Search Results

Search found 5623 results on 225 pages for 'inline assembly'.

Page 61/225 | < Previous Page | 57 58 59 60 61 62 63 64 65 66 67 68  | Next Page >

  • How to do inline paste from system buffer in Vim?

    - by yetapb
    When pasting from the system buffer in a line like foo( someVal , <cursor is here>, someVal3); If I use "*p I get foo( someVal, , someVal3); <pasted text> If I use "*P I get <pasted text> foo( someVal, , someVal3); but I want foo( someVal, <pasted text>, someVal3 ); How can I get the result I want? edit If there is a newline in the buffer as @amardeep suspects, is there a way I can tell vim to ignore it?

    Read the article

  • How to properly add .NET assemblies to Powershell session?

    - by amandion
    I have a .NET assembly (a dll) which is an API to backup software we use here. It contains some properties and methods I would like to take advantage of in my Powershell script(s). However, I am running into a lot of issues with first loading the assembly, then using any of the types once the assembly is loaded. The complete file path is: C:\rnd\CloudBerry.Backup.API.dll In Powershell I use: $dllpath = "C:\rnd\CloudBerry.Backup.API.dll" Add-Type -Path $dllpath I get the error below: Add-Type : Unable to load one or more of the requested types. Retrieve the LoaderExceptions property for more information. At line:1 char:9 + Add-Type <<<< -Path $dllpath + CategoryInfo : NotSpecified: (:) [Add-Type], ReflectionTypeLoadException + FullyQualifiedErrorId : System.Reflection.ReflectionTypeLoadException,Microsoft.PowerShell.Commands.AddTypeComma ndAdd-Type : Unable to load one or more of the requested types. Retrieve the LoaderExceptions property for more information. Using the same cmdlet on another .NET assembly, DotNetZip, which has examples of using the same functionality on the site also does not work for me. I eventually find that I am seemingly able to load the assembly using reflection: [System.Reflection.Assembly]::LoadFrom($dllpath) Although I don't understand the difference between the methods Load, LoadFrom, or LoadFile that last method seems to work. However, I still seem to be unable to create instances or use objects. Each time I try, I get errors that describe that Powershell is unable to find any of the public types. I know the classes are there: $asm = [System.Reflection.Assembly]::LoadFrom($dllpath) $cbbtypes = $asm.GetExportedTypes() $cbbtypes | Get-Member -Static ---- start of excerpt ---- TypeName: CloudBerryLab.Backup.API.BackupProvider Name MemberType Definition ---- ---------- ---------- PlanChanged Event System.EventHandler`1[CloudBerryLab.Backup.API.Utils.ChangedEventArgs] PlanChanged(Sy... PlanRemoved Event System.EventHandler`1[CloudBerryLab.Backup.API.Utils.PlanRemoveEventArgs] PlanRemoved... CalculateFolderSize Method static long CalculateFolderSize() Equals Method static bool Equals(System.Object objA, System.Object objB) GetAccounts Method static CloudBerryLab.Backup.API.Account[], CloudBerry.Backup.API, Version=1.0.0.1, Cu... GetBackupPlans Method static CloudBerryLab.Backup.API.BackupPlan[], CloudBerry.Backup.API, Version=1.0.0.1,... ReferenceEquals Method static bool ReferenceEquals(System.Object objA, System.Object objB) SetProfilePath Method static System.Void SetProfilePath(string profilePath) ----end of excerpt---- Trying to use static methods fail, I don't know why!!! [CloudBerryLab.Backup.API.BackupProvider]::GetAccounts() Unable to find type [CloudBerryLab.Backup.API.BackupProvider]: make sure that the assembly containing this type is load ed. At line:1 char:42 + [CloudBerryLab.Backup.API.BackupProvider] <<<< ::GetAccounts() + CategoryInfo : InvalidOperation: (CloudBerryLab.Backup.API.BackupProvider:String) [], RuntimeException + FullyQualifiedErrorId : TypeNotFound Any guidance appreciated!!

    Read the article

  • How do I dinamically load raw assemblies that contains unmanaged code?(bypassing 'Unverifiable code

    - by Thiado de Arruda
    I'm going to give an example of using System.Data.SQLite.DLL which is a mixed assembly with unmanaged code: If I execute this : var assembly= Assembly.LoadFrom("System.Data.SQLite.DLL") No exceptions are thrown, but if I do this : var rawAssembly = File.ReadAllBytes("System.Data.SQLite.DLL"); var assembly = Assembly.Load(rawAssembly); The CLR throws a FileLoadException with "Unverifiable code failed policy check. (Exception from HRESULT: 0x80131402)". Let's say I'm trying to load this assembly on a child AppDomain, how can I customize the AppDomain's security to allow me pass the policy check?

    Read the article

  • Splitting assemblies - finding the balance (avoiding overkill)

    - by M.A. Hanin
    I'm writing a wide component infrastructure, to be used in my projects. Since not all projects will require every component created, I've been thinking of splitting the component into discrete assemblies, so that every application developed will only be deployed with the required assemblies. I assume that creating an assembly has some storage overhead (the assembly's code, wrapping whatever is inside). Therefore, there must be some limit to the advantage gained by splitting an assembly - a certain point where splitting the assembly is worse than keeping it united (storage-wise and performance-wise). Now, here is the question: how do I know when splitting an assembly is an overkill? P.S I guess there are other overheads to assembly splitting, aside from the storage overhead. If anyone can point out these overheads, it would be much appreciated.

    Read the article

  • Unable to load one or more of the requested types. Retrieve the LoaderExceptions property for more i

    - by pooyakhamooshi
    I have developed an application using Entity Framework, SQL Server 2000, VS 2008 and Enterprise Library. It works absolutely fine locally but when I deploy the project to our test environment, I am getting the following error: "Unable to load one or more of the requested types. Retrieve the LoaderExceptions property for more information." Stack trace: at System.Reflection.Module._GetTypesInternal(StackCrawlMark& stackMark) at System.Reflection.Assembly.GetTypes() at System.Data.Metadata.Edm.ObjectItemCollection.AssemblyCacheEntry.LoadTypesFromAssembly(LoadingContext context) at System.Data.Metadata.Edm.ObjectItemCollection.AssemblyCacheEntry.InternalLoadAssemblyFromCache(LoadingContext context) at System.Data.Metadata.Edm.ObjectItemCollection.AssemblyCacheEntry.LoadAssemblyFromCache(Assembly assembly, Boolean loadReferencedAssemblies, Dictionary2 knownAssemblies, Dictionary2& typesInLoading, List`1& errors) at System.Data.Metadata.Edm.ObjectItemCollection.LoadAssemblyFromCache(ObjectItemCollection objectItemCollection, Assembly assembly, Boolean loadReferencedAssemblies) at System.Data.Metadata.Edm.ObjectItemCollection.LoadAssemblyForType(Type type) at System.Data.Metadata.Edm.MetadataWorkspace.LoadAssemblyForType(Type type, Assembly callingAssembly) at System.Data.Objects.ObjectContext.CreateQueryT Entity Framework seems to have issue, any clue how to fix it?

    Read the article

  • Separation of interfaces and implementation

    - by bonefisher
    From assembly(or module) perspective, what do you think of separation of Interface (1.assembly) and its Implementation (2.assembly)? In this way we can use some IoC container to develop more decoupling desing.. Say we have an assembly 'A', which contains interfaces only. Then we have an assembly 'B' which references 'A' and implements those interfaces..It is dependent only on 'A'. In assembly 'C' then we can use the IoC container to create objects of 'A' using dependency injection of objects from 'B'. This way 'B' and 'C' are completely unaware (not dependent) of themselves..

    Read the article

  • How can I configure a Factory with the possible providers?

    - by Jonathas Costa
    I have three assemblies: "Framework.DataAccess", "Framework.DataAccess.NHibernateProvider" and "Company.DataAccess". Inside the assembly "Framework.DataAccess", I have my factory (with the wrong implementation of discovery): public class DaoFactory { private static readonly object locker = new object(); private static IWindsorContainer _daoContainer; protected static IWindsorContainer DaoContainer { get { if (_daoContainer == null) { lock (locker) { if (_daoContainer != null) return _daoContainer; _daoContainer = new WindsorContainer(new XmlInterpreter()); // THIS IS WRONG! THIS ASSEMBLY CANNOT KNOW ABOUT SPECIALIZATIONS! _daoContainer.Register( AllTypes.FromAssemblyNamed("Company.DataAccess") .BasedOn(typeof(IReadDao<>)).WithService.FromInterface(), AllTypes.FromAssemblyNamed("Framework.DataAccess.NHibernateProvider") .BasedOn(typeof(IReadDao<>)).WithService.Base()); } } return _daoContainer; } } public static T Create<T>() where T : IDao { return DaoContainer.Resolve<T>(); } } This assembly also defines the base interface for data access IReadDao: public interface IReadDao<T> { IEnumerable<T> GetAll(); } I want to keep this assembly generic and with no references. This is my base data access assembly. Then I have the NHibernate provider's assembly, which implements the above IReadDao using NHibernate's approach. This assembly references the "Framework.DataAccess" assembly. public class NHibernateDao<T> : IReadDao<T> { public NHibernateDao() { } public virtual IEnumerable<T> GetAll() { throw new NotImplementedException(); } } At last, I have the "Company.DataAccess" assembly, which can override the default implementation of NHibernate provider and references both previously seen assemblies. public interface IProductDao : IReadDao<Product> { Product GetByName(string name); } public class ProductDao : NHibernateDao<Product>, IProductDao { public override IEnumerable<Product> GetAll() { throw new NotImplementedException("new one!"); } public Product GetByName(string name) { throw new NotImplementedException(); } } I want to be able to write... IRead<Product> dao = DaoFactory.Create<IRead<Product>>(); ... and then get the ProductDao implementation. But I can't hold inside my base data access any reference to specific assemblies! My initial idea was to read that from a xml config file. So, my question is: How can I externally configure this factory to use a specific provider as my default implementation and my client implementation?

    Read the article

  • How can I create different DLLs in one project?

    - by jaloplo
    I have a question I don't know if it can be solved. I have one C# project on Visual Studio 2005 and I want to create different DLL names depending on a preprocessor constant. What I have in this moment is the preprocessor constant, two snk files and two assembly's guid. I also create two configurations (Debug and Debug Preprocessor) and they compile perfectly using the snk and guid appropiate. #if PREPROCESSOR_CONSTANT [assembly: AssemblyTitle("MyLibraryConstant")] [assembly: AssemblyProduct("MyLibraryConstant")] #else [assembly: AssemblyTitle("MyLibrary")] [assembly: AssemblyProduct("MyLibrary")] #endif Now, I have to put the two assemblies into the GAC. The first assembly is added without problems but the second isn't. What can I do to create two or more different assemblies from one Visual Studio project? It's possible that I forgot to include a new line on "AssemblyInfo.cs" to change the DLL name depending on the preprocessor constant?

    Read the article

  • Calling member method on unmanaged C++ pointer from C# (I think)

    - by Jacob G
    I apologize in advance if this is a trivial question... I'm pretty C++ / unmanaged dumb. Here's a simplified analog to my setup: --In myUnmanagedObject.h in DLL: class myUnmanagedObject { public: virtual void myMethod(){} } --In MyControl.h in Assembly #1: #pragma make_public(myUnmanagedObject) [event_source(managed)] public ref class MyControl : public System::Windows::Forms::UserControl { public: myUnmanagedObject* GetMyUnmanagedObject(); } --in C# in Assembly #2: unsafe { MyControl temp = new MyControl(); myUnmanagedObject* obj = temp.GetMyUnmanagedObject(); obj-myMethod(); } I get a compile error saying that myUnmanagedObject does not contain a definition for myMethod. Assembly #2 references Assembly #1. Assembly #1 references DLL. If I compile the DLL with /clr and reference it directly from Assembly #2, it makes no difference. How, from C#, do I execute myMethod ?

    Read the article

  • When is a SQL function not a function?

    - by Rob Farley
    Should SQL Server even have functions? (Oh yeah – this is a T-SQL Tuesday post, hosted this month by Brad Schulz) Functions serve an important part of programming, in almost any language. A function is a piece of code that is designed to return something, as opposed to a piece of code which isn’t designed to return anything (which is known as a procedure). SQL Server is no different. You can call stored procedures, even from within other stored procedures, and you can call functions and use these in other queries. Stored procedures might query something, and therefore ‘return data’, but a function in SQL is considered to have the type of the thing returned, and can be used accordingly in queries. Consider the internal GETDATE() function. SELECT GETDATE(), SomeDatetimeColumn FROM dbo.SomeTable; There’s no logical difference between the field that is being returned by the function and the field that’s being returned by the table column. Both are the datetime field – if you didn’t have inside knowledge, you wouldn’t necessarily be able to tell which was which. And so as developers, we find ourselves wanting to create functions that return all kinds of things – functions which look up values based on codes, functions which do string manipulation, and so on. But it’s rubbish. Ok, it’s not all rubbish, but it mostly is. And this isn’t even considering the SARGability impact. It’s far more significant than that. (When I say the SARGability aspect, I mean “because you’re unlikely to have an index on the result of some function that’s applied to a column, so try to invert the function and query the column in an unchanged manner”) I’m going to consider the three main types of user-defined functions in SQL Server: Scalar Inline Table-Valued Multi-statement Table-Valued I could also look at user-defined CLR functions, including aggregate functions, but not today. I figure that most people don’t tend to get around to doing CLR functions, and I’m going to focus on the T-SQL-based user-defined functions. Most people split these types of function up into two types. So do I. Except that most people pick them based on ‘scalar or table-valued’. I’d rather go with ‘inline or not’. If it’s not inline, it’s rubbish. It really is. Let’s start by considering the two kinds of table-valued function, and compare them. These functions are going to return the sales for a particular salesperson in a particular year, from the AdventureWorks database. CREATE FUNCTION dbo.FetchSales_inline(@salespersonid int, @orderyear int) RETURNS TABLE AS  RETURN (     SELECT e.LoginID as EmployeeLogin, o.OrderDate, o.SalesOrderID     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101') ) ; GO CREATE FUNCTION dbo.FetchSales_multi(@salespersonid int, @orderyear int) RETURNS @results TABLE (     EmployeeLogin nvarchar(512),     OrderDate datetime,     SalesOrderID int     ) AS BEGIN     INSERT @results (EmployeeLogin, OrderDate, SalesOrderID)     SELECT e.LoginID, o.OrderDate, o.SalesOrderID     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101')     ;     RETURN END ; GO You’ll notice that I’m being nice and responsible with the use of the DATEADD function, so that I have SARGability on the OrderDate filter. Regular readers will be hoping I’ll show what’s going on in the execution plans here. Here I’ve run two SELECT * queries with the “Show Actual Execution Plan” option turned on. Notice that the ‘Query cost’ of the multi-statement version is just 2% of the ‘Batch cost’. But also notice there’s trickery going on. And it’s nothing to do with that extra index that I have on the OrderDate column. Trickery. Look at it – clearly, the first plan is showing us what’s going on inside the function, but the second one isn’t. The second one is blindly running the function, and then scanning the results. There’s a Sequence operator which is calling the TVF operator, and then calling a Table Scan to get the results of that function for the SELECT operator. But surely it still has to do all the work that the first one is doing... To see what’s actually going on, let’s look at the Estimated plan. Now, we see the same plans (almost) that we saw in the Actuals, but we have an extra one – the one that was used for the TVF. Here’s where we see the inner workings of it. You’ll probably recognise the right-hand side of the TVF’s plan as looking very similar to the first plan – but it’s now being called by a stack of other operators, including an INSERT statement to be able to populate the table variable that the multi-statement TVF requires. And the cost of the TVF is 57% of the batch! But it gets worse. Let’s consider what happens if we don’t need all the columns. We’ll leave out the EmployeeLogin column. Here, we see that the inline function call has been simplified down. It doesn’t need the Employee table. The join is redundant and has been eliminated from the plan, making it even cheaper. But the multi-statement plan runs the whole thing as before, only removing the extra column when the Table Scan is performed. A multi-statement function is a lot more powerful than an inline one. An inline function can only be the result of a single sub-query. It’s essentially the same as a parameterised view, because views demonstrate this same behaviour of extracting the definition of the view and using it in the outer query. A multi-statement function is clearly more powerful because it can contain far more complex logic. But a multi-statement function isn’t really a function at all. It’s a stored procedure. It’s wrapped up like a function, but behaves like a stored procedure. It would be completely unreasonable to expect that a stored procedure could be simplified down to recognise that not all the columns might be needed, but yet this is part of the pain associated with this procedural function situation. The biggest clue that a multi-statement function is more like a stored procedure than a function is the “BEGIN” and “END” statements that surround the code. If you try to create a multi-statement function without these statements, you’ll get an error – they are very much required. When I used to present on this kind of thing, I even used to call it “The Dangers of BEGIN and END”, and yes, I’ve written about this type of thing before in a similarly-named post over at my old blog. Now how about scalar functions... Suppose we wanted a scalar function to return the count of these. CREATE FUNCTION dbo.FetchSales_scalar(@salespersonid int, @orderyear int) RETURNS int AS BEGIN     RETURN (         SELECT COUNT(*)         FROM Sales.SalesOrderHeader AS o         LEFT JOIN HumanResources.Employee AS e         ON e.EmployeeID = o.SalesPersonID         WHERE o.SalesPersonID = @salespersonid         AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')         AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101')     ); END ; GO Notice the evil words? They’re required. Try to remove them, you just get an error. That’s right – any scalar function is procedural, despite the fact that you wrap up a sub-query inside that RETURN statement. It’s as ugly as anything. Hopefully this will change in future versions. Let’s have a look at how this is reflected in an execution plan. Here’s a query, its Actual plan, and its Estimated plan: SELECT e.LoginID, y.year, dbo.FetchSales_scalar(p.SalesPersonID, y.year) AS NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID; We see here that the cost of the scalar function is about twice that of the outer query. Nicely, the query optimizer has worked out that it doesn’t need the Employee table, but that’s a bit of a red herring here. There’s actually something way more significant going on. If I look at the properties of that UDF operator, it tells me that the Estimated Subtree Cost is 0.337999. If I just run the query SELECT dbo.FetchSales_scalar(281,2003); we see that the UDF cost is still unchanged. You see, this 0.0337999 is the cost of running the scalar function ONCE. But when we ran that query with the CROSS JOIN in it, we returned quite a few rows. 68 in fact. Could’ve been a lot more, if we’d had more salespeople or more years. And so we come to the biggest problem. This procedure (I don’t want to call it a function) is getting called 68 times – each one between twice as expensive as the outer query. And because it’s calling it in a separate context, there is even more overhead that I haven’t considered here. The cheek of it, to say that the Compute Scalar operator here costs 0%! I know a number of IT projects that could’ve used that kind of costing method, but that’s another story that I’m not going to go into here. Let’s look at a better way. Suppose our scalar function had been implemented as an inline one. Then it could have been expanded out like a sub-query. It could’ve run something like this: SELECT e.LoginID, y.year, (SELECT COUNT(*)     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = p.SalesPersonID     AND o.OrderDate >= DATEADD(year,y.year-2000,'20000101')     AND o.OrderDate < DATEADD(year,y.year-2000+1,'20000101')     ) AS NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID; Don’t worry too much about the Scan of the SalesOrderHeader underneath a Nested Loop. If you remember from plenty of other posts on the matter, execution plans don’t push the data through. That Scan only runs once. The Index Spool sucks the data out of it and populates a structure that is used to feed the Stream Aggregate. The Index Spool operator gets called 68 times, but the Scan only once (the Number of Executions property demonstrates this). Here, the Query Optimizer has a full picture of what’s being asked, and can make the appropriate decision about how it accesses the data. It can simplify it down properly. To get this kind of behaviour from a function, we need it to be inline. But without inline scalar functions, we need to make our function be table-valued. Luckily, that’s ok. CREATE FUNCTION dbo.FetchSales_inline2(@salespersonid int, @orderyear int) RETURNS table AS RETURN (SELECT COUNT(*) as NumSales     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101') ); GO But we can’t use this as a scalar. Instead, we need to use it with the APPLY operator. SELECT e.LoginID, y.year, n.NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID OUTER APPLY dbo.FetchSales_inline2(p.SalesPersonID, y.year) AS n; And now, we get the plan that we want for this query. All we’ve done is tell the function that it’s returning a table instead of a single value, and removed the BEGIN and END statements. We’ve had to name the column being returned, but what we’ve gained is an actual inline simplifiable function. And if we wanted it to return multiple columns, it could do that too. I really consider this function to be superior to the scalar function in every way. It does need to be handled differently in the outer query, but in many ways it’s a more elegant method there too. The function calls can be put amongst the FROM clause, where they can then be used in the WHERE or GROUP BY clauses without fear of calling the function multiple times (another horrible side effect of functions). So please. If you see BEGIN and END in a function, remember it’s not really a function, it’s a procedure. And then fix it. @rob_farley

    Read the article

  • Why won't my AJAX controls work? (and ajax for .net 4 not working?)

    - by Nicklamort
    I'm totally new to ajax. I'm using VS2005. I just downloaded .NET framework 4 and so then I downloaded ajaxcontroltoolkit.binary.net4 via [http://ajaxcontroltoolkit.codeplex.com/releases/view/43475] (as opposed to ajaxcontroltoolkit.binary.net35 for .NET 3.5), but when I try to load the ajaxcontroltoolkit.dll into my toolbox (as said in the tutorials), I get the following error msg: "'C:......\ajaxcontroltoolkit.dll' is not a microsoft .NET module." First question: Why is this happening? So I tried downloading the "Recommended" ajaxcontroltoolkit.binary.net35, and it accepted the .dll file and loaded all my controls. So, I started a new website and tried to check out a combobox, and it displays, but IE is giving the follow error msg: 'Sys.Extended.UI.PositioningMode.BottomLeft' is null or not an object.' 2nd question: Why is this happening? LOL Thank you. <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default" %> <%@ Register Assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" Namespace="System.Web.UI" TagPrefix="asp" %> <%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit" TagPrefix="ajx" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" > <head runat="server"> <title>Untitled Page</title> </head> <body> <form id="form1" runat="server"> <div> <asp:ScriptManager runat="server"> </asp:ScriptManager> <ajx:ComboBox ID="ComboBox1" runat="server"> </ajx:ComboBox> </div> </form> </body> </html> Here is my web.config: <?xml version="1.0"?> <configuration> <configSections> <sectionGroup name="system.web.extensions" type="System.Web.Configuration.SystemWebExtensionsSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"> <sectionGroup name="scripting" type="System.Web.Configuration.ScriptingSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"> <section name="scriptResourceHandler" type="System.Web.Configuration.ScriptingScriptResourceHandlerSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" requirePermission="false" allowDefinition="MachineToApplication"/> <sectionGroup name="webServices" type="System.Web.Configuration.ScriptingWebServicesSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"> <section name="jsonSerialization" type="System.Web.Configuration.ScriptingJsonSerializationSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" requirePermission="false" allowDefinition="Everywhere"/> <section name="profileService" type="System.Web.Configuration.ScriptingProfileServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" requirePermission="false" allowDefinition="MachineToApplication"/> <section name="authenticationService" type="System.Web.Configuration.ScriptingAuthenticationServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" requirePermission="false" allowDefinition="MachineToApplication"/> </sectionGroup> </sectionGroup> </sectionGroup> </configSections> <appSettings/> <connectionStrings/> <system.web> <pages> <controls> <add tagPrefix="ajaxToolkit" namespace="AjaxControlToolkit" assembly="AjaxControlToolkit"/> <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"/> <add tagPrefix="asp" namespace="System.Web.UI.WebControls" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </controls> </pages> <compilation debug="true"> <assemblies> <add assembly="System.Design, Version=2.0.0.0, Culture=neutral, PublicKeyToken=B03F5F7F11D50A3A"/> <add assembly="System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Data.DataSetExtensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Xml.Linq, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Web.Extensions.Design, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add assembly="System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Data.Linq, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> </assemblies> </compilation> <httpHandlers> <remove verb="*" path="*.asmx"/> <add verb="*" path="*.asmx" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add verb="*" path="*_AppService.axd" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add verb="GET,HEAD" path="ScriptResource.axd" validate="false" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </httpHandlers> <httpModules> <add name="ScriptModule" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </httpModules> <authentication mode="Windows"/> </system.web> <system.webServer> <validation validateIntegratedModeConfiguration="false"/> <modules> <remove name="ScriptModule"/> <add name="ScriptModule" preCondition="managedHandler" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </modules> <handlers> <remove name="WebServiceHandlerFactory-Integrated"/> <remove name="ScriptHandlerFactory"/> <remove name="ScriptHandlerFactoryAppServices"/> <remove name="ScriptResource"/> <add name="ScriptHandlerFactory" verb="*" path="*.asmx" preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add name="ScriptHandlerFactoryAppServices" verb="*" path="*_AppService.axd" preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add name="ScriptResource" verb="GET,HEAD" path="ScriptResource.axd" preCondition="integratedMode" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </handlers> </system.webServer> </configuration>

    Read the article

  • Making TeamCity integrate the Subversion build number into the assembly version.

    - by Lasse V. Karlsen
    I want to adjust the output from my TeamCity build configuration of my class library so that the produced dll files have the following version number: 3.5.0.x, where x is the subversion revision number that TeamCity has picked up. I've found that I can use the BUILD_NUMBER environment variable to get x, but unfortunately I don't understand what else I need to do. The "tutorials" I find all say "You just add this to the script", but they don't say which script, and "this" is usually referring to the AssemblyInfo task from the MSBuild Community Extensions. Do I need to build a custom MSBuild script somehow to use this? Is the "script" the same as either the solution file or the C# project file? I don't know much about the MSBuild process at all, except that I can pass a solution file directly to MSBuild, but what I need to add to "the script" is XML, and the solution file decidedly does not look like XML. So, can anyone point me to a step-by-step guide on how to make this work? This is what I ended up with: Install the MSBuild Community Tasks Edit the .csproj file of my core class library, and change the bottom so that it reads: <Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" /> <Import Project="$(MSBuildExtensionsPath)\MSBuildCommunityTasks\MSBuild.Community.Tasks.Targets" /> <Target Name="BeforeBuild"> <AssemblyInfo Condition=" '$(BUILD_NUMBER)' != '' " CodeLanguage="CS" OutputFile="$(MSBuildProjectDirectory)\..\GlobalInfo.cs" AssemblyVersion="3.5.0.0" AssemblyFileVersion="$(BUILD_NUMBER)" /> </Target> <Target Name="AfterBuild"> Change all my AssemblyInfo.cs files so that they don't specify either AssemblyVersion or AssemblyFileVersion (in retrospect, I'll look into putting AssemblyVersion back) Added a link to the now global GlobalInfo.cs that is located just outside all the project Make sure this file is built once, so that I have a default file in source control This will now update GlobalInfo.cs only if the environment variable BUILD_NUMBER is set, which it is when I build through TeamCity. I opted for keeping AssemblyVersion constant, so that references still work, and only update AssemblyFileVersion, so that I can see which build a dll is from.

    Read the article

  • An easy way to create Side by Side registrationless COM Manifests with Visual Studio

    - by Rick Strahl
    Here's something I didn't find out until today: You can use Visual Studio to easily create registrationless COM manifest files for you with just a couple of small steps. Registrationless COM lets you use COM component without them being registered in the registry. This means it's possible to deploy COM components along with another application using plain xcopy semantics. To be sure it's rarely quite that easy - you need to watch out for dependencies - but if you know you have COM components that are light weight and have no or known dependencies it's easy to get everything into a single folder and off you go. Registrationless COM works via manifest files which carry the same name as the executable plus a .manifest extension (ie. yourapp.exe.manifest) I'm going to use a Visual FoxPro COM object as an example and create a simple Windows Forms app that calls the component - without that component being registered. Let's take a walk down memory lane… Create a COM Component I start by creating a FoxPro COM component because that's what I know and am working with here in my legacy environment. You can use VB classic or C++ ATL object if that's more to your liking. Here's a real simple Fox one: DEFINE CLASS SimpleServer as Session OLEPUBLIC FUNCTION HelloWorld(lcName) RETURN "Hello " + lcName ENDDEFINE Compile it into a DLL COM component with: BUILD MTDLL simpleserver FROM simpleserver RECOMPILE And to make sure it works test it quickly from Visual FoxPro: server = CREATEOBJECT("simpleServer.simpleserver") MESSAGEBOX( server.HelloWorld("Rick") ) Using Visual Studio to create a Manifest File for a COM Component Next open Visual Studio and create a new executable project - a Console App or WinForms or WPF application will all do. Go to the References Node Select Add Reference Use the Browse tab and find your compiled DLL to import  Next you'll see your assembly in the project. Right click on the reference and select Properties Click on the Isolated DropDown and select True Compile and that's all there's to it. Visual Studio will create a App.exe.manifest file right alongside your application's EXE. The manifest file created looks like this: xml version="1.0" encoding="utf-8"? assembly xsi:schemaLocation="urn:schemas-microsoft-com:asm.v1 assembly.adaptive.xsd" manifestVersion="1.0" xmlns:asmv1="urn:schemas-microsoft-com:asm.v1" xmlns:asmv2="urn:schemas-microsoft-com:asm.v2" xmlns:asmv3="urn:schemas-microsoft-com:asm.v3" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:co.v1="urn:schemas-microsoft-com:clickonce.v1" xmlns:co.v2="urn:schemas-microsoft-com:clickonce.v2" xmlns="urn:schemas-microsoft-com:asm.v1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" assemblyIdentity name="App.exe" version="1.0.0.0" processorArchitecture="x86" type="win32" / file name="simpleserver.DLL" asmv2:size="27293" hash xmlns="urn:schemas-microsoft-com:asm.v2" dsig:Transforms dsig:Transform Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" / dsig:Transforms dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" / dsig:DigestValuepuq+ua20bbidGOWhPOxfquztBCU=dsig:DigestValue hash typelib tlbid="{f10346e2-c9d9-47f7-81d1-74059cc15c3c}" version="1.0" helpdir="" resourceid="0" flags="HASDISKIMAGE" / comClass clsid="{af2c2811-0657-4264-a1f5-06d033a969ff}" threadingModel="Apartment" tlbid="{f10346e2-c9d9-47f7-81d1-74059cc15c3c}" progid="simpleserver.SimpleServer" description="simpleserver.SimpleServer" / file assembly Now let's finish our super complex console app to test with: using System; using System.Collections.Generic; using System.Text; namespace ConsoleApplication1 {     class Program     {         static voidMain(string[] args)         { Type type = Type.GetTypeFromProgID("simpleserver.simpleserver",true); dynamic server = Activator.CreateInstance(type); Console.WriteLine(server.HelloWorld("rick")); Console.ReadLine(); } } } Now run the Console Application… As expected that should work. And why not? The COM component is still registered, right? :-) Nothing tricky about that. Let's unregister the COM component and then re-run and see what happens. Go to the Command Prompt Change to the folder where the DLL is installed Unregister with: RegSvr32 -u simpleserver.dll      To be sure that the COM component no longer works, check it out with the same test you used earlier (ie. o = CREATEOBJECT("SimpleServer.SimpleServer") in your development environment or VBScript etc.). Make sure you run the EXE and you don't re-compile the application or else Visual Studio will complain that it can't find the COM component in the registry while compiling. In fact now that we have our .manifest file you can remove the COM object from the project. When you run run the EXE from Windows Explorer or a command prompt to avoid the recompile. Watch out for embedded Manifest Files Now recompile your .NET project and run it… and it will most likely fail! The problem is that .NET applications by default embeds a manifest file into the compiled EXE application which results in the externally created manifest file being completely ignored. Only one manifest can be applied at a time and the compiled manifest takes precedency. Uh, thanks Visual Studio - not very helpful… Note that if you use another development tool like Visual FoxPro to create your EXE this won't be an issue as long as the tool doesn't automatically add a manifest file. Creating a Visual FoxPro EXE for example will work immediately with the generated manifest file as is. If you are using .NET and Visual Studio you have a couple of options of getting around this: Remove the embedded manifest file Copy the contents of the generated manifest file into a project manifest file and compile that in To remove an embedded manifest in a Visual Studio project: Open the Project Properties (Alt-Enter on project node) Go down to Resources | Manifest and select | Create Application without a Manifest   You can now add use the external manifest file and it will actually be respected when the app runs. The other option is to let Visual Studio create the manifest file on disk and then explicitly add the manifest file into the project. Notice on the dialog above I did this for app.exe.manifest and the manifest actually shows up in the list. If I select this file it will be compiled into the EXE and be used in lieu of any external files and that works as well. Remove the simpleserver.dll reference so you can compile your code and run the application. Now it should work without COM registration of the component. Personally I prefer external manifests because they can be modified after the fact - compiled manifests are evil in my mind because they are immutable - once they are there they can't be overriden or changed. So I prefer an external manifest. However, if you are absolutely sure nothing needs to change and you don't want anybody messing with your manifest, you can also embed it. The option to either is there. Watch for Manifest Caching While working trying to get this to work I ran into some problems at first. Specifically when it wasn't working at first (due to the embedded schema) I played with various different manifest layouts in different files etc.. There are a number of different ways to actually represent manifest files including offloading to separate folder (more on that later). A few times I made deliberate errors in the schema file and I found that regardless of what I did once the app failed or worked no amount of changing of the manifest file would make it behave differently. It appears that Windows is caching the manifest data for a given EXE or DLL. It takes a restart or a recompile of either the EXE or the DLL to clear the caching. Recompile your servers in order to see manifest changes unless there's an outright failure of an invalid manifest file. If the app starts the manifest is being read and caches immediately. This can be very confusing especially if you don't know that it's happening. I found myself always recompiling the exe after each run and before making any changes to the manifest file. Don't forget about Runtimes of COM Objects In the example I used above I used a Visual FoxPro COM component. Visual FoxPro is a runtime based environment so if I'm going to distribute an application that uses a FoxPro COM object the runtimes need to be distributed as well. The same is true of classic Visual Basic applications. Assuming that you don't know whether the runtimes are installed on the target machines make sure to install all the additional files in the EXE's directory alongside the COM DLL. In the case of Visual FoxPro the target folder should contain: The EXE  App.exe The Manifest file (unless it's compiled in) App.exe.manifest The COM object DLL (simpleserver.dll) Visual FoxPro Runtimes: VFP9t.dll (or VFP9r.dll for non-multithreaded dlls), vfp9rENU.dll, msvcr71.dll All these files should be in the same folder. Debugging Manifest load Errors If you for some reason get your manifest loading wrong there are a couple of useful tools available - SxSTrace and SxSParse. These two tools can be a huge help in debugging manifest loading errors. Put the following into a batch file (SxS_Trace.bat for example): sxstrace Trace -logfile:sxs.bin sxstrace Parse -logfile:sxs.bin -outfile:sxs.txt Then start the batch file before running your EXE. Make sure there's no caching happening as described in the previous section. For example, if I go into the manifest file and explicitly break the CLSID and/or ProgID I get a detailed report on where the EXE is looking for the manifest and what it's reading. Eventually the trace gives me an error like this: INFO: Parsing Manifest File C:\wwapps\Conf\SideBySide\Code\app.EXE.     INFO: Manifest Definition Identity is App.exe,processorArchitecture="x86",type="win32",version="1.0.0.0".     ERROR: Line 13: The value {AAaf2c2811-0657-4264-a1f5-06d033a969ff} of attribute clsid in element comClass is invalid. ERROR: Activation Context generation failed. End Activation Context Generation. pinpointing nicely where the error lies. Pay special attention to the various attributes - they have to match exactly in the different sections of the manifest file(s). Multiple COM Objects The manifest file that Visual Studio creates is actually quite more complex than is required for basic registrationless COM object invokation. The manifest file can be simplified a lot actually by stripping off various namespaces and removing the type library references altogether. Here's an example of a simplified manifest file that actually includes references to 2 COM servers: xml version="1.0" encoding="utf-8"? assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0" assemblyIdentity name="App.exe" version="1.0.0.0" processorArchitecture="x86" type="win32" / file name="simpleserver.DLL" comClass clsid="{af2c2811-0657-4264-a1f5-06d033a969ff}" threadingModel="Apartment" progid="simpleserver.SimpleServer" description="simpleserver.SimpleServer" / file file name = "sidebysidedeploy.dll" comClass clsid="{EF82B819-7963-4C36-9443-3978CD94F57C}" progid="sidebysidedeploy.SidebysidedeployServer" description="SidebySideDeploy Server" threadingModel="apartment" / file assembly Simple enough right? Routing to separate Manifest Files and Folders In the examples above all files ended up in the application's root folder - all the DLLs, support files and runtimes. Sometimes that's not so desirable and you can actually create separate manifest files. The easiest way to do this is to create a manifest file that 'routes' to another manifest file in a separate folder. Basically you create a new 'assembly identity' via a named id. You can then create a folder and another manifest with the id plus .manifest that points at the actual file. In this example I create: App.exe.manifest A folder called App.deploy A manifest file in App.deploy All DLLs and runtimes in App.deploy Let's start with that master manifest file. This file only holds a reference to another manifest file: App.exe.manifest xml version="1.0" encoding="UTF-8" standalone="yes"? assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0" assemblyIdentity name="App.exe" version="1.0.0.0" processorArchitecture="x86" type="win32" / dependency dependentAssembly assemblyIdentity name="App.deploy" version="1.0.0.0" type="win32" / dependentAssembly dependency assembly   Note this file only contains a dependency to App.deploy which is another manifest id. I can then create App.deploy.manifest in the current folder or in an App.deploy folder. In this case I'll create App.deploy and in it copy the DLLs and support runtimes. I then create App.deploy.manifest. App.deploy.manifest xml version="1.0" encoding="UTF-8" standalone="yes"? assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0" assemblyIdentity name="App.deploy" type="win32" version="1.0.0.0" / file name="simpleserver.DLL" comClass clsid="{af2c2811-0657-4264-a1f5-06d033a969ff}" threadingModel="Apartment" progid="simpleserver.SimpleServer" description="simpleserver.SimpleServer" / file file name="sidebysidedeploy.dll" comClass clsid="{EF82B819-7963-4C36-9443-3978CD94F57C}" threadingModel="Apartment" progid="sidebysidedeploy.SidebysidedeployServer" description="SidebySideDeploy Server" / file assembly   In this manifest file I then host my COM DLLs and any support runtimes. This is quite useful if you have lots of DLLs you are referencing or if you need to have separate configuration and application files that are associated with the COM object. This way the operation of your main application and the COM objects it interacts with is somewhat separated. You can see the two folders here:   Routing Manifests to different Folders In theory registrationless COM should be pretty easy in painless - you've seen the configuration manifest files and it certainly doesn't look very complicated, right? But the devil's in the details. The ActivationContext API (SxS - side by side activation) is very intolerant of small errors in the XML or formatting of the keys, so be really careful when setting up components, especially if you are manually editing these files. If you do run into trouble SxsTrace/SxsParse are a huge help to track down the problems. And remember that if you do have problems that you'll need to recompile your EXEs or DLLs for the SxS APIs to refresh themselves properly. All of this gets even more fun if you want to do registrationless COM inside of IIS :-) But I'll leave that for another blog post…© Rick Strahl, West Wind Technologies, 2005-2011Posted in COM  .NET  FoxPro   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How do i specify wcf behaviorExtension class type without the assembly version number?

    - by Mr Bell
    I have a web app that uses a WCF service that utilizes a behaviorExtension like so: <behaviorExtensions> <add name="clientCredentialsExtension" type="Simon.Web.Giftcard.WCFSecurity.ClientCredentialsExtensionElement, Simon.Web.Giftcard, Version=1.0.3736.20411, Culture=neutral, PublicKeyToken=null"/> </behaviorExtensions> The problem is this web app's version changes with every compile (i think) and thus invalidating this entry. How can I avoid having to change the version number every time I compile this? Can I specify the extension in code somewhere?

    Read the article

  • UserAppDataPath in WPF

    - by psheriff
    In Windows Forms applications you were able to get to your user's roaming profile directory very easily using the Application.UserAppDataPath property. This folder allows you to store information for your program in a custom folder specifically for your program. The format of this directory looks like this: C:\Users\YOUR NAME\AppData\Roaming\COMPANY NAME\APPLICATION NAME\APPLICATION VERSION For example, on my Windows 7 64-bit system, this folder would look like this for a Windows Forms Application: C:\Users\PSheriff\AppData\Roaming\PDSA, Inc.\WindowsFormsApplication1\1.0.0.0 For some reason Microsoft did not expose this property from the Application object of WPF applications. I guess they think that we don't need this property in WPF? Well, sometimes we still do need to get at this folder. You have two choices on how to retrieve this property. Add a reference to the System.Windows.Forms.dll to your WPF application and use this property directly. Or, you can write your own method to build the same path. If you add a reference to the System.Windows.Forms.dll you will need to use System.Windows.Forms.Application.UserAppDataPath to access this property. Create a GetUserAppDataPath Method in WPF If you want to build this path you can do so with just a few method calls in WPF using Reflection. The code below shows this fairly simple method to retrieve the same folder as shown above. C#using System.Reflection; public string GetUserAppDataPath(){  string path = string.Empty;  Assembly assm;  Type at;  object[] r;   // Get the .EXE assembly  assm = Assembly.GetEntryAssembly();  // Get a 'Type' of the AssemblyCompanyAttribute  at = typeof(AssemblyCompanyAttribute);  // Get a collection of custom attributes from the .EXE assembly  r = assm.GetCustomAttributes(at, false);  // Get the Company Attribute  AssemblyCompanyAttribute ct =                 ((AssemblyCompanyAttribute)(r[0]));  // Build the User App Data Path  path = Environment.GetFolderPath(              Environment.SpecialFolder.ApplicationData);  path += @"\" + ct.Company;  path += @"\" + assm.GetName().Version.ToString();   return path;} Visual BasicPublic Function GetUserAppDataPath() As String  Dim path As String = String.Empty  Dim assm As Assembly  Dim at As Type  Dim r As Object()   ' Get the .EXE assembly  assm = Assembly.GetEntryAssembly()  ' Get a 'Type' of the AssemblyCompanyAttribute  at = GetType(AssemblyCompanyAttribute)  ' Get a collection of custom attributes from the .EXE assembly  r = assm.GetCustomAttributes(at, False)  ' Get the Company Attribute  Dim ct As AssemblyCompanyAttribute = _                 DirectCast(r(0), AssemblyCompanyAttribute)  ' Build the User App Data Path  path = Environment.GetFolderPath( _                 Environment.SpecialFolder.ApplicationData)  path &= "\" & ct.Company  path &= "\" & assm.GetName().Version.ToString()   Return pathEnd Function Summary Getting the User Application Data Path folder in WPF is fairly simple with just a few method calls using Reflection. Of course, there is absolutely no reason you cannot just add a reference to the System.Windows.Forms.dll to your WPF application and use that Application object. After all, System.Windows.Forms.dll is a part of the .NET Framework and can be used from WPF with no issues at all. NOTE: Visit http://www.pdsa.com/downloads to get more tips and tricks like this one. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **We frequently offer a FREE gift for readers of my blog. Visit http://www.pdsa.com/Event/Blog for your FREE gift!

    Read the article

  • New Location for .NET 4 GAC

    - by Ricardo Peres
    .NET 4 newcomers may have realised that the old GAC location (%WINDIR%\Assembly) does not contain .NET 4 global assembly cache assemblies. Indeed, they have moved to %WINDIR%\Microsoft.NET\Assembly. It is worth noting that this folder does not use the shell extension that the older one uses, which prevents us from directly looking at the folder's contents, which, IMO, is nice (I mean, the new behavior). The old folder continues to host pre-.NET 4 assemblies.

    Read the article

  • What does * address(found in printf) mean in assembly?

    - by Mask
    Disassembling printf doesn't give much info: (gdb) disas printf Dump of assembler code for function printf: 0x00401b38 <printf+0>: jmp *0x405130 0x00401b3e <printf+6>: nop 0x00401b3f <printf+7>: nop End of assembler dump. (gdb) disas 0x405130 Dump of assembler code for function _imp__printf: 0x00405130 <_imp__printf+0>: je 0x405184 <_imp__vfprintf+76> 0x00405132 <_imp__printf+2>: add %al,(%eax) How is it implemented under the hood? Why disassembling doesn't help? What does * mean before 0x405130?

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • Best C# database communication technique

    - by user65439
    A few days ago I read a reply to a question where people said that the days of writing queries within your c# code are long gone. I'm not sure what the specific person meant with the comment but it got me thinking. At the company I'm currently working at we maintain an assembly containing all the queries to the database (let's call it Queries), this assembly is reference by a QueryService (Retrieve the correct queries) assembly which in turn is referenced by a UnitOfWork assembly (The database connector classes, we have different connector classes for SQL, MySQL etc.). We use these three assemblies to perform operations on our database and all queries/commands are written in our C# code. Is there a better way to communicate with the database and is there a better way to communicate with different database types?

    Read the article

  • Why cant partial methods be public if the implementation is in the same assembly?

    - by Simon
    According to this http://msdn.microsoft.com/en-us/library/wa80x488.aspx "Partial methods are implicitly private" So you can have this // Definition in file1.cs partial void Method1(); // Implementation in file2.cs partial void Method1() { // method body } But you cant have this // Definition in file1.cs public partial void Method1(); // Implementation in file2.cs public partial void Method1() { // method body } But why is this? Is there some reason the compiler cant handle public partial methods?

    Read the article

  • adding custom SSIS transformation to visual studio toolbox fails

    - by ryangaraygay
    Just very recently I encountered an issue in deploying a custom SSIS component assembly which turns out to be a relative "no-brainer" error if only the clues were more straightforward. Basically after deploying the assembly I could not find my component listed in the "SSIS Data Flow Items" tab list.It turns out that the assembly containing the component just had missing or referenced the incorrect assemblies.I have outlined the steps I took that guided me on the right direction on this blog post of mine : adding custom SSIS transformation to visual studio toolbox fails 

    Read the article

  • Oracle makes Virtualized Java Applications Practical. Announces Brand New Products

    - by blake.connell
    New Oracle Virtual Assembly Builder and Oracle WebLogic Suite Virtualization Option make running Java applications in a virtual environments easy and practical. • Oracle Virtual Assembly Builder is a new product designed to help organizations quickly and easily deploy multi-tier enterprise applications in virtualized environments. It enables administrators to quickly configure and provision these applications. • Oracle WebLogic Suite Virtualization Option delivers Oracle WebLogic Server on Oracle JRockit Virtual Edition delivering 'near-native' performance and increased server density. • Oracle WebLogic Server on Oracle JRockit Virtual Edition runs directly on Oracle VM without a guest operating system, a unique capability resulting in better performance and more application server runtime per system. Oracle WebLogic Suite Virtualization Option and Oracle Virtual Assembly Builder can drive operational efficiency and agility. Customers can dynamically scale up/down the underlying software infrastructure and applications with ease through software automation. Register for a live webinar with Oracle product experts Read the press release For more product information: Oracle Virtual Assembly Builder Oracle WebLogic Suite Virtualization Option

    Read the article

< Previous Page | 57 58 59 60 61 62 63 64 65 66 67 68  | Next Page >