Search Results

Search found 10863 results on 435 pages for 'no refunds no returns'.

Page 61/435 | < Previous Page | 57 58 59 60 61 62 63 64 65 66 67 68  | Next Page >

  • Control XML serialization of Dictionary<K, T>

    - by Luca
    I'm investigating about XML serialization, and since I use lot of dictionary, I would like to serialize them as well. I found the following solution for that (I'm quite proud of it! :) ). [XmlInclude(typeof(Foo))] public class XmlDictionary<TKey, TValue> { /// <summary> /// Key/value pair. /// </summary> public struct DictionaryItem { /// <summary> /// Dictionary item key. /// </summary> public TKey Key; /// <summary> /// Dictionary item value. /// </summary> public TValue Value; } /// <summary> /// Dictionary items. /// </summary> public DictionaryItem[] Items { get { List<DictionaryItem> items = new List<DictionaryItem>(ItemsDictionary.Count); foreach (KeyValuePair<TKey, TValue> pair in ItemsDictionary) { DictionaryItem item; item.Key = pair.Key; item.Value = pair.Value; items.Add(item); } return (items.ToArray()); } set { ItemsDictionary = new Dictionary<TKey,TValue>(); foreach (DictionaryItem item in value) ItemsDictionary.Add(item.Key, item.Value); } } /// <summary> /// Indexer base on dictionary key. /// </summary> /// <param name="key"></param> /// <returns></returns> public TValue this[TKey key] { get { return (ItemsDictionary[key]); } set { Debug.Assert(value != null); ItemsDictionary[key] = value; } } /// <summary> /// Delegate for get key from a dictionary value. /// </summary> /// <param name="value"></param> /// <returns></returns> public delegate TKey GetItemKeyDelegate(TValue value); /// <summary> /// Add a range of values automatically determining the associated keys. /// </summary> /// <param name="values"></param> /// <param name="keygen"></param> public void AddRange(IEnumerable<TValue> values, GetItemKeyDelegate keygen) { foreach (TValue v in values) ItemsDictionary.Add(keygen(v), v); } /// <summary> /// Items dictionary. /// </summary> [XmlIgnore] public Dictionary<TKey, TValue> ItemsDictionary = new Dictionary<TKey,TValue>(); } The classes deriving from this class are serialized in the following way: <FooDictionary xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <Items> <DictionaryItemOfInt32Foo> <Key/> <Value/> </DictionaryItemOfInt32XmlProcess> <Items> This give me a good solution, but: How can I control the name of the element DictionaryItemOfInt32Foo What happens if I define a Dictionary<FooInt32, Int32> and I have the classes Foo and FooInt32? Is it possible to optimize the class above? THank you very much!

    Read the article

  • Control XML serialization of generic types

    - by Luca
    I'm investigating about XML serialization, and since I use lot of dictionary, I would like to serialize them as well. I found the following solution for that (I'm quite proud of it! :) ). [XmlInclude(typeof(Foo))] public class XmlDictionary<TKey, TValue> { /// <summary> /// Key/value pair. /// </summary> public struct DictionaryItem { /// <summary> /// Dictionary item key. /// </summary> public TKey Key; /// <summary> /// Dictionary item value. /// </summary> public TValue Value; } /// <summary> /// Dictionary items. /// </summary> public DictionaryItem[] Items { get { List<DictionaryItem> items = new List<DictionaryItem>(ItemsDictionary.Count); foreach (KeyValuePair<TKey, TValue> pair in ItemsDictionary) { DictionaryItem item; item.Key = pair.Key; item.Value = pair.Value; items.Add(item); } return (items.ToArray()); } set { ItemsDictionary = new Dictionary<TKey,TValue>(); foreach (DictionaryItem item in value) ItemsDictionary.Add(item.Key, item.Value); } } /// <summary> /// Indexer base on dictionary key. /// </summary> /// <param name="key"></param> /// <returns></returns> public TValue this[TKey key] { get { return (ItemsDictionary[key]); } set { Debug.Assert(value != null); ItemsDictionary[key] = value; } } /// <summary> /// Delegate for get key from a dictionary value. /// </summary> /// <param name="value"></param> /// <returns></returns> public delegate TKey GetItemKeyDelegate(TValue value); /// <summary> /// Add a range of values automatically determining the associated keys. /// </summary> /// <param name="values"></param> /// <param name="keygen"></param> public void AddRange(IEnumerable<TValue> values, GetItemKeyDelegate keygen) { foreach (TValue v in values) ItemsDictionary.Add(keygen(v), v); } /// <summary> /// Items dictionary. /// </summary> [XmlIgnore] public Dictionary<TKey, TValue> ItemsDictionary = new Dictionary<TKey,TValue>(); } The classes deriving from this class are serialized in the following way: <XmlProcessList xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <Items> <DictionaryItemOfInt32Foo> <Key/> <Value/> </DictionaryItemOfInt32XmlProcess> <Items> This give me a good solution, but: How can I control the name of the element DictionaryItemOfInt32Foo What happens if I define a Dictionary<FooInt32, Int32> and I have the classes Foo and FooInt32? Is it possible to optimize the class above? THank you very much!

    Read the article

  • How to determine if CNF formula is satisfiable in Scheme?

    - by JJBIRAN
    Program a SCHEME function sat that takes one argument, a CNF formula represented as above. If we had evaluated (define cnf '((a (not b) c) (a (not b) (not d)) (b d))) then evaluating (sat cnf) would return #t, whereas (sat '((a) (not a))) would return (). You should have following two functions to work: (define comp (lambda (lit) ; This function takes a literal as argument and returns the complement literal as the returning value. Examples: (comp 'a) = (not a), and (comp '(not b)) = b. (define consistent (lambda (lit path) This function takes a literal and a list of literals as arguments, and returns #t whenever the complement of the first argument is not a member of the list represented by the 2nd argument; () otherwise. . Now for the sat function. The real searching involves the list of clauses (the CNF formula) and the path that has currently been developed. The sat function should merely invoke the real "workhorse" function, which will have 2 arguments, the current path and the clause list. In the initial call, the current path is of course empty. Hints on sat. (Ignore these at your own risk!) (define sat (lambda (clauselist) ; invoke satpath (define satpath (lambda (path clauselist) ; just returns #t or () ; base cases: ; if we're out of clauses, what then? ; if there are no literals to choose in the 1st clause, what then? ; ; then in general: ; if the 1st literal in the 1st clause is consistent with the ; current path, and if << returns #t, ; then return #t. ; ; if the 1st literal didn't work, then search << ; the CNF formula in which the 1st clause doesn't have that literal Don't make this too hard. My program is a few functions averaging about 2-8 lines each. SCHEME is consise and elegant! The following expressions may help you to test your programs. All but cnf4 are satisfiable. By including them along with your function definitions, the functions themselves are automatically tested and results displayed when the file is loaded. (define cnf1 '((a b c) (c d) (e)) ) (define cnf2 '((a c) (c))) (define cnf3 '((d e) (a))) (define cnf4 '( (a b) (a (not b)) ((not a) b) ((not a) (not b)) ) ) (define cnf5 '((d a) (d b c) ((not a) (not d)) (e (not d)) ((not b)) ((not d) (not e)))) (define cnf6 '((d a) (d b c) ((not a) (not d) (not c)) (e (not c)) ((not b)) ((not d) (not e)))) (write-string "(sat cnf1) ") (write (sat cnf1)) (newline) (write-string "(sat cnf2) ") (write (sat cnf2)) (newline) (write-string "(sat cnf3) ") (write (sat cnf3)) (newline) (write-string "(sat cnf4) ") (write (sat cnf4)) (newline) (write-string "(sat cnf5) ") (write (sat cnf5)) (newline)

    Read the article

  • antlr line after line processing

    - by pawloch
    I'm writing simple language in ANTLR, and I'd like to write shell where I can put line of code, hit ENTER and have it executed, enter another line, and have it executed. I have already written grammar which execute all alines of input at one. Example input: int a,b,c; string d; string e; d=\"dziala\"; a=4+7; b=a+33; c=(b/11)*2; grammar Kalkulator; options { language = Java; output=AST; ASTLabelType=CommonTree; } tokens { NEG; } @header { package lab4; } @lexer::header { package lab4; } line : (assignment | declaration)* EOF ; declaration : type^ IDENT (','! IDENT)* ';'! ; type : 'int' | 'string' ; assignment : IDENT '='^ expression ';'! ; term : IDENT | INTEGER | STRING_LITERAL | '('! expression ')'! ; unary : (( negation^ | '+'! ))* term ; negation : '-' -> NEG ; mult : unary ( ('*'^ | '/'^) unary )* ; exp2 :mult ( ('-'^ | '+'^) mult)* ; expression : exp2 ('&'^ exp2)* ; fragment LETTER : ('a'..'z'|'A'..'Z'); fragment DIGIT : '0'..'9'; INTEGER : DIGIT+; IDENT : LETTER (LETTER | DIGIT)* ; WS : (' ' | '\t' | '\n' | '\r' | '\f')+ {$channel=HIDDEN;}; STRING_LITERAL : '\"' .* '\"'; and: tree grammar Evaluator; options { language = Java; tokenVocab = Kalkulator; ASTLabelType = CommonTree; } @header { package lab4; import java.util.Map; import java.util.HashMap; } @members { private Map<String, Object> zmienne = new HashMap<String, Object>(); } line returns [Object result] : (declaration | assignment { result = $assignment.result; })* EOF ; declaration : ^(type ( IDENT { if("string".equals($type.result)){ zmienne.put($IDENT.text,""); //add definition } else{ zmienne.put($IDENT.text,0); //add definition } System.out.println($type.result + " " + $IDENT.text);//write output } )* ) ; assignment returns [Object result] : ^('=' IDENT e=expression) { if(zmienne.containsKey($IDENT.text)) {zmienne.put($IDENT.text, e); result = e; System.out.println(e); } else{ System.out.println("Blad: Niezadeklarowana zmienna"); } } ; type returns [Object result] : 'int' {result="int";}| 'string' {result="string";} ; expression returns [Object result] : ^('+' op1=expression op2=expression) { result = (Integer)op1 + (Integer)op2; } | ^('-' op1=expression op2=expression) { result = (Integer)op1 - (Integer)op2; } | ^('*' op1=expression op2=expression) { result = (Integer)op1 * (Integer)op2; } | ^('/' op1=expression op2=expression) { result = (Integer)op1 / (Integer)op2; } | ^('%' op1=expression op2=expression) { result = (Integer)op1 \% (Integer)op2; } | ^('&' op1=expression op2=expression) { result = (String)op1 + (String)op2; } | ^(NEG e=expression) { result = -(Integer)e; } | IDENT { result = zmienne.get($IDENT.text); } | INTEGER { result = Integer.parseInt($INTEGER.text); } | STRING_LITERAL { String t=$STRING_LITERAL.text; result = t.substring(1,t.length()-1); } ; Can I make it process line-by-line or is that easier to make it all again?

    Read the article

  • C++ scoping error

    - by Pat Murray
    I have the following code: #include "Student.h" #include "SortedList.h" using namespace std; int main() { // points to the sorted list object SortedList *list = new SortedList; //This is line 17 // array to hold 100 student objects Student create[100]; int num = 100000; // holds different ID numbers // fills an array with 100 students of various ID numbers for (Student &x : create) { x = new Student(num); num += 100; } // insert all students into the sorted list for (Student &x : create) list->insert(&x); delete list; return 0; } And I keep getting the compile time error: main.cpp: In function ‘int main()’: main.cpp:17: error: ‘SortedList’ was not declared in this scope main.cpp:17: error: ‘list’ was not declared in this scope main.cpp:17: error: expected type-specifier before ‘SortedList’ main.cpp:17: error: expected `;' before ‘SortedList’ main.cpp:20: error: ‘Student’ was not declared in this scope main.cpp:20: error: expected primary-expression before ‘]’ token main.cpp:20: error: expected `;' before ‘create’ main.cpp:25: error: expected `;' before ‘x’ main.cpp:31: error: expected primary-expression before ‘for’ main.cpp:31: error: expected `;' before ‘for’ main.cpp:31: error: expected primary-expression before ‘for’ main.cpp:31: error: expected `)' before ‘for’ main.cpp:31: error: expected `;' before ‘x’ main.cpp:34: error: type ‘<type error>’ argument given to ‘delete’, expected pointer main.cpp:35: error: expected primary-expression before ‘return’ main.cpp:35: error: expected `)' before ‘return’ My Student.cpp and SortedList.cpp files compile just fine. They both also include .h files. I just do not understand why I get an error on that line. It seems to be a small issue though. Any insight would be appreciated. UPDATE1: I originally had .h files included, but i changed it when trying to figure out the cause of the error. The error remains with the .h files included though. UPDATE2: SortedList.h #ifndef SORTEDLIST_H #define SORTEDLIST_H #include "Student.h" /* * SortedList class * * A SortedList is an ordered collection of Students. The Students are ordered * from lowest numbered student ID to highest numbered student ID. */ class SortedList { public: SortedList(); // Constructs an empty list. SortedList(const SortedList & l); // Constructs a copy of the given student object ~SortedList(); // Destructs the sorted list object const SortedList & operator=(const SortedList & l); // Defines the assignment operator between two sorted list objects bool insert(Student *s); // If a student with the same ID is not already in the list, inserts // the given student into the list in the appropriate place and returns // true. If there is already a student in the list with the same ID // then the list is not changed and false is returned. Student *find(int studentID); // Searches the list for a student with the given student ID. If the // student is found, it is returned; if it is not found, NULL is returned. Student *remove(int studentID); // Searches the list for a student with the given student ID. If the // student is found, the student is removed from the list and returned; // if no student is found with the given ID, NULL is returned. // Note that the Student is NOT deleted - it is returned - however, // the removed list node should be deleted. void print() const; // Prints out the list of students to standard output. The students are // printed in order of student ID (from smallest to largest), one per line private: // Since Listnodes will only be used within the SortedList class, // we make it private. struct Listnode { Student *student; Listnode *next; }; Listnode *head; // pointer to first node in the list static void freeList(Listnode *L); // Traverses throught the linked list and deallocates each node static Listnode *copyList(Listnode *L); // Returns a pointer to the first node within a particular list }; #endif #ifndef STUDENT_H #define STUDENT_H Student.h #ifndef STUDENT_H #define STUDENT_H /* * Student class * * A Student object contains a student ID, the number of credits, and an * overall GPA. */ class Student { public: Student(); // Constructs a default student with an ID of 0, 0 credits, and 0.0 GPA. Student(int ID); // Constructs a student with the given ID, 0 credits, and 0.0 GPA. Student(int ID, int cr, double grPtAv); // Constructs a student with the given ID, number of credits, and GPA.\ Student(const Student & s); // Constructs a copy of another student object ~Student(); // Destructs a student object const Student & operator=(const Student & rhs); // Defines the assignment operator between two student objects // Accessors int getID() const; // returns the student ID int getCredits() const; // returns the number of credits double getGPA() const; // returns the GPA // Other methods void update(char grade, int cr); // Updates the total credits and overall GPA to take into account the // additions of the given letter grade in a course with the given number // of credits. The update is done by first converting the letter grade // into a numeric value (A = 4.0, B = 3.0, etc.). The new GPA is // calculated using the formula: // // (oldGPA * old_total_credits) + (numeric_grade * cr) // newGPA = --------------------------------------------------- // old_total_credits + cr // // Finally, the total credits is updated (to old_total_credits + cr) void print() const; // Prints out the student to standard output in the format: // ID,credits,GPA // Note: the end-of-line is NOT printed after the student information private: int studentID; int credits; double GPA; }; #endif

    Read the article

  • Using the West Wind Web Toolkit to set up AJAX and REST Services

    - by Rick Strahl
    I frequently get questions about which option to use for creating AJAX and REST backends for ASP.NET applications. There are many solutions out there to do this actually, but when I have a choice - not surprisingly - I fall back to my own tools in the West Wind West Wind Web Toolkit. I've talked a bunch about the 'in-the-box' solutions in the past so for a change in this post I'll talk about the tools that I use in my own and customer applications to handle AJAX and REST based access to service resources using the West Wind West Wind Web Toolkit. Let me preface this by saying that I like things to be easy. Yes flexible is very important as well but not at the expense of over-complexity. The goal I've had with my tools is make it drop dead easy, with good performance while providing the core features that I'm after, which are: Easy AJAX/JSON Callbacks Ability to return any kind of non JSON content (string, stream, byte[], images) Ability to work with both XML and JSON interchangeably for input/output Access endpoints via POST data, RPC JSON calls, GET QueryString values or Routing interface Easy to use generic JavaScript client to make RPC calls (same syntax, just what you need) Ability to create clean URLS with Routing Ability to use standard ASP.NET HTTP Stack for HTTP semantics It's all about options! In this post I'll demonstrate most of these features (except XML) in a few simple and short samples which you can download. So let's take a look and see how you can build an AJAX callback solution with the West Wind Web Toolkit. Installing the Toolkit Assemblies The easiest and leanest way of using the Toolkit in your Web project is to grab it via NuGet: West Wind Web and AJAX Utilities (Westwind.Web) and drop it into the project by right clicking in your Project and choosing Manage NuGet Packages from anywhere in the Project.   When done you end up with your project looking like this: What just happened? Nuget added two assemblies - Westwind.Web and Westwind.Utilities and the client ww.jquery.js library. It also added a couple of references into web.config: The default namespaces so they can be accessed in pages/views and a ScriptCompressionModule that the toolkit optionally uses to compress script resources served from within the assembly (namely ww.jquery.js and optionally jquery.js). Creating a new Service The West Wind Web Toolkit supports several ways of creating and accessing AJAX services, but for this post I'll stick to the lower level approach that works from any plain HTML page or of course MVC, WebForms, WebPages. There's also a WebForms specific control that makes this even easier but I'll leave that for another post. So, to create a new standalone AJAX/REST service we can create a new HttpHandler in the new project either as a pure class based handler or as a generic .ASHX handler. Both work equally well, but generic handlers don't require any web.config configuration so I'll use that here. In the root of the project add a Generic Handler. I'm going to call this one StockService.ashx. Once the handler has been created, edit the code and remove all of the handler body code. Then change the base class to CallbackHandler and add methods that have a [CallbackMethod] attribute. Here's the modified base handler implementation now looks like with an added HelloWorld method: using System; using Westwind.Web; namespace WestWindWebAjax { /// <summary> /// Handler implements CallbackHandler to provide REST/AJAX services /// </summary> public class SampleService : CallbackHandler { [CallbackMethod] public string HelloWorld(string name) { return "Hello " + name + ". Time is: " + DateTime.Now.ToString(); } } } Notice that the class inherits from CallbackHandler and that the HelloWorld service method is marked up with [CallbackMethod]. We're done here. Services Urlbased Syntax Once you compile, the 'service' is live can respond to requests. All CallbackHandlers support input in GET and POST formats, and can return results as JSON or XML. To check our fancy HelloWorld method we can now access the service like this: http://localhost/WestWindWebAjax/StockService.ashx?Method=HelloWorld&name=Rick which produces a default JSON response - in this case a string (wrapped in quotes as it's JSON): (note by default JSON will be downloaded by most browsers not displayed - various options are available to view JSON right in the browser) If I want to return the same data as XML I can tack on a &format=xml at the end of the querystring which produces: <string>Hello Rick. Time is: 11/1/2011 12:11:13 PM</string> Cleaner URLs with Routing Syntax If you want cleaner URLs for each operation you can also configure custom routes on a per URL basis similar to the way that WCF REST does. To do this you need to add a new RouteHandler to your application's startup code in global.asax.cs one for each CallbackHandler based service you create: protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); } With this code in place you can now add RouteUrl properties to any of your service methods. For the HelloWorld method that doesn't make a ton of sense but here is what a routed clean URL might look like in definition: [CallbackMethod(RouteUrl="stocks/HelloWorld/{name}")] public string HelloWorld(string name) { return "Hello " + name + ". Time is: " + DateTime.Now.ToString(); } The same URL I previously used now becomes a bit shorter and more readable with: http://localhost/WestWindWebAjax/HelloWorld/Rick It's an easy way to create cleaner URLs and still get the same functionality. Calling the Service with $.getJSON() Since the result produced is JSON you can now easily consume this data using jQuery's getJSON method. First we need a couple of scripts - jquery.js and ww.jquery.js in the page: <!DOCTYPE html> <html> <head> <link href="Css/Westwind.css" rel="stylesheet" type="text/css" /> <script src="scripts/jquery.min.js" type="text/javascript"></script> <script src="scripts/ww.jquery.min.js" type="text/javascript"></script> </head> <body> Next let's add a small HelloWorld example form (what else) that has a single textbox to type a name, a button and a div tag to receive the result: <fieldset> <legend>Hello World</legend> Please enter a name: <input type="text" name="txtHello" id="txtHello" value="" /> <input type="button" id="btnSayHello" value="Say Hello (POST)" /> <input type="button" id="btnSayHelloGet" value="Say Hello (GET)" /> <div id="divHelloMessage" class="errordisplay" style="display:none;width: 450px;" > </div> </fieldset> Then to call the HelloWorld method a little jQuery is used to hook the document startup and the button click followed by the $.getJSON call to retrieve the data from the server. <script type="text/javascript"> $(document).ready(function () { $("#btnSayHelloGet").click(function () { $.getJSON("SampleService.ashx", { Method: "HelloWorld", name: $("#txtHello").val() }, function (result) { $("#divHelloMessage") .text(result) .fadeIn(1000); }); });</script> .getJSON() expects a full URL to the endpoint of our service, which is the ASHX file. We can either provide a full URL (SampleService.ashx?Method=HelloWorld&name=Rick) or we can just provide the base URL and an object that encodes the query string parameters for us using an object map that has a property that matches each parameter for the server method. We can also use the clean URL routing syntax, but using the object parameter encoding actually is safer as the parameters will get properly encoded by jQuery. The result returned is whatever the result on the server method is - in this case a string. The string is applied to the divHelloMessage element and we're done. Obviously this is a trivial example, but it demonstrates the basics of getting a JSON response back to the browser. AJAX Post Syntax - using ajaxCallMethod() The previous example allows you basic control over the data that you send to the server via querystring parameters. This works OK for simple values like short strings, numbers and boolean values, but doesn't really work if you need to pass something more complex like an object or an array back up to the server. To handle traditional RPC type messaging where the idea is to map server side functions and results to a client side invokation, POST operations can be used. The easiest way to use this functionality is to use ww.jquery.js and the ajaxCallMethod() function. ww.jquery wraps jQuery's AJAX functions and knows implicitly how to call a CallbackServer method with parameters and parse the result. Let's look at another simple example that posts a simple value but returns something more interesting. Let's start with the service method: [CallbackMethod(RouteUrl="stocks/{symbol}")] public StockQuote GetStockQuote(string symbol) { Response.Cache.SetExpires(DateTime.UtcNow.Add(new TimeSpan(0, 2, 0))); StockServer server = new StockServer(); var quote = server.GetStockQuote(symbol); if (quote == null) throw new ApplicationException("Invalid Symbol passed."); return quote; } This sample utilizes a small StockServer helper class (included in the sample) that downloads a stock quote from Yahoo's financial site via plain HTTP GET requests and formats it into a StockQuote object. Lets create a small HTML block that lets us query for the quote and display it: <fieldset> <legend>Single Stock Quote</legend> Please enter a stock symbol: <input type="text" name="txtSymbol" id="txtSymbol" value="msft" /> <input type="button" id="btnStockQuote" value="Get Quote" /> <div id="divStockDisplay" class="errordisplay" style="display:none; width: 450px;"> <div class="label-left">Company:</div> <div id="stockCompany"></div> <div class="label-left">Last Price:</div> <div id="stockLastPrice"></div> <div class="label-left">Quote Time:</div> <div id="stockQuoteTime"></div> </div> </fieldset> The final result looks something like this:   Let's hook up the button handler to fire the request and fill in the data as shown: $("#btnStockQuote").click(function () { ajaxCallMethod("SampleService.ashx", "GetStockQuote", [$("#txtSymbol").val()], function (quote) { $("#divStockDisplay").show().fadeIn(1000); $("#stockCompany").text(quote.Company + " (" + quote.Symbol + ")"); $("#stockLastPrice").text(quote.LastPrice); $("#stockQuoteTime").text(quote.LastQuoteTime.formatDate("MMM dd, HH:mm EST")); }, onPageError); }); So we point at SampleService.ashx and the GetStockQuote method, passing a single parameter of the input symbol value. Then there are two handlers for success and failure callbacks.  The success handler is the interesting part - it receives the stock quote as a result and assigns its values to various 'holes' in the stock display elements. The data that comes back over the wire is JSON and it looks like this: { "Symbol":"MSFT", "Company":"Microsoft Corpora", "OpenPrice":26.11, "LastPrice":26.01, "NetChange":0.02, "LastQuoteTime":"2011-11-03T02:00:00Z", "LastQuoteTimeString":"Nov. 11, 2011 4:20pm" } which is an object representation of the data. JavaScript can evaluate this JSON string back into an object easily and that's the reslut that gets passed to the success function. The quote data is then applied to existing page content by manually selecting items and applying them. There are other ways to do this more elegantly like using templates, but here we're only interested in seeing how the data is returned. The data in the object is typed - LastPrice is a number and QuoteTime is a date. Note about the date value: JavaScript doesn't have a date literal although the JSON embedded ISO string format used above  ("2011-11-03T02:00:00Z") is becoming fairly standard for JSON serializers. However, JSON parsers don't deserialize dates by default and return them by string. This is why the StockQuote actually returns a string value of LastQuoteTimeString for the same date. ajaxMethodCallback always converts dates properly into 'real' dates and the example above uses the real date value along with a .formatDate() data extension (also in ww.jquery.js) to display the raw date properly. Errors and Exceptions So what happens if your code fails? For example if I pass an invalid stock symbol to the GetStockQuote() method you notice that the code does this: if (quote == null) throw new ApplicationException("Invalid Symbol passed."); CallbackHandler automatically pushes the exception message back to the client so it's easy to pick up the error message. Regardless of what kind of error occurs: Server side, client side, protocol errors - any error will fire the failure handler with an error object parameter. The error is returned to the client via a JSON response in the error callback. In the previous examples I called onPageError which is a generic routine in ww.jquery that displays a status message on the bottom of the screen. But of course you can also take over the error handling yourself: $("#btnStockQuote").click(function () { ajaxCallMethod("SampleService.ashx", "GetStockQuote", [$("#txtSymbol").val()], function (quote) { $("#divStockDisplay").fadeIn(1000); $("#stockCompany").text(quote.Company + " (" + quote.Symbol + ")"); $("#stockLastPrice").text(quote.LastPrice); $("#stockQuoteTime").text(quote.LastQuoteTime.formatDate("MMM dd, hh:mmt")); }, function (error, xhr) { $("#divErrorDisplay").text(error.message).fadeIn(1000); }); }); The error object has a isCallbackError, message and  stackTrace properties, the latter of which is only populated when running in Debug mode, and this object is returned for all errors: Client side, transport and server side errors. Regardless of which type of error you get the same object passed (as well as the XHR instance optionally) which makes for a consistent error retrieval mechanism. Specifying HttpVerbs You can also specify HTTP Verbs that are allowed using the AllowedHttpVerbs option on the CallbackMethod attribute: [CallbackMethod(AllowedHttpVerbs=HttpVerbs.GET | HttpVerbs.POST)] public string HelloWorld(string name) { … } If you're building REST style API's this might be useful to force certain request semantics onto the client calling. For the above if call with a non-allowed HttpVerb the request returns a 405 error response along with a JSON (or XML) error object result. The default behavior is to allow all verbs access (HttpVerbs.All). Passing in object Parameters Up to now the parameters I passed were very simple. But what if you need to send something more complex like an object or an array? Let's look at another example now that passes an object from the client to the server. Keeping with the Stock theme here lets add a method called BuyOrder that lets us buy some shares for a stock. Consider the following service method that receives an StockBuyOrder object as a parameter: [CallbackMethod] public string BuyStock(StockBuyOrder buyOrder) { var server = new StockServer(); var quote = server.GetStockQuote(buyOrder.Symbol); if (quote == null) throw new ApplicationException("Invalid or missing stock symbol."); return string.Format("You're buying {0} shares of {1} ({2}) stock at {3} for a total of {4} on {5}.", buyOrder.Quantity, quote.Company, quote.Symbol, quote.LastPrice.ToString("c"), (quote.LastPrice * buyOrder.Quantity).ToString("c"), buyOrder.BuyOn.ToString("MMM d")); } public class StockBuyOrder { public string Symbol { get; set; } public int Quantity { get; set; } public DateTime BuyOn { get; set; } public StockBuyOrder() { BuyOn = DateTime.Now; } } This is a contrived do-nothing example that simply echoes back what was passed in, but it demonstrates how you can pass complex data to a callback method. On the client side we now have a very simple form that captures the three values on a form: <fieldset> <legend>Post a Stock Buy Order</legend> Enter a symbol: <input type="text" name="txtBuySymbol" id="txtBuySymbol" value="GLD" />&nbsp;&nbsp; Qty: <input type="text" name="txtBuyQty" id="txtBuyQty" value="10" style="width: 50px" />&nbsp;&nbsp; Buy on: <input type="text" name="txtBuyOn" id="txtBuyOn" value="<%= DateTime.Now.ToString("d") %>" style="width: 70px;" /> <input type="button" id="btnBuyStock" value="Buy Stock" /> <div id="divStockBuyMessage" class="errordisplay" style="display:none"></div> </fieldset> The completed form and demo then looks something like this:   The client side code that picks up the input values and assigns them to object properties and sends the AJAX request looks like this: $("#btnBuyStock").click(function () { // create an object map that matches StockBuyOrder signature var buyOrder = { Symbol: $("#txtBuySymbol").val(), Quantity: $("#txtBuyQty").val() * 1, // number Entered: new Date() } ajaxCallMethod("SampleService.ashx", "BuyStock", [buyOrder], function (result) { $("#divStockBuyMessage").text(result).fadeIn(1000); }, onPageError); }); The code creates an object and attaches the properties that match the server side object passed to the BuyStock method. Each property that you want to update needs to be included and the type must match (ie. string, number, date in this case). Any missing properties will not be set but also not cause any errors. Pass POST data instead of Objects In the last example I collected a bunch of values from form variables and stuffed them into object variables in JavaScript code. While that works, often times this isn't really helping - I end up converting my types on the client and then doing another conversion on the server. If lots of input controls are on a page and you just want to pick up the values on the server via plain POST variables - that can be done too - and it makes sense especially if you're creating and filling the client side object only to push data to the server. Let's add another method to the server that once again lets us buy a stock. But this time let's not accept a parameter but rather send POST data to the server. Here's the server method receiving POST data: [CallbackMethod] public string BuyStockPost() { StockBuyOrder buyOrder = new StockBuyOrder(); buyOrder.Symbol = Request.Form["txtBuySymbol"]; ; int qty; int.TryParse(Request.Form["txtBuyQuantity"], out qty); buyOrder.Quantity = qty; DateTime time; DateTime.TryParse(Request.Form["txtBuyBuyOn"], out time); buyOrder.BuyOn = time; // Or easier way yet //FormVariableBinder.Unbind(buyOrder,null,"txtBuy"); var server = new StockServer(); var quote = server.GetStockQuote(buyOrder.Symbol); if (quote == null) throw new ApplicationException("Invalid or missing stock symbol."); return string.Format("You're buying {0} shares of {1} ({2}) stock at {3} for a total of {4} on {5}.", buyOrder.Quantity, quote.Company, quote.Symbol, quote.LastPrice.ToString("c"), (quote.LastPrice * buyOrder.Quantity).ToString("c"), buyOrder.BuyOn.ToString("MMM d")); } Clearly we've made this server method take more code than it did with the object parameter. We've basically moved the parameter assignment logic from the client to the server. As a result the client code to call this method is now a bit shorter since there's no client side shuffling of values from the controls to an object. $("#btnBuyStockPost").click(function () { ajaxCallMethod("SampleService.ashx", "BuyStockPost", [], // Note: No parameters - function (result) { $("#divStockBuyMessage").text(result).fadeIn(1000); }, onPageError, // Force all page Form Variables to be posted { postbackMode: "Post" }); }); The client simply calls the BuyStockQuote method and pushes all the form variables from the page up to the server which parses them instead. The feature that makes this work is one of the options you can pass to the ajaxCallMethod() function: { postbackMode: "Post" }); which directs the function to include form variable POST data when making the service call. Other options include PostNoViewState (for WebForms to strip out WebForms crap vars), PostParametersOnly (default), None. If you pass parameters those are always posted to the server except when None is set. The above code can be simplified a bit by using the FormVariableBinder helper, which can unbind form variables directly into an object: FormVariableBinder.Unbind(buyOrder,null,"txtBuy"); which replaces the manual Request.Form[] reading code. It receives the object to unbind into, a string of properties to skip, and an optional prefix which is stripped off form variables to match property names. The component is similar to the MVC model binder but it's independent of MVC. Returning non-JSON Data CallbackHandler also supports returning non-JSON/XML data via special return types. You can return raw non-JSON encoded strings like this: [CallbackMethod(ReturnAsRawString=true,ContentType="text/plain")] public string HelloWorldNoJSON(string name) { return "Hello " + name + ". Time is: " + DateTime.Now.ToString(); } Calling this method results in just a plain string - no JSON encoding with quotes around the result. This can be useful if your server handling code needs to return a string or HTML result that doesn't fit well for a page or other UI component. Any string output can be returned. You can also return binary data. Stream, byte[] and Bitmap/Image results are automatically streamed back to the client. Notice that you should set the ContentType of the request either on the CallbackMethod attribute or using Response.ContentType. This ensures the Web Server knows how to display your binary response. Using a stream response makes it possible to return any of data. Streamed data can be pretty handy to return bitmap data from a method. The following is a method that returns a stock history graph for a particular stock over a provided number of years: [CallbackMethod(ContentType="image/png",RouteUrl="stocks/history/graph/{symbol}/{years}")] public Stream GetStockHistoryGraph(string symbol, int years = 2,int width = 500, int height=350) { if (width == 0) width = 500; if (height == 0) height = 350; StockServer server = new StockServer(); return server.GetStockHistoryGraph(symbol,"Stock History for " + symbol,width,height,years); } I can now hook this up into the JavaScript code when I get a stock quote. At the end of the process I can assign the URL to the service that returns the image into the src property and so force the image to display. Here's the changed code: $("#btnStockQuote").click(function () { var symbol = $("#txtSymbol").val(); ajaxCallMethod("SampleService.ashx", "GetStockQuote", [symbol], function (quote) { $("#divStockDisplay").fadeIn(1000); $("#stockCompany").text(quote.Company + " (" + quote.Symbol + ")"); $("#stockLastPrice").text(quote.LastPrice); $("#stockQuoteTime").text(quote.LastQuoteTime.formatDate("MMM dd, hh:mmt")); // display a stock chart $("#imgStockHistory").attr("src", "stocks/history/graph/" + symbol + "/2"); },onPageError); }); The resulting output then looks like this: The charting code uses the new ASP.NET 4.0 Chart components via code to display a bar chart of the 2 year stock data as part of the StockServer class which you can find in the sample download. The ability to return arbitrary data from a service is useful as you can see - in this case the chart is clearly associated with the service and it's nice that the graph generation can happen off a handler rather than through a page. Images are common resources, but output can also be PDF reports, zip files for downloads etc. which is becoming increasingly more common to be returned from REST endpoints and other applications. Why reinvent? Obviously the examples I've shown here are pretty basic in terms of functionality. But I hope they demonstrate the core features of AJAX callbacks that you need to work through in most applications which is simple: return data, send back data and potentially retrieve data in various formats. While there are other solutions when it comes down to making AJAX callbacks and servicing REST like requests, I like the flexibility my home grown solution provides. Simply put it's still the easiest solution that I've found that addresses my common use cases: AJAX JSON RPC style callbacks Url based access XML and JSON Output from single method endpoint XML and JSON POST support, querystring input, routing parameter mapping UrlEncoded POST data support on callbacks Ability to return stream/raw string data Essentially ability to return ANYTHING from Service and pass anything All these features are available in various solutions but not together in one place. I've been using this code base for over 4 years now in a number of projects both for myself and commercial work and it's served me extremely well. Besides the AJAX functionality CallbackHandler provides, it's also an easy way to create any kind of output endpoint I need to create. Need to create a few simple routines that spit back some data, but don't want to create a Page or View or full blown handler for it? Create a CallbackHandler and add a method or multiple methods and you have your generic endpoints.  It's a quick and easy way to add small code pieces that are pretty efficient as they're running through a pretty small handler implementation. I can have this up and running in a couple of minutes literally without any setup and returning just about any kind of data. Resources Download the Sample NuGet: Westwind Web and AJAX Utilities (Westwind.Web) ajaxCallMethod() Documentation Using the AjaxMethodCallback WebForms Control West Wind Web Toolkit Home Page West Wind Web Toolkit Source Code © Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  jQuery  AJAX   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • What’s New for Oracle Commerce? Executive QA with John Andrews, VP Product Management, Oracle Commerce

    - by Katrina Gosek
    Oracle Commerce was for the fifth time positioned as a leader by Gartner in the Magic Quadrant for E-Commerce. This inspired me to sit down with Oracle Commerce VP of Product Management, John Andrews to get his perspective on what continues to make Oracle a leader in the industry and what’s new for Oracle Commerce in 2013. Q: Why do you believe Oracle Commerce continues to be a leader in the industry? John: Oracle has a great acquisition strategy – it brings best-of-breed technologies into the product fold and then continues to grow and innovate them. This is particularly true with products unified into the Oracle Commerce brand. Oracle acquired ATG in late 2010 – and then Endeca in late 2011. This means that under the hood of Oracle Commerce you have market-leading technologies for cross-channel commerce and customer experience, both designed and developed in direct response to the unique challenges online businesses face. And we continue to innovate on capabilities core to what our customers need to be successful – contextual and personalized experience delivery, merchant-inspired tools, and architecture for performance and scalability. Q: It’s not a slow moving industry. What are you doing to keep the pace of innovation at Oracle Commerce? John: Oracle owes our customers the most innovative commerce capabilities. By unifying the core components of ATG and Endeca we are delivering on this promise. Oracle Commerce is continuing to innovate and redefine how commerce is done and in a way that drive business results and keeps customers coming back for experiences tailored just for them. Our January and May 2013 releases not only marked the seventh significant releases for the solution since the acquisitions of ATG and Endeca, we also continue to demonstrate rapid and significant progress on the unification of commerce and customer experience capabilities of the two commerce technologies. Q: Can you tell us what was notable about these latest releases under the Oracle Commerce umbrella? John: Specifically, our latest product innovations give businesses selling online the ability to get to market faster with more personalized commerce experiences in the following ways: Mobile: the latest Commerce Reference Application in this release offers a wider range of examples for online businesses to leverage for iOS development and specifically new iPad reference capabilities. This release marks the first release of the iOS Universal application that serves both the iPhone and iPad devices from a single download or binary. Business users can now drive page content management and layout of search results and category pages, as well as create additional storefront elements such as categories, facets / dimensions, and breadcrumbs through Experience Manager tools. Cross-Channel Commerce: key commerce platform capabilities have been added to support cross-channel commerce, including an expanded inventory model to maintain inventory for stores, pickup in stores and Web-based returns. Online businesses with in-store operations can now offer advanced shipping options on the web and make returns and exchange logic easily available on the web. Multi-Site Capabilities: significant enhancements to the Commerce Platform multi-site architecture that allows business users to quickly launch and manage multiple sites on the same cluster and share data, carts, and other components. First introduced in 2010, with this latest release business users can now partition or share customer profiles, control users’ site-based access, and manage personalization assets using site groups. Internationalization: continued language support and enhancements for business user tools as well and search and navigation. Guided Search now supports 35 total languages with 11 new languages (including Danish, Arabic, Norwegian, Serbian Cyrillic) added in this release. Commerce Platform tools now include localized support for 17 locales with 4 new languages (Danish, Portuguese (European), Finnish, and Thai). No development or customization is required in order for business users to use the applications in any of these supported languages. Business Tool Experience: valuable new Commerce Merchandising features include a new workflow for making emergency changes quickly and increased visibility into promotions rules and qualifications in preview mode. Oracle Commerce business tools continue to become more and more feature rich to provide intuitive, easy- to-use (yet powerful) capabilities to allow business users to manage content and the shopping experience. Commerce & Experience Unification: demonstrable unification of commerce and customer experience capabilities include – productized cartridges that provide supported integration between the Commerce Platform and Experience Management tools, cross-channel returns, Oracle Service Cloud integration, and integrated iPad application. The mission guiding our product development is to deliver differentiated, personalized user experiences across any device in a contextual manner – and to give the business the best tools to tune and optimize those user experiences to meet their business objectives. We also need to do this in a way that makes it operationally efficient for the business, keeping the overall total cost of ownership low – yet also allows the business to expand, whether it be to new business models, geographies or brands. To learn more about the latest Oracle Commerce releases and mission, visit the links below: • Hear more from John about the Oracle Commerce mission • Hear from Oracle Commerce customers • Documentation on the new releases • Listen to the Oracle ATG Commerce 10.2 Webcast • Listen to the Oracle Endeca Commerce 3.1.2 Webcast

    Read the article

  • Passing the CAML thru the EY of the NEEDL

    - by PointsToShare
    © 2011 By: Dov Trietsch. All rights reserved Passing the CAML thru the EY of the NEEDL Definitions: CAML (Collaborative Application Markup Language) is an XML based markup language used in Microsoft SharePoint technologies  Anonymous: A camel is a horse designed by committee  Dov Trietsch: A CAML is a HORS designed by Microsoft  I was advised against putting any Camel and Sphinx rhymes in here. Look it up in Google!  _____ Now that we have dispensed with the dromedary jokes (BTW, I have many more, but they are not fit to print!), here is an interesting problem and its solution.  We have built a list where the title must be kept unique so I needed to verify the existence (or absence) of a list item with a particular title. Two methods came to mind:  1: Span the list until the title is found (result = found) or until the list ends (result = not found). This is an algorithm of complexity O(N) and for long lists it is a performance sucker. 2: Use a CAML query instead. Here, for short list we’ll encounter some overhead, but because the query results in an SQL query on the content database, it is of complexity O(LogN), which is significantly better and scales perfectly. Obviously I decided to go with the latter and this is where the CAML s--t hit the fan.   A CAML query returns a SPListItemCollection and I simply checked its Count. If it was 0, the item did not already exist and it was safe to add a new item with the given title. Otherwise I cancelled the operation and warned the user. The trouble was that I always got a positive. Most of the time a false positive. The count was greater than 0 regardles of the title I checked (except when the list was empty, which happens only once). This was very disturbing indeed. To solve my immediate problem which was speedy delivery, I reverted to the “Span the list” approach, but the problem bugged me, so I wrote a little console app by which I tested and tweaked and tested, time and again, until I found the solution. Yes, one can pass the proverbial CAML thru the ey of the needle (e’s missing on purpose).  So here are my conclusions:  CAML that does not work:  Note: QT is my quote:  char QT = Convert.ToChar((int)34); string titleQuery = "<Query>><Where><Eq>"; titleQuery += "<FieldRef Name=" + QT + "Title" + QT + "/>"; titleQuery += "<Value Type=" + QT + "Text" + QT + ">" + uniqueID + "</Value></Eq></Where></Query>"; titleQuery += "<ViewFields><FieldRef Name=" + QT + "Title" + QT + "/></ViewFields>";  Why? Even though U2U generates it, the <Query> and </Query> tags do not belong in the query that you pass. Start your query with the <Where> clause.  Also the <ViewFiels> clause does not belong. I used this clause to limit the returned collection to a single column, and I still wish to do it. I’ll show how this is done a bit later.   When you use the <Query> </Query> tags in you query, it’s as if you did not specify the query at all. What you get is the all inclusive default query for the list. It returns evey column and every item. It is expensive for both server and network because it does all the extra processing and eats plenty of bandwidth.   Now, here is the CAML that works  string titleQuery = "<Where><Eq>"; titleQuery += "<FieldRef Name=" + QT + "Title" + QT + "/>"; titleQuery += "<Value Type=" + QT + "Text" + QT + ">" + uniqueID + "</Value></Eq></Where>";  You’ll also notice that inside the unusable <ViewFields> clause above, we have a <FieldRef> clause. This is what we pass to the SPQuery object. Here is how:  SPQuery query = new SPQuery(); query.Query = titleQuery; query.ViewFields = "<FieldRef Name=" + QT + "Title" + QT + "/>"; query.RowLimit = 1; SPListItemCollection col = masterList.GetItems(query);  Two thing to note: we enter the view fields into the SPQuery object and we also limited the number of rows that the query returns. The latter is not always done, but in an existence test, there is no point in returning hundreds of rows. The query will now return one item or none, which is all we need in order to verify the existence (or non-existence) of items. Limiting the number of columns and the number of rows is a great performance enhancer. That’s all folks!!

    Read the article

  • A C# implementation of the CallStream pattern

    - by Bertrand Le Roy
    Dusan published this interesting post a couple of weeks ago about a novel JavaScript chaining pattern: http://dbj.org/dbj/?p=514 It’s similar to many existing patterns, but the syntax is extraordinarily terse and it provides a new form of friction-free, plugin-less extensibility mechanism. Here’s a JavaScript example from Dusan’s post: CallStream("#container") (find, "div") (attr, "A", 1) (css, "color", "#fff") (logger); The interesting thing here is that the functions that are being passed as the first argument are arbitrary, they don’t need to be declared as plug-ins. Compare that with a rough jQuery equivalent that could look something like this: $.fn.logger = function () { /* ... */ } $("selector") .find("div") .attr("A", 1) .css("color", "#fff") .logger(); There is also the “each” method in jQuery that achieves something similar, but its syntax is a little more verbose. Of course, that this pattern can be expressed so easily in JavaScript owes everything to the extraordinary way functions are treated in that language, something Douglas Crockford called “the very best part of JavaScript”. One of the first things I thought while reading Dusan’s post was how I could adapt that to C#. After all, with Lambdas and delegates, C# also has its first-class functions. And sure enough, it works really really well. After about ten minutes, I was able to write this: CallStreamFactory.CallStream (p => Console.WriteLine("Yay!")) (Dump, DateTime.Now) (DumpFooAndBar, new { Foo = 42, Bar = "the answer" }) (p => Console.ReadKey()); Where the Dump function is: public static void Dump(object options) { Console.WriteLine(options.ToString()); } And DumpFooAndBar is: public static void DumpFooAndBar(dynamic options) { Console.WriteLine("Foo is {0} and bar is {1}.", options.Foo, options.Bar); } So how does this work? Well, it really is very simple. And not. Let’s say it’s not a lot of code, but if you’re like me you might need an Advil after that. First, I defined the signature of the CallStream method as follows: public delegate CallStream CallStream (Action<object> action, object options = null); The delegate define a call stream as something that takes an action (a function of the options) and an optional options object and that returns a delegate of its own type. Tricky, but that actually works, a delegate can return its own type. Then I wrote an implementation of that delegate that calls the action and returns itself: public static CallStream CallStream (Action<object> action, object options = null) { action(options); return CallStream; } Pretty nice, eh? Well, yes and no. What we are doing here is to execute a sequence of actions using an interesting novel syntax. But for this to be actually useful, you’d need to build a more specialized call stream factory that comes with some sort of context (like Dusan did in JavaScript). For example, you could write the following alternate delegate signature that takes a string and returns itself: public delegate StringCallStream StringCallStream(string message); And then write the following call stream (notice the currying): public static StringCallStream CreateDumpCallStream(string dumpPath) { StringCallStream str = null; var dump = File.AppendText(dumpPath); dump.AutoFlush = true; str = s => { dump.WriteLine(s); return str; }; return str; } (I know, I’m not closing that stream; sure; bad, bad Bertrand) Finally, here’s how you use it: CallStreamFactory.CreateDumpCallStream(@".\dump.txt") ("Wow, this really works.") (DateTime.Now.ToLongTimeString()) ("And that is all."); Next step would be to combine this contextual implementation with the one that takes an action parameter and do some really fun stuff. I’m only scratching the surface here. This pattern could reveal itself to be nothing more than a gratuitous mind-bender or there could be applications that we hardly suspect at this point. In any case, it’s a fun new construct. Or is this nothing new? You tell me… Comments are open :)

    Read the article

  • DVD not detected?

    - by Benjamin
    As i insert a DVD in my drive (on a laptop) using Kubuntu 12.04, the DVD is not detected. The drive takes the DVD, I can hear it munching on it for a while, and then nothing. Even ejecting the DVD becomes a hassle, I need to do that at boot time otherwise the OS won't allow me to eject. Kubuntu 12.04 used to read and mount the same DVDs just fine a week ago. Edit: since I am able to boot from CD, can I safely assume the issue is not a hardware issue? How can I fix this? wodim --devices returns: wodim: Overview of accessible drives (1 found) : ------------------------------------------------------------------------- 0 dev='/dev/sg1' rwrw-- : 'Optiarc' 'DVD+-RW AD-7640A' ------------------------------------------------------------------------- sudo lshw -class disk returns: *-cdrom description: DVD-RAM writer product: DVD+-RW AD-7640A vendor: Optiarc physical id: 0.0.0 bus info: scsi@3:0.0.0 logical name: /dev/cdrom2 logical name: /dev/cdrw2 logical name: /dev/dvd2 logical name: /dev/dvdrw2 logical name: /dev/sr0 version: JD06 capabilities: removable audio cd-r cd-rw dvd dvd-r dvd-ram configuration: ansiversion=5 status=open lspci returns: 00:00.0 Host bridge: Intel Corporation Mobile PM965/GM965/GL960 Memory Controller Hub (rev 0c) 00:02.0 VGA compatible controller: Intel Corporation Mobile GM965/GL960 Integrated Graphics Controller (primary) (rev 0c) 00:02.1 Display controller: Intel Corporation Mobile GM965/GL960 Integrated Graphics Controller (secondary) (rev 0c) 00:1a.0 USB controller: Intel Corporation 82801H (ICH8 Family) USB UHCI Controller #4 (rev 03) 00:1a.1 USB controller: Intel Corporation 82801H (ICH8 Family) USB UHCI Controller #5 (rev 03) 00:1a.7 USB controller: Intel Corporation 82801H (ICH8 Family) USB2 EHCI Controller #2 (rev 03) 00:1b.0 Audio device: Intel Corporation 82801H (ICH8 Family) HD Audio Controller (rev 03) 00:1c.0 PCI bridge: Intel Corporation 82801H (ICH8 Family) PCI Express Port 1 (rev 03) 00:1c.1 PCI bridge: Intel Corporation 82801H (ICH8 Family) PCI Express Port 2 (rev 03) 00:1c.3 PCI bridge: Intel Corporation 82801H (ICH8 Family) PCI Express Port 4 (rev 03) 00:1c.4 PCI bridge: Intel Corporation 82801H (ICH8 Family) PCI Express Port 5 (rev 03) 00:1d.0 USB controller: Intel Corporation 82801H (ICH8 Family) USB UHCI Controller #1 (rev 03) 00:1d.1 USB controller: Intel Corporation 82801H (ICH8 Family) USB UHCI Controller #2 (rev 03) 00:1d.2 USB controller: Intel Corporation 82801H (ICH8 Family) USB UHCI Controller #3 (rev 03) 00:1d.7 USB controller: Intel Corporation 82801H (ICH8 Family) USB2 EHCI Controller #1 (rev 03) 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev f3) 00:1f.0 ISA bridge: Intel Corporation 82801HM (ICH8M) LPC Interface Controller (rev 03) 00:1f.1 IDE interface: Intel Corporation 82801HM/HEM (ICH8M/ICH8M-E) IDE Controller (rev 03) 00:1f.2 SATA controller: Intel Corporation 82801HM/HEM (ICH8M/ICH8M-E) SATA Controller [AHCI mode] (rev 03) 00:1f.3 SMBus: Intel Corporation 82801H (ICH8 Family) SMBus Controller (rev 03) 06:00.0 Network controller: Broadcom Corporation BCM4312 802.11b/g LP-PHY (rev 01) 07:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 02) 08:05.0 FireWire (IEEE 1394): O2 Micro, Inc. Firewire (IEEE 1394) (rev 02) 08:05.2 SD Host controller: O2 Micro, Inc. Integrated MMC/SD Controller (rev 02) 08:05.3 Mass storage controller: O2 Micro, Inc. Integrated MS/xD Controller (rev 01) and lsusb: Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 007 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 001 Device 003: ID 0c45:63e0 Microdia Sonix Integrated Webcam Bus 003 Device 002: ID 0483:2016 SGS Thomson Microelectronics Fingerprint Reader The /etc/modprobe.d/blacklist.conf contains: # This file lists those modules which we don't want to be loaded by # alias expansion, usually so some other driver will be loaded for the # device instead. # evbug is a debug tool that should be loaded explicitly blacklist evbug # these drivers are very simple, the HID drivers are usually preferred blacklist usbmouse blacklist usbkbd # replaced by e100 blacklist eepro100 # replaced by tulip blacklist de4x5 # causes no end of confusion by creating unexpected network interfaces blacklist eth1394 # snd_intel8x0m can interfere with snd_intel8x0, doesn't seem to support much # hardware on its own (Ubuntu bug #2011, #6810) blacklist snd_intel8x0m # Conflicts with dvb driver (which is better for handling this device) blacklist snd_aw2 # causes failure to suspend on HP compaq nc6000 (Ubuntu: #10306) blacklist i2c_i801 # replaced by p54pci blacklist prism54 # replaced by b43 and ssb. blacklist bcm43xx # most apps now use garmin usb driver directly (Ubuntu: #114565) blacklist garmin_gps # replaced by asus-laptop (Ubuntu: #184721) blacklist asus_acpi # low-quality, just noise when being used for sound playback, causes # hangs at desktop session start (Ubuntu: #246969) blacklist snd_pcsp # ugly and loud noise, getting on everyone's nerves; this should be done by a # nice pulseaudio bing (Ubuntu: #77010) blacklist pcspkr # EDAC driver for amd76x clashes with the agp driver preventing the aperture # from being initialised (Ubuntu: #297750). Blacklist so that the driver # continues to build and is installable for the few cases where its # really needed. blacklist amd76x_edac

    Read the article

  • Building a better mouse-trap &ndash; Improving the creation of XML Message Requests using Reflection, XML &amp; XSLT

    - by paulschapman
    Introduction The way I previously created messages to send to the GovTalk service I used the XMLDocument to create the request. While this worked it left a number of problems; not least that for every message a special function would need to created. This is OK for the short term but the biggest cost in any software project is maintenance and this would be a headache to maintain. So the following is a somewhat better way of achieving the same thing. For the purposes of this article I am going to be using the CompanyNumberSearch request of the GovTalk service – although this technique would work for any service that accepted XML. The C# functions which send and receive the messages remain the same. The magic sauce in this is the XSLT which defines the structure of the request, and the use of objects in conjunction with reflection to provide the content. It is a bit like Sweet Chilli Sauce added to Chicken on a bed of rice. So on to the Sweet Chilli Sauce The Sweet Chilli Sauce The request to search for a company based on it’s number is as follows; <GovTalkMessage xsi:schemaLocation="http://www.govtalk.gov.uk/CM/envelope http://xmlgw.companieshouse.gov.uk/v1-0/schema/Egov_ch-v2-0.xsd" xmlns="http://www.govtalk.gov.uk/CM/envelope" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" > <EnvelopeVersion>1.0</EnvelopeVersion> <Header> <MessageDetails> <Class>NumberSearch</Class> <Qualifier>request</Qualifier> <TransactionID>1</TransactionID> </MessageDetails> <SenderDetails> <IDAuthentication> <SenderID>????????????????????????????????</SenderID> <Authentication> <Method>CHMD5</Method> <Value>????????????????????????????????</Value> </Authentication> </IDAuthentication> </SenderDetails> </Header> <GovTalkDetails> <Keys/> </GovTalkDetails> <Body> <NumberSearchRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://xmlgw.companieshouse.gov.uk/v1-0/schema/NumberSearch.xsd"> <PartialCompanyNumber>99999999</PartialCompanyNumber> <DataSet>LIVE</DataSet> <SearchRows>1</SearchRows> </NumberSearchRequest> </Body> </GovTalkMessage> This is the XML that we send to the GovTalk Service and we get back a list of companies that match the criteria passed A message is structured in two parts; The envelope which identifies the person sending the request, with the name of the request, and the body which gives the detail of the company we are looking for. The Chilli What makes it possible is the use of XSLT to define the message – and serialization to convert each request object into XML. To start we need to create an object which will represent the contents of the message we are sending. However there is a common properties in all the messages that we send to Companies House. These properties are as follows SenderId – the id of the person sending the message SenderPassword – the password associated with Id TransactionId – Unique identifier for the message AuthenticationValue – authenticates the request Because these properties are unique to the Companies House message, and because they are shared with all messages they are perfect candidates for a base class. The class is as follows; using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Security.Cryptography; using System.Text; using System.Text.RegularExpressions; using Microsoft.WindowsAzure.ServiceRuntime; namespace CompanyHub.Services { public class GovTalkRequest { public GovTalkRequest() { try { SenderID = RoleEnvironment.GetConfigurationSettingValue("SenderId"); SenderPassword = RoleEnvironment.GetConfigurationSettingValue("SenderPassword"); TransactionId = DateTime.Now.Ticks.ToString(); AuthenticationValue = EncodePassword(String.Format("{0}{1}{2}", SenderID, SenderPassword, TransactionId)); } catch (System.Exception ex) { throw ex; } } /// <summary> /// returns the Sender ID to be used when communicating with the GovTalk Service /// </summary> public String SenderID { get; set; } /// <summary> /// return the password to be used when communicating with the GovTalk Service /// </summary> public String SenderPassword { get; set; } // end SenderPassword /// <summary> /// Transaction Id - uses the Time and Date converted to Ticks /// </summary> public String TransactionId { get; set; } // end TransactionId /// <summary> /// calculate the authentication value that will be used when /// communicating with /// </summary> public String AuthenticationValue { get; set; } // end AuthenticationValue property /// <summary> /// encodes password(s) using MD5 /// </summary> /// <param name="clearPassword"></param> /// <returns></returns> public static String EncodePassword(String clearPassword) { MD5CryptoServiceProvider md5Hasher = new MD5CryptoServiceProvider(); byte[] hashedBytes; UTF32Encoding encoder = new UTF32Encoding(); hashedBytes = md5Hasher.ComputeHash(ASCIIEncoding.Default.GetBytes(clearPassword)); String result = Regex.Replace(BitConverter.ToString(hashedBytes), "-", "").ToLower(); return result; } } } There is nothing particularly clever here, except for the EncodePassword method which hashes the value made up of the SenderId, Password and Transaction id. Each message inherits from this object. So for the Company Number Search in addition to the properties above we need a partial number, which dataset to search – for the purposes of the project we only need to search the LIVE set so this can be set in the constructor and the SearchRows. Again all are set as properties. With the SearchRows and DataSet initialized in the constructor. public class CompanyNumberSearchRequest : GovTalkRequest, IDisposable { /// <summary> /// /// </summary> public CompanyNumberSearchRequest() : base() { DataSet = "LIVE"; SearchRows = 1; } /// <summary> /// Company Number to search against /// </summary> public String PartialCompanyNumber { get; set; } /// <summary> /// What DataSet should be searched for the company /// </summary> public String DataSet { get; set; } /// <summary> /// How many rows should be returned /// </summary> public int SearchRows { get; set; } public void Dispose() { DataSet = String.Empty; PartialCompanyNumber = String.Empty; DataSet = "LIVE"; SearchRows = 1; } } As well as inheriting from our base class, I have also inherited from IDisposable – not just because it is just plain good practice to dispose of objects when coding, but it gives also gives us more versatility when using the object. There are four stages in making a request and this is reflected in the four methods we execute in making a call to the Companies House service; Create a request Send a request Check the status If OK then get the results of the request I’ve implemented each of these stages within a static class called Toolbox – which also means I don’t need to create an instance of the class to use it. When making a request there are three stages; Get the template for the message Serialize the object representing the message Transform the serialized object using a predefined XSLT file. Each of my templates I have defined as an embedded resource. When retrieving a resource of this kind we have to include the full namespace to the resource. In making the code re-usable as much as possible I defined the full ‘path’ within the GetRequest method. requestFile = String.Format("CompanyHub.Services.Schemas.{0}", RequestFile); So we now have the full path of the file within the assembly. Now all we need do is retrieve the assembly and get the resource. asm = Assembly.GetExecutingAssembly(); sr = asm.GetManifestResourceStream(requestFile); Once retrieved  So this can be returned to the calling function and we now have a stream of XSLT to define the message. Time now to serialize the request to create the other side of this message. // Serialize object containing Request, Load into XML Document t = Obj.GetType(); ms = new MemoryStream(); serializer = new XmlSerializer(t); xmlTextWriter = new XmlTextWriter(ms, Encoding.ASCII); serializer.Serialize(xmlTextWriter, Obj); ms = (MemoryStream)xmlTextWriter.BaseStream; GovTalkRequest = Toolbox.ConvertByteArrayToString(ms.ToArray()); First off we need the type of the object so we make a call to the GetType method of the object containing the Message properties. Next we need a MemoryStream, XmlSerializer and an XMLTextWriter so these can be initialized. The object is serialized by making the call to the Serialize method of the serializer object. The result of that is then converted into a MemoryStream. That MemoryStream is then converted into a string. ConvertByteArrayToString This is a fairly simple function which uses an ASCIIEncoding object found within the System.Text namespace to convert an array of bytes into a string. public static String ConvertByteArrayToString(byte[] bytes) { System.Text.ASCIIEncoding enc = new System.Text.ASCIIEncoding(); return enc.GetString(bytes); } I only put it into a function because I will be using this in various places. The Sauce When adding support for other messages outside of creating a new object to store the properties of the message, the C# components do not need to change. It is in the XSLT file that the versatility of the technique lies. The XSLT file determines the format of the message. For the CompanyNumberSearch the XSLT file is as follows; <?xml version="1.0"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:template match="/"> <GovTalkMessage xsi:schemaLocation="http://www.govtalk.gov.uk/CM/envelope http://xmlgw.companieshouse.gov.uk/v1-0/schema/Egov_ch-v2-0.xsd" xmlns="http://www.govtalk.gov.uk/CM/envelope" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" > <EnvelopeVersion>1.0</EnvelopeVersion> <Header> <MessageDetails> <Class>NumberSearch</Class> <Qualifier>request</Qualifier> <TransactionID> <xsl:value-of select="CompanyNumberSearchRequest/TransactionId"/> </TransactionID> </MessageDetails> <SenderDetails> <IDAuthentication> <SenderID><xsl:value-of select="CompanyNumberSearchRequest/SenderID"/></SenderID> <Authentication> <Method>CHMD5</Method> <Value> <xsl:value-of select="CompanyNumberSearchRequest/AuthenticationValue"/> </Value> </Authentication> </IDAuthentication> </SenderDetails> </Header> <GovTalkDetails> <Keys/> </GovTalkDetails> <Body> <NumberSearchRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://xmlgw.companieshouse.gov.uk/v1-0/schema/NumberSearch.xsd"> <PartialCompanyNumber> <xsl:value-of select="CompanyNumberSearchRequest/PartialCompanyNumber"/> </PartialCompanyNumber> <DataSet> <xsl:value-of select="CompanyNumberSearchRequest/DataSet"/> </DataSet> <SearchRows> <xsl:value-of select="CompanyNumberSearchRequest/SearchRows"/> </SearchRows> </NumberSearchRequest> </Body> </GovTalkMessage> </xsl:template> </xsl:stylesheet> The outer two tags define that this is a XSLT stylesheet and the root tag from which the nodes are searched for. The GovTalkMessage is the format of the message that will be sent to Companies House. We first set up the XslCompiledTransform object which will transform the XSLT template and the serialized object into the request to Companies House. xslt = new XslCompiledTransform(); resultStream = new MemoryStream(); writer = new XmlTextWriter(resultStream, Encoding.ASCII); doc = new XmlDocument(); The Serialize method require XmlTextWriter to write the XML (writer) and a stream to place the transferred object into (writer). The XML will be loaded into an XMLDocument object (doc) prior to the transformation. // create XSLT Template xslTemplate = Toolbox.GetRequest(Template); xslTemplate.Seek(0, SeekOrigin.Begin); templateReader = XmlReader.Create(xslTemplate); xslt.Load(templateReader); I have stored all the templates as a series of Embedded Resources and the GetRequestCall takes the name of the template and extracts the relevent XSLT file. /// <summary> /// Gets the framwork XML which makes the request /// </summary> /// <param name="RequestFile"></param> /// <returns></returns> public static Stream GetRequest(String RequestFile) { String requestFile = String.Empty; Stream sr = null; Assembly asm = null; try { requestFile = String.Format("CompanyHub.Services.Schemas.{0}", RequestFile); asm = Assembly.GetExecutingAssembly(); sr = asm.GetManifestResourceStream(requestFile); } catch (Exception) { throw; } finally { asm = null; } return sr; } // end private static stream GetRequest We first take the template name and expand it to include the full namespace to the Embedded Resource I like to keep all my schemas in the same directory and so the namespace reflects this. The rest is the default namespace for the project. Then we get the currently executing assembly (which will contain the resources with the call to GetExecutingAssembly() ) Finally we get a stream which contains the XSLT file. We use this stream and then load an XmlReader with the contents of the template, and that is in turn loaded into the XslCompiledTransform object. We convert the object containing the message properties into Xml by serializing it; calling the Serialize() method of the XmlSerializer object. To set up the object we do the following; t = Obj.GetType(); ms = new MemoryStream(); serializer = new XmlSerializer(t); xmlTextWriter = new XmlTextWriter(ms, Encoding.ASCII); We first determine the type of the object being transferred by calling GetType() We create an XmlSerializer object by passing the type of the object being serialized. The serializer writes to a memory stream and that is linked to an XmlTextWriter. Next job is to serialize the object and load it into an XmlDocument. serializer.Serialize(xmlTextWriter, Obj); ms = (MemoryStream)xmlTextWriter.BaseStream; xmlRequest = new XmlTextReader(ms); GovTalkRequest = Toolbox.ConvertByteArrayToString(ms.ToArray()); doc.LoadXml(GovTalkRequest); Time to transform the XML to construct the full request. xslt.Transform(doc, writer); resultStream.Seek(0, SeekOrigin.Begin); request = Toolbox.ConvertByteArrayToString(resultStream.ToArray()); So that creates the full request to be sent  to Companies House. Sending the request So far we have a string with a request for the Companies House service. Now we need to send the request to the Companies House Service. Configuration within an Azure project There are entire blog entries written about configuration within an Azure project – most of this is out of scope for this article but the following is a summary. Configuration is defined in two files within the parent project *.csdef which contains the definition of configuration setting. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="OnlineCompanyHub" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WebRole name="CompanyHub.Host"> <InputEndpoints> <InputEndpoint name="HttpIn" protocol="http" port="80" /> </InputEndpoints> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" /> <Setting name="DataConnectionString" /> </ConfigurationSettings> </WebRole> <WebRole name="CompanyHub.Services"> <InputEndpoints> <InputEndpoint name="HttpIn" protocol="http" port="8080" /> </InputEndpoints> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" /> <Setting name="SenderId"/> <Setting name="SenderPassword" /> <Setting name="GovTalkUrl"/> </ConfigurationSettings> </WebRole> <WorkerRole name="CompanyHub.Worker"> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" /> </ConfigurationSettings> </WorkerRole> </ServiceDefinition>   Above is the configuration definition from the project. What we are interested in however is the ConfigurationSettings tag of the CompanyHub.Services WebRole. There are four configuration settings here, but at the moment we are interested in the second to forth settings; SenderId, SenderPassword and GovTalkUrl The value of these settings are defined in the ServiceDefinition.cscfg file; <?xml version="1.0"?> <ServiceConfiguration serviceName="OnlineCompanyHub" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration"> <Role name="CompanyHub.Host"> <Instances count="2" /> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="DataConnectionString" value="UseDevelopmentStorage=true" /> </ConfigurationSettings> </Role> <Role name="CompanyHub.Services"> <Instances count="2" /> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="SenderId" value="UserID"/> <Setting name="SenderPassword" value="Password"/> <Setting name="GovTalkUrl" value="http://xmlgw.companieshouse.gov.uk/v1-0/xmlgw/Gateway"/> </ConfigurationSettings> </Role> <Role name="CompanyHub.Worker"> <Instances count="2" /> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" /> </ConfigurationSettings> </Role> </ServiceConfiguration>   Look for the Role tag that contains our project name (CompanyHub.Services). Having configured the parameters we can now transmit the request. This is done by ‘POST’ing a stream of XML to the Companies House servers. govTalkUrl = RoleEnvironment.GetConfigurationSettingValue("GovTalkUrl"); request = WebRequest.Create(govTalkUrl); request.Method = "POST"; request.ContentType = "text/xml"; writer = new StreamWriter(request.GetRequestStream()); writer.WriteLine(RequestMessage); writer.Close(); We use the WebRequest object to send the object. Set the method of sending to ‘POST’ and the type of data as text/xml. Once set up all we do is write the request to the writer – this sends the request to Companies House. Did the Request Work Part I – Getting the response Having sent a request – we now need the result of that request. response = request.GetResponse(); reader = response.GetResponseStream(); result = Toolbox.ConvertByteArrayToString(Toolbox.ReadFully(reader));   The WebRequest object has a GetResponse() method which allows us to get the response sent back. Like many of these calls the results come in the form of a stream which we convert into a string. Did the Request Work Part II – Translating the Response Much like XSLT and XML were used to create the original request, so it can be used to extract the response and by deserializing the result we create an object that contains the response. Did it work? It would be really great if everything worked all the time. Of course if it did then I don’t suppose people would pay me and others the big bucks so that our programmes do not a) Collapse in a heap (this is an area of memory) b) Blow every fuse in the place in a shower of sparks (this will probably not happen this being real life and not a Hollywood movie, but it was possible to blow the sound system of a BBC Model B with a poorly coded setting) c) Go nuts and trap everyone outside the airlock (this was from a movie, and unless NASA get a manned moon/mars mission set up unlikely to happen) d) Go nuts and take over the world (this was also from a movie, but please note life has a habit of being of exceeding the wildest imaginations of Hollywood writers (note writers – Hollywood executives have no imagination and judging by recent output of that town have turned plagiarism into an art form). e) Freeze in total confusion because the cleaner pulled the plug to the internet router (this has happened) So anyway – we need to check to see if our request actually worked. Within the GovTalk response there is a section that details the status of the message and a description of what went wrong (if anything did). I have defined an XSLT template which will extract these into an XML document. <?xml version="1.0"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:ev="http://www.govtalk.gov.uk/CM/envelope" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <xsl:template match="/"> <GovTalkStatus xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <Status> <xsl:value-of select="ev:GovTalkMessage/ev:Header/ev:MessageDetails/ev:Qualifier"/> </Status> <Text> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Text"/> </Text> <Location> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Location"/> </Location> <Number> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Number"/> </Number> <Type> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Type"/> </Type> </GovTalkStatus> </xsl:template> </xsl:stylesheet>   Only thing different about previous XSL files is the references to two namespaces ev & gt. These are defined in the GovTalk response at the top of the response; xsi:schemaLocation="http://www.govtalk.gov.uk/CM/envelope http://xmlgw.companieshouse.gov.uk/v1-0/schema/Egov_ch-v2-0.xsd" xmlns="http://www.govtalk.gov.uk/CM/envelope" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" If we do not put these references into the XSLT template then  the XslCompiledTransform object will not be able to find the relevant tags. Deserialization is a fairly simple activity. encoder = new ASCIIEncoding(); ms = new MemoryStream(encoder.GetBytes(statusXML)); serializer = new XmlSerializer(typeof(GovTalkStatus)); xmlTextWriter = new XmlTextWriter(ms, Encoding.ASCII); messageStatus = (GovTalkStatus)serializer.Deserialize(ms);   We set up a serialization object using the object type containing the error state and pass to it the results of a transformation between the XSLT above and the GovTalk response. Now we have an object containing any error state, and the error message. All we need to do is check the status. If there is an error then we can flag an error. If not then  we extract the results and pass that as an object back to the calling function. We go this by guess what – defining an XSLT template for the result and using that to create an Xml Stream which can be deserialized into a .Net object. In this instance the XSLT to create the result of a Company Number Search is; <?xml version="1.0" encoding="us-ascii"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:ev="http://www.govtalk.gov.uk/CM/envelope" xmlns:sch="http://xmlgw.companieshouse.gov.uk/v1-0/schema" exclude-result-prefixes="ev"> <xsl:template match="/"> <CompanySearchResult xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <CompanyNumber> <xsl:value-of select="ev:GovTalkMessage/ev:Body/sch:NumberSearch/sch:CoSearchItem/sch:CompanyNumber"/> </CompanyNumber> <CompanyName> <xsl:value-of select="ev:GovTalkMessage/ev:Body/sch:NumberSearch/sch:CoSearchItem/sch:CompanyName"/> </CompanyName> </CompanySearchResult> </xsl:template> </xsl:stylesheet> and the object definition is; using System; using System.Collections.Generic; using System.Linq; using System.Web; namespace CompanyHub.Services { public class CompanySearchResult { public CompanySearchResult() { CompanyNumber = String.Empty; CompanyName = String.Empty; } public String CompanyNumber { get; set; } public String CompanyName { get; set; } } } Our entire code to make calls to send a request, and interpret the results are; String request = String.Empty; String response = String.Empty; GovTalkStatus status = null; fault = null; try { using (CompanyNumberSearchRequest requestObj = new CompanyNumberSearchRequest()) { requestObj.PartialCompanyNumber = CompanyNumber; request = Toolbox.CreateRequest(requestObj, "CompanyNumberSearch.xsl"); response = Toolbox.SendGovTalkRequest(request); status = Toolbox.GetMessageStatus(response); if (status.Status.ToLower() == "error") { fault = new HubFault() { Message = status.Text }; } else { Object obj = Toolbox.GetGovTalkResponse(response, "CompanyNumberSearchResult.xsl", typeof(CompanySearchResult)); } } } catch (FaultException<ArgumentException> ex) { fault = new HubFault() { FaultType = ex.Detail.GetType().FullName, Message = ex.Detail.Message }; } catch (System.Exception ex) { fault = new HubFault() { FaultType = ex.GetType().FullName, Message = ex.Message }; } finally { } Wrap up So there we have it – a reusable set of functions to send and interpret XML results from an internet based service. The code is reusable with a little change with any service which uses XML as a transport mechanism – and as for the Companies House GovTalk service all I need to do is create various objects for the result and message sent and the relevent XSLT files. I might need minor changes for other services but something like 70-90% will be exactly the same.

    Read the article

  • Web Services Example - Part 2: Programmatic

    - by Denis T
    In this edition of the ADF Mobile blog we'll tackle part 2 of our Web Service examples.  In this posting we'll take a look at using a SOAP Web Service but calling it programmatically in code and parsing the return into a bean. Getting the sample code: Just click here to download a zip of the entire project.  You can unzip it and load it into JDeveloper and deploy it either to iOS or Android.  Please follow the previous blog posts if you need help getting JDeveloper or ADF Mobile installed.  Note: This is a different workspace than WS-Part1 Defining our Web Service: Just like our first installment, we are using the same public weather forecast web service provided free by CDYNE Corporation.  Sometimes this service goes down so please ensure you know it's up before reporting this example isn't working. We're going to concentrate on the same two web service methods, GetCityForecastByZIP and GetWeatherInformation. Defing the Application: The application setup is identical to the Weather1 version.  There are some improvements to the data that is displayed as part of this example though.  Now we are able to show the associated image along with each forecast line when using the Forecast By Zip feature.  We've also added the temperature Hi/Low values into the UI. Summary of Fundamental Changes In This Application The most fundamental change is that we're binding the UI to the Bean Data Controls instead of directly to the Web Service Data Controls.  This gives us much more flexibility to control the shape of the data and allows us to do caching of the data outside of the Web Service.  This way if your application is, say offline, your bean could still populate with data from a local cache and still show you some UI as opposed to completely failing because you don't have any connectivity. In general we promote this type of programming technique with ADF Mobile to insulate your application from any issues with network connectivity. What's different with this example? We have setup the Web Service DC the same way but now we have managed beans to process the data.  The following classes define the "Model" of our application:  CityInformation-CityForecast-Forecast, WeatherInformation-WeatherDescription.  We use WeatherBean for UI interaction to the model layer.  If you look through this example, we don't really do that much with the java code except use it to grab the image URL from the weather description.  In a more realistic example, you might be using some JDBC classes to persist the data to a local database. To have a good architecture it is always good to keep your model and UI layers separate.  This gets muddied if you start to use bindings on a page invoked from Java code and this java code starts to become your "model" layer.  Since bindings are page specific, your model layer starts to become entwined with your UI.  Not good!  To help with this, we've added some utility functions that let you invoke DC methods without having a binding and thus execute methods from your "model" layer without requiring a binding in your page definition.  We do this with the invokeDataControlMethod of the AdfmfJavaUtilities class.  An example of this method call is available in line 95 of WeatherInformation.java and line 93 of CityInformation.Java. What's a GenericType? Because Web Service Data Controls (and also URL Data Controls AKA REST) use generic name/value pairs to define their structure and don't have strongly typed objects, these are actually stored internally as GenericType objects.  The GenericType class is simply a property map of name/value pairs that can be hierarchical.  There are methods like getAttribute where you supply the index of the attribute or it's string property name.  Why is this important to know?  Because invokeDataControlMethod returns GenericType objects and developers either need to parse these GenericType objects themselves or use one of our helper functions. GenericTypeBeanSerializationHelper This class does exactly what it's name implies.  It's a helper class for developers to aid in serialization of GenericTypes to/from java objects.  This is extremely handy if you have a large GenericType object with many attributes (or you're just lazy like me!) and you just want to parse it out into a real java object you can use more easily.  Here you would use the fromGenericType method.  This method takes the class of the Java object you wish to return and the GenericType as parameters.  The method then parses through each attribute in the GenericType and uses reflection to set that same attribute in the Java class.  Then the method returns that new object of the class you specified.  This is obviously very handy to avoid a lot of shuffling code between GenericType and your own Java classes.  The reverse method, toGenericType is also available when you want to go the other way.  In this case you supply the string that represents the package location in the DataControl definition (Example: "MyDC.myParams.MyCollection") and then pass in the Java object you have that holds the data and a GenericType is returned to you.  Again, it will use reflection to calculate the attributes that match between the java class and the GenericType and call the getters/setters on those. Issues and Possible Improvements: In the next installment we'll show you how to make your web service calls asynchronously so your UI will fill dynamically when the service call returns but in the meantime you show the data you have locally in your bean fed from some local cache.  This gives your users instant delivery of some data while you fetch other data in the background.

    Read the article

  • Anyone got a nifty credit expiry algorithm?

    - by garethkeenan
    Our website uses a credit system to allow users to purchase inexpensive digital goods (eg. photos). We use credits, rather than asking the user to pay for items individually, because the items are cheap and we are trying to keep our credit-card/PayPal overhead low. Because we aren't a bank, we have to expire credits after a certain amount of time. We expire deposit credits after a year, but other types of credits (bonuses, prizes, refunds) may have a different shelf-life. When a buyer buys an item, we spend the credit that is going to expire first. Our current system keeps track of every deposit by storing the original value and the remainder to be spent. We keep a list of all purchases as well, of course. I am currently moving to a system which is much more like a traditional double-entry accounting system. A deposit will create a ledger item, increasing the user's 'spending' account balance. Every purchase will also create a ledger item, decreasing the user's 'spending' account balance. The new system has running balances, while the old system does not, which greatly improves our ability to find problems and do reconciliations. We do not want to use the old system of keeping a 'remainder' value attached to each deposit record because it is inefficient to replay a user's activities to calculate what the remainder of each deposit is over time (for the user's statement). So, after all of this verbose introduction, my question is "Does anyone else out there have a similar system of expiring credits?" If you could describe how you calculate expired credits it would be a great help. If all expired credits had the exact same shelf life, we would be able to calculate the expired amount using: Total Deposits - Total Spending - Deposits Not Due To Expire = Amount to Expire However, because deposits can have different shelf lives, this formula does not work because more than one deposit can be partially spent at any given time.

    Read the article

  • .NET HTML Sanitation for rich HTML Input

    - by Rick Strahl
    Recently I was working on updating a legacy application to MVC 4 that included free form text input. When I set up the new site my initial approach was to not allow any rich HTML input, only simple text formatting that would respect a few simple HTML commands for bold, lists etc. and automatically handles line break processing for new lines and paragraphs. This is typical for what I do with most multi-line text input in my apps and it works very well with very little development effort involved. Then the client sprung another note: Oh by the way we have a bunch of customers (real estate agents) who need to post complete HTML documents. Oh uh! There goes the simple theory. After some discussion and pleading on my part (<snicker>) to try and avoid this type of raw HTML input because of potential XSS issues, the client decided to go ahead and allow raw HTML input anyway. There has been lots of discussions on this subject on StackOverFlow (and here and here) but to after reading through some of the solutions I didn't really find anything that would work even closely for what I needed. Specifically we need to be able to allow just about any HTML markup, with the exception of script code. Remote CSS and Images need to be loaded, links need to work and so. While the 'legit' HTML posted by these agents is basic in nature it does span most of the full gamut of HTML (4). Most of the solutions XSS prevention/sanitizer solutions I found were way to aggressive and rendered the posted output unusable mostly because they tend to strip any externally loaded content. In short I needed a custom solution. I thought the best solution to this would be to use an HTML parser - in this case the Html Agility Pack - and then to run through all the HTML markup provided and remove any of the blacklisted tags and a number of attributes that are prone to JavaScript injection. There's much discussion on whether to use blacklists vs. whitelists in the discussions mentioned above, but I found that whitelists can make sense in simple scenarios where you might allow manual HTML input, but when you need to allow a larger array of HTML functionality a blacklist is probably easier to manage as the vast majority of elements and attributes could be allowed. Also white listing gets a bit more complex with HTML5 and the new proliferation of new HTML tags and most new tags generally don't affect XSS issues directly. Pure whitelisting based on elements and attributes also doesn't capture many edge cases (see some of the XSS cheat sheets listed below) so even with a white list, custom logic is still required to handle many of those edge cases. The Microsoft Web Protection Library (AntiXSS) My first thought was to check out the Microsoft AntiXSS library. Microsoft has an HTML Encoding and Sanitation library in the Microsoft Web Protection Library (formerly AntiXSS Library) on CodePlex, which provides stricter functions for whitelist encoding and sanitation. Initially I thought the Sanitation class and its static members would do the trick for me,but I found that this library is way too restrictive for my needs. Specifically the Sanitation class strips out images and links which rendered the full HTML from our real estate clients completely useless. I didn't spend much time with it, but apparently I'm not alone if feeling this library is not really useful without some way to configure operation. To give you an example of what didn't work for me with the library here's a small and simple HTML fragment that includes script, img and anchor tags. I would expect the script to be stripped and everything else to be left intact. Here's the original HTML:var value = "<b>Here</b> <script>alert('hello')</script> we go. Visit the " + "<a href='http://west-wind.com'>West Wind</a> site. " + "<img src='http://west-wind.com/images/new.gif' /> " ; and the code to sanitize it with the AntiXSS Sanitize class:@Html.Raw(Microsoft.Security.Application.Sanitizer.GetSafeHtmlFragment(value)) This produced a not so useful sanitized string: Here we go. Visit the <a>West Wind</a> site. While it removed the <script> tag (good) it also removed the href from the link and the image tag altogether (bad). In some situations this might be useful, but for most tasks I doubt this is the desired behavior. While links can contain javascript: references and images can 'broadcast' information to a server, without configuration to tell the library what to restrict this becomes useless to me. I couldn't find any way to customize the white list, nor is there code available in this 'open source' library on CodePlex. Using Html Agility Pack for HTML Parsing The WPL library wasn't going to cut it. After doing a bit of research I decided the best approach for a custom solution would be to use an HTML parser and inspect the HTML fragment/document I'm trying to import. I've used the HTML Agility Pack before for a number of apps where I needed an HTML parser without requiring an instance of a full browser like the Internet Explorer Application object which is inadequate in Web apps. In case you haven't checked out the Html Agility Pack before, it's a powerful HTML parser library that you can use from your .NET code. It provides a simple, parsable HTML DOM model to full HTML documents or HTML fragments that let you walk through each of the elements in your document. If you've used the HTML or XML DOM in a browser before you'll feel right at home with the Agility Pack. Blacklist based HTML Parsing to strip XSS Code For my purposes of HTML sanitation, the process involved is to walk the HTML document one element at a time and then check each element and attribute against a blacklist. There's quite a bit of argument of what's better: A whitelist of allowed items or a blacklist of denied items. While whitelists tend to be more secure, they also require a lot more configuration. In the case of HTML5 a whitelist could be very extensive. For what I need, I only want to ensure that no JavaScript is executed, so a blacklist includes the obvious <script> tag plus any tag that allows loading of external content including <iframe>, <object>, <embed> and <link> etc. <form>  is also excluded to avoid posting content to a different location. I also disallow <head> and <meta> tags in particular for my case, since I'm only allowing posting of HTML fragments. There is also some internal logic to exclude some attributes or attributes that include references to JavaScript or CSS expressions. The default tag blacklist reflects my use case, but is customizable and can be added to. Here's my HtmlSanitizer implementation:using System.Collections.Generic; using System.IO; using System.Xml; using HtmlAgilityPack; namespace Westwind.Web.Utilities { public class HtmlSanitizer { public HashSet<string> BlackList = new HashSet<string>() { { "script" }, { "iframe" }, { "form" }, { "object" }, { "embed" }, { "link" }, { "head" }, { "meta" } }; /// <summary> /// Cleans up an HTML string and removes HTML tags in blacklist /// </summary> /// <param name="html"></param> /// <returns></returns> public static string SanitizeHtml(string html, params string[] blackList) { var sanitizer = new HtmlSanitizer(); if (blackList != null && blackList.Length > 0) { sanitizer.BlackList.Clear(); foreach (string item in blackList) sanitizer.BlackList.Add(item); } return sanitizer.Sanitize(html); } /// <summary> /// Cleans up an HTML string by removing elements /// on the blacklist and all elements that start /// with onXXX . /// </summary> /// <param name="html"></param> /// <returns></returns> public string Sanitize(string html) { var doc = new HtmlDocument(); doc.LoadHtml(html); SanitizeHtmlNode(doc.DocumentNode); //return doc.DocumentNode.WriteTo(); string output = null; // Use an XmlTextWriter to create self-closing tags using (StringWriter sw = new StringWriter()) { XmlWriter writer = new XmlTextWriter(sw); doc.DocumentNode.WriteTo(writer); output = sw.ToString(); // strip off XML doc header if (!string.IsNullOrEmpty(output)) { int at = output.IndexOf("?>"); output = output.Substring(at + 2); } writer.Close(); } doc = null; return output; } private void SanitizeHtmlNode(HtmlNode node) { if (node.NodeType == HtmlNodeType.Element) { // check for blacklist items and remove if (BlackList.Contains(node.Name)) { node.Remove(); return; } // remove CSS Expressions and embedded script links if (node.Name == "style") { if (string.IsNullOrEmpty(node.InnerText)) { if (node.InnerHtml.Contains("expression") || node.InnerHtml.Contains("javascript:")) node.ParentNode.RemoveChild(node); } } // remove script attributes if (node.HasAttributes) { for (int i = node.Attributes.Count - 1; i >= 0; i--) { HtmlAttribute currentAttribute = node.Attributes[i]; var attr = currentAttribute.Name.ToLower(); var val = currentAttribute.Value.ToLower(); span style="background: white; color: green">// remove event handlers if (attr.StartsWith("on")) node.Attributes.Remove(currentAttribute); // remove script links else if ( //(attr == "href" || attr== "src" || attr == "dynsrc" || attr == "lowsrc") && val != null && val.Contains("javascript:")) node.Attributes.Remove(currentAttribute); // Remove CSS Expressions else if (attr == "style" && val != null && val.Contains("expression") || val.Contains("javascript:") || val.Contains("vbscript:")) node.Attributes.Remove(currentAttribute); } } } // Look through child nodes recursively if (node.HasChildNodes) { for (int i = node.ChildNodes.Count - 1; i >= 0; i--) { SanitizeHtmlNode(node.ChildNodes[i]); } } } } } Please note: Use this as a starting point only for your own parsing and review the code for your specific use case! If your needs are less lenient than mine were you can you can make this much stricter by not allowing src and href attributes or CSS links if your HTML doesn't allow it. You can also check links for external URLs and disallow those - lots of options.  The code is simple enough to make it easy to extend to fit your use cases more specifically. It's also quite easy to make this code work using a WhiteList approach if you want to go that route. The code above is semi-generic for allowing full featured HTML fragments that only disallow script related content. The Sanitize method walks through each node of the document and then recursively drills into all of its children until the entire document has been traversed. Note that the code here uses an XmlTextWriter to write output - this is done to preserve XHTML style self-closing tags which are otherwise left as non-self-closing tags. The sanitizer code scans for blacklist elements and removes those elements not allowed. Note that the blacklist is configurable either in the instance class as a property or in the static method via the string parameter list. Additionally the code goes through each element's attributes and looks for a host of rules gleaned from some of the XSS cheat sheets listed at the end of the post. Clearly there are a lot more XSS vulnerabilities, but a lot of them apply to ancient browsers (IE6 and versions of Netscape) - many of these glaring holes (like CSS expressions - WTF IE?) have been removed in modern browsers. What a Pain To be honest this is NOT a piece of code that I wanted to write. I think building anything related to XSS is better left to people who have far more knowledge of the topic than I do. Unfortunately, I was unable to find a tool that worked even closely for me, or even provided a working base. For the project I was working on I had no choice and I'm sharing the code here merely as a base line to start with and potentially expand on for specific needs. It's sad that Microsoft Web Protection Library is currently such a train wreck - this is really something that should come from Microsoft as the systems vendor or possibly a third party that provides security tools. Luckily for my application we are dealing with a authenticated and validated users so the user base is fairly well known, and relatively small - this is not a wide open Internet application that's directly public facing. As I mentioned earlier in the post, if I had my way I would simply not allow this type of raw HTML input in the first place, and instead rely on a more controlled HTML input mechanism like MarkDown or even a good HTML Edit control that can provide some limits on what types of input are allowed. Alas in this case I was overridden and we had to go forward and allow *any* raw HTML posted. Sometimes I really feel sad that it's come this far - how many good applications and tools have been thwarted by fear of XSS (or worse) attacks? So many things that could be done *if* we had a more secure browser experience and didn't have to deal with every little script twerp trying to hack into Web pages and obscure browser bugs. So much time wasted building secure apps, so much time wasted by others trying to hack apps… We're a funny species - no other species manages to waste as much time, effort and resources as we humans do :-) Resources Code on GitHub Html Agility Pack XSS Cheat Sheet XSS Prevention Cheat Sheet Microsoft Web Protection Library (AntiXss) StackOverflow Links: http://stackoverflow.com/questions/341872/html-sanitizer-for-net http://blog.stackoverflow.com/2008/06/safe-html-and-xss/ http://code.google.com/p/subsonicforums/source/browse/trunk/SubSonic.Forums.Data/HtmlScrubber.cs?r=61© Rick Strahl, West Wind Technologies, 2005-2012Posted in Security  HTML  ASP.NET  JavaScript   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Using jQuery to Insert a New Database Record

    - by Stephen Walther
    The goal of this blog entry is to explore the easiest way of inserting a new record into a database using jQuery and .NET. I’m going to explore two approaches: using Generic Handlers and using a WCF service (In a future blog entry I’ll take a look at OData and WCF Data Services). Create the ASP.NET Project I’ll start by creating a new empty ASP.NET application with Visual Studio 2010. Select the menu option File, New Project and select the ASP.NET Empty Web Application project template. Setup the Database and Data Model I’ll use my standard MoviesDB.mdf movies database. This database contains one table named Movies that looks like this: I’ll use the ADO.NET Entity Framework to represent my database data: Select the menu option Project, Add New Item and select the ADO.NET Entity Data Model project item. Name the data model MoviesDB.edmx and click the Add button. In the Choose Model Contents step, select Generate from database and click the Next button. In the Choose Your Data Connection step, leave all of the defaults and click the Next button. In the Choose Your Data Objects step, select the Movies table and click the Finish button. Unfortunately, Visual Studio 2010 cannot spell movie correctly :) You need to click on Movy and change the name of the class to Movie. In the Properties window, change the Entity Set Name to Movies. Using a Generic Handler In this section, we’ll use jQuery with an ASP.NET generic handler to insert a new record into the database. A generic handler is similar to an ASP.NET page, but it does not have any of the overhead. It consists of one method named ProcessRequest(). Select the menu option Project, Add New Item and select the Generic Handler project item. Name your new generic handler InsertMovie.ashx and click the Add button. Modify your handler so it looks like Listing 1: Listing 1 – InsertMovie.ashx using System.Web; namespace WebApplication1 { /// <summary> /// Inserts a new movie into the database /// </summary> public class InsertMovie : IHttpHandler { private MoviesDBEntities _dataContext = new MoviesDBEntities(); public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; // Extract form fields var title = context.Request["title"]; var director = context.Request["director"]; // Create movie to insert var movieToInsert = new Movie { Title = title, Director = director }; // Save new movie to DB _dataContext.AddToMovies(movieToInsert); _dataContext.SaveChanges(); // Return success context.Response.Write("success"); } public bool IsReusable { get { return true; } } } } In Listing 1, the ProcessRequest() method is used to retrieve a title and director from form parameters. Next, a new Movie is created with the form values. Finally, the new movie is saved to the database and the string “success” is returned. Using jQuery with the Generic Handler We can call the InsertMovie.ashx generic handler from jQuery by using the standard jQuery post() method. The following HTML page illustrates how you can retrieve form field values and post the values to the generic handler: Listing 2 – Default.htm <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Add Movie</title> <script src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.js" type="text/javascript"></script> </head> <body> <form> <label>Title:</label> <input name="title" /> <br /> <label>Director:</label> <input name="director" /> </form> <button id="btnAdd">Add Movie</button> <script type="text/javascript"> $("#btnAdd").click(function () { $.post("InsertMovie.ashx", $("form").serialize(), insertCallback); }); function insertCallback(result) { if (result == "success") { alert("Movie added!"); } else { alert("Could not add movie!"); } } </script> </body> </html>     When you open the page in Listing 2 in a web browser, you get a simple HTML form: Notice that the page in Listing 2 includes the jQuery library. The jQuery library is included with the following SCRIPT tag: <script src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.js" type="text/javascript"></script> The jQuery library is included on the Microsoft Ajax CDN so you can always easily include the jQuery library in your applications. You can learn more about the CDN at this website: http://www.asp.net/ajaxLibrary/cdn.ashx When you click the Add Movie button, the jQuery post() method is called to post the form data to the InsertMovie.ashx generic handler. Notice that the form values are serialized into a URL encoded string by calling the jQuery serialize() method. The serialize() method uses the name attribute of form fields and not the id attribute. Notes on this Approach This is a very low-level approach to interacting with .NET through jQuery – but it is simple and it works! And, you don’t need to use any JavaScript libraries in addition to the jQuery library to use this approach. The signature for the jQuery post() callback method looks like this: callback(data, textStatus, XmlHttpRequest) The second parameter, textStatus, returns the HTTP status code from the server. I tried returning different status codes from the generic handler with an eye towards implementing server validation by returning a status code such as 400 Bad Request when validation fails (see http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html ). I finally figured out that the callback is not invoked when the textStatus has any value other than “success”. Using a WCF Service As an alternative to posting to a generic handler, you can create a WCF service. You create a new WCF service by selecting the menu option Project, Add New Item and selecting the Ajax-enabled WCF Service project item. Name your WCF service InsertMovie.svc and click the Add button. Modify the WCF service so that it looks like Listing 3: Listing 3 – InsertMovie.svc using System.ServiceModel; using System.ServiceModel.Activation; namespace WebApplication1 { [ServiceBehavior(IncludeExceptionDetailInFaults=true)] [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class MovieService { private MoviesDBEntities _dataContext = new MoviesDBEntities(); [OperationContract] public bool Insert(string title, string director) { // Create movie to insert var movieToInsert = new Movie { Title = title, Director = director }; // Save new movie to DB _dataContext.AddToMovies(movieToInsert); _dataContext.SaveChanges(); // Return movie (with primary key) return true; } } }   The WCF service in Listing 3 uses the Entity Framework to insert a record into the Movies database table. The service always returns the value true. Notice that the service in Listing 3 includes the following attribute: [ServiceBehavior(IncludeExceptionDetailInFaults=true)] You need to include this attribute if you want to get detailed error information back to the client. When you are building an application, you should always include this attribute. When you are ready to release your application, you should remove this attribute for security reasons. Using jQuery with the WCF Service Calling a WCF service from jQuery requires a little more work than calling a generic handler from jQuery. Here are some good blog posts on some of the issues with using jQuery with WCF: http://encosia.com/2008/06/05/3-mistakes-to-avoid-when-using-jquery-with-aspnet-ajax/ http://encosia.com/2008/03/27/using-jquery-to-consume-aspnet-json-web-services/ http://weblogs.asp.net/scottgu/archive/2007/04/04/json-hijacking-and-how-asp-net-ajax-1-0-mitigates-these-attacks.aspx http://www.west-wind.com/Weblog/posts/896411.aspx http://www.west-wind.com/weblog/posts/324917.aspx http://professionalaspnet.com/archive/tags/WCF/default.aspx The primary requirement when calling WCF from jQuery is that the request use JSON: The request must include a content-type:application/json header. Any parameters included with the request must be JSON encoded. Unfortunately, jQuery does not include a method for serializing JSON (Although, oddly, jQuery does include a parseJSON() method for deserializing JSON). Therefore, we need to use an additional library to handle the JSON serialization. The page in Listing 4 illustrates how you can call a WCF service from jQuery. Listing 4 – Default2.aspx <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Add Movie</title> <script src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.js" type="text/javascript"></script> <script src="Scripts/json2.js" type="text/javascript"></script> </head> <body> <form> <label>Title:</label> <input id="title" /> <br /> <label>Director:</label> <input id="director" /> </form> <button id="btnAdd">Add Movie</button> <script type="text/javascript"> $("#btnAdd").click(function () { // Convert the form into an object var data = { title: $("#title").val(), director: $("#director").val() }; // JSONify the data data = JSON.stringify(data); // Post it $.ajax({ type: "POST", contentType: "application/json; charset=utf-8", url: "MovieService.svc/Insert", data: data, dataType: "json", success: insertCallback }); }); function insertCallback(result) { // unwrap result result = result["d"]; if (result === true) { alert("Movie added!"); } else { alert("Could not add movie!"); } } </script> </body> </html> There are several things to notice about Listing 4. First, notice that the page includes both the jQuery library and Douglas Crockford’s JSON2 library: <script src="Scripts/json2.js" type="text/javascript"></script> You need to include the JSON2 library to serialize the form values into JSON. You can download the JSON2 library from the following location: http://www.json.org/js.html When you click the button to submit the form, the form data is converted into a JavaScript object: // Convert the form into an object var data = { title: $("#title").val(), director: $("#director").val() }; Next, the data is serialized into JSON using the JSON2 library: // JSONify the data var data = JSON.stringify(data); Finally, the form data is posted to the WCF service by calling the jQuery ajax() method: // Post it $.ajax({   type: "POST",   contentType: "application/json; charset=utf-8",   url: "MovieService.svc/Insert",   data: data,   dataType: "json",   success: insertCallback }); You can’t use the standard jQuery post() method because you must set the content-type of the request to be application/json. Otherwise, the WCF service will reject the request for security reasons. For details, see the Scott Guthrie blog post: http://weblogs.asp.net/scottgu/archive/2007/04/04/json-hijacking-and-how-asp-net-ajax-1-0-mitigates-these-attacks.aspx The insertCallback() method is called when the WCF service returns a response. This method looks like this: function insertCallback(result) {   // unwrap result   result = result["d"];   if (result === true) {       alert("Movie added!");   } else {     alert("Could not add movie!");   } } When we called the jQuery ajax() method, we set the dataType to JSON. That causes the jQuery ajax() method to deserialize the response from the WCF service from JSON into a JavaScript object automatically. The following value is passed to the insertCallback method: {"d":true} For security reasons, a WCF service always returns a response with a “d” wrapper. The following line of code removes the “d” wrapper: // unwrap result result = result["d"]; To learn more about the “d” wrapper, I recommend that you read the following blog posts: http://encosia.com/2009/02/10/a-breaking-change-between-versions-of-aspnet-ajax/ http://encosia.com/2009/06/29/never-worry-about-asp-net-ajaxs-d-again/ Summary In this blog entry, I explored two methods of inserting a database record using jQuery and .NET. First, we created a generic handler and called the handler from jQuery. This is a very low-level approach. However, it is a simple approach that works. Next, we looked at how you can call a WCF service using jQuery. This approach required a little more work because you need to serialize objects into JSON. We used the JSON2 library to perform the serialization. In the next blog post, I want to explore how you can use jQuery with OData and WCF Data Services.

    Read the article

  • When is a SQL function not a function?

    - by Rob Farley
    Should SQL Server even have functions? (Oh yeah – this is a T-SQL Tuesday post, hosted this month by Brad Schulz) Functions serve an important part of programming, in almost any language. A function is a piece of code that is designed to return something, as opposed to a piece of code which isn’t designed to return anything (which is known as a procedure). SQL Server is no different. You can call stored procedures, even from within other stored procedures, and you can call functions and use these in other queries. Stored procedures might query something, and therefore ‘return data’, but a function in SQL is considered to have the type of the thing returned, and can be used accordingly in queries. Consider the internal GETDATE() function. SELECT GETDATE(), SomeDatetimeColumn FROM dbo.SomeTable; There’s no logical difference between the field that is being returned by the function and the field that’s being returned by the table column. Both are the datetime field – if you didn’t have inside knowledge, you wouldn’t necessarily be able to tell which was which. And so as developers, we find ourselves wanting to create functions that return all kinds of things – functions which look up values based on codes, functions which do string manipulation, and so on. But it’s rubbish. Ok, it’s not all rubbish, but it mostly is. And this isn’t even considering the SARGability impact. It’s far more significant than that. (When I say the SARGability aspect, I mean “because you’re unlikely to have an index on the result of some function that’s applied to a column, so try to invert the function and query the column in an unchanged manner”) I’m going to consider the three main types of user-defined functions in SQL Server: Scalar Inline Table-Valued Multi-statement Table-Valued I could also look at user-defined CLR functions, including aggregate functions, but not today. I figure that most people don’t tend to get around to doing CLR functions, and I’m going to focus on the T-SQL-based user-defined functions. Most people split these types of function up into two types. So do I. Except that most people pick them based on ‘scalar or table-valued’. I’d rather go with ‘inline or not’. If it’s not inline, it’s rubbish. It really is. Let’s start by considering the two kinds of table-valued function, and compare them. These functions are going to return the sales for a particular salesperson in a particular year, from the AdventureWorks database. CREATE FUNCTION dbo.FetchSales_inline(@salespersonid int, @orderyear int) RETURNS TABLE AS  RETURN (     SELECT e.LoginID as EmployeeLogin, o.OrderDate, o.SalesOrderID     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101') ) ; GO CREATE FUNCTION dbo.FetchSales_multi(@salespersonid int, @orderyear int) RETURNS @results TABLE (     EmployeeLogin nvarchar(512),     OrderDate datetime,     SalesOrderID int     ) AS BEGIN     INSERT @results (EmployeeLogin, OrderDate, SalesOrderID)     SELECT e.LoginID, o.OrderDate, o.SalesOrderID     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101')     ;     RETURN END ; GO You’ll notice that I’m being nice and responsible with the use of the DATEADD function, so that I have SARGability on the OrderDate filter. Regular readers will be hoping I’ll show what’s going on in the execution plans here. Here I’ve run two SELECT * queries with the “Show Actual Execution Plan” option turned on. Notice that the ‘Query cost’ of the multi-statement version is just 2% of the ‘Batch cost’. But also notice there’s trickery going on. And it’s nothing to do with that extra index that I have on the OrderDate column. Trickery. Look at it – clearly, the first plan is showing us what’s going on inside the function, but the second one isn’t. The second one is blindly running the function, and then scanning the results. There’s a Sequence operator which is calling the TVF operator, and then calling a Table Scan to get the results of that function for the SELECT operator. But surely it still has to do all the work that the first one is doing... To see what’s actually going on, let’s look at the Estimated plan. Now, we see the same plans (almost) that we saw in the Actuals, but we have an extra one – the one that was used for the TVF. Here’s where we see the inner workings of it. You’ll probably recognise the right-hand side of the TVF’s plan as looking very similar to the first plan – but it’s now being called by a stack of other operators, including an INSERT statement to be able to populate the table variable that the multi-statement TVF requires. And the cost of the TVF is 57% of the batch! But it gets worse. Let’s consider what happens if we don’t need all the columns. We’ll leave out the EmployeeLogin column. Here, we see that the inline function call has been simplified down. It doesn’t need the Employee table. The join is redundant and has been eliminated from the plan, making it even cheaper. But the multi-statement plan runs the whole thing as before, only removing the extra column when the Table Scan is performed. A multi-statement function is a lot more powerful than an inline one. An inline function can only be the result of a single sub-query. It’s essentially the same as a parameterised view, because views demonstrate this same behaviour of extracting the definition of the view and using it in the outer query. A multi-statement function is clearly more powerful because it can contain far more complex logic. But a multi-statement function isn’t really a function at all. It’s a stored procedure. It’s wrapped up like a function, but behaves like a stored procedure. It would be completely unreasonable to expect that a stored procedure could be simplified down to recognise that not all the columns might be needed, but yet this is part of the pain associated with this procedural function situation. The biggest clue that a multi-statement function is more like a stored procedure than a function is the “BEGIN” and “END” statements that surround the code. If you try to create a multi-statement function without these statements, you’ll get an error – they are very much required. When I used to present on this kind of thing, I even used to call it “The Dangers of BEGIN and END”, and yes, I’ve written about this type of thing before in a similarly-named post over at my old blog. Now how about scalar functions... Suppose we wanted a scalar function to return the count of these. CREATE FUNCTION dbo.FetchSales_scalar(@salespersonid int, @orderyear int) RETURNS int AS BEGIN     RETURN (         SELECT COUNT(*)         FROM Sales.SalesOrderHeader AS o         LEFT JOIN HumanResources.Employee AS e         ON e.EmployeeID = o.SalesPersonID         WHERE o.SalesPersonID = @salespersonid         AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')         AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101')     ); END ; GO Notice the evil words? They’re required. Try to remove them, you just get an error. That’s right – any scalar function is procedural, despite the fact that you wrap up a sub-query inside that RETURN statement. It’s as ugly as anything. Hopefully this will change in future versions. Let’s have a look at how this is reflected in an execution plan. Here’s a query, its Actual plan, and its Estimated plan: SELECT e.LoginID, y.year, dbo.FetchSales_scalar(p.SalesPersonID, y.year) AS NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID; We see here that the cost of the scalar function is about twice that of the outer query. Nicely, the query optimizer has worked out that it doesn’t need the Employee table, but that’s a bit of a red herring here. There’s actually something way more significant going on. If I look at the properties of that UDF operator, it tells me that the Estimated Subtree Cost is 0.337999. If I just run the query SELECT dbo.FetchSales_scalar(281,2003); we see that the UDF cost is still unchanged. You see, this 0.0337999 is the cost of running the scalar function ONCE. But when we ran that query with the CROSS JOIN in it, we returned quite a few rows. 68 in fact. Could’ve been a lot more, if we’d had more salespeople or more years. And so we come to the biggest problem. This procedure (I don’t want to call it a function) is getting called 68 times – each one between twice as expensive as the outer query. And because it’s calling it in a separate context, there is even more overhead that I haven’t considered here. The cheek of it, to say that the Compute Scalar operator here costs 0%! I know a number of IT projects that could’ve used that kind of costing method, but that’s another story that I’m not going to go into here. Let’s look at a better way. Suppose our scalar function had been implemented as an inline one. Then it could have been expanded out like a sub-query. It could’ve run something like this: SELECT e.LoginID, y.year, (SELECT COUNT(*)     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = p.SalesPersonID     AND o.OrderDate >= DATEADD(year,y.year-2000,'20000101')     AND o.OrderDate < DATEADD(year,y.year-2000+1,'20000101')     ) AS NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID; Don’t worry too much about the Scan of the SalesOrderHeader underneath a Nested Loop. If you remember from plenty of other posts on the matter, execution plans don’t push the data through. That Scan only runs once. The Index Spool sucks the data out of it and populates a structure that is used to feed the Stream Aggregate. The Index Spool operator gets called 68 times, but the Scan only once (the Number of Executions property demonstrates this). Here, the Query Optimizer has a full picture of what’s being asked, and can make the appropriate decision about how it accesses the data. It can simplify it down properly. To get this kind of behaviour from a function, we need it to be inline. But without inline scalar functions, we need to make our function be table-valued. Luckily, that’s ok. CREATE FUNCTION dbo.FetchSales_inline2(@salespersonid int, @orderyear int) RETURNS table AS RETURN (SELECT COUNT(*) as NumSales     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101') ); GO But we can’t use this as a scalar. Instead, we need to use it with the APPLY operator. SELECT e.LoginID, y.year, n.NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID OUTER APPLY dbo.FetchSales_inline2(p.SalesPersonID, y.year) AS n; And now, we get the plan that we want for this query. All we’ve done is tell the function that it’s returning a table instead of a single value, and removed the BEGIN and END statements. We’ve had to name the column being returned, but what we’ve gained is an actual inline simplifiable function. And if we wanted it to return multiple columns, it could do that too. I really consider this function to be superior to the scalar function in every way. It does need to be handled differently in the outer query, but in many ways it’s a more elegant method there too. The function calls can be put amongst the FROM clause, where they can then be used in the WHERE or GROUP BY clauses without fear of calling the function multiple times (another horrible side effect of functions). So please. If you see BEGIN and END in a function, remember it’s not really a function, it’s a procedure. And then fix it. @rob_farley

    Read the article

  • Simplex Noise Help

    - by Alex Larsen
    Im Making A Minecraft Like Gae In XNA C# And I Need To Generate Land With Caves This Is The Code For Simplex I Have /// <summary> /// 1D simplex noise /// </summary> /// <param name="x"></param> /// <returns></returns> public static float Generate(float x) { int i0 = FastFloor(x); int i1 = i0 + 1; float x0 = x - i0; float x1 = x0 - 1.0f; float n0, n1; float t0 = 1.0f - x0 * x0; t0 *= t0; n0 = t0 * t0 * grad(perm[i0 & 0xff], x0); float t1 = 1.0f - x1 * x1; t1 *= t1; n1 = t1 * t1 * grad(perm[i1 & 0xff], x1); // The maximum value of this noise is 8*(3/4)^4 = 2.53125 // A factor of 0.395 scales to fit exactly within [-1,1] return 0.395f * (n0 + n1); } /// <summary> /// 2D simplex noise /// </summary> /// <param name="x"></param> /// <param name="y"></param> /// <returns></returns> public static float Generate(float x, float y) { const float F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0) const float G2 = 0.211324865f; // G2 = (3.0-Math.sqrt(3.0))/6.0 float n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in float s = (x + y) * F2; // Hairy factor for 2D float xs = x + s; float ys = y + s; int i = FastFloor(xs); int j = FastFloor(ys); float t = (float)(i + j) * G2; float X0 = i - t; // Unskew the cell origin back to (x,y) space float Y0 = j - t; float x0 = x - X0; // The x,y distances from the cell origin float y0 = y - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords float y1 = y0 - j1 + G2; float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords float y2 = y0 - 1.0f + 2.0f * G2; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i % 256; int jj = j % 256; // Calculate the contribution from the three corners float t0 = 0.5f - x0 * x0 - y0 * y0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad(perm[ii + perm[jj]], x0, y0); } float t1 = 0.5f - x1 * x1 - y1 * y1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1]], x1, y1); } float t2 = 0.5f - x2 * x2 - y2 * y2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad(perm[ii + 1 + perm[jj + 1]], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary! } public static float Generate(float x, float y, float z) { // Simple skewing factors for the 3D case const float F3 = 0.333333333f; const float G3 = 0.166666667f; float n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D float xs = x + s; float ys = y + s; float zs = z + s; int i = FastFloor(xs); int j = FastFloor(ys); int k = FastFloor(zs); float t = (float)(i + j + k) * G3; float X0 = i - t; // Unskew the cell origin back to (x,y,z) space float Y0 = j - t; float Z0 = k - t; float x0 = x - X0; // The x,y,z distances from the cell origin float y0 = y - Y0; float z0 = z - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords /* This code would benefit from a backport from the GLSL version! */ if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0<y0 if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords float y1 = y0 - j1 + G3; float z1 = z0 - k1 + G3; float x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x,y,z) coords float y2 = y0 - j2 + 2.0f * G3; float z2 = z0 - k2 + 2.0f * G3; float x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x,y,z) coords float y3 = y0 - 1.0f + 3.0f * G3; float z3 = z0 - 1.0f + 3.0f * G3; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i % 256; int jj = j % 256; int kk = k % 256; // Calculate the contribution from the four corners float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad(perm[ii + perm[jj + perm[kk]]], x0, y0, z0); } float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], x1, y1, z1); } float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad(perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], x2, y2, z2); } float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0.0f) n3 = 0.0f; else { t3 *= t3; n3 = t3 * t3 * grad(perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return 32.0f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary! } private static byte[] perm = new byte[512] { 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180, 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 }; private static int FastFloor(float x) { return (x > 0) ? ((int)x) : (((int)x) - 1); } private static float grad(int hash, float x) { int h = hash & 15; float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0 if ((h & 8) != 0) grad = -grad; // Set a random sign for the gradient return (grad * x); // Multiply the gradient with the distance } private static float grad(int hash, float x, float y) { int h = hash & 7; // Convert low 3 bits of hash code float u = h < 4 ? x : y; // into 8 simple gradient directions, float v = h < 4 ? y : x; // and compute the dot product with (x,y). return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -2.0f * v : 2.0f * v); } private static float grad(int hash, float x, float y, float z) { int h = hash & 15; // Convert low 4 bits of hash code into 12 simple float u = h < 8 ? x : y; // gradient directions, and compute dot product. float v = h < 4 ? y : h == 12 || h == 14 ? x : z; // Fix repeats at h = 12 to 15 return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v); } private static float grad(int hash, float x, float y, float z, float t) { int h = hash & 31; // Convert low 5 bits of hash code into 32 simple float u = h < 24 ? x : y; // gradient directions, and compute dot product. float v = h < 16 ? y : z; float w = h < 8 ? z : t; return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v) + ((h & 4) != 0 ? -w : w); } This Is My World Generation Code Block[,] BlocksInMap = new Block[1024, 256]; public bool IsWorldGenerated = false; Random r = new Random(); private void RunThread() { for (int BH = 0; BH <= 256; BH++) { for (int BW = 0; BW <= 1024; BW++) { Block b = new Block(); if (BH >= 192) { } BlocksInMap[BW, BH] = b; } } IsWorldGenerated = true; } public void GenWorld() { new Thread(new ThreadStart(RunThread)).Start(); } And This Is A Example Of How I Set Blocks Block b = new Block(); b.BlockType = = Block.BlockTypes.Air; This Is A Example Of How I Set Models foreach (Block b in MyWorld) { switch(b.BlockType) { case Block.BlockTypes.Dirt: b.Model = DirtModel; break; ect. } } How Would I Use These To Generate To World (The Block Array) And If Possible Thread It More? btw It's 1024 Wide And 256 Tall

    Read the article

  • How can I Setup overloaded method invocations in Moq?

    - by arootbeer
    I'm trying to mock a mapping interface IMapper: public interface IMapper<TFoo, TBar> { TBar Map(TFoo foo); TFoo Map(TBar bar); } In my test, I'm setting the mock mapper up to expect an invocation of each (around an NHibernate update operation): //... _mapperMock.Setup(m => m.Map(fooMock.Object)).Returns(barMock.Object); _mapperMock.Setup(m => m.Map(barMock.Object)).Returns(fooMock.Object); //... However, when the second Map invocation is made, the mapper mock throws because it is only expecting a single invocation. Watching the mapper mock during setup at runtime, I can look see the Map(TFoo foo) overload get registered, and then see it get replaced when the Map(TBar bar) overload is set up. Is this a problem with the way Moq handles setup, or is there a different syntax I need to use in this case?

    Read the article

  • java inheritance keyword super()

    - by gucciv12
    requirement: Given the class 'ReadOnly' with the following behavior: A (protected) integer instance variable named 'val'. A constructor that accepts an integer and assigns the value of the parameter to the instance variable 'val'. A method name 'getVal' that returns the value of 'val'. Write a subclass named 'ReadWrite' with the following additional behavior: Any necessary constructors. a method named 'setVal' that accepts an integer parameter and assigns it the the 'val' instance variable. a method 'isDirty' that returns true if the setVal method was used to override the value of the 'val' variable. Code class ReadWrite extends ReadOnly { super(int val); void setVal(int val){this.val = val;} boolean isDirty() {if (setVal()(return true)) else return false;}} More Hints: ?     You should be using: modified ?     You should be using: private ?     You should be using: public

    Read the article

  • after return PartialView() Url.Actionlink("Action", "Controller"), the Controller is lost

    - by Johannes
    Well the Question is related to a problem I posted before (http://stackoverflow.com/questions/2403899/asp-net-mvc-partial-view-does-not-call-my-action). In practice I've a partial view which contains a Form, after submitting the Form the Controller returns the Partial View. Well the Problem is if I reload the page which contains the partial view the function <%= Url.Action("ChangePassword", "Account") %> returns "Account/ChangePassword", if I submit the form and the partial is returned by the controller. Using return PartialView() the function <%= Url.Action("ChangePassword", "Account") %> returns only "ChangePassword". Any Idea because? The View looks like: <form action="<%= Url.Action("ChangePassword", "Account") %>" method="post" id="jform"> <div> <fieldset> <legend>Account Information</legend> <p> <label for="currentPassword">Current password:</label> <%= Html.Password("currentPassword") %> <%= Html.ValidationMessage("currentPassword") %> </p> <p> <label for="newPassword">New password:</label> <%= Html.Password("newPassword") %> <%= Html.ValidationMessage("newPassword") %> </p> <p> <label for="confirmPassword">Confirm new password:</label> <%= Html.Password("confirmPassword") %> <%= Html.ValidationMessage("confirmPassword") %> </p> <p> <input type="submit" value="Change Password" /> </p> </fieldset> </div> </form> </div> <script> $(function() { $('#jform').submit(function() { $('#jform').ajaxSubmit({ target: '#FmChangePassword' }); return false; }); }); </script> Part of the Controller: if (!ValidateChangePassword(currentPassword, newPassword, confirmPassword)) { return PartialView(ViewData); }

    Read the article

  • How to compare nullable types?

    - by David_001
    I have a few places where I need to compare 2 (nullable) values, to see if they're the same. I think there should be something in the framework to support this, but can't find anything, so instead have the following: public static bool IsDifferentTo(this bool? x, bool? y) { return (x.HasValue != y.HasValue) ? true : x.HasValue && x.Value != y.Value; } Then, within code I have if (x.IsDifferentTo(y)) ... I then have similar methods for nullable ints, nullable doubles etc. Is there not an easier way to see if two nullable types are the same? Update: Turns out that the reason this method existed was because the code has been converted from VB.Net, where Nothing = Nothing returns false (compare to C# where null == null returns true). The VB.Net code should have used .Equals... instead.

    Read the article

  • ActiveMQ, timestamp for broker receiving the message to send

    - by StaxMan
    Ok, as per ActiveMQ docs, it appears that Message.getJMSTimestamp() returns time that client claims it sent the message (with its local clock). And that there is supposedly property "JMSActiveMQBrokerInTime" that is added to Message (see http://activemq.apache.org/activemq-message-properties.html). However, trying to access it on an ActiveMQ 4.1.2 installation gives an error. Does anyone know if this is something that was only added in 5.0 or later? Or is there some other explanation as to where it might have disappeared? Message.getPropertyNames() returns empty enumeration, which could indicate that nothing gets through.

    Read the article

  • Location.getTime() returning a future time.

    - by fiXedd
    The following code: // get the last known location Criteria c = new Criteria(); c.setAccuracy(Criteria.ACCURACY_FINE); Location lastKnown = mLocationManager.getLastKnownLocation(mLocationManager.getBestProvider(c, true)); // compare times long currentTime = System.currentTimeMillis(); long gpsTime = lastKnown.getTime(); long age = (currentTime - gpsTime) / 1000; Gives me: currentTime = 1270062152738 gpsTime = 1270085378000 age = -23225 If you'll notice, it's returning the last location fix's time as a time in the future. Why is this happening? EDIT: From Location.getTime() : Returns the UTC time of this fix, in milliseconds since January 1, 1970. From System.currentTimeMillis() : Returns the current system time in milliseconds since January 1, 1970 00:00:00 UTC. This method shouldn't be used for measuring timeouts or other elapsed time measurements, as changing the system time can affect the results.

    Read the article

  • Audio recording error kAudioQueueErr_CannotStart on iPhone OS 3.0

    - by Jeremy Borden
    I'm working on a couple different iphone apps that both record and play sounds concurrently. Think multitrack mixing... play one sound a save it then listen to that sound while recording the next sound to another file. My mechanism for this has been to start up two different audio queues, one for recording, and one for playing. This was working A-OK until the release of OS 3.0... Since then, however, the following happens: If I start the recording queue first, it supposedly starts fine, but the call to AudioQueueStart for the playback queue returns kAudioQueueErr_CannotStart. If I start the playback queue first, it also supposedly starts fine, but the call to AudioQueueStart for the record queue returns the same error, kAudioQueueErr_CannotStart. Anyone have any luck debugging this error? Seems like maybe the two queues are stomping on each other's memory or something? The official description is: "The audio queue has encountered a problem and cannot start." Not super helpful... Jeremy

    Read the article

  • Reading EventLog C# Errors

    - by Robert
    I have this code in my ASP.NET application written in C# that is trying to read the eventlog, but it returns an error. EventLog aLog = new EventLog(); aLog.Log = "Application"; aLog.MachineName = "."; // Local machine foreach (EventLogEntry entry in aLog.Entries) { if (entry.Source.Equals("tvNZB")) Label_log.Text += "<p>" + entry.Message; } One of the entries it returns is "The description for Event ID '0' in Source 'tvNZB' cannot be found. The local computer may not have the necessary registry information or message DLL files to display the message, or you may not have permission to access them. The following information is part of the event:'Service started successfully.'" I only want the 'Service started successfully'. Any ideas?

    Read the article

< Previous Page | 57 58 59 60 61 62 63 64 65 66 67 68  | Next Page >