Search Results

Search found 5121 results on 205 pages for 'foo'.

Page 62/205 | < Previous Page | 58 59 60 61 62 63 64 65 66 67 68 69  | Next Page >

  • Convert to lowercase in a mod_rewrite rule.

    - by dreeves
    I would like URLs like server.com/foo to be case-insensitive. But server.com/foo actually gets mod_rewrite'd to server.com/somedir/foo (Assume that all the files in "somedir" are lower case.) So the question is, how to accomplish a mod_rewrite like the following: RewriteRule ^([^/]+)/?$ somedir/convert_to_lowercase($1)

    Read the article

  • Reload Method or Object in IDLE

    - by GSto
    when using idle, I know you can reload a module if it's changed like this: import foo reload(foo) if I only import part of a module, is there a way to reload it in a similar matter? from foo import bar

    Read the article

  • How do I remove unnecessary options from a select field in a Drupal form?

    - by thismax
    I'm using the better_exposed_filters module to create a set of exposed filters for a view. One of the filters is being displayed as a select field, and I would like the field to only display options that are actually associated with content in the database. Currently, I am doing this using the hook_form_alter() method. For simplification, in the following example the field is called 'foo' and the content type with that field is called 'bar': function my_module_form_alter(&$form, $form_state, $form_id) { // Get all the values of foo that matter $resource = db_query('select distinct field_foo_value from {content_type_bar}'); $foo = array(); while($row = db_fetch_object($resource)) { $foo[$row->field_foo_value] = $row->field_foo_value; } $form['foo']['#options'] = $manufacturers; } This works great -- the form displays only the options I want to display. Unfortunately, the view doesn't actually display anything initially and I also get the following error message: An illegal choice has been detected. Please contact the site administrator. After I filter options with the form once, everything seems to work fine. Does anyone know how I can solve this problem? I'm open to an entirely different way of weeding out filter options, if need be, or a way that I can figure out how to address that error.

    Read the article

  • php array_filter without key preservation

    - by pistacchio
    Hi, if i filter an array with array_filter to eliminate null values, keys are preserved and this generated "holes" in the array. Eg: The filtered version of [0] => 'foo' [1] => null [2] => 'bar' is [0] => 'foo' [2] => 'bar' How can i get, instead [0] => 'foo' [1] => 'bar' ? Thanks

    Read the article

  • what's this jquery syntax?

    - by all-R
    I see that quite often in some Jquery plugins $('#foo').myPlugin({ foo: 'bar', bar: 'foo' }); I'm talking about the {} in the .myPlugin() part. I see quite often anonymous functions like .click(function(){ }); but the above syntax looks different thanks for your help!

    Read the article

  • Module.new with class_eval

    - by dorelal
    This is a large commit. But I want you to concentrate on this change block. http://github.com/rails/rails/commit/d916c62cfc7c59ab6411407a05b946d3dd7535e9#L2L1304 Even without understanding the full context of the code I am not able to think of a scenario where I would use include Modue.new { class_eval <<-RUBY def foo puts 'foo' end RUBY } Then end result is that in the root context (self just before include Moduel.new) a method call foo has been added. If I take out the Module.new code and if I only leave class_eval in that case also I will have a method called foo in self. What am I missing.

    Read the article

  • JS best practice for member functions

    - by MickMalone1983
    I'm writing a little mobile games library, and I'm not sure the best practice for declaring member functions of instantiated function objects. For instance, I might create a simple object with one property, and a method to print it: function Foo(id){ this.id = id; this.print = function(){ console.log(this.id); }; }; However, a function which does not need access to 'private' members of the function does not need to be declared in the function at all. I could equally have written: function print(){ console.log(this.id); }; function Foo(id){ this.id = id; this.print = print; }; When the function is invoked through an instance of Foo, the instance becomes the context for this, so the output is the same in either case. I'm not entirely sure how memory is allocated with JS, and I can't find anything that I can understand about something this specific, but it seems to me that with the first example all members of Foo, including the print function, are duplicated each time it is instantiated - but with the second, it just gets a pointer to one, pre-declared function, which would save any more memory having to be allocated as more instances of Foo are created. Am I correct, and if I am, is there any memory/performance benefit to doing this?

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Consistent PHP _SERVER variables between Apache and nginx?

    - by Alix Axel
    I'm not sure if this should be asked here or on ServerFault, but here it goes... I am trying to get started on nginx with PHP-FPM, but I noticed that the server block setup I currently have (gathered from several guides including the nginx Pitfalls wiki page) produces $_SERVER variables that are different from what I'm used to seeing in Apache setups. After spending the last evening trying to "fix" this, I decided to install Apache on my local computer and gather the variables that I'm interested in under different conditions so that I could try and mimic them on nginx. The Apache setup I've on my computer has only one mod_rewrite rule: RewriteEngine On RewriteCond %{SCRIPT_FILENAME} !-f RewriteCond %{SCRIPT_FILENAME} !-d RewriteRule ^(.*)$ /index.php/$1 [L] And these are the values I get for different request URIs (left is Apache, right is nginx): localhost/ - http://www.mergely.com/GnzBHRV1/ localhost/foo/bar/baz/?foo=bar - http://www.mergely.com/VwsT8oTf/ localhost/index.php/foo/bar/baz/?foo=bar - http://www.mergely.com/VGEFehfT/ What configuration directives would allow me to get similar values on requests handled by nginx? My current configuration in nginx is: server { listen 80; listen 443 ssl; server_name default; ssl_certificate /etc/nginx/certificates/dummy.crt; ssl_certificate_key /etc/nginx/certificates/dummy.key; root /var/www/default/html; index index.php index.html; autoindex on; location / { try_files $uri $uri/ /index.php; } location ~ /(?:favicon[.]ico|robots[.]txt)$ { log_not_found off; } location ~* [.]php { #try_files $uri =404; include fastcgi_params; fastcgi_pass unix:/var/run/php5-fpm.sock; fastcgi_index index.php; fastcgi_split_path_info ^(.+[.]php)(/.+)$; } location ~* [.]ht { deny all; } } And my fastcgi_params file looks like this: fastcgi_param PATH_INFO $fastcgi_path_info; fastcgi_param PATH_TRANSLATED $document_root$fastcgi_path_info; fastcgi_param QUERY_STRING $query_string; fastcgi_param REQUEST_METHOD $request_method; fastcgi_param CONTENT_TYPE $content_type; fastcgi_param CONTENT_LENGTH $content_length; fastcgi_param SCRIPT_NAME $fastcgi_script_name; fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name; fastcgi_param REQUEST_URI $request_uri; fastcgi_param DOCUMENT_URI $document_uri; fastcgi_param DOCUMENT_ROOT $document_root; fastcgi_param SERVER_PROTOCOL $server_protocol; fastcgi_param GATEWAY_INTERFACE CGI/1.1; fastcgi_param SERVER_SOFTWARE nginx/$nginx_version; fastcgi_param REMOTE_ADDR $remote_addr; fastcgi_param REMOTE_PORT $remote_port; fastcgi_param SERVER_ADDR $server_addr; fastcgi_param SERVER_PORT $server_port; fastcgi_param SERVER_NAME $server_name; fastcgi_param HTTPS $https; I know that the try_files $uri =404; directive is commented and that it is a security vulnerability but, if I uncomment it, the third request (localhost/index.php/foo/bar/baz/?foo=bar) will return a 404. It's also worth noting that my PHP cgi.fix_pathinfo in On (contrary to what some of the guides recommend), if I try to set it to Off, I'm presented with a "Access denied." message on every PHP request. I'm running PHP 5.4.8 and nginx/1.1.19. I don't know what else to try... Help?

    Read the article

  • Stretching an ADF Faces Component to (near) 100%

    - by Christian David Straub
    In the past, many users would want their component to stretch to fill 100% of a horizontal area. However, to account for scrollbars that may or may not have been there, they would set the percentage to 98%, etc.A much better way to do this is to use the new "AFStretchWidth" style class, which will do this automatically for you.For instance, avoid this:<af:foo inlineStyle="98%" />and instead do this:<af:foo styleClass="AFStretchWidth" />You can learn more about ADF Faces layout management here.

    Read the article

  • elffile: ELF Specific File Identification Utility

    - by user9154181
    Solaris 11 has a new standard user level command, /usr/bin/elffile. elffile is a variant of the file utility that is focused exclusively on linker related files: ELF objects, archives, and runtime linker configuration files. All other files are simply identified as "non-ELF". The primary advantage of elffile over the existing file utility is in the area of archives — elffile examines the archive members and can produce a summary of the contents, or per-member details. The impetus to add elffile to Solaris came from the effort to extend the format of Solaris archives so that they could grow beyond their previous 32-bit file limits. That work introduced a new archive symbol table format. Now that there was more than one possible format, I thought it would be useful if the file utility could identify which format a given archive is using, leading me to extend the file utility: % cc -c ~/hello.c % ar r foo.a hello.o % file foo.a foo.a: current ar archive, 32-bit symbol table % ar r -S foo.a hello.o % file foo.a foo.a: current ar archive, 64-bit symbol table In turn, this caused me to think about all the things that I would like the file utility to be able to tell me about an archive. In particular, I'd like to be able to know what's inside without having to unpack it. The end result of that train of thought was elffile. Much of the discussion in this article is adapted from the PSARC case I filed for elffile in December 2010: PSARC 2010/432 elffile Why file Is No Good For Archives And Yet Should Not Be Fixed The standard /usr/bin/file utility is not very useful when applied to archives. When identifying an archive, a user typically wants to know 2 things: Is this an archive? Presupposing that the archive contains objects, which is by far the most common use for archives, what platform are the objects for? Are they for sparc or x86? 32 or 64-bit? Some confusing combination from varying platforms? The file utility provides a quick answer to question (1), as it identifies all archives as "current ar archive". It does nothing to answer the more interesting question (2). To answer that question, requires a multi-step process: Extract all archive members Use the file utility on the extracted files, examine the output for each file in turn, and compare the results to generate a suitable summary description. Remove the extracted files It should be easier and more efficient to answer such an obvious question. It would be reasonable to extend the file utility to examine archive contents in place and produce a description. However, there are several reasons why I decided not to do so: The correct design for this feature within the file utility would have file examine each archive member in turn, applying its full abilities to each member. This would be elegant, but also represents a rather dramatic redesign and re-implementation of file. Archives nearly always contain nothing but ELF objects for a single platform, so such generality in the file utility would be of little practical benefit. It is best to avoid adding new options to standard utilities for which other implementations of interest exist. In the case of the file utility, one concern is that we might add an option which later appears in the GNU version of file with a different and incompatible meaning. Indeed, there have been discussions about replacing the Solaris file with the GNU version in the past. This may or may not be desirable, and may or may not ever happen. Either way, I don't want to preclude it. Examining archive members is an O(n) operation, and can be relatively slow with large archives. The file utility is supposed to be a very fast operation. I decided that extending file in this way is overkill, and that an investment in the file utility for better archive support would not be worth the cost. A solution that is more narrowly focused on ELF and other linker related files is really all that we need. The necessary code for doing this already exists within libelf. All that is missing is a small user-level wrapper to make that functionality available at the command line. In that vein, I considered adding an option for this to the elfdump utility. I examined elfdump carefully, and even wrote a prototype implementation. The added code is small and simple, but the conceptual fit with the rest of elfdump is poor. The result complicates elfdump syntax and documentation, definite signs that this functionality does not belong there. And so, I added this functionality as a new user level command. The elffile Command The syntax for this new command is elffile [-s basic | detail | summary] filename... Please see the elffile(1) manpage for additional details. To demonstrate how output from elffile looks, I will use the following files: FileDescription configA runtime linker configuration file produced with crle dwarf.oAn ELF object /etc/passwdA text file mixed.aArchive containing a mixture of ELF and non-ELF members mixed_elf.aArchive containing ELF objects for different machines not_elf.aArchive containing no ELF objects same_elf.aArchive containing a collection of ELF objects for the same machine. This is the most common type of archive. The file utility identifies these files as follows: % file config dwarf.o /etc/passwd mixed.a mixed_elf.a not_elf.a same_elf.a config: Runtime Linking Configuration 64-bit MSB SPARCV9 dwarf.o: ELF 64-bit LSB relocatable AMD64 Version 1 /etc/passwd: ascii text mixed.a: current ar archive, 32-bit symbol table mixed_elf.a: current ar archive, 32-bit symbol table not_elf.a: current ar archive same_elf.a: current ar archive, 32-bit symbol table By default, elffile uses its "summary" output style. This output differs from the output from the file utility in 2 significant ways: Files that are not an ELF object, archive, or runtime linker configuration file are identified as "non-ELF", whereas the file utility attempts further identification for such files. When applied to an archive, the elffile output includes a description of the archive's contents, without requiring member extraction or other additional steps. Applying elffile to the above files: % elffile config dwarf.o /etc/passwd mixed.a mixed_elf.a not_elf.a same_elf.a config: Runtime Linking Configuration 64-bit MSB SPARCV9 dwarf.o: ELF 64-bit LSB relocatable AMD64 Version 1 /etc/passwd: non-ELF mixed.a: current ar archive, 32-bit symbol table, mixed ELF and non-ELF content mixed_elf.a: current ar archive, 32-bit symbol table, mixed ELF content not_elf.a: current ar archive, non-ELF content same_elf.a: current ar archive, 32-bit symbol table, ELF 64-bit LSB relocatable AMD64 Version 1 The output for same_elf.a is of particular interest: The vast majority of archives contain only ELF objects for a single platform, and in this case, the default output from elffile answers both of the questions about archives posed at the beginning of this discussion, in a single efficient step. This makes elffile considerably more useful than file, within the realm of linker-related files. elffile can produce output in two other styles, "basic", and "detail". The basic style produces output that is the same as that from 'file', for linker-related files. The detail style produces per-member identification of archive contents. This can be useful when the archive contents are not homogeneous ELF object, and more information is desired than the summary output provides: % elffile -s detail mixed.a mixed.a: current ar archive, 32-bit symbol table mixed.a(dwarf.o): ELF 32-bit LSB relocatable 80386 Version 1 mixed.a(main.c): non-ELF content mixed.a(main.o): ELF 64-bit LSB relocatable AMD64 Version 1 [SSE]

    Read the article

  • Is a subdomain per service a good idea for SEO?

    - by Kennie R.
    I am creating a site with quite a few services, such as a free account service, and of course a subdomain for my site's blog and then for article base and other related services, would having them all on subdomains be a good idea? Are there any caveats you are aware of in existing search engines for this? I believe mapping foo.example.com to example.com/foo to provide an alternative just in case is a good idea for sitemaps, I like to keep things clean.

    Read the article

  • Linking competitor with the same keyword i am targeting : Good or Bad for Seo?

    - by Badal Surana
    i am linking one of my competitors from my site for the same keyword which is i am targeting for my site.(My competitor is paying me for that) For Example: Me and my competitor both are targeting on keyword "foo" and my competitor paying me for linking his site from my site with keyword "foo" What i want to know is if i do that will my site's position go down in Google search results? or it will make no difference??

    Read the article

  • Adding 1 subdomain using .htaccess

    - by Jake
    Alright, so unlike other solutions I only want one subdomain to appear to be added. Say I wanted example.com/folder/page.php to be displayed as foo.example.com/folder/page.php, how would I go about doing this? The foo will never change, and it only needs to be for one page. Various other sites have been unable to provide an answer, thanks in advance. Edit: Oh, and I also have full DNS records to the domain.

    Read the article

  • Requring static class setter to be called before constructor, bad design?

    - by roverred
    I have a class, say Foo, and every instance of Foo will need and contain the same List object, myList. Since every class instance will share the same List Object, I thought it would be good to make myList static and use a static function to set myList before the constructor is called. I was wondering if this was bad, because this requires the setter to be called before the constructor? If the person doesn't, the program will crash. Alternative way would be passing myList every time.

    Read the article

  • mod_proxy incorrect redirect behaviour

    - by Kevin Loney
    In chrome this configuration causes an infinite redirect loop and in every other browser I have tried a request for https://www.example.com/servlet/foo is resulting in a redirect to https://www.example.com/foo/ instead of https://www.example.com/servlet/foo/ however this only occurs when I do not include a trailing / at the end of the request url (i.e. http://www.flightboard.net/servlet/foo/ works just fine). <VirtualHost *:80> # ... RewriteEngine On RewriteCond %{HTTPS} off RewriteCond %{REQUEST_URI} ^/servlet(/.*)?$ RewriteRule ^(.*)$ http://%{HTTP_HOST}$1 [R=301,L] </VirtualHost> <VirtualHost *:443> # ... ProxyPass /servlet/ ajp://localhost:8009/ ProxyPassReverse /servlet/ ajp://localhost:8009/ </VirtualHost> The virtual host on port 443 has no rewrite rules that could possibly causing the problem, the tomcat contexts being referenced do not send any redirects, and if I change the ProxyPass and ProxyPassReverse directives to: ProxyPass / ajp://localhost:8009/ ProxyPassReverse / ajp://localhost:8009/ everything works fine (except for the fact everything from www.example.com is being passed to the proxy which is not the behaviour I want). I'm fairly certain this is a problem with the way I have my proxy settings configured because I did log all the rewrite output coming from apache and it was all correct.

    Read the article

  • how to run multiple shell scripts in parallel

    - by tom smith
    I've got a few test scripts, each of which runs a test php app. Each script runs forever. So, cat.sh, dog.sh, and foo.sh, each run a php script, and each shell script runs the php app in a loop, so it runs forever, sleeping after each run. I'm trying to figure out how to run the scripts in parallel, and at the same time, see the output of the php apps in the stdout/term window. I thought, simply doing something like foo.sh > &2 dog.sh > &2 cat.sh > &2 in a shell script would be sufficient, but it's not working. foo.sh, runs foo.php once, and it runs correctly dog.sh, runs dog.php in a never ending loop. it runs as expected cat.sh, runs cat.php in a never ending loop *** this never runs!!! it appears that the shell script never gets to run cat.sh. if i run cat.sh by itself in a separate window/term, it runs as expected... thoughts/comments

    Read the article

  • foswiki: hide some topic info when editing in WYSWYG mode.

    - by Mica
    I have a FOSWiki installation with a bunch of Topic templates already defined. the problem is, when a user selects the topic, they are presented with a bunch of extra information that they should not edit, and should not even see really. Is there a way to hide this content in the WYSWYG editor? Example: The topic template looks like this: <!-- * Foswiki.GenPDFAddOn Settings * Set GENPDFADDON_TITLE = <font size="7"><center>Foo</center></font> * Set GENPDFADDON_HEADFOOTFONT = helvetica * Set GENPDFADDON_FORMAT = pdf14 * Set GENPDFADDON_PERMISSIONS = print,no-copy * Set GENPDFADDON_ORIENTATION = portrait * Set GENPDFADDON_PAGESIZE = letter * Set GENPDFADDON_TOCLEVELS = 0 * Set GENPDFADDON_HEADERSHIFT = 0 --> <!-- PDFSTART --> <!-- HEADER LEFT "Foo:Bar" --> <!-- HEADER RIGHT "%BASETOPIC%" --> <!-- HEADER CENTER " " --> <!-- FOOTER RIGHT "Doc Rev %REVINFO{"r$rev - $date " web="%WEB%" topic="%BASETOPIC%"}%" --> <!-- FOOTER LEFT "F-xxx Rev A" --> <!-- FOOTER CENTER "Page $PAGE(1)" --> Header 1 foo etc. etc. etc <!-- pdfstop --> And when the user selects the topic template, they get all that in the WYSWYG editor. I would like to hide all that so when the user selects the topic template, they get Header 1 foo etc etc etc Without any of the other mark-up.

    Read the article

  • Widespread misinterpretation of DNS rules in resolving wildcards

    - by Dominic Sayers
    [EDITED to add: This problem has gone away on its own. I believe Cloudflare's name resolution may have been to blame. See my own answer below] Here is a snippet of my zone file *.example.com. 300 IN CNAME proxy.herokuapp.com. foo.example.com. 300 IN A 111.111.111.111 If I dig @8.8.8.8 foo.example.com I get the answer I expect: ;; ANSWER SECTION: foo.example.com. 30 IN A 111.111.111.111 The same is true of all other public DNS servers I've tried. However, when I try to set up a check with Pingdom to a URL on foo.example.com it instead sends the traffic to my Heroku app referenced by the *.example.com RR. The same is true of checks set up on New Relic, Errplane and traffic generated by the Heroku app itself. So on the one side, all public DNS servers interpret the zone file one way. Yet four service providers all interpret it a different way, one that differs to the standard suggested by RFC 4592. My question is: are these reputable, mature service providers all wrong? Or is it little me?

    Read the article

  • Why is SSH finding remote keys for other accounts?

    - by Brian Pontarelli
    This is a strange issue I'm having with SSH from my Macbook Pro to a Linux (Ubuntu 11.10) server. I have a DSA key setup on the remote Linux server under my home directory like this: /home/me/.ssh/authorzied_keys I also have the same DSA key setup for a few other accounts on the machine named "foo" and "bar". I can log into all of the accounts fine without any password. Therefore, the DSA keys are all setup correctly. The strange behavior I'm seeing is when debugging the SSH connection. During the connection, the SSH debug is outputting this: debug2: key: /Users/me/.ssh/id_dsa (0x7f91a1424220) debug2: key: /home/foo/.ssh/id_dsa (0x7f91a1425620) debug2: key: /home/bar/.ssh/id_rsa (0x7f91a1425c60) debug2: key: /Users/me/.ssh/id_rsa (0x0) This is strange for so many reasons, but essentially, why is SSH listing out keys on the server (/home/foo/.ssh/id_dsa and /home/bar/.ssh/id_rsa)? These files don't even exist on the server, so why are they listed? I'm not logging into the "foo" or "bar" accounts, so why is SSH even listing those? On my Macbook Pro, I only have a DSA key, but SSH is listing out an RSA key, what's that all about? Another user on the server doesn't get any of these messages when they log in and they have the exact same setup for their DSA key and the exact same Macbook Pro setup as mine? Does anyone know what these messages are and why SSH is outputting them?

    Read the article

  • chkconfig creating service symlinks with the wrong order

    - by Robert
    On RHEL 6.3, I have a system service that should be starting after postgresql and httpd (order 64 and 85, respectively), but chkconfig always places it at order 50. I tried an experiment on a CentOS 6.0 virtual machine to make sure I understood the LSB stanza syntax. I created /etc/init.d/foo, owner root, permissions 755, with this text: ### BEGIN INIT INFO # Provides: foo # Required-Start: postgresql httpd # Default-Start: 2 3 4 5 # Default-Stop: 0 1 6 # Description: Foo init script ### END INIT INFO And then ran chkconfig --add foo. Result: /etc/rc5.d/S86foo is created, as expected. (The other runlevels are also as expected.) I repeated the exact same experiment on the RHEL machine, and it created /etc/rc5.d/S50foo instead. I can't see anything different between the two that would lead to different results. Both machines have postgresql and httpd starting at the same orders and runlevels. Any thoughts? I could just use # chkconfig: 2345 86 50, or manually rename the service symlinks to the correct order, but I'm trying to document an install process for later users, and I want to know how to do it right and understand why it's not working as expected.

    Read the article

  • Configuring dnsmasq to handle mx records on pfsense 2.0.1

    - by Bob B.
    I know from dnsmasq's man page that it is capable of handling mx records, but I can't seem to find anything in pfsense's web GUI or anywhere online that talks about how to include mx records. I'm running pfsense 2.0.1 on a turnkey hardware appliance. I have root shell access. I would prefer not to move away from using DNS Forwarder/dnsmasq if I can help it. I've searched for a dnsmasq.conf file, but none exists. pfsense handles everything through a centralized xml config file. That file merely designates the dnsmasq section using the tag, then drops immediate into listings for each host override you define. My understanding of pfsense's implementation: In the GUI, you can only define an override using the host, domain, IP and description. In the XML that translates to: <hosts> <host>foo</host> <domain>foo.com</domain> <ip>127.0.0.1</ip> <descr/> </hosts> The above example results in foo.foo.com resolving to 127.0.0.1, for instance. But that's it. No ability to select a record type with which to define things like MX. Anyone had any luck with this? Thank you for any insights you might have.

    Read the article

< Previous Page | 58 59 60 61 62 63 64 65 66 67 68 69  | Next Page >