetMonthSummaryPerSalesPerson '20030401'; set fmtonly off Without the FMTONLY lines, this stored procedure returns a result set that has three columns and fourteen rows. But with FMTONLY turned on, those rows don’t come back. But what I do get back hurts Reporting Services. It doesn’t run the stored procedure at all. It just looks for anything that could be returned and pushes out a result set in that shape. Despite the fact that I’ve made sure that the logic will only ever return a single result set, the FMTONLY option kills me by returning three of them. It would have been much better to push these checks down into the query itself. alter procedure dbo.GetMonthSummaryPerSalesPerson(@eomdate datetime) as begin     select SalesPersonID, count(*) as NumSales, sum(TotalDue) as TotalSales     from Sales.SalesOrderHeader     where     /* Make sure that @eomdate is valid */         isdate(@eomdate) = 1     /* And that it's sufficiently past */     and datediff(day,@eomdate,sysdatetime()) >= 5     /* And now use it in the filter as appropriate */     and OrderDate >= dateadd(month,-1,@eomdate)     and OrderDate < @eomdate     group by SalesPersonID     order by SalesPersonID; end Now if we run it with FMTONLY turned on, we get the single result set back. But let’s consider the execution plan when we pass in an invalid date. First let’s look at one that returns data. I’ve got a semi-useful index in place on OrderDate, which includes the SalesPersonID and TotalDue fields. It does the job, despite a hefty Sort operation. …compared to one that uses a future date: You might notice that the estimated costs are similar – the Index Seek is still 28%, the Sort is still 71%. But the size of that arrow coming out of the Index Seek is a whole bunch smaller. The coolest thing here is what’s going on with that Index Seek. Let’s look at some of the properties of it. Glance down it with me… Estimated CPU cost of 0.0005728, 387 estimated rows, estimated subtree cost of 0.0044385, ForceSeek false, Number of Executions 0. That’s right – it doesn’t run. So much for reading plans right-to-left... The key is the Filter on the left of it. It has a Startup Expression Predicate in it, which means that it doesn’t call anything further down the plan (to the right) if the predicate evaluates to false. Using this method, we can make sure that our stored procedure contains a single query, and therefore avoid any problems with multiple result sets. If we wanted, we could always use UNION ALL to make sure that we can return an appropriate error message. alter procedure dbo.GetMonthSummaryPerSalesPerson(@eomdate datetime) as begin     select SalesPersonID, count(*) as NumSales, sum(TotalDue) as TotalSales, /*Placeholder: */ '' as ErrorMessage     from Sales.SalesOrderHeader     where     /* Make sure that @eomdate is valid */         isdate(@eomdate) = 1     /* And that it's sufficiently past */     and datediff(day,@eomdate,sysdatetime()) >= 5     /* And now use it in the filter as appropriate */     and OrderDate >= dateadd(month,-1,@eomdate)     and OrderDate < @eomdate     group by SalesPersonID     /* Now include the error messages */     union all     select 0, 0, 0, 'Please enter a valid date' as ErrorMessage     where isdate(@eomdate) != 1     union all     select 0, 0, 0, 'Sorry - EOM is not complete yet' as ErrorMessage     where datediff(day,@eomdate,sysdatetime()) < 5     order by SalesPersonID; end But still I don’t like it, because it’s now a stored procedure with a single query. And I don’t like stored procedures that should be functions. That’s right – I think this should be a function, and SSRS should call the function. And I apologise to those of you who are now planning a bonfire for me. Guy Fawkes’ night has already passed this year, so I think you miss out. (And I’m not going to remind you about when the PASS Summit is in 2012.) create function dbo.GetMonthSummaryPerSalesPerson(@eomdate datetime) returns table as return (     select SalesPersonID, count(*) as NumSales, sum(TotalDue) as TotalSales, '' as ErrorMessage     from Sales.SalesOrderHeader     where     /* Make sure that @eomdate is valid */         isdate(@eomdate) = 1     /* And that it's sufficiently past */     and datediff(day,@eomdate,sysdatetime()) >= 5     /* And now use it in the filter as appropriate */     and OrderDate >= dateadd(month,-1,@eomdate)     and OrderDate < @eomdate     group by SalesPersonID     union all     select 0, 0, 0, 'Please enter a valid date' as ErrorMessage     where isdate(@eomdate) != 1     union all     select 0, 0, 0, 'Sorry - EOM is not complete yet' as ErrorMessage     where datediff(day,@eomdate,sysdatetime()) < 5 ); We’ve had to lose the ORDER BY – but that’s fine, as that’s a client thing anyway. We can have our reports leverage this stored query still, but we’re recognising that it’s a query, not a procedure. A procedure is designed to DO stuff, not just return data. We even get entries in sys.columns that confirm what the shape of the result set actually is, which makes sense, because a table-valued function is the right mechanism to return data. And we get so much more flexibility with this. If you haven’t seen the simplification stuff that I’ve preached on before, jump over to http://bit.ly/SimpleRob and watch the video of when I broke a microphone and nearly fell off the stage in Wales. You’ll see the impact of being able to have a simplifiable query. You can also read the procedural functions post I wrote recently, if you didn’t follow the link from a few paragraphs ago. So if we want the list of SalesPeople that made any kind of sales in a given month, we can do something like: select SalesPersonID from dbo.GetMonthSummaryPerSalesPerson(@eomonth) order by SalesPersonID; This doesn’t need to look up the TotalDue field, which makes a simpler plan. select * from dbo.GetMonthSummaryPerSalesPerson(@eomonth) where SalesPersonID is not null order by SalesPersonID; This one can avoid having to do the work on the rows that don’t have a SalesPersonID value, pushing the predicate into the Index Seek rather than filtering the results that come back to the report. If we had joins involved, we might see some of those being simplified out. We also get the ability to include query hints in individual reports. We shift from having a single-use stored procedure to having a reusable stored query – and isn’t that one of the main points of modularisation? Stored procedures in Reporting Services are just a bit limited for my liking. They’re useful in plenty of ways, but if you insist on using stored procedures all the time rather that queries that use functions – that’s rubbish. @rob_farley

    Read the article

  • Loosely coupled .NET Cache Provider using Dependency Injection

    - by Rhames
    I have recently been reading the excellent book “Dependency Injection in .NET”, written by Mark Seemann. I do not generally buy software development related books, as I never seem to have the time to read them, but I have found the time to read Mark’s book, and it was time well spent I think. Reading the ideas around Dependency Injection made me realise that the Cache Provider code I wrote about earlier (see http://geekswithblogs.net/Rhames/archive/2011/01/10/using-the-asp.net-cache-to-cache-data-in-a-model.aspx) could be refactored to use Dependency Injection, which should produce cleaner code. The goals are to: Separate the cache provider implementation (using the ASP.NET data cache) from the consumers (loose coupling). This will also mean that the dependency on System.Web for the cache provider does not ripple down into the layers where it is being consumed (such as the domain layer). Provide a decorator pattern to allow a consumer of the cache provider to be implemented separately from the base consumer (i.e. if we have a base repository, we can decorate this with a caching version). Although I used the term repository, in reality the cache consumer could be just about anything. Use constructor injection to provide the Dependency Injection, with a suitable DI container (I use Castle Windsor). The sample code for this post is available on github, https://github.com/RobinHames/CacheProvider.git ICacheProvider In the sample code, the key interface is ICacheProvider, which is in the domain layer. 1: using System; 2: using System.Collections.Generic; 3:   4: namespace CacheDiSample.Domain 5: { 6: public interface ICacheProvider<T> 7: { 8: T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry); 9: IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry); 10: } 11: }   This interface contains two methods to retrieve data from the cache, either as a single instance or as an IEnumerable. the second paramerter is of type Func<T>. This is the method used to retrieve data if nothing is found in the cache. The ASP.NET implementation of the ICacheProvider interface needs to live in a project that has a reference to system.web, typically this will be the root UI project, or it could be a separate project. The key thing is that the domain or data access layers do not need system.web references adding to them. In my sample MVC application, the CacheProvider is implemented in the UI project, in a folder called “CacheProviders”: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Web; 5: using System.Web.Caching; 6: using CacheDiSample.Domain; 7:   8: namespace CacheDiSample.CacheProvider 9: { 10: public class CacheProvider<T> : ICacheProvider<T> 11: { 12: public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry) 13: { 14: return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry); 15: } 16:   17: public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry) 18: { 19: return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry); 20: } 21:   22: #region Helper Methods 23:   24: private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry) 25: { 26: U value; 27: if (!TryGetValue<U>(key, out value)) 28: { 29: value = retrieveData(); 30: if (!absoluteExpiry.HasValue) 31: absoluteExpiry = Cache.NoAbsoluteExpiration; 32:   33: if (!relativeExpiry.HasValue) 34: relativeExpiry = Cache.NoSlidingExpiration; 35:   36: HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value); 37: } 38: return value; 39: } 40:   41: private bool TryGetValue<U>(string key, out U value) 42: { 43: object cachedValue = HttpContext.Current.Cache.Get(key); 44: if (cachedValue == null) 45: { 46: value = default(U); 47: return false; 48: } 49: else 50: { 51: try 52: { 53: value = (U)cachedValue; 54: return true; 55: } 56: catch 57: { 58: value = default(U); 59: return false; 60: } 61: } 62: } 63:   64: #endregion 65:   66: } 67: }   The FetchAndCache helper method checks if the specified cache key exists, if it does not, the Func<U> retrieveData method is called, and the results are added to the cache. Using Castle Windsor to register the cache provider In the MVC UI project (my application root), Castle Windsor is used to register the CacheProvider implementation, using a Windsor Installer: 1: using Castle.MicroKernel.Registration; 2: using Castle.MicroKernel.SubSystems.Configuration; 3: using Castle.Windsor; 4:   5: using CacheDiSample.Domain; 6: using CacheDiSample.CacheProvider; 7:   8: namespace CacheDiSample.WindsorInstallers 9: { 10: public class CacheInstaller : IWindsorInstaller 11: { 12: public void Install(IWindsorContainer container, IConfigurationStore store) 13: { 14: container.Register( 15: Component.For(typeof(ICacheProvider<>)) 16: .ImplementedBy(typeof(CacheProvider<>)) 17: .LifestyleTransient()); 18: } 19: } 20: }   Note that the cache provider is registered as a open generic type. Consuming a Repository I have an existing couple of repository interfaces defined in my domain layer: IRepository.cs 1: using System; 2: using System.Collections.Generic; 3:   4: using CacheDiSample.Domain.Model; 5:   6: namespace CacheDiSample.Domain.Repositories 7: { 8: public interface IRepository<T> 9: where T : EntityBase 10: { 11: T GetById(int id); 12: IList<T> GetAll(); 13: } 14: }   IBlogRepository.cs 1: using System; 2: using CacheDiSample.Domain.Model; 3:   4: namespace CacheDiSample.Domain.Repositories 5: { 6: public interface IBlogRepository : IRepository<Blog> 7: { 8: Blog GetByName(string name); 9: } 10: }   These two repositories are implemented in the DataAccess layer, using Entity Framework to retrieve data (this is not important though). One important point is that in the BaseRepository implementation of IRepository, the methods are virtual. This will allow the decorator to override them. The BlogRepository is registered in a RepositoriesInstaller, again in the MVC UI project. 1: using Castle.MicroKernel.Registration; 2: using Castle.MicroKernel.SubSystems.Configuration; 3: using Castle.Windsor; 4:   5: using CacheDiSample.Domain.CacheDecorators; 6: using CacheDiSample.Domain.Repositories; 7: using CacheDiSample.DataAccess; 8:   9: namespace CacheDiSample.WindsorInstallers 10: { 11: public class RepositoriesInstaller : IWindsorInstaller 12: { 13: public void Install(IWindsorContainer container, IConfigurationStore store) 14: { 15: container.Register(Component.For<IBlogRepository>() 16: .ImplementedBy<BlogRepository>() 17: .LifestyleTransient() 18: .DependsOn(new 19: { 20: nameOrConnectionString = "BloggingContext" 21: })); 22: } 23: } 24: }   Now I can inject a dependency on the IBlogRepository into a consumer, such as a controller in my sample code: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Web; 5: using System.Web.Mvc; 6:   7: using CacheDiSample.Domain.Repositories; 8: using CacheDiSample.Domain.Model; 9:   10: namespace CacheDiSample.Controllers 11: { 12: public class HomeController : Controller 13: { 14: private readonly IBlogRepository blogRepository; 15:   16: public HomeController(IBlogRepository blogRepository) 17: { 18: if (blogRepository == null) 19: throw new ArgumentNullException("blogRepository"); 20:   21: this.blogRepository = blogRepository; 22: } 23:   24: public ActionResult Index() 25: { 26: ViewBag.Message = "Welcome to ASP.NET MVC!"; 27:   28: var blogs = blogRepository.GetAll(); 29:   30: return View(new Models.HomeModel { Blogs = blogs }); 31: } 32:   33: public ActionResult About() 34: { 35: return View(); 36: } 37: } 38: }   Consuming the Cache Provider via a Decorator I used a Decorator pattern to consume the cache provider, this means my repositories follow the open/closed principle, as they do not require any modifications to implement the caching. It also means that my controllers do not have any knowledge of the caching taking place, as the DI container will simply inject the decorator instead of the root implementation of the repository. The first step is to implement a BlogRepository decorator, with the caching logic in it. Note that this can reside in the domain layer, as it does not require any knowledge of the data access methods. BlogRepositoryWithCaching.cs 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5:   6: using CacheDiSample.Domain.Model; 7: using CacheDiSample.Domain; 8: using CacheDiSample.Domain.Repositories; 9:   10: namespace CacheDiSample.Domain.CacheDecorators 11: { 12: public class BlogRepositoryWithCaching : IBlogRepository 13: { 14: // The generic cache provider, injected by DI 15: private ICacheProvider<Blog> cacheProvider; 16: // The decorated blog repository, injected by DI 17: private IBlogRepository parentBlogRepository; 18:   19: public BlogRepositoryWithCaching(IBlogRepository parentBlogRepository, ICacheProvider<Blog> cacheProvider) 20: { 21: if (parentBlogRepository == null) 22: throw new ArgumentNullException("parentBlogRepository"); 23:   24: this.parentBlogRepository = parentBlogRepository; 25:   26: if (cacheProvider == null) 27: throw new ArgumentNullException("cacheProvider"); 28:   29: this.cacheProvider = cacheProvider; 30: } 31:   32: public Blog GetByName(string name) 33: { 34: string key = string.Format("CacheDiSample.DataAccess.GetByName.{0}", name); 35: // hard code 5 minute expiry! 36: TimeSpan relativeCacheExpiry = new TimeSpan(0, 5, 0); 37: return cacheProvider.Fetch(key, () => 38: { 39: return parentBlogRepository.GetByName(name); 40: }, 41: null, relativeCacheExpiry); 42: } 43:   44: public Blog GetById(int id) 45: { 46: string key = string.Format("CacheDiSample.DataAccess.GetById.{0}", id); 47:   48: // hard code 5 minute expiry! 49: TimeSpan relativeCacheExpiry = new TimeSpan(0, 5, 0); 50: return cacheProvider.Fetch(key, () => 51: { 52: return parentBlogRepository.GetById(id); 53: }, 54: null, relativeCacheExpiry); 55: } 56:   57: public IList<Blog> GetAll() 58: { 59: string key = string.Format("CacheDiSample.DataAccess.GetAll"); 60:   61: // hard code 5 minute expiry! 62: TimeSpan relativeCacheExpiry = new TimeSpan(0, 5, 0); 63: return cacheProvider.Fetch(key, () => 64: { 65: return parentBlogRepository.GetAll(); 66: }, 67: null, relativeCacheExpiry) 68: .ToList(); 69: } 70: } 71: }   The key things in this caching repository are: I inject into the repository the ICacheProvider<Blog> implementation, via the constructor. This will make the cache provider functionality available to the repository. I inject the parent IBlogRepository implementation (which has the actual data access code), via the constructor. This will allow the methods implemented in the parent to be called if nothing is found in the cache. I override each of the methods implemented in the repository, including those implemented in the generic BaseRepository. Each override of these methods follows the same pattern. It makes a call to the CacheProvider.Fetch method, and passes in the parentBlogRepository implementation of the method as the retrieval method, to be used if nothing is present in the cache. Configuring the Caching Repository in the DI Container The final piece of the jigsaw is to tell Castle Windsor to use the BlogRepositoryWithCaching implementation of IBlogRepository, but to inject the actual Data Access implementation into this decorator. This is easily achieved by modifying the RepositoriesInstaller to use Windsor’s implicit decorator wiring: 1: using Castle.MicroKernel.Registration; 2: using Castle.MicroKernel.SubSystems.Configuration; 3: using Castle.Windsor; 4:   5: using CacheDiSample.Domain.CacheDecorators; 6: using CacheDiSample.Domain.Repositories; 7: using CacheDiSample.DataAccess; 8:   9: namespace CacheDiSample.WindsorInstallers 10: { 11: public class RepositoriesInstaller : IWindsorInstaller 12: { 13: public void Install(IWindsorContainer container, IConfigurationStore store) 14: { 15:   16: // Use Castle Windsor implicit wiring for the block repository decorator 17: // Register the outermost decorator first 18: container.Register(Component.For<IBlogRepository>() 19: .ImplementedBy<BlogRepositoryWithCaching>() 20: .LifestyleTransient()); 21: // Next register the IBlogRepository inmplementation to inject into the outer decorator 22: container.Register(Component.For<IBlogRepository>() 23: .ImplementedBy<BlogRepository>() 24: .LifestyleTransient() 25: .DependsOn(new 26: { 27: nameOrConnectionString = "BloggingContext" 28: })); 29: } 30: } 31: }   This is all that is needed. Now if the consumer of the repository makes a call to the repositories method, it will be routed via the caching mechanism. You can test this by stepping through the code, and seeing that the DataAccess.BlogRepository code is only called if there is no data in the cache, or this has expired. The next step is to add the SQL Cache Dependency support into this pattern, this will be a future post.

    Read the article

  • Dynamic Types and DynamicObject References in C#

    - by Rick Strahl
    I've been working a bit with C# custom dynamic types for several customers recently and I've seen some confusion in understanding how dynamic types are referenced. This discussion specifically centers around types that implement IDynamicMetaObjectProvider or subclass from DynamicObject as opposed to arbitrary type casts of standard .NET types. IDynamicMetaObjectProvider types  are treated special when they are cast to the dynamic type. Assume for a second that I've created my own implementation of a custom dynamic type called DynamicFoo which is about as simple of a dynamic class that I can think of:public class DynamicFoo : DynamicObject { Dictionary<string, object> properties = new Dictionary<string, object>(); public string Bar { get; set; } public DateTime Entered { get; set; } public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; if (!properties.ContainsKey(binder.Name)) return false; result = properties[binder.Name]; return true; } public override bool TrySetMember(SetMemberBinder binder, object value) { properties[binder.Name] = value; return true; } } This class has an internal dictionary member and I'm exposing this dictionary member through a dynamic by implementing DynamicObject. This implementation exposes the properties dictionary so the dictionary keys can be referenced like properties (foo.NewProperty = "Cool!"). I override TryGetMember() and TrySetMember() which are fired at runtime every time you access a 'property' on a dynamic instance of this DynamicFoo type. Strong Typing and Dynamic Casting I now can instantiate and use DynamicFoo in a couple of different ways: Strong TypingDynamicFoo fooExplicit = new DynamicFoo(); var fooVar = new DynamicFoo(); These two commands are essentially identical and use strong typing. The compiler generates identical code for both of them. The var statement is merely a compiler directive to infer the type of fooVar at compile time and so the type of fooExplicit is DynamicFoo, just like fooExplicit. This is very static - nothing dynamic about it - and it completely ignores the IDynamicMetaObjectProvider implementation of my class above as it's never used. Using either of these I can access the native properties:DynamicFoo fooExplicit = new DynamicFoo();// static typing assignmentsfooVar.Bar = "Barred!"; fooExplicit.Entered = DateTime.Now; // echo back static values Console.WriteLine(fooVar.Bar); Console.WriteLine(fooExplicit.Entered); but I have no access whatsoever to the properties dictionary. Basically this creates a strongly typed instance of the type with access only to the strongly typed interface. You get no dynamic behavior at all. The IDynamicMetaObjectProvider features don't kick in until you cast the type to dynamic. If I try to access a non-existing property on fooExplicit I get a compilation error that tells me that the property doesn't exist. Again, it's clearly and utterly non-dynamic. Dynamicdynamic fooDynamic = new DynamicFoo(); fooDynamic on the other hand is created as a dynamic type and it's a completely different beast. I can also create a dynamic by simply casting any type to dynamic like this:DynamicFoo fooExplicit = new DynamicFoo(); dynamic fooDynamic = fooExplicit; Note that dynamic typically doesn't require an explicit cast as the compiler automatically performs the cast so there's no need to use as dynamic. Dynamic functionality works at runtime and allows for the dynamic wrapper to look up and call members dynamically. A dynamic type will look for members to access or call in two places: Using the strongly typed members of the object Using theIDynamicMetaObjectProvider Interface methods to access members So rather than statically linking and calling a method or retrieving a property, the dynamic type looks up - at runtime  - where the value actually comes from. It's essentially late-binding which allows runtime determination what action to take when a member is accessed at runtime *if* the member you are accessing does not exist on the object. Class members are checked first before IDynamicMetaObjectProvider interface methods are kick in. All of the following works with the dynamic type:dynamic fooDynamic = new DynamicFoo(); // dynamic typing assignments fooDynamic.NewProperty = "Something new!"; fooDynamic.LastAccess = DateTime.Now; // dynamic assigning static properties fooDynamic.Bar = "dynamic barred"; fooDynamic.Entered = DateTime.Now; // echo back dynamic values Console.WriteLine(fooDynamic.NewProperty); Console.WriteLine(fooDynamic.LastAccess); Console.WriteLine(fooDynamic.Bar); Console.WriteLine(fooDynamic.Entered); The dynamic type can access the native class properties (Bar and Entered) and create and read new ones (NewProperty,LastAccess) all using a single type instance which is pretty cool. As you can see it's pretty easy to create an extensible type this way that can dynamically add members at runtime dynamically. The Alter Ego of IDynamicObject The key point here is that all three statements - explicit, var and dynamic - declare a new DynamicFoo(), but the dynamic declaration results in completely different behavior than the first two simply because the type has been cast to dynamic. Dynamic binding means that the type loses its typical strong typing, compile time features. You can see this easily in the Visual Studio code editor. As soon as you assign a value to a dynamic you lose Intellisense and you see which means there's no Intellisense and no compiler type checking on any members you apply to this instance. If you're new to the dynamic type it might seem really confusing that a single type can behave differently depending on how it is cast, but that's exactly what happens when you use a type that implements IDynamicMetaObjectProvider. Declare the type as its strong type name and you only get to access the native instance members of the type. Declare or cast it to dynamic and you get dynamic behavior which accesses native members plus it uses IDynamicMetaObjectProvider implementation to handle any missing member definitions by running custom code. You can easily cast objects back and forth between dynamic and the original type:dynamic fooDynamic = new DynamicFoo(); fooDynamic.NewProperty = "New Property Value"; DynamicFoo foo = fooDynamic; foo.Bar = "Barred"; Here the code starts out with a dynamic cast and a dynamic assignment. The code then casts back the value to the DynamicFoo. Notice that when casting from dynamic to DynamicFoo and back we typically do not have to specify the cast explicitly - the compiler can induce the type so I don't need to specify as dynamic or as DynamicFoo. Moral of the Story This easy interchange between dynamic and the underlying type is actually super useful, because it allows you to create extensible objects that can expose non-member data stores and expose them as an object interface. You can create an object that hosts a number of strongly typed properties and then cast the object to dynamic and add additional dynamic properties to the same type at runtime. You can easily switch back and forth between the strongly typed instance to access the well-known strongly typed properties and to dynamic for the dynamic properties added at runtime. Keep in mind that dynamic object access has quite a bit of overhead and is definitely slower than strongly typed binding, so if you're accessing the strongly typed parts of your objects you definitely want to use a strongly typed reference. Reserve dynamic for the dynamic members to optimize your code. The real beauty of dynamic is that with very little effort you can build expandable objects or objects that expose different data stores to an object interface. I'll have more on this in my next post when I create a customized and extensible Expando object based on DynamicObject.© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #051

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 Explanation and Understanding NOT NULL Constraint NOT NULL is integrity CONSTRAINT. It does not allow creating of the row where column contains NULL value. Most discussed questions about NULL is what is NULL? I will not go in depth analysis it. Simply put NULL is unknown or missing data. When NULL is present in database columns, it can affect the integrity of the database. I really do not prefer NULL in the database unless they are absolutely necessary. Three T-SQL Script to Create Primary Keys on Table I have always enjoyed writing about three topics Constraint and Keys, Backup and Restore and Datetime Functions. Primary Keys constraints prevent duplicate values for columns and provides a unique identifier to each column, as well it creates clustered index on the columns. 2008 Get Numeric Value From Alpha Numeric String – UDF for Get Numeric Numbers Only SQL is great with String operations. Many times, I use T-SQL to do my string operation. Let us see User Defined Function, which I wrote a few days ago, which will return only Numeric values from Alpha Numeric values. Introduction and Example of UNION and UNION ALL It is very much interesting when I get requests from blog reader to re-write my previous articles. I have received few requests to rewrite my article SQL SERVER – Union vs. Union All – Which is better for performance? with examples. I request you to read my previous article first to understand what is the concept and read this article to understand the same concept with an example. Downgrade Database for Previous Version The main questions is how they can downgrade the from SQL Server 2005 to SQL Server 2000? The answer is : Not Possible. Get Common Records From Two Tables Without Using Join Following is my scenario, Suppose Table 1 and Table 2 has same column e.g. Column1 Following is the query, 1. Select column1,column2 From Table1 2. Select column1 From Table2 I want to find common records from these tables, but I don’t want to use the Join clause because for that I need to specify the column name for Join condition. Will you help me to get common records without using Join condition? I am using SQL Server 2005. Retrieve – Select Only Date Part From DateTime – Best Practice – Part 2 A year ago I wrote a post about SQL SERVER – Retrieve – Select Only Date Part From DateTime – Best Practice where I have discussed two different methods of getting the date part from datetime. Introduction to CLR – Simple Example of CLR Stored Procedure CLR is an abbreviation of Common Language Runtime. In SQL Server 2005 and later version of it database objects can be created which are created in CLR. Stored Procedures, Functions, Triggers can be coded in CLR. CLR is faster than T-SQL in many cases. CLR is mainly used to accomplish tasks which are not possible by T-SQL or can use lots of resources. The CLR can be usually implemented where there is an intense string operation, thread management or iteration methods which can be complicated for T-SQL. Implementing CLR provides more security to the Extended Stored Procedure. 2009 Comic Slow Query – SQL Joke Before Presentation After Presentation Enable Automatic Statistic Update on Database In one of the recent projects, I found out that despite putting good indexes and optimizing the query, I could not achieve an optimized performance and I still received an unoptimized response from the SQL Server. On examination, I figured out that the culprit was statistics. The database that I was trying to optimize had auto update of the statistics was disabled. Recently Executed T-SQL Query Please refer to blog post  query to recently executed T-SQL query on database. Change Collation of Database Column – T-SQL Script – Consolidating Collations – Extention Script At some time in your DBA career, you may find yourself in a position when you sit back and realize that your database collations have somehow run amuck, or are faced with the ever annoying CANNOT RESOLVE COLLATION message when trying to join data of varying collation settings. 2010 Visiting Alma Mater – Delivering Session on Database Performance and Career – Nirma Institute of Technology Everyone always dreams of visiting their school and college, where they have studied once. It is a great feeling to see the college once again – where you have spent the wonderful golden years of your time. College time is filled with studies, education, emotions and several plans to build a future. I consider myself fortunate as I got the opportunity to study at some of the best places in the world. Change Column DataTypes There are times when I feel like writing that I am a day older in SQL Server. In fact, there are many who are looking for a solution that is simple enough. Have you ever searched online for something very simple. I often do and enjoy doing things which are straight forward and easy to change. 2011 Three DMVs – sys.dm_server_memory_dumps – sys.dm_server_services – sys.dm_server_registry In this blog post we will see three new DMVs which are introduced in Denali. The DMVs are very simple and there is not much to describe them. So here is the simple game. I will be asking a question back to you after seeing the result of the each of the DMV and you help me to complete this blog post. A Simple Quiz – T-SQL Brain Trick If you have some time, I strongly suggest you try this quiz out as it is for sure twists your brain. 2012 List All The Column With Specific Data Types in Database 5 years ago I wrote script SQL SERVER – 2005 – List All The Column With Specific Data Types, when I read it again, it is very much relevant and I liked it. This is one of the script which every developer would like to keep it handy. I have upgraded the script bit more. I have included few additional information which I believe I should have added from the beginning. It is difficult to visualize the final script when we are writing it first time. Find First Non-Numeric Character from String The function PATINDEX exists for quite a long time in SQL Server but I hardly see it being used. Well, at least I use it and I am comfortable using it. Here is a simple script which I use when I have to identify first non-numeric character. Finding Different ColumnName From Almost Identitical Tables Well here is the interesting example of how we can use sys.column catalogue views and get the details of the newly added column. I have previously written about EXCEPT over here which is very similar to MINUS of Oracle. Storing Data and Files in Cloud – Dropbox – Personal Technology Tip I thought long and hard about doing a Personal Technology Tips series for this blog.  I have so many tips I’d like to share.  I am on my computer almost all day, every day, so I have a treasure trove of interesting tidbits I like to share if given the chance.  The only thing holding me back – which tip to share first?  The first tip obviously has the weight of seeming like the most important.  But this would mean choosing amongst my favorite tricks and shortcuts.  This is a hard task. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • readonly keyword

    - by nmarun
    This is something new that I learned about the readonly keyword. Have a look at the following class: 1: public class MyClass 2: { 3: public string Name { get; set; } 4: public int Age { get; set; } 5:  6: private readonly double Delta; 7:  8: public MyClass() 9: { 10: Initializer(); 11: } 12:  13: public MyClass(string name = "", int age = 0) 14: { 15: Name = name; 16: Age = age; 17: Initializer(); 18: } 19:  20: private void Initializer() 21: { 22: Delta = 0.2; 23: } 24: } I have a couple of public properties and a private readonly member. There are two constructors – one that doesn’t take any parameters and the other takes two parameters to initialize the public properties. I’m also calling the Initializer method in both constructors to initialize the readonly member. Now when I build this, the code breaks and the Error window says: “A readonly field cannot be assigned to (except in a constructor or a variable initializer)” Two things after I read this message: It’s such a negative statement. I’d prefer something like: “A readonly field can be assigned to (or initialized) only in a constructor or through a variable initializer” But in my defense, I AM assigning it in a constructor (only indirectly). All I’m doing is creating a method that does it and calling it in a constructor. Turns out, .net was not ‘frameworked’ this way. We need to have the member initialized directly in the constructor. If you have multiple constructors, you can just use the ‘this’ keyword on all except the default constructors to call the default constructor. This default constructor can then initialize your readonly members. This will ensure you’re not repeating the code in multiple places. A snippet of what I’m talking can be seen below: 1: public class Person 2: { 3: public int UniqueNumber { get; set; } 4: public string Name { get; set; } 5: public int Age { get; set; } 6: public DateTime DateOfBirth { get; set; } 7: public string InvoiceNumber { get; set; } 8:  9: private readonly string Alpha; 10: private readonly int Beta; 11: private readonly double Delta; 12: private readonly double Gamma; 13:  14: public Person() 15: { 16: Alpha = "FDSA"; 17: Beta = 2; 18: Delta = 3.0; 19: Gamma = 0.0989; 20: } 21:  22: public Person(int uniqueNumber) : this() 23: { 24: UniqueNumber = uniqueNumber; 25: } 26: } See the syntax in line 22 and you’ll know what I’m talking about. So the default constructor gets called before the one in line 22. These are known as constructor initializers and they allow one constructor to call another. The other ‘myth’ I had about readonly members is that you can set it’s value only once. This was busted as well (I recall Adam and Jamie’s show). Say you’ve initialized the readonly member through a variable initializer. You can over-write this value in any of the constructors any number of times. 1: public class Person 2: { 3: public int UniqueNumber { get; set; } 4: public string Name { get; set; } 5: public int Age { get; set; } 6: public DateTime DateOfBirth { get; set; } 7: public string InvoiceNumber { get; set; } 8:  9: private readonly string Alpha = "asdf"; 10: private readonly int Beta = 15; 11: private readonly double Delta = 0.077; 12: private readonly double Gamma = 1.0; 13:  14: public Person() 15: { 16: Alpha = "FDSA"; 17: Beta = 2; 18: Delta = 3.0; 19: Gamma = 0.0989; 20: } 21:  22: public Person(int uniqueNumber) : this() 23: { 24: UniqueNumber = uniqueNumber; 25: Beta = 3; 26: } 27:  28: public Person(string name, DateTime dob) : this() 29: { 30: Name = name; 31: DateOfBirth = dob; 32:  33: Alpha = ";LKJ"; 34: Gamma = 0.0898; 35: } 36:  37: public Person(int uniqueNumber, string name, int age, DateTime dob, string invoiceNumber) : this() 38: { 39: UniqueNumber = uniqueNumber; 40: Name = name; 41: Age = age; 42: DateOfBirth = dob; 43: InvoiceNumber = invoiceNumber; 44:  45: Alpha = "QWER"; 46: Beta = 5; 47: Delta = 1.0; 48: Gamma = 0.0; 49: } 50: } In the above example, every constructor over-writes the values for the readonly members. This is perfectly valid. There is a possibility that based on the way the object is instantiated, the readonly member will have a different value. Well, that’s all I have for today and read this as it’s on a related topic.

    Read the article

  • Prevent your Silverlight XAP file from caching in your browser.

    - by mbcrump
    If you work with Silverlight daily then you have run into this problem. Your XAP file has been cached in your browser and you have to empty your browser cache to resolve it. If your using Google Chrome then you typically do the following: Go to Options –> Clear Browsing History –> Empty the Cache and finally click Clear Browsing data. As you can see, this is a lot of unnecessary steps. It is even worse when you have a customer that says, “I can’t see the new features you just implemented!” and you realize it’s a cached xap problem.  I have been struggling with a way to prevent my XAP file from caching inside of a browser for a while now and decided to implement the following solution. If the Visual Studio Debugger is attached then add a unique query string to the source param to force the XAP file to be refreshed. If the Visual Studio Debugger is not attached then add the source param as Visual Studio generates it. This is also in case I forget to remove the above code in my production environment. I want the ASP.NET code to be inline with my .ASPX page. (I do not want a separate code behind .cs page or .vb page attached to the .aspx page.) Below is an example of the hosting code generated when you create a new Silverlight project. As a quick refresher, the hard coded param name = “source” specifies the location of your XAP file.  <form id="form1" runat="server" style="height:100%"> <div id="silverlightControlHost"> <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> <param name="source" value="ClientBin/SilverlightApplication2.xap"/> <param name="onError" value="onSilverlightError" /> <param name="background" value="white" /> <param name="minRuntimeVersion" value="4.0.50826.0" /> <param name="autoUpgrade" value="true" /> <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> </a> </object><iframe id="_sl_historyFrame" style="visibility:hidden;height:0px;width:0px;border:0px"></iframe></div> </form> We are going to use a little bit of inline ASP.NET to generate the param name = source dynamically to prevent the XAP file from caching. Lets look at the completed solution: <form id="form1" runat="server" style="height:100%"> <div id="silverlightControlHost"> <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> <% string strSourceFile = @"ClientBin/SilverlightApplication2.xap"; string param; if (System.Diagnostics.Debugger.IsAttached) //Debugger Attached - Refresh the XAP file. param = "<param name=\"source\" value=\"" + strSourceFile + "?" + DateTime.Now.Ticks + "\" />"; else { //Production Mode param = "<param name=\"source\" value=\"" + strSourceFile + "\" />"; } Response.Write(param); %> <param name="onError" value="onSilverlightError" /> <param name="background" value="white" /> <param name="minRuntimeVersion" value="4.0.50826.0" /> <param name="autoUpgrade" value="true" /> <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> </a> </object><iframe id="_sl_historyFrame" style="visibility:hidden;height:0px;width:0px;border:0px"></iframe></div> </form> We add the location to our XAP file to strSourceFile and if the debugger is attached then it will append DateTime.Now.Ticks to the XAP file source and force the browser to download the .XAP. If you view the page source of your Silverlight Application then you can verify it worked properly by looking at the param name = “source” tag as shown below. <param name="source" value="ClientBin/SilverlightApplication2.xap?634299001187160148" /> If the debugger is not attached then it will use the standard source tag as shown below. <param name="source" value="ClientBin/SilverlightApplication2.xap"/> At this point you may be asking, How do I prevent my XAP file from being cached on my production app? Well, you have two easy options: 1) I really don’t recommend this approach but you can force the XAP to be refreshed everytime with the following code snippet.  <param name="source" value="ClientBin/SilverlightApplication2.xap?<%=Guid.NewGuid().ToString() %>"/> NOTE: You could also substitute the “Guid.NewGuid().ToString() for anything that create a random field. (I used DateTime.Now.Ticks earlier). 2) Another solution that I like even better involves checking the XAP Creation Date and appending it to the param name = source. This method was described by Lars Holm Jenson. <% string strSourceFile = @"ClientBin/SilverlightApplication2.xap"; string param; if (System.Diagnostics.Debugger.IsAttached) param = "<param name=\"source\" value=\"" + strSourceFile + "\" />"; else { string xappath = HttpContext.Current.Server.MapPath(@"") + @"\" + strSourceFile; DateTime xapCreationDate = System.IO.File.GetLastWriteTime(xappath); param = "<param name=\"source\" value=\"" + strSourceFile + "?ignore=" + xapCreationDate.ToString() + "\" />"; } Response.Write(param); %> As you can see, this problem has been solved. It will work with all web browsers and stubborn proxy servers that are caching your .XAP. If you enjoyed this article then check out my blog for others like this. You may also want to subscribe to my blog or follow me on Twitter.   Subscribe to my feed

    Read the article

  • Why you need to learn async in .NET

    - by PSteele
    I had an opportunity to teach a quick class yesterday about what’s new in .NET 4.0.  One of the topics was the TPL (Task Parallel Library) and how it can make async programming easier.  I also stressed that this is the direction Microsoft is going with for C# 5.0 and learning the TPL will greatly benefit their understanding of the new async stuff.  We had a little time left over and I was able to show some code that uses the Async CTP to accomplish some stuff, but it wasn’t a simple demo that you could jump in to and understand so I thought I’d thrown one together and put it in a blog post. The entire solution file with all of the sample projects is located here. A Simple Example Let’s start with a super-simple example (WindowsApplication01 in the solution). I’ve got a form that displays a label and a button.  When the user clicks the button, I want to start displaying the current time for 15 seconds and then stop. What I’d like to write is this: lblTime.ForeColor = Color.Red; for (var x = 0; x < 15; x++) { lblTime.Text = DateTime.Now.ToString("HH:mm:ss"); Thread.Sleep(1000); } lblTime.ForeColor = SystemColors.ControlText; (Note that I also changed the label’s color while counting – not quite an ILM-level effect, but it adds something to the demo!) As I’m sure most of my readers are aware, you can’t write WinForms code this way.  WinForms apps, by default, only have one thread running and it’s main job is to process messages from the windows message pump (for a more thorough explanation, see my Visual Studio Magazine article on multithreading in WinForms).  If you put a Thread.Sleep in the middle of that code, your UI will be locked up and unresponsive for those 15 seconds.  Not a good UX and something that needs to be fixed.  Sure, I could throw an “Application.DoEvents()” in there, but that’s hacky. The Windows Timer Then I think, “I can solve that.  I’ll use the Windows Timer to handle the timing in the background and simply notify me when the time has changed”.  Let’s see how I could accomplish this with a Windows timer (WindowsApplication02 in the solution): public partial class Form1 : Form { private readonly Timer clockTimer; private int counter;   public Form1() { InitializeComponent(); clockTimer = new Timer {Interval = 1000}; clockTimer.Tick += UpdateLabel; }   private void UpdateLabel(object sender, EventArgs e) { lblTime.Text = DateTime.Now.ToString("HH:mm:ss"); counter++; if (counter == 15) { clockTimer.Enabled = false; lblTime.ForeColor = SystemColors.ControlText; } }   private void cmdStart_Click(object sender, EventArgs e) { lblTime.ForeColor = Color.Red; counter = 0; clockTimer.Start(); } } Holy cow – things got pretty complicated here.  I use the timer to fire off a Tick event every second.  Inside there, I can update the label.  Granted, I can’t use a simple for/loop and have to maintain a global counter for the number of iterations.  And my “end” code (when the loop is finished) is now buried inside the bottom of the Tick event (inside an “if” statement).  I do, however, get a responsive application that doesn’t hang or stop repainting while the 15 seconds are ticking away. But doesn’t .NET have something that makes background processing easier? The BackgroundWorker Next I try .NET’s BackgroundWorker component – it’s specifically designed to do processing in a background thread (leaving the UI thread free to process the windows message pump) and allows updates to be performed on the main UI thread (WindowsApplication03 in the solution): public partial class Form1 : Form { private readonly BackgroundWorker worker;   public Form1() { InitializeComponent(); worker = new BackgroundWorker {WorkerReportsProgress = true}; worker.DoWork += StartUpdating; worker.ProgressChanged += UpdateLabel; worker.RunWorkerCompleted += ResetLabelColor; }   private void StartUpdating(object sender, DoWorkEventArgs e) { var workerObject = (BackgroundWorker) sender; for (int x = 0; x < 15; x++) { workerObject.ReportProgress(0); Thread.Sleep(1000); } }   private void UpdateLabel(object sender, ProgressChangedEventArgs e) { lblTime.Text = DateTime.Now.ToString("HH:mm:ss"); }   private void ResetLabelColor(object sender, RunWorkerCompletedEventArgs e) { lblTime.ForeColor = SystemColors.ControlText; }   private void cmdStart_Click(object sender, EventArgs e) { lblTime.ForeColor = Color.Red; worker.RunWorkerAsync(); } } Well, this got a little better (I think).  At least I now have my simple for/next loop back.  Unfortunately, I’m still dealing with event handlers spread throughout my code to co-ordinate all of this stuff in the right order. Time to look into the future. The async way Using the Async CTP, I can go back to much simpler code (WindowsApplication04 in the solution): private async void cmdStart_Click(object sender, EventArgs e) { lblTime.ForeColor = Color.Red; for (var x = 0; x < 15; x++) { lblTime.Text = DateTime.Now.ToString("HH:mm:ss"); await TaskEx.Delay(1000); } lblTime.ForeColor = SystemColors.ControlText; } This code will run just like the Timer or BackgroundWorker versions – fully responsive during the updates – yet is way easier to implement.  In fact, it’s almost a line-for-line copy of the original version of this code.  All of the async plumbing is handled by the compiler and the framework.  My code goes back to representing the “what” of what I want to do, not the “how”. I urge you to download the Async CTP.  All you need is .NET 4.0 and Visual Studio 2010 sp1 – no need to set up a virtual machine with the VS2011 beta (unless, of course, you want to dive right in to the C# 5.0 stuff!).  Starting playing around with this today and see how much easier it will be in the future to write async-enabled applications.

    Read the article

  • Getting a 'base' Domain from a Domain

    - by Rick Strahl
    Here's a simple one: How do you reliably get the base domain from full domain name or URI? Specifically I've run into this scenario in a few recent applications when creating the Forms Auth Cookie in my ASP.NET applications where I explicitly need to force the domain name to the common base domain. So, www.west-wind.com, store.west-wind.com, west-wind.com, dev.west-wind.com all should return west-wind.com. Here's the code where I need to use this type of logic for issuing an AuthTicket explicitly:private void IssueAuthTicket(UserState userState, bool rememberMe) { FormsAuthenticationTicket ticket = new FormsAuthenticationTicket(1, userState.UserId, DateTime.Now, DateTime.Now.AddDays(10), rememberMe, userState.ToString()); string ticketString = FormsAuthentication.Encrypt(ticket); HttpCookie cookie = new HttpCookie(FormsAuthentication.FormsCookieName, ticketString); cookie.HttpOnly = true; if (rememberMe) cookie.Expires = DateTime.Now.AddDays(10); // write out a domain cookie cookie.Domain = Request.Url.GetBaseDomain(); HttpContext.Response.Cookies.Add(cookie); } Now unfortunately there's no Uri.GetBaseDomain() method unfortunately, as I was surprised to find out. So I ended up creating one:public static class NetworkUtils { /// <summary> /// Retrieves a base domain name from a full domain name. /// For example: www.west-wind.com produces west-wind.com /// </summary> /// <param name="domainName">Dns Domain name as a string</param> /// <returns></returns> public static string GetBaseDomain(string domainName) { var tokens = domainName.Split('.'); // only split 3 segments like www.west-wind.com if (tokens == null || tokens.Length != 3) return domainName; var tok = new List<string>(tokens); var remove = tokens.Length - 2; tok.RemoveRange(0, remove); return tok[0] + "." + tok[1]; ; } /// <summary> /// Returns the base domain from a domain name /// Example: http://www.west-wind.com returns west-wind.com /// </summary> /// <param name="uri"></param> /// <returns></returns> public static string GetBaseDomain(this Uri uri) { if (uri.HostNameType == UriHostNameType.Dns) return GetBaseDomain(uri.DnsSafeHost); return uri.Host; } } I've had a need for this so frequently it warranted a couple of helpers. The second Uri helper is an Extension method to the Uri class, which is what's used the in the first code sample. This is the preferred way to call this since the URI class can differentiate between Dns names and IP Addresses. If you use the first string based version there's a little more guessing going on if a URL is an IP Address. There are a couple of small twists in dealing with 'domain names'. When passing a string only there's a possibility to not actually pass domain name, but end up passing an IP address, so the code explicitly checks for three domain segments (can there be more than 3?). IP4 Addresses have 4 and IP6 have none so they'll fall through. Then there are things like localhost or a NetBios machine name which also come back on URL strings, but also shouldn't be handled. Anyway, small thing but maybe somebody else will find this useful.© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  Networking   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • DATEFROMPARTS

    - by jamiet
    I recently overheard a remark by Greg Low in which he said something akin to "the most interesting parts of a new SQL Server release are the myriad of small things that are in there that make a developer's life easier" (I'm paraphrasing because I can't remember the actual quote but it was something like that). The new DATEFROMPARTS function is a classic example of that . It simply takes three integer parameters and builds a date out of them (if you have used DateSerial in Reporting Services then you'll understand). Take the following code which generates the first and last day of some given years: SELECT 2008 AS Yr INTO #Years UNION ALL SELECT 2009 UNION ALL SELECT 2010 UNION ALL SELECT 2011 UNION ALL SELECT 2012SELECT [FirstDayOfYear] = CONVERT(DATE,CONVERT(CHAR(8),((y.[Yr] * 10000) + 101))),      [LastDayOfYear] = CONVERT(DATE,CONVERT(CHAR(8),((y.[Yr] * 10000) + 1231)))FROM   #Years y here are the results: That code is pretty gnarly though with those CONVERTs in there and, worse, if the character string is constructed in a certain way then it could fail due to localisation, check this out: SET LANGUAGE french;SELECT dt,Month_Name=DATENAME(mm,dt)FROM   (       SELECT  dt = CONVERT(DATETIME,CONVERT(CHAR(4),y.[Yr]) + N'-01-02')       FROM    #Years y       )d;SET LANGUAGE us_english;SELECT dt,Month_Name=DATENAME(mm,dt)FROM   (       SELECT  dt = CONVERT(DATETIME,CONVERT(CHAR(4),y.[Yr]) + N'-01-02')       FROM    #Years y       )d; Notice how the datetime has been converted differently based on the language setting. When French, the string "2012-01-02" gets interpreted as 1st February whereas when us_english the same string is interpreted as 2nd January. Instead of all this CONVERTing nastiness we have DATEFROMPARTS: SELECT [FirstDayOfYear] = DATEFROMPARTS(y.[Yr],1,1),    [LasttDayOfYear] = DATEFROMPARTS(y.[Yr],12,31)FROM   #Years y How much nicer is that? The bad news of course is that you have to upgrade to SQL Server 2012 or migrate to SQL Azure if you want to use it, as is the way of the world! Don't forget that if you want to try this code out on SQL Azure right this second, for free, you can do so by connecting up to AdventureWorks On Azure. You don't even need to have SSMS handy - a browser that runs Silverlight will do just fine. Simply head to https://mhknbn2kdz.database.windows.net/ and use the following credentials: Database AdventureWorks2012 User sqlfamily Password sqlf@m1ly One caveat, SELECT INTO doesn't work on SQL Azure so you'll have to use this instead: DECLARE @y TABLE ( [Yr] INT);INSERT @y([Yr])SELECT 2008 AS Yr UNION ALL SELECT 2009 UNION ALL SELECT 2010 UNION ALL SELECT 2011 UNION ALL SELECT 2012;SELECT [FirstDayOfYear] = DATEFROMPARTS(y.[Yr],1,1),      [LastDayOfYear] = DATEFROMPARTS(y.[Yr],12,31)FROM @y y;SELECT [FirstDayOfYear] = CONVERT(DATE,CONVERT(CHAR(8),((y.[Yr] * 10000) + 101))),      [LastDayOfYear] = CONVERT(DATE,CONVERT(CHAR(8),((y.[Yr] * 10000) + 1231)))FROM @y y; @Jamiet

    Read the article

  • Asynchrony in C# 5 (Part I)

    - by javarg
    I’ve been playing around with the new Async CTP preview available for download from Microsoft. It’s amazing how language trends are influencing the evolution of Microsoft’s developing platform. Much effort is being done at language level today than previous versions of .NET. In these post series I’ll review some major features contained in this release: Asynchronous functions TPL Dataflow Task based asynchronous Pattern Part I: Asynchronous Functions This is a mean of expressing asynchronous operations. This kind of functions must return void or Task/Task<> (functions returning void let us implement Fire & Forget asynchronous operations). The two new keywords introduced are async and await. async: marks a function as asynchronous, indicating that some part of its execution may take place some time later (after the method call has returned). Thus, all async functions must include some kind of asynchronous operations. This keyword on its own does not make a function asynchronous thought, its nature depends on its implementation. await: allows us to define operations inside a function that will be awaited for continuation (more on this later). Async function sample: Async/Await Sample async void ShowDateTimeAsync() {     while (true)     {         var client = new ServiceReference1.Service1Client();         var dt = await client.GetDateTimeTaskAsync();         Console.WriteLine("Current DateTime is: {0}", dt);         await TaskEx.Delay(1000);     } } The previous sample is a typical usage scenario for these new features. Suppose we query some external Web Service to get data (in this case the current DateTime) and we do so at regular intervals in order to refresh user’s UI. Note the async and await functions working together. The ShowDateTimeAsync method indicate its asynchronous nature to the caller using the keyword async (that it may complete after returning control to its caller). The await keyword indicates the flow control of the method will continue executing asynchronously after client.GetDateTimeTaskAsync returns. The latter is the most important thing to understand about the behavior of this method and how this actually works. The flow control of the method will be reconstructed after any asynchronous operation completes (specified with the keyword await). This reconstruction of flow control is the real magic behind the scene and it is done by C#/VB compilers. Note how we didn’t use any of the regular existing async patterns and we’ve defined the method very much like a synchronous one. Now, compare the following code snippet  in contrast to the previuous async/await: Traditional UI Async void ComplicatedShowDateTime() {     var client = new ServiceReference1.Service1Client();     client.GetDateTimeCompleted += (s, e) =>     {         Console.WriteLine("Current DateTime is: {0}", e.Result);         client.GetDateTimeAsync();     };     client.GetDateTimeAsync(); } The previous implementation is somehow similar to the first shown, but more complicated. Note how the while loop is implemented as a chained callback to the same method (client.GetDateTimeAsync) inside the event handler (please, do not do this in your own application, this is just an example).  How it works? Using an state workflow (or jump table actually), the compiler expands our code and create the necessary steps to execute it, resuming pending operations after any asynchronous one. The intention of the new Async/Await pattern is to let us think and code as we normally do when designing and algorithm. It also allows us to preserve the logical flow control of the program (without using any tricky coding patterns to accomplish this). The compiler will then create the necessary workflow to execute operations as the happen in time.

    Read the article

  • Customizing the Test Status on the TFS 2010 SSRS Stories Overview Report

    - by Bob Hardister
    This post shows how to customize the SQL query used by the Team Foundation Server 2010 SQL Server Reporting Services (SSRS) Stories Overview Report. The objective is to show test status for the current version while including user story status of the current and prior versions.  Why? Because we don’t copy completed user stories into the next release. We only want one instance of a user story for the product because we believe copies can get out of sync when they are supposed to be the same. In the example below, work items for the current version are on the area path root and prior versions are not on the area path root. However, you can use area path or iteration path criteria in the query as suits your needs. In any case, here’s how you do it: 1. Download a copy of the report RDL file as a backup 2. Open the report by clicking the edit down arrow and selecting “Edit in Report Builder” 3. Right click on the dsOverview Dataset and select Dataset Properties 4. Update the following SQL per the comments in the code: Customization 1 of 3 … -- Get the list deliverable workitems that have Test Cases linked DECLARE @TestCases Table (DeliverableID int, TestCaseID int); INSERT @TestCases     SELECT h.ID, flh.TargetWorkItemID     FROM @Hierarchy h         JOIN FactWorkItemLinkHistory flh             ON flh.SourceWorkItemID = h.ID                 AND flh.WorkItemLinkTypeSK = @TestedByLinkTypeSK                 AND flh.RemovedDate = CONVERT(DATETIME, '9999', 126)                 AND flh.TeamProjectCollectionSK = @TeamProjectCollectionSK         JOIN [CurrentWorkItemView] wi ON flh.TargetWorkItemID = wi.[System_ID]                  AND wi.[System_WorkItemType] = @TestCase             AND wi.ProjectNodeGUID  = @ProjectGuid              --  Customization 1 of 3: only include test status information when test case area path = root. Added the following 2 statements              AND wi.AreaPath = '{the root area path of the team project}'  …          Customization 2 of 3 … -- Get the Bugs linked to the deliverable workitems directly DECLARE @Bugs Table (ID int, ActiveBugs int, ResolvedBugs int, ClosedBugs int, ProposedBugs int) INSERT @Bugs     SELECT h.ID,         SUM (CASE WHEN wi.[System_State] = @Active THEN 1 ELSE 0 END) Active,         SUM (CASE WHEN wi.[System_State] = @Resolved THEN 1 ELSE 0 END) Resolved,         SUM (CASE WHEN wi.[System_State] = @Closed THEN 1 ELSE 0 END) Closed,         SUM (CASE WHEN wi.[System_State] = @Proposed THEN 1 ELSE 0 END) Proposed     FROM @Hierarchy h         JOIN FactWorkItemLinkHistory flh             ON flh.SourceWorkItemID = h.ID             AND flh.TeamProjectCollectionSK = @TeamProjectCollectionSK         JOIN [CurrentWorkItemView] wi             ON wi.[System_WorkItemType] = @Bug             AND wi.[System_Id] = flh.TargetWorkItemID             AND flh.RemovedDate = CONVERT(DATETIME, '9999', 126)             AND wi.[ProjectNodeGUID] = @ProjectGuid              --  Customization 2 of 3: only include test status information when test case area path = root. Added the following statement              AND wi.AreaPath = '{the root area path of the team project}'       GROUP BY h.ID … Customization 2 of 3 … -- Add the Bugs linked to the Test Cases which are linked to the deliverable workitems -- Walks the links from the user stories to test cases (via the tested by link), and then to -- bugs that are linked to the test case. We don't need to join to the test case in the work -- item history view. -- --    [WIT:User Story/Requirement] --> [Link:Tested By]--> [Link:any type] --> [WIT:Bug] INSERT @Bugs SELECT tc.DeliverableID,     SUM (CASE WHEN wi.[System_State] = @Active THEN 1 ELSE 0 END) Active,     SUM (CASE WHEN wi.[System_State] = @Resolved THEN 1 ELSE 0 END) Resolved,     SUM (CASE WHEN wi.[System_State] = @Closed THEN 1 ELSE 0 END) Closed,     SUM (CASE WHEN wi.[System_State] = @Proposed THEN 1 ELSE 0 END) Proposed FROM @TestCases tc     JOIN FactWorkItemLinkHistory flh         ON flh.SourceWorkItemID = tc.TestCaseID         AND flh.RemovedDate = CONVERT(DATETIME, '9999', 126)         AND flh.TeamProjectCollectionSK = @TeamProjectCollectionSK     JOIN [CurrentWorkItemView] wi         ON wi.[System_Id] = flh.TargetWorkItemID         AND wi.[System_WorkItemType] = @Bug         AND wi.[ProjectNodeGUID] = @ProjectGuid         --  Customization 3 of 3: only include test status information when test case area path = root. Added the following statement         AND wi.AreaPath = '{the root area path of the team project}'     GROUP BY tc.DeliverableID … 5. Save the report and you’re all set. Note: you may need to re-apply custom parameter changes like pre-selected sprints.

    Read the article

  • Dynamically load and call delegates based on source data

    - by makerofthings7
    Assume I have a stream of records that need to have some computation. Records will have a combination of these functions run Sum, Aggregate, Sum over the last 90 seconds, or ignore. A data record looks like this: Date;Data;ID Question Assuming that ID is an int of some kind, and that int corresponds to a matrix of some delegates to run, how should I use C# to dynamically build that launch map? I'm sure this idea exists... it is used in Windows Forms which has many delegates/events, most of which will never actually be invoked in a real application. The sample below includes a few delegates I want to run (sum, count, and print) but I don't know how to make the quantity of delegates fire based on the source data. (say print the evens, and sum the odds in this sample) using System; using System.Threading; using System.Collections.Generic; internal static class TestThreadpool { delegate int TestDelegate(int parameter); private static void Main() { try { // this approach works is void is returned. //ThreadPool.QueueUserWorkItem(new WaitCallback(PrintOut), "Hello"); int c = 0; int w = 0; ThreadPool.GetMaxThreads(out w, out c); bool rrr =ThreadPool.SetMinThreads(w, c); Console.WriteLine(rrr); // perhaps the above needs time to set up6 Thread.Sleep(1000); DateTime ttt = DateTime.UtcNow; TestDelegate d = new TestDelegate(PrintOut); List<IAsyncResult> arDict = new List<IAsyncResult>(); int count = 1000000; for (int i = 0; i < count; i++) { IAsyncResult ar = d.BeginInvoke(i, new AsyncCallback(Callback), d); arDict.Add(ar); } for (int i = 0; i < count; i++) { int result = d.EndInvoke(arDict[i]); } // Give the callback time to execute - otherwise the app // may terminate before it is called //Thread.Sleep(1000); var res = DateTime.UtcNow - ttt; Console.WriteLine("Main program done----- Total time --> " + res.TotalMilliseconds); } catch (Exception e) { Console.WriteLine(e); } Console.ReadKey(true); } static int PrintOut(int parameter) { // Console.WriteLine(Thread.CurrentThread.ManagedThreadId + " Delegate PRINTOUT waited and printed this:"+parameter); var tmp = parameter * parameter; return tmp; } static int Sum(int parameter) { Thread.Sleep(5000); // Pretend to do some math... maybe save a summary to disk on a separate thread return parameter; } static int Count(int parameter) { Thread.Sleep(5000); // Pretend to do some math... maybe save a summary to disk on a separate thread return parameter; } static void Callback(IAsyncResult ar) { TestDelegate d = (TestDelegate)ar.AsyncState; //Console.WriteLine("Callback is delayed and returned") ;//d.EndInvoke(ar)); } }

    Read the article

  • Setting up your project

    - by ssoolsma
    Before any coding we first make sure that the project is setup correctly. (Please note, that this blog is all about how I do it, and incase i forget, i can return here and read how i used to do it. Maybe you come up with some idea’s for yourself too.) In these series we will create a minigolf scoring cart. Please note that we eventually create a fully functional application which you cannot use unless you pay me alot of money! (And i mean alot!)   1. Download and install the appropriate tools. Download the following: - TestDriven.Net (free version on the bottom of the download page) - nUnit TestDriven is a visual studio plugin for many unittest frameworks, which allows you to run  / test code very easily with a right click –> run test. nUnit is the test framework of choice, it works seamless with TestDriven.   2. Create your project Fire up visual studio and create your DataAccess project:  MidgetWidget.DataAccess is it’s name. (I choose MidgetWidget as name for the solution). Also, make sure that the MidgetWidget.DataAccess project is a c# ClassLibary Hit OK to create the solution. (in the above example the checkbox Create directory for solution is checked, because i’m pointing the location to the root of c:\development where i want MidgetWidget to be created.   3. Setup the database. You should have thought about a database when you reach this point. Let’s assume that you’ve created a database as followed: Table name: LoginKey Fields: Id (PK), KeyName (uniqueidentifier), StartDate (datetime), EndDate (datetime) Table name:  Party Fields: Id (PK), Key (uniqueidentifier, Created (datetime) Table name:  Person Fields: Id(PK),  PartyId (int), Name (varchar) Tablename: Score Fields: Id (PK), Trackid (int), PersonId (int), Strokes (int) Tablename: Track Fields: Id (PK), Name (varchar) A few things to take note about the database setup. I’ve singularized all tablenames (not “Persons“ but “Person”. This is because in a few minutes, when this is in our code, we refer to the database objects as single rows. We retrieve a single Person not a single “Persons” from the database.   4. Create the entity framework In your solution tree create a new folder and call it “DataModel”. Inside this folder: Add new item –> and choose ADO.NET Entity Data Model. Name it “Entities.edmx” and hit  “Add”. Once the edmx is added, open it (double click) and right click the white area and choose “Update model from database…". Now, point it to your database (i include sensitive data in the connectionstring) and select all the tables. After that hit “Finish” and let the entity framework do it’s code generation. Et Voila, after a few seconds you have set up your entity model. Next post we will start building the data-access! I’m off to the beach.

    Read the article

  • The data reader returned by the store data provider does not have enough columns

    - by molgan
    Hello I get the following error when I try to execute a stored procedure: "The data reader returned by the store data provider does not have enough columns" When I in the sql-manager execute it like this: DECLARE @return_value int, @EndDate datetime EXEC @return_value = [dbo].[GetSomeDate] @SomeID = 91, @EndDate = @EndDate OUTPUT SELECT @EndDate as N'@EndDate' SELECT 'Return Value' = @return_value GO It returns the value properly.... @SomeDate = '2010-03-24 09:00' And in my app I have: if (_entities.Connection.State == System.Data.ConnectionState.Closed) _entities.Connection.Open(); using (EntityCommand c = new EntityCommand("MyAppEntities.GetSomeDate", (EntityConnection)this._entities.Connection)) { c.CommandType = System.Data.CommandType.StoredProcedure; EntityParameter paramSomeID = new EntityParameter("SomeID", System.Data.DbType.Int32); paramSomeID.Direction = System.Data.ParameterDirection.Input; paramSomeID.Value = someID; c.Parameters.Add(paramSomeID); EntityParameter paramSomeDate = new EntityParameter("SomeDate", System.Data.DbType.DateTime); SomeDate.Direction = System.Data.ParameterDirection.Output; c.Parameters.Add(paramSomeDate); int retval = c.ExecuteNonQuery(); return (DateTime?)c.Parameters["SomeDate"].Value; Why does it complain about columns? I googled on error and someone said something about removing RETURN in sp, but I dont have any RETURN there. last like is like SELECT @SomeDate = D.SomeDate FROM .... /M

    Read the article

  • ContractFilter mismatch at the EndpointDispatcher

    - by Matt
    I've created a simple WCF service but when I use Visual Studio to add a service reference, this error comes up. The message with Action '' cannot be processed at the receiver, due to a ContractFilter mismatch at the EndpointDispatcher. This may be because of either a contract mismatch (mismatched Actions between sender and receiver) or a binding/security mismatch between the sender and the receiver. Check that sender and receiver have the same contract and the same binding (including security requirements, e.g. Message, Transport, None). Here is my Interface [ServiceContract] public interface IService { [OperationContract] DateTime GetTime(); } And my implementation [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class TestService : IService { public DateTime GetTime() { return DateTime.Now; } } Finally here is my web.config <system.serviceModel> <client/> <serviceHostingEnvironment aspNetCompatibilityEnabled="true"/> <services> <service name="Test.TestService" > <endpoint address="" contract="Test.IService" binding="basicHttpBinding" > </endpoint> </service> </services> </system.serviceModel>

    Read the article

  • Create non-persistent cookie with FormsAuthenticationTicket

    - by Marcus
    Hello! I'm having trouble creating a non-persistent cookie using the FormsAuthenticationTicket. I want to store userdata in the ticket, so i can't use FormsAuthentication.SetAuthCookie() or FormsAuthentication.GetAuthCookie() methods. Because of this I need to create the FormsAuthenticationTicket and store it in a HttpCookie. My code looks like this: DateTime expiration = DateTime.Now.AddDays(7); // Create ticket FormsAuthenticationTicket ticket = new FormsAuthenticationTicket(2, user.Email, DateTime.Now, expiration, isPersistent, userData, FormsAuthentication.FormsCookiePath); // Create cookie HttpCookie cookie = new HttpCookie(FormsAuthentication.FormsCookieName, FormsAuthentication.Encrypt(ticket)); cookie.Path = FormsAuthentication.FormsCookiePath; if (isPersistent) cookie.Expires = expiration; // Add cookie to response HttpContext.Current.Response.Cookies.Add(cookie); When the variable isPersistent is true everything works fine and the cookie is persisted. But when isPersistent is false the cookie seems to be persisted anyway. I sign on in a browser window, closes it and opens the browser again and I am still logged in. How do i set the cookie to be non-persistent? Is a non-persistent cookie the same as a session cookie? Is the cookie information stored in the sessiondata on the server or are the cookie transferred in every request/response to the server? Thanks in advance! /Marcus

    Read the article

  • CultureInfo on a IValueConverter implementation

    - by slugster
    When a ValueConverter is used as part of a binding, one of the parameters to the Convert function is a System.Globalization.CultureInfo object. Can anyone tell me where this culture object gets its info from? I have some code that formats a date based on that culture. When i access my silverlight control which is hosted on my machine, it formats the date correctly (using the d/MM/yyyy format, which is set as the short date format on my machine). When i access the same control hosted on a different server (from my client machine), the date is being formatted as MM/dd/yyyy hh:mm:ss - which is totally wrong. Coincidentally the regional settings on the server are set to the same as my client machine. This is the code for my value converter: public object Convert(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture) { if (value is DateTime) { if (parameter != null && !string.IsNullOrEmpty(parameter.ToString())) return ((DateTime)value).ToString(parameter.ToString()); else return ((DateTime)value).ToString(culture.DateTimeFormat.ShortDatePattern); } return value; } basically, a specific format can be specified as the converter parameter, but if it isn't then the short date pattern of the culture object is used.

    Read the article

< Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >