Search Results

Search found 3627 results on 146 pages for 'opengl es 1 1'.

Page 62/146 | < Previous Page | 58 59 60 61 62 63 64 65 66 67 68 69  | Next Page >

  • Drawing individual pixels with iphone sdk.

    - by blob8108
    Hi, I've been trying to figure out how to make a powder toy style game on the iPhone. My problem is how to draw pixels to the screen. From what I've read, OpenGL is better for games as it is faster/hardware accelerated, but there is no method to draw pixels directly to the screen. Apparently drawing pixels to an off-screen frame buffer is the way to go, but how do I then pass this to OpenGL? Do I use a texture? (this is assuming I have no previous knowledge of iPhone graphics programming). Thanks!

    Read the article

  • Call glutinit in a PHP extension

    - by Yijinsei
    Hi guys, I am developing a php extension that require the use of opengl. I tried to initialize the library with glutinit; it works in CLI environment but when I tried on browser it doesn't seem to execute the code. The code is actually executed on the server side. It is part of a process to extract features from an image, and the server will return a list of closest image to the user. I very new to opengl, so I'm not sure what kind of error is this, does anybody have any knowledge with this?

    Read the article

  • What is a good platform for building a game framework targetting both web and native languages?

    - by fuzzyTew
    I would like to develop (or find, if one is already in development) a framework with support for accelerated graphics and sound built on a system flexible enough to compile to the following: native ppc/x86/x86_64/arm binaries or a language which compiles to them javascript actionscript bytecode or a language which compiles to it (actionscript 3, haxe) optionally java I imagine, for example, creating an API where I can open windows and make OpenGL-like calls and the framework maps this in a relatively efficient manner to either WebGL with a canvas object, 3d graphics in Flash, OpenGL ES 2 with EGL, or desktop OpenGL in an X11, Windows, or Cocoa window. I have so far looked into these avenues: Building the game library in haXe Pros: Targets exist for php, javascript, actionscript bytecode, c++ High level, object oriented language Cons: No support for finally{} blocks or destructors, making resource cleanup difficult C++ target does not allow room for producing highly optimized libraries -- the foreign function interface requires all primitive types be boxed in a wrapper object, as if writing bindings for a scripting language; these feel unideal for real-time graphics and audio, especially exporting low-level functions. Doesn't seem quite yet mature Using the C preprocessor to create a translator, writing programs entirely with macros Pros: CPP is widespread and simple to use Cons: This is an arduous task and probably the wrong tool for the job CPP implementations differ widely in support for features (e.g. xcode cpp has no variadic macros despite claiming C99 compliance) There is little-to-no room for optimization in this route Using llvm's support for multiple backends to target c/c++ to web languages Pros: Can code in c/c++ LLVM is a very mature highly optimizing compiler performing e.g. global inlining Targets exist for actionscript (alchemy) and javascript (emscripten) Cons: Actionscript target is closed source, unmaintained, and buggy. Javascript targets do not use features of HTML5 for appropriate optimization (e.g. linear memory with typed arrays) and are immature An LLVM target must convert from low-level bytecode, so high-level constructs are lost and bloated unreadable code is created from translating individual instructions, which may be more difficult for an unprepared JIT to optimize. "jump" instructions cause problems for languages with no "goto" statements. Using libclang to write a translator from C/C++ to web languages Pros: A beautiful parsing library providing easy access to the code structure Can code in C/C++ Has sponsored developer effort from Apple Cons: Incomplete; current feature set targets IDEs. Basic operators are unexposed and must be manually parsed from the returned AST element to be identified. Translating code prior to compilation may forgo optimizations assumed in c/c++ such as inlining. Creating new code generators for clang to translate into web languages Pros: Can code in C/C++ as libclang Cons: There is no API; code structure is unstable A much larger job than using libclang; the innards of clang are complex Building the game library in Common Lisp Pros: Flexible, ancient, well-developed language Extensive introspection should ease writing translators Translators exist for at least javascript Cons: Unfamiliar language No standardized library functions, widely varying implementations Which of these avenues should I pursue? Do you know of any others, or any systems that might be useful? Does a general project like this exist somewhere already? Thank you for any input.

    Read the article

  • GetDeviceGammaRamp to adjust colors

    - by peter
    Hi, I overlay an OpenGL application (c++), this openGL application uses SetDeviceGammaRamp to set the brightness of the desktop to very high (dont know why). This application is fullscreen and looks good, but my overlay is very bright. Instead of the orange color with normal brightness, I get yellow because of the high gamma. What I want to do: Get the gamma that is currently set (using GetDeviceGammaRamp), and then use this to adjust the colors I set. Like; glColor4f(r, g, b, a) becomes glColor4f(r / gamma, g / gamma, b / gamma, a); So if the brightness of the desktop is very high, the r g and b values will be lower (darker) and will look like they should. How can I accomplish this? GetDeviceGammaRamp fills a table, how can I use it to modify my colors? Thanks

    Read the article

  • Can I use Blender to create 3D wall image viewer application under Linux?

    - by sgon00
    Hi, Is that possible to use Blender to create Cooliris-like 3D wall image viewer application under Linux? I don't see many people use Blender (BGE) to create desktop application, so I am wondering if this is possible. People normally use Blender for modeling/movie and game engine. I can not find a good way to create 3D application in Linux so far. I was thinking about pyQT+opengl. But I feel that is hard to do. No robust and easy-to-use qt+opengl toolkit available from my research. I know a little bit of Blender, that's why I am asking if Blender is an alternative solution. (python is preferred) The image viewer doesn't have to be windowed. It can be full screen, like a game?. I would like to add many cool effects into this application. Hopefully cooler than Cooliris which is written in flash. Thanks a lot.

    Read the article

  • DirectX equivalent of glBlendFunc(............)

    - by Jimmy Bouker
    I created a particle System in OpenGl that's working great. When I want to get a burning effect of a fire or a beam or something(Where the system kind of "glows" and fuses all the colors together) I use this method call with OpenGL. glBlendFunc(GL_SRC_ALPHA,GL_SRC_ALPHA) glBlendFunc(GL_DST_ALPHA,GL_ONE) I'm now trying to do the same thing using Direct3D Here is what I have tried: graphicsDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE); graphicsDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA); graphicsDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE); but this has absolutely no effect at all on the look of my game! Anyone have a clue what could be the problem?

    Read the article

  • How to install X library for use with VC++?

    - by ashishsony
    Hi, i have uptill now worked on linux where its very easy to install opensource libraries using simple configure;make;make install commands.. now i need to use MSVC++ to run some opengl code that includes the standard opengl headers.. but defaultly they arent present.. i downloaded the tar file from freeglut site,it has VisualStudio2008 folder but i have no idea how to use it to install the libs and headers in the standard paths?? is there not a way where i can use some standard procedure similar to linux process?? do i have to it manually?? Thanks.

    Read the article

  • OpenGL ES 2.0 FBO creation goes wrong with unknown error

    - by Nick
    Hey guys, I've been struggling with this for a while now, and this code crashes with, to me, unknown reasons. I'm creating an FBO, binding a texture, and then the very first glDrawArrays() crashes with a "EXC_BAD_ACCESS" on my iPhone Simulator. Here's the code I use to create the FBO (and bind texture and...) glGenFramebuffers(1, &lastFrameBuffer); glGenRenderbuffers(1, &lastFrameDepthBuffer); glGenTextures(1, &lastFrameTexture); glBindTexture(GL_TEXTURE1, lastFrameTexture); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 768, 1029, 0, GL_RGBA, GL_UNSIGNED_SHORT_5_6_5, NULL); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); //Bind/alloc depthbuf glBindRenderbuffer(GL_RENDERBUFFER, lastFrameDepthBuffer); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, 768, 1029); glBindFramebuffer(GL_FRAMEBUFFER, lastFrameBuffer); //binding the texture to the FBO :D glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, lastFrameTexture, 0); // attach the renderbuffer to depth attachment point glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, lastFrameDepthBuffer); [self checkFramebufferStatus]; As you can see this takes part in an object, checkFrameBufferStatus looks like this: GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); switch(status) { case GL_FRAMEBUFFER_COMPLETE: JNLogString(@"Framebuffer complete."); return TRUE; case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: JNLogString(@"[ERROR] Framebuffer incomplete: Attachment is NOT complete."); return false; case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: JNLogString(@"[ERROR] Framebuffer incomplete: No image is attached to FBO."); return false; case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS: JNLogString(@"[ERROR] Framebuffer incomplete: Attached images have different dimensions."); return false; case GL_FRAMEBUFFER_UNSUPPORTED: JNLogString(@"[ERROR] Unsupported by FBO implementation."); return false; default: JNLogString(@"[ERROR] Unknown error."); return false; JNLogString is just an NSLog, and in this case it gives me: 2010-04-03 02:46:54.854 Bubbleeh[6634:207] ES2Renderer.m:372 [ERROR] Unknown error. When I call it right there. So, it crashes, and diagnostic tells me there's an unknown error and I'm kinda stuck. I basically copied the code from the OpenGL ES 2.0 Programming Guide... What am I doing wrong? Thanks in Advance,

    Read the article

  • Converting OpenGL coordinates to lower UIView (and UIImagePickerController)

    - by John Qualis
    I am new to OpenGL on the iPhone. I am developing an iPhone app similar to a barcode reader but with an extra OpenGL layer. The bottommost layer is UIImagePickerController, then I use UIView on top and draw a rectangle at certain coordinates on the iPhone screen. So far everything is OK. Then I am trying to draw an OpenGL 3-D model in that rectangle. I am able to load a 3-D model in the iPhone based on this code here - http://iphonedevelopment.blogspot.com/2008/12/start-of-wavefront-obj-file-loader.html I am not able to transform the coordinates of the rectangle into OpenGL coordinates. Appreciate any help. Do I need to use a matrix to translate the currentPosition of the 3-D model so it is drawn within myRect? The code is given below. -(void)setupView:(GLView*)view { const GLfloat zNear = 0.01, zFar = 1000.0, fieldOfView = 45.0; GLfloat size; glEnable(GL_DEPTH_TEST); glMatrixMode(GL_PROJECTION); size = zNear * tanf(DEGREES_TO_RADIANS(fieldOfView) / 2.0); CGRect rect = view.bounds; glFrustumf(-size, size, -size / (rect.size.width / rect.size.height), size / (rect.size.width / rect.size.height), zNear, zFar); glViewport(0, 0, rect.size.width, rect.size.height); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); NSString *path = [[NSBundle mainBundle] pathForResource:@"plane" ofType:@"obj"]; OpenGLWaveFrontObject *theObject = [[OpenGLWaveFrontObject alloc] initWithPath:path]; Vertex3D position; position.z = -8.0; position.y = 3.0; position.x = 2.0; theObject.currentPosition = position; self.plane = theObject; [theObject release]; } - (void)drawView:(GLView*)view; { static GLfloat rotation = 0.0; glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); glColor4f(0.0, 0.5, 1.0, 1.0); // the coordinates of the rectangle are // myRect.x, myRect.y, myRect.width, myRect.height // Do I need to use a matrix to translate the currentPosition of the // 3-D model so it is drawn within myRect? //glOrthof(-160.0f, 160.0f, -240.0f, 240.0f, -1.0f, 1.0f); [plane drawSelf]; }

    Read the article

  • Unity 4.5 est disponible et apporte le support d'OpenGL ES 3, un rendu plus naturel de la physique 2D et des optimisations

    Unity 4.5 est disponible : les corrections et améliorations du moteur sont très nombreuses OpenGL ES 3.0, amélioration de la physique 2D, chargement de scène amélioré, amélioration du flux de travail sur les shaders... Alors que dernièrement nous avons découvert ce que Unity 5 sera, l'équipe de développement nous apporte la version 4.5 du moteur. Celle-ci corrige près de 450 bogues mais apporte aussi de nouvelles fonctionnalités au moteur : support d'OpenGL ES 3.0 pour iOS (à partir des périphérique...

    Read the article

  • Block filters using fragment shaders

    - by Nils
    I was following this tutorial using Apple's OpenGL Shader Builder (tool similar to Nvidia's fx composer, but simpler). I could easily apply the filters, but I don't understand if they worked correct (and if so how can I improve the output). For example the blur filter: OpenGL itself does some image processing on the textures, so if they are displayed in a higher resolution than the original image, they are blurred already by OpenGL. Second the blurred part is brighter then the part not processed, I think this does not make sense, since it just takes pixels from the direct neighborhood. This is defined by float step_w = (1.0/width); Which I don't quite understand: The pixels are indexed using floating point values?? Edit: I forgot to attach the exact code I used: Fragment Shader // Originally taken from: http://www.ozone3d.net/tutorials/image_filtering_p2.php#part_2 #define KERNEL_SIZE 9 float kernel[KERNEL_SIZE]; uniform sampler2D colorMap; uniform float width; uniform float height; float step_w = (1.0/width); float step_h = (1.0/height); // float step_w = 20.0; // float step_h = 20.0; vec2 offset[KERNEL_SIZE]; void main(void) { int i = 0; vec4 sum = vec4(0.0); offset[0] = vec2(-step_w, -step_h); // south west offset[1] = vec2(0.0, -step_h); // south offset[2] = vec2(step_w, -step_h); // south east offset[3] = vec2(-step_w, 0.0); // west offset[4] = vec2(0.0, 0.0); // center offset[5] = vec2(step_w, 0.0); // east offset[6] = vec2(-step_w, step_h); // north west offset[7] = vec2(0.0, step_h); // north offset[8] = vec2(step_w, step_h); // north east // Gaussian kernel // 1 2 1 // 2 4 2 // 1 2 1 kernel[0] = 1.0; kernel[1] = 2.0; kernel[2] = 1.0; kernel[3] = 2.0; kernel[4] = 4.0; kernel[5] = 2.0; kernel[6] = 1.0; kernel[7] = 2.0; kernel[8] = 1.0; // TODO make grayscale first // Laplacian Filter // 0 1 0 // 1 -4 1 // 0 1 0 /* kernel[0] = 0.0; kernel[1] = 1.0; kernel[2] = 0.0; kernel[3] = 1.0; kernel[4] = -4.0; kernel[5] = 1.0; kernel[6] = 0.0; kernel[7] = 2.0; kernel[8] = 0.0; */ // Mean Filter // 1 1 1 // 1 1 1 // 1 1 1 /* kernel[0] = 1.0; kernel[1] = 1.0; kernel[2] = 1.0; kernel[3] = 1.0; kernel[4] = 1.0; kernel[5] = 1.0; kernel[6] = 1.0; kernel[7] = 1.0; kernel[8] = 1.0; */ if(gl_TexCoord[0].s<0.5) { // For every pixel sample the neighbor pixels and sum up for( i=0; i<KERNEL_SIZE; i++ ) { // select the pixel with the concerning offset vec4 tmp = texture2D(colorMap, gl_TexCoord[0].st + offset[i]); sum += tmp * kernel[i]; } sum /= 16.0; } else if( gl_TexCoord[0].s>0.51 ) { sum = texture2D(colorMap, gl_TexCoord[0].xy); } else // Draw a red line { sum = vec4(1.0, 0.0, 0.0, 1.0); } gl_FragColor = sum; } Vertex Shader void main(void) { gl_TexCoord[0] = gl_MultiTexCoord0; gl_Position = ftransform(); }

    Read the article

  • SQL Server 2012 - AlwaysOn

    - by Claus Jandausch
    Ich war nicht nur irritiert, ich war sogar regelrecht schockiert - und für einen kurzen Moment sprachlos (was nur selten der Fall ist). Gerade eben hatte mich jemand gefragt "Wann Oracle denn etwas Vergleichbares wie AlwaysOn bieten würde - und ob überhaupt?" War ich hier im falschen Film gelandet? Ich konnte nicht anders, als meinen Unmut kundzutun und zu erklären, dass die Fragestellung normalerweise anders herum läuft. Zugegeben - es mag vielleicht strittige Punkte geben im Vergleich zwischen Oracle und SQL Server - bei denen nicht unbedingt immer Oracle die Nase vorn haben muss - aber das Thema Clustering für Hochverfügbarkeit (HA), Disaster Recovery (DR) und Skalierbarkeit gehört mit Sicherheit nicht dazu. Dieses Erlebnis hakte ich am Nachgang als Einzelfall ab, der so nie wieder vorkommen würde. Bis ich kurz darauf eines Besseren belehrt wurde und genau die selbe Frage erneut zu hören bekam. Diesmal sogar im Exadata-Umfeld und einem Oracle Stretch Cluster. Einmal ist keinmal, doch zweimal ist einmal zu viel... Getreu diesem alten Motto war mir klar, dass man das so nicht länger stehen lassen konnte. Ich habe keine Ahnung, wie die Microsoft Marketing Abteilung es geschafft hat, unter dem AlwaysOn Brading eine innovative Technologie vermuten zu lassen - aber sie hat ihren Job scheinbar gut gemacht. Doch abgesehen von einem guten Marketing, stellt sich natürlich die Frage, was wirklich dahinter steckt und wie sich das Ganze mit Oracle vergleichen lässt - und ob überhaupt? Damit wären wir wieder bei der ursprünglichen Frage angelangt.  So viel zum Hintergrund dieses Blogbeitrags - von meiner Antwort handelt der restliche Blog. "Windows was the God ..." Um den wahren Unterschied zwischen Oracle und Microsoft verstehen zu können, muss man zunächst das bedeutendste Microsoft Dogma kennen. Es lässt sich schlicht und einfach auf den Punkt bringen: "Alles muss auf Windows basieren." Die Überschrift dieses Absatzes ist kein von mir erfundener Ausspruch, sondern ein Zitat. Konkret stammt es aus einem längeren Artikel von Kurt Eichenwald in der Vanity Fair aus dem August 2012. Er lautet Microsoft's Lost Decade und sei jedem ans Herz gelegt, der die "Microsoft-Maschinerie" unter Steve Ballmer und einige ihrer Kuriositäten besser verstehen möchte. "YOU TALKING TO ME?" Microsoft C.E.O. Steve Ballmer bei seiner Keynote auf der 2012 International Consumer Electronics Show in Las Vegas am 9. Januar   Manche Dinge in diesem Artikel mögen überspitzt dargestellt erscheinen - sind sie aber nicht. Vieles davon kannte ich bereits aus eigener Erfahrung und kann es nur bestätigen. Anderes hat sich mir erst so richtig erschlossen. Insbesondere die folgenden Passagen führten zum Aha-Erlebnis: “Windows was the god—everything had to work with Windows,” said Stone... “Every little thing you want to write has to build off of Windows (or other existing roducts),” one software engineer said. “It can be very confusing, …” Ich habe immer schon darauf hingewiesen, dass in einem SQL Server Failover Cluster die Microsoft Datenbank eigentlich nichts Nenneswertes zum Geschehen beiträgt, sondern sich voll und ganz auf das Windows Betriebssystem verlässt. Deshalb muss man auch die Windows Server Enterprise Edition installieren, soll ein Failover Cluster für den SQL Server eingerichtet werden. Denn hier werden die Cluster Services geliefert - nicht mit dem SQL Server. Er ist nur lediglich ein weiteres Server Produkt, für das Windows in Ausfallszenarien genutzt werden kann - so wie Microsoft Exchange beispielsweise, oder Microsoft SharePoint, oder irgendein anderes Server Produkt das auf Windows gehostet wird. Auch Oracle kann damit genutzt werden. Das Stichwort lautet hier: Oracle Failsafe. Nur - warum sollte man das tun, wenn gleichzeitig eine überlegene Technologie wie die Oracle Real Application Clusters (RAC) zur Verfügung steht, die dann auch keine Windows Enterprise Edition voraussetzen, da Oracle die eigene Clusterware liefert. Welche darüber hinaus für kürzere Failover-Zeiten sorgt, da diese Cluster-Technologie Datenbank-integriert ist und sich nicht auf "Dritte" verlässt. Wenn man sich also schon keine technischen Vorteile mit einem SQL Server Failover Cluster erkauft, sondern zusätzlich noch versteckte Lizenzkosten durch die Lizenzierung der Windows Server Enterprise Edition einhandelt, warum hat Microsoft dann in den vergangenen Jahren seit SQL Server 2000 nicht ebenfalls an einer neuen und innovativen Lösung gearbeitet, die mit Oracle RAC mithalten kann? Entwickler hat Microsoft genügend? Am Geld kann es auch nicht liegen? Lesen Sie einfach noch einmal die beiden obenstehenden Zitate und sie werden den Grund verstehen. Anders lässt es sich ja auch gar nicht mehr erklären, dass AlwaysOn aus zwei unterschiedlichen Technologien besteht, die beide jedoch wiederum auf dem Windows Server Failover Clustering (WSFC) basieren. Denn daraus ergeben sich klare Nachteile - aber dazu später mehr. Um AlwaysOn zu verstehen, sollte man sich zunächst kurz in Erinnerung rufen, was Microsoft bisher an HA/DR (High Availability/Desaster Recovery) Lösungen für SQL Server zur Verfügung gestellt hat. Replikation Basiert auf logischer Replikation und Pubisher/Subscriber Architektur Transactional Replication Merge Replication Snapshot Replication Microsoft's Replikation ist vergleichbar mit Oracle GoldenGate. Oracle GoldenGate stellt jedoch die umfassendere Technologie dar und bietet High Performance. Log Shipping Microsoft's Log Shipping stellt eine einfache Technologie dar, die vergleichbar ist mit Oracle Managed Recovery in Oracle Version 7. Das Log Shipping besitzt folgende Merkmale: Transaction Log Backups werden von Primary nach Secondary/ies geschickt Einarbeitung (z.B. Restore) auf jedem Secondary individuell Optionale dritte Server Instanz (Monitor Server) für Überwachung und Alarm Log Restore Unterbrechung möglich für Read-Only Modus (Secondary) Keine Unterstützung von Automatic Failover Database Mirroring Microsoft's Database Mirroring wurde verfügbar mit SQL Server 2005, sah aus wie Oracle Data Guard in Oracle 9i, war funktional jedoch nicht so umfassend. Für ein HA/DR Paar besteht eine 1:1 Beziehung, um die produktive Datenbank (Principle DB) abzusichern. Auf der Standby Datenbank (Mirrored DB) werden alle Insert-, Update- und Delete-Operationen nachgezogen. Modi Synchron (High-Safety Modus) Asynchron (High-Performance Modus) Automatic Failover Unterstützt im High-Safety Modus (synchron) Witness Server vorausgesetzt     Zur Frage der Kontinuität Es stellt sich die Frage, wie es um diesen Technologien nun im Zusammenhang mit SQL Server 2012 bestellt ist. Unter Fanfaren seinerzeit eingeführt, war Database Mirroring das erklärte Mittel der Wahl. Ich bin kein Produkt Manager bei Microsoft und kann hierzu nur meine Meinung äußern, aber zieht man den SQL AlwaysOn Team Blog heran, so sieht es nicht gut aus für das Database Mirroring - zumindest nicht langfristig. "Does AlwaysOn Availability Group replace Database Mirroring going forward?” “The short answer is we recommend that you migrate from the mirroring configuration or even mirroring and log shipping configuration to using Availability Group. Database Mirroring will still be available in the Denali release but will be phased out over subsequent releases. Log Shipping will continue to be available in future releases.” Damit wären wir endlich beim eigentlichen Thema angelangt. Was ist eine sogenannte Availability Group und was genau hat es mit der vielversprechend klingenden Bezeichnung AlwaysOn auf sich?   SQL Server 2012 - AlwaysOn Zwei HA-Features verstekcne sich hinter dem “AlwaysOn”-Branding. Einmal das AlwaysOn Failover Clustering aka SQL Server Failover Cluster Instances (FCI) - zum Anderen die AlwaysOn Availability Groups. Failover Cluster Instances (FCI) Entspricht ungefähr dem Stretch Cluster Konzept von Oracle Setzt auf Windows Server Failover Clustering (WSFC) auf Bietet HA auf Instanz-Ebene AlwaysOn Availability Groups (Verfügbarkeitsgruppen) Ähnlich der Idee von Consistency Groups, wie in Storage-Level Replikations-Software von z.B. EMC SRDF Abhängigkeiten zu Windows Server Failover Clustering (WSFC) Bietet HA auf Datenbank-Ebene   Hinweis: Verwechseln Sie nicht eine SQL Server Datenbank mit einer Oracle Datenbank. Und auch nicht eine Oracle Instanz mit einer SQL Server Instanz. Die gleichen Begriffe haben hier eine andere Bedeutung - nicht selten ein Grund, weshalb Oracle- und Microsoft DBAs schnell aneinander vorbei reden. Denken Sie bei einer SQL Server Datenbank eher an ein Oracle Schema, das kommt der Sache näher. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema. Wenn Sie die genauen Unterschiede kennen möchten, finden Sie eine detaillierte Beschreibung in meinem Buch "Oracle10g Release 2 für Windows und .NET", erhältich bei Lehmanns, Amazon, etc.   Windows Server Failover Clustering (WSFC) Wie man sieht, basieren beide AlwaysOn Technologien wiederum auf dem Windows Server Failover Clustering (WSFC), um einerseits Hochverfügbarkeit auf Ebene der Instanz zu gewährleisten und andererseits auf der Datenbank-Ebene. Deshalb nun eine kurze Beschreibung der WSFC. Die WSFC sind ein mit dem Windows Betriebssystem geliefertes Infrastruktur-Feature, um HA für Server Anwendungen, wie Microsoft Exchange, SharePoint, SQL Server, etc. zu bieten. So wie jeder andere Cluster, besteht ein WSFC Cluster aus einer Gruppe unabhängiger Server, die zusammenarbeiten, um die Verfügbarkeit einer Applikation oder eines Service zu erhöhen. Falls ein Cluster-Knoten oder -Service ausfällt, kann der auf diesem Knoten bisher gehostete Service automatisch oder manuell auf einen anderen im Cluster verfügbaren Knoten transferriert werden - was allgemein als Failover bekannt ist. Unter SQL Server 2012 verwenden sowohl die AlwaysOn Avalability Groups, als auch die AlwaysOn Failover Cluster Instances die WSFC als Plattformtechnologie, um Komponenten als WSFC Cluster-Ressourcen zu registrieren. Verwandte Ressourcen werden in eine Ressource Group zusammengefasst, die in Abhängigkeit zu anderen WSFC Cluster-Ressourcen gebracht werden kann. Der WSFC Cluster Service kann jetzt die Notwendigkeit zum Neustart der SQL Server Instanz erfassen oder einen automatischen Failover zu einem anderen Server-Knoten im WSFC Cluster auslösen.   Failover Cluster Instances (FCI) Eine SQL Server Failover Cluster Instanz (FCI) ist eine einzelne SQL Server Instanz, die in einem Failover Cluster betrieben wird, der aus mehreren Windows Server Failover Clustering (WSFC) Knoten besteht und so HA (High Availability) auf Ebene der Instanz bietet. Unter Verwendung von Multi-Subnet FCI kann auch Remote DR (Disaster Recovery) unterstützt werden. Eine weitere Option für Remote DR besteht darin, eine unter FCI gehostete Datenbank in einer Availability Group zu betreiben. Hierzu später mehr. FCI und WSFC Basis FCI, das für lokale Hochverfügbarkeit der Instanzen genutzt wird, ähnelt der veralteten Architektur eines kalten Cluster (Aktiv-Passiv). Unter SQL Server 2008 wurde diese Technologie SQL Server 2008 Failover Clustering genannt. Sie nutzte den Windows Server Failover Cluster. In SQL Server 2012 hat Microsoft diese Basistechnologie unter der Bezeichnung AlwaysOn zusammengefasst. Es handelt sich aber nach wie vor um die klassische Aktiv-Passiv-Konfiguration. Der Ablauf im Failover-Fall ist wie folgt: Solange kein Hardware-oder System-Fehler auftritt, werden alle Dirty Pages im Buffer Cache auf Platte geschrieben Alle entsprechenden SQL Server Services (Dienste) in der Ressource Gruppe werden auf dem aktiven Knoten gestoppt Die Ownership der Ressource Gruppe wird auf einen anderen Knoten der FCI transferriert Der neue Owner (Besitzer) der Ressource Gruppe startet seine SQL Server Services (Dienste) Die Connection-Anforderungen einer Client-Applikation werden automatisch auf den neuen aktiven Knoten mit dem selben Virtuellen Network Namen (VNN) umgeleitet Abhängig vom Zeitpunkt des letzten Checkpoints, kann die Anzahl der Dirty Pages im Buffer Cache, die noch auf Platte geschrieben werden müssen, zu unvorhersehbar langen Failover-Zeiten führen. Um diese Anzahl zu drosseln, besitzt der SQL Server 2012 eine neue Fähigkeit, die Indirect Checkpoints genannt wird. Indirect Checkpoints ähnelt dem Fast-Start MTTR Target Feature der Oracle Datenbank, das bereits mit Oracle9i verfügbar war.   SQL Server Multi-Subnet Clustering Ein SQL Server Multi-Subnet Failover Cluster entspricht vom Konzept her einem Oracle RAC Stretch Cluster. Doch dies ist nur auf den ersten Blick der Fall. Im Gegensatz zu RAC ist in einem lokalen SQL Server Failover Cluster jeweils nur ein Knoten aktiv für eine Datenbank. Für die Datenreplikation zwischen geografisch entfernten Sites verlässt sich Microsoft auf 3rd Party Lösungen für das Storage Mirroring.     Die Verbesserung dieses Szenario mit einer SQL Server 2012 Implementierung besteht schlicht darin, dass eine VLAN-Konfiguration (Virtual Local Area Network) nun nicht mehr benötigt wird, so wie dies bisher der Fall war. Das folgende Diagramm stellt dar, wie der Ablauf mit SQL Server 2012 gehandhabt wird. In Site A und Site B wird HA jeweils durch einen lokalen Aktiv-Passiv-Cluster sichergestellt.     Besondere Aufmerksamkeit muss hier der Konfiguration und dem Tuning geschenkt werden, da ansonsten völlig inakzeptable Failover-Zeiten resultieren. Dies liegt darin begründet, weil die Downtime auf Client-Seite nun nicht mehr nur von der reinen Failover-Zeit abhängt, sondern zusätzlich von der Dauer der DNS Replikation zwischen den DNS Servern. (Rufen Sie sich in Erinnerung, dass wir gerade von Multi-Subnet Clustering sprechen). Außerdem ist zu berücksichtigen, wie schnell die Clients die aktualisierten DNS Informationen abfragen. Spezielle Konfigurationen für Node Heartbeat, HostRecordTTL (Host Record Time-to-Live) und Intersite Replication Frequeny für Active Directory Sites und Services werden notwendig. Default TTL für Windows Server 2008 R2: 20 Minuten Empfohlene Einstellung: 1 Minute DNS Update Replication Frequency in Windows Umgebung: 180 Minuten Empfohlene Einstellung: 15 Minuten (minimaler Wert)   Betrachtet man diese Werte, muss man feststellen, dass selbst eine optimale Konfiguration die rigiden SLAs (Service Level Agreements) heutiger geschäftskritischer Anwendungen für HA und DR nicht erfüllen kann. Denn dies impliziert eine auf der Client-Seite erlebte Failover-Zeit von insgesamt 16 Minuten. Hierzu ein Auszug aus der SQL Server 2012 Online Dokumentation: Cons: If a cross-subnet failover occurs, the client recovery time could be 15 minutes or longer, depending on your HostRecordTTL setting and the setting of your cross-site DNS/AD replication schedule.    Wir sind hier an einem Punkt unserer Überlegungen angelangt, an dem sich erklärt, weshalb ich zuvor das "Windows was the God ..." Zitat verwendet habe. Die unbedingte Abhängigkeit zu Windows wird zunehmend zum Problem, da sie die Komplexität einer Microsoft-basierenden Lösung erhöht, anstelle sie zu reduzieren. Und Komplexität ist das Letzte, was sich CIOs heutzutage wünschen.  Zur Ehrenrettung des SQL Server 2012 und AlwaysOn muss man sagen, dass derart lange Failover-Zeiten kein unbedingtes "Muss" darstellen, sondern ein "Kann". Doch auch ein "Kann" kann im unpassenden Moment unvorhersehbare und kostspielige Folgen haben. Die Unabsehbarkeit ist wiederum Ursache vieler an der Implementierung beteiligten Komponenten und deren Abhängigkeiten, wie beispielsweise drei Cluster-Lösungen (zwei von Microsoft, eine 3rd Party Lösung). Wie man die Sache auch dreht und wendet, kommt man an diesem Fakt also nicht vorbei - ganz unabhängig von der Dauer einer Downtime oder Failover-Zeiten. Im Gegensatz zu AlwaysOn und der hier vorgestellten Version eines Stretch-Clusters, vermeidet eine entsprechende Oracle Implementierung eine derartige Komplexität, hervorgerufen duch multiple Abhängigkeiten. Den Unterschied machen Datenbank-integrierte Mechanismen, wie Fast Application Notification (FAN) und Fast Connection Failover (FCF). Für Oracle MAA Konfigurationen (Maximum Availability Architecture) sind Inter-Site Failover-Zeiten im Bereich von Sekunden keine Seltenheit. Wenn Sie dem Link zur Oracle MAA folgen, finden Sie außerdem eine Reihe an Customer Case Studies. Auch dies ist ein wichtiges Unterscheidungsmerkmal zu AlwaysOn, denn die Oracle Technologie hat sich bereits zigfach in höchst kritischen Umgebungen bewährt.   Availability Groups (Verfügbarkeitsgruppen) Die sogenannten Availability Groups (Verfügbarkeitsgruppen) sind - neben FCI - der weitere Baustein von AlwaysOn.   Hinweis: Bevor wir uns näher damit beschäftigen, sollten Sie sich noch einmal ins Gedächtnis rufen, dass eine SQL Server Datenbank nicht die gleiche Bedeutung besitzt, wie eine Oracle Datenbank, sondern eher einem Oracle Schema entspricht. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema.   Eine Verfügbarkeitsgruppe setzt sich zusammen aus einem Set mehrerer Benutzer-Datenbanken, die im Falle eines Failover gemeinsam als Gruppe behandelt werden. Eine Verfügbarkeitsgruppe unterstützt ein Set an primären Datenbanken (primäres Replikat) und einem bis vier Sets von entsprechenden sekundären Datenbanken (sekundäre Replikate).       Es können jedoch nicht alle SQL Server Datenbanken einer AlwaysOn Verfügbarkeitsgruppe zugeordnet werden. Der SQL Server Spezialist Michael Otey zählt in seinem SQL Server Pro Artikel folgende Anforderungen auf: Verfügbarkeitsgruppen müssen mit Benutzer-Datenbanken erstellt werden. System-Datenbanken können nicht verwendet werden Die Datenbanken müssen sich im Read-Write Modus befinden. Read-Only Datenbanken werden nicht unterstützt Die Datenbanken in einer Verfügbarkeitsgruppe müssen Multiuser Datenbanken sein Sie dürfen nicht das AUTO_CLOSE Feature verwenden Sie müssen das Full Recovery Modell nutzen und es muss ein vollständiges Backup vorhanden sein Eine gegebene Datenbank kann sich nur in einer einzigen Verfügbarkeitsgruppe befinden und diese Datenbank düerfen nicht für Database Mirroring konfiguriert sein Microsoft empfiehl außerdem, dass der Verzeichnispfad einer Datenbank auf dem primären und sekundären Server identisch sein sollte Wie man sieht, eignen sich Verfügbarkeitsgruppen nicht, um HA und DR vollständig abzubilden. Die Unterscheidung zwischen der Instanzen-Ebene (FCI) und Datenbank-Ebene (Availability Groups) ist von hoher Bedeutung. Vor kurzem wurde mir gesagt, dass man mit den Verfügbarkeitsgruppen auf Shared Storage verzichten könne und dadurch Kosten spart. So weit so gut ... Man kann natürlich eine Installation rein mit Verfügbarkeitsgruppen und ohne FCI durchführen - aber man sollte sich dann darüber bewusst sein, was man dadurch alles nicht abgesichert hat - und dies wiederum für Desaster Recovery (DR) und SLAs (Service Level Agreements) bedeutet. Kurzum, um die Kombination aus beiden AlwaysOn Produkten und der damit verbundene Komplexität kommt man wohl in der Praxis nicht herum.    Availability Groups und WSFC AlwaysOn hängt von Windows Server Failover Clustering (WSFC) ab, um die aktuellen Rollen der Verfügbarkeitsreplikate einer Verfügbarkeitsgruppe zu überwachen und zu verwalten, und darüber zu entscheiden, wie ein Failover-Ereignis die Verfügbarkeitsreplikate betrifft. Das folgende Diagramm zeigt de Beziehung zwischen Verfügbarkeitsgruppen und WSFC:   Der Verfügbarkeitsmodus ist eine Eigenschaft jedes Verfügbarkeitsreplikats. Synychron und Asynchron können also gemischt werden: Availability Modus (Verfügbarkeitsmodus) Asynchroner Commit-Modus Primäres replikat schließt Transaktionen ohne Warten auf Sekundäres Synchroner Commit-Modus Primäres Replikat wartet auf Commit von sekundärem Replikat Failover Typen Automatic Manual Forced (mit möglichem Datenverlust) Synchroner Commit-Modus Geplanter, manueller Failover ohne Datenverlust Automatischer Failover ohne Datenverlust Asynchroner Commit-Modus Nur Forced, manueller Failover mit möglichem Datenverlust   Der SQL Server kennt keinen separaten Switchover Begriff wie in Oracle Data Guard. Für SQL Server werden alle Role Transitions als Failover bezeichnet. Tatsächlich unterstützt der SQL Server keinen Switchover für asynchrone Verbindungen. Es gibt nur die Form des Forced Failover mit möglichem Datenverlust. Eine ähnliche Fähigkeit wie der Switchover unter Oracle Data Guard ist so nicht gegeben.   SQL Sever FCI mit Availability Groups (Verfügbarkeitsgruppen) Neben den Verfügbarkeitsgruppen kann eine zweite Failover-Ebene eingerichtet werden, indem SQL Server FCI (auf Shared Storage) mit WSFC implementiert wird. Ein Verfügbarkeitesreplikat kann dann auf einer Standalone Instanz gehostet werden, oder einer FCI Instanz. Zum Verständnis: Die Verfügbarkeitsgruppen selbst benötigen kein Shared Storage. Diese Kombination kann verwendet werden für lokale HA auf Ebene der Instanz und DR auf Datenbank-Ebene durch Verfügbarkeitsgruppen. Das folgende Diagramm zeigt dieses Szenario:   Achtung! Hier handelt es sich nicht um ein Pendant zu Oracle RAC plus Data Guard, auch wenn das Bild diesen Eindruck vielleicht vermitteln mag - denn alle sekundären Knoten im FCI sind rein passiv. Es existiert außerdem eine weitere und ernsthafte Einschränkung: SQL Server Failover Cluster Instanzen (FCI) unterstützen nicht das automatische AlwaysOn Failover für Verfügbarkeitsgruppen. Jedes unter FCI gehostete Verfügbarkeitsreplikat kann nur für manuelles Failover konfiguriert werden.   Lesbare Sekundäre Replikate Ein oder mehrere Verfügbarkeitsreplikate in einer Verfügbarkeitsgruppe können für den lesenden Zugriff konfiguriert werden, wenn sie als sekundäres Replikat laufen. Dies ähnelt Oracle Active Data Guard, jedoch gibt es Einschränkungen. Alle Abfragen gegen die sekundäre Datenbank werden automatisch auf das Snapshot Isolation Level abgebildet. Es handelt sich dabei um eine Versionierung der Rows. Microsoft versuchte hiermit die Oracle MVRC (Multi Version Read Consistency) nachzustellen. Tatsächlich muss man die SQL Server Snapshot Isolation eher mit Oracle Flashback vergleichen. Bei der Implementierung des Snapshot Isolation Levels handelt sich um ein nachträglich aufgesetztes Feature und nicht um einen inhärenten Teil des Datenbank-Kernels, wie im Falle Oracle. (Ich werde hierzu in Kürze einen weiteren Blogbeitrag verfassen, wenn ich mich mit der neuen SQL Server 2012 Core Lizenzierung beschäftige.) Für die Praxis entstehen aus der Abbildung auf das Snapshot Isolation Level ernsthafte Restriktionen, derer man sich für den Betrieb in der Praxis bereits vorab bewusst sein sollte: Sollte auf der primären Datenbank eine aktive Transaktion zu dem Zeitpunkt existieren, wenn ein lesbares sekundäres Replikat in die Verfügbarkeitsgruppe aufgenommen wird, werden die Row-Versionen auf der korrespondierenden sekundären Datenbank nicht sofort vollständig verfügbar sein. Eine aktive Transaktion auf dem primären Replikat muss zuerst abgeschlossen (Commit oder Rollback) und dieser Transaktions-Record auf dem sekundären Replikat verarbeitet werden. Bis dahin ist das Isolation Level Mapping auf der sekundären Datenbank unvollständig und Abfragen sind temporär geblockt. Microsoft sagt dazu: "This is needed to guarantee that row versions are available on the secondary replica before executing the query under snapshot isolation as all isolation levels are implicitly mapped to snapshot isolation." (SQL Storage Engine Blog: AlwaysOn: I just enabled Readable Secondary but my query is blocked?)  Grundlegend bedeutet dies, dass ein aktives lesbares Replikat nicht in die Verfügbarkeitsgruppe aufgenommen werden kann, ohne das primäre Replikat vorübergehend stillzulegen. Da Leseoperationen auf das Snapshot Isolation Transaction Level abgebildet werden, kann die Bereinigung von Ghost Records auf dem primären Replikat durch Transaktionen auf einem oder mehreren sekundären Replikaten geblockt werden - z.B. durch eine lang laufende Abfrage auf dem sekundären Replikat. Diese Bereinigung wird auch blockiert, wenn die Verbindung zum sekundären Replikat abbricht oder der Datenaustausch unterbrochen wird. Auch die Log Truncation wird in diesem Zustant verhindert. Wenn dieser Zustand längere Zeit anhält, empfiehlt Microsoft das sekundäre Replikat aus der Verfügbarkeitsgruppe herauszunehmen - was ein ernsthaftes Downtime-Problem darstellt. Die Read-Only Workload auf den sekundären Replikaten kann eingehende DDL Änderungen blockieren. Obwohl die Leseoperationen aufgrund der Row-Versionierung keine Shared Locks halten, führen diese Operatioen zu Sch-S Locks (Schemastabilitätssperren). DDL-Änderungen durch Redo-Operationen können dadurch blockiert werden. Falls DDL aufgrund konkurrierender Lese-Workload blockiert wird und der Schwellenwert für 'Recovery Interval' (eine SQL Server Konfigurationsoption) überschritten wird, generiert der SQL Server das Ereignis sqlserver.lock_redo_blocked, welches Microsoft zum Kill der blockierenden Leser empfiehlt. Auf die Verfügbarkeit der Anwendung wird hierbei keinerlei Rücksicht genommen.   Keine dieser Einschränkungen existiert mit Oracle Active Data Guard.   Backups auf sekundären Replikaten  Über die sekundären Replikate können Backups (BACKUP DATABASE via Transact-SQL) nur als copy-only Backups einer vollständigen Datenbank, Dateien und Dateigruppen erstellt werden. Das Erstellen inkrementeller Backups ist nicht unterstützt, was ein ernsthafter Rückstand ist gegenüber der Backup-Unterstützung physikalischer Standbys unter Oracle Data Guard. Hinweis: Ein möglicher Workaround via Snapshots, bleibt ein Workaround. Eine weitere Einschränkung dieses Features gegenüber Oracle Data Guard besteht darin, dass das Backup eines sekundären Replikats nicht ausgeführt werden kann, wenn es nicht mit dem primären Replikat kommunizieren kann. Darüber hinaus muss das sekundäre Replikat synchronisiert sein oder sich in der Synchronisation befinden, um das Beackup auf dem sekundären Replikat erstellen zu können.   Vergleich von Microsoft AlwaysOn mit der Oracle MAA Ich komme wieder zurück auf die Eingangs erwähnte, mehrfach an mich gestellte Frage "Wann denn - und ob überhaupt - Oracle etwas Vergleichbares wie AlwaysOn bieten würde?" und meine damit verbundene (kurze) Irritation. Wenn Sie diesen Blogbeitrag bis hierher gelesen haben, dann kennen Sie jetzt meine darauf gegebene Antwort. Der eine oder andere Punkt traf dabei nicht immer auf Jeden zu, was auch nicht der tiefere Sinn und Zweck meiner Antwort war. Wenn beispielsweise kein Multi-Subnet mit im Spiel ist, sind alle diesbezüglichen Kritikpunkte zunächst obsolet. Was aber nicht bedeutet, dass sie nicht bereits morgen schon wieder zum Thema werden könnten (Sag niemals "Nie"). In manch anderes Fettnäpfchen tritt man wiederum nicht unbedingt in einer Testumgebung, sondern erst im laufenden Betrieb. Erst recht nicht dann, wenn man sich potenzieller Probleme nicht bewusst ist und keine dedizierten Tests startet. Und wer AlwaysOn erfolgreich positionieren möchte, wird auch gar kein Interesse daran haben, auf mögliche Schwachstellen und den besagten Teufel im Detail aufmerksam zu machen. Das ist keine Unterstellung - es ist nur menschlich. Außerdem ist es verständlich, dass man sich in erster Linie darauf konzentriert "was geht" und "was gut läuft", anstelle auf das "was zu Problemen führen kann" oder "nicht funktioniert". Wer will schon der Miesepeter sein? Für mich selbst gesprochen, kann ich nur sagen, dass ich lieber vorab von allen möglichen Einschränkungen wissen möchte, anstelle sie dann nach einer kurzen Zeit der heilen Welt schmerzhaft am eigenen Leib erfahren zu müssen. Ich bin davon überzeugt, dass es Ihnen nicht anders geht. Nachfolgend deshalb eine Zusammenfassung all jener Punkte, die ich im Vergleich zur Oracle MAA (Maximum Availability Architecture) als unbedingt Erwähnenswert betrachte, falls man eine Evaluierung von Microsoft AlwaysOn in Betracht zieht. 1. AlwaysOn ist eine komplexe Technologie Der SQL Server AlwaysOn Stack ist zusammengesetzt aus drei verschiedenen Technlogien: Windows Server Failover Clustering (WSFC) SQL Server Failover Cluster Instances (FCI) SQL Server Availability Groups (Verfügbarkeitsgruppen) Man kann eine derartige Lösung nicht als nahtlos bezeichnen, wofür auch die vielen von Microsoft dargestellten Einschränkungen sprechen. Während sich frühere SQL Server Versionen in Richtung eigener HA/DR Technologien entwickelten (wie Database Mirroring), empfiehlt Microsoft nun die Migration. Doch weshalb dieser Schwenk? Er führt nicht zu einem konsisten und robusten Angebot an HA/DR Technologie für geschäftskritische Umgebungen.  Liegt die Antwort in meiner These begründet, nach der "Windows was the God ..." noch immer gilt und man die Nachteile der allzu engen Kopplung mit Windows nicht sehen möchte? Entscheiden Sie selbst ... 2. Failover Cluster Instanzen - Kein RAC-Pendant Die SQL Server und Windows Server Clustering Technologie basiert noch immer auf dem veralteten Aktiv-Passiv Modell und führt zu einer Verschwendung von Systemressourcen. In einer Betrachtung von lediglich zwei Knoten erschließt sich auf Anhieb noch nicht der volle Mehrwert eines Aktiv-Aktiv Clusters (wie den Real Application Clusters), wie er von Oracle bereits vor zehn Jahren entwickelt wurde. Doch kennt man die Vorzüge der Skalierbarkeit durch einfaches Hinzufügen weiterer Cluster-Knoten, die dann alle gemeinsam als ein einziges logisches System zusammenarbeiten, versteht man was hinter dem Motto "Pay-as-you-Grow" steckt. In einem Aktiv-Aktiv Cluster geht es zwar auch um Hochverfügbarkeit - und ein Failover erfolgt zudem schneller, als in einem Aktiv-Passiv Modell - aber es geht eben nicht nur darum. An dieser Stelle sei darauf hingewiesen, dass die Oracle 11g Standard Edition bereits die Nutzung von Oracle RAC bis zu vier Sockets kostenfrei beinhaltet. Möchten Sie dazu Windows nutzen, benötigen Sie keine Windows Server Enterprise Edition, da Oracle 11g die eigene Clusterware liefert. Sie kommen in den Genuss von Hochverfügbarkeit und Skalierbarkeit und können dazu die günstigere Windows Server Standard Edition nutzen. 3. SQL Server Multi-Subnet Clustering - Abhängigkeit zu 3rd Party Storage Mirroring  Die SQL Server Multi-Subnet Clustering Architektur unterstützt den Aufbau eines Stretch Clusters, basiert dabei aber auf dem Aktiv-Passiv Modell. Das eigentlich Problematische ist jedoch, dass man sich zur Absicherung der Datenbank auf 3rd Party Storage Mirroring Technologie verlässt, ohne Integration zwischen dem Windows Server Failover Clustering (WSFC) und der darunterliegenden Mirroring Technologie. Wenn nun im Cluster ein Failover auf Instanzen-Ebene erfolgt, existiert keine Koordination mit einem möglichen Failover auf Ebene des Storage-Array. 4. Availability Groups (Verfügbarkeitsgruppen) - Vier, oder doch nur Zwei? Ein primäres Replikat erlaubt bis zu vier sekundäre Replikate innerhalb einer Verfügbarkeitsgruppe, jedoch nur zwei im Synchronen Commit Modus. Während dies zwar einen Vorteil gegenüber dem stringenten 1:1 Modell unter Database Mirroring darstellt, fällt der SQL Server 2012 damit immer noch weiter zurück hinter Oracle Data Guard mit bis zu 30 direkten Stanbdy Zielen - und vielen weiteren durch kaskadierende Ziele möglichen. Damit eignet sich Oracle Active Data Guard auch für die Bereitstellung einer Reader-Farm Skalierbarkeit für Internet-basierende Unternehmen. Mit AwaysOn Verfügbarkeitsgruppen ist dies nicht möglich. 5. Availability Groups (Verfügbarkeitsgruppen) - kein asynchrones Switchover  Die Technologie der Verfügbarkeitsgruppen wird auch als geeignetes Mittel für administrative Aufgaben positioniert - wie Upgrades oder Wartungsarbeiten. Man muss sich jedoch einem gravierendem Defizit bewusst sein: Im asynchronen Verfügbarkeitsmodus besteht die einzige Möglichkeit für Role Transition im Forced Failover mit Datenverlust! Um den Verlust von Daten durch geplante Wartungsarbeiten zu vermeiden, muss man den synchronen Verfügbarkeitsmodus konfigurieren, was jedoch ernstzunehmende Auswirkungen auf WAN Deployments nach sich zieht. Spinnt man diesen Gedanken zu Ende, kommt man zu dem Schluss, dass die Technologie der Verfügbarkeitsgruppen für geplante Wartungsarbeiten in einem derartigen Umfeld nicht effektiv genutzt werden kann. 6. Automatisches Failover - Nicht immer möglich Sowohl die SQL Server FCI, als auch Verfügbarkeitsgruppen unterstützen automatisches Failover. Möchte man diese jedoch kombinieren, wird das Ergebnis kein automatisches Failover sein. Denn ihr Zusammentreffen im Failover-Fall führt zu Race Conditions (Wettlaufsituationen), weshalb diese Konfiguration nicht länger das automatische Failover zu einem Replikat in einer Verfügbarkeitsgruppe erlaubt. Auch hier bestätigt sich wieder die tiefere Problematik von AlwaysOn, mit einer Zusammensetzung aus unterschiedlichen Technologien und der Abhängigkeit zu Windows. 7. Problematische RTO (Recovery Time Objective) Microsoft postioniert die SQL Server Multi-Subnet Clustering Architektur als brauchbare HA/DR Architektur. Bedenkt man jedoch die Problematik im Zusammenhang mit DNS Replikation und den möglichen langen Wartezeiten auf Client-Seite von bis zu 16 Minuten, sind strenge RTO Anforderungen (Recovery Time Objectives) nicht erfüllbar. Im Gegensatz zu Oracle besitzt der SQL Server keine Datenbank-integrierten Technologien, wie Oracle Fast Application Notification (FAN) oder Oracle Fast Connection Failover (FCF). 8. Problematische RPO (Recovery Point Objective) SQL Server ermöglicht Forced Failover (erzwungenes Failover), bietet jedoch keine Möglichkeit zur automatischen Übertragung der letzten Datenbits von einem alten zu einem neuen primären Replikat, wenn der Verfügbarkeitsmodus asynchron war. Oracle Data Guard hingegen bietet diese Unterstützung durch das Flush Redo Feature. Dies sichert "Zero Data Loss" und beste RPO auch in erzwungenen Failover-Situationen. 9. Lesbare Sekundäre Replikate mit Einschränkungen Aufgrund des Snapshot Isolation Transaction Level für lesbare sekundäre Replikate, besitzen diese Einschränkungen mit Auswirkung auf die primäre Datenbank. Die Bereinigung von Ghost Records auf der primären Datenbank, wird beeinflusst von lang laufenden Abfragen auf der lesabaren sekundären Datenbank. Die lesbare sekundäre Datenbank kann nicht in die Verfügbarkeitsgruppe aufgenommen werden, wenn es aktive Transaktionen auf der primären Datenbank gibt. Zusätzlich können DLL Änderungen auf der primären Datenbank durch Abfragen auf der sekundären blockiert werden. Und imkrementelle Backups werden hier nicht unterstützt.   Keine dieser Restriktionen existiert unter Oracle Data Guard.

    Read the article

  • ¿Oficina sin papeles?

    - by [email protected]
    Recientemente hemos organizado un evento de Digitalización para mostrar algunos de los últimos productos de Oracle en éste área.Siempre tendemos a pensar que en España estamos retrasados en estas tecnologías y que el mercado no está preparado para eliminar el papel. En algunos casos es cierto, pero también nos hemos llevado sorpresas con clientes extremadamente avanzados en la gestión electrónica del papel.Para los clientes que no tienen una solución corporativa ya desplegada, nuestra oferta de Imaging les parece completa e integrada, porque les permite digitalizar el papel en el punto más cercano a su recepción y posteriormente realizar todo el trámite interno de forma digital.Este proceso es el que se muestra en la siguiente imágen: Sobre todo en el entorno financiero los clientes ya tienen grandes infraestructuras desplegadas (algunos con funcionalidades muy sofisticadas que han desarrollado a medida durante estos últimos años).En estos casos, su interés está centrado en 2 capacidades clave de nuestros productos: La digitalización distribuidaEl OCR inteligenteCuando ya disponemos de una infraestructura de digitalización centralizada, tenemos varios puntos de mejora con los que conseguir mayores ratios de ahorro en la gestión del papel. Uno de ellos es digitalizar en origen, de forma que ahorraremos en logística de desplazamiento y almacenamiento de papel (reducimos valijas) y en velocidad de arranque de los procesos (desde el momento de la recepción).El hecho de poder hacer esto sólo con un explorador de internet es muy novedoso para los clientes.El no instalar ninguna pieza de software de cliente parece que es un requisito que muchos clientes estaban demandando desde hace tiempo. De hecho, estamos realizando demos en vivo con un escáner del cliente (solo necesitamos el driver de windows para ese escáner). El resultado es sorprendente porque mostramos cómo: escaneamos con sólo un explorador de internet; el documento escaneado, con sus metadatos, se incorporan al gestor documental; y se dispara su workflow de aprobación.Hacer esto en segundos es algo que genera mucho interés en los clientes de cara a acelerar la gestión de muchos de sus trámites en papel.Por último, lo más novedoso de la oferta es el OCR inteligente. Hay quien ya tiene absolutamente operativas sus infraestructuras de digitalización con todas estas capacidades, y buscan un paso más allá con el reconocimiento inteligente de todos los metadatos posibles.El beneficio es rápido, claramente cuantificable y muy alto. El software de OCR inteligente se basa en lógica difusa y nos permite definir los umbrales de validación totalmente adecuados a nuestros factores de confianza. Es decir, configuramos el umbral para que cuando el software acepta un acierto tengamos la seguridad total de que dichos metadatos se han reconocido perfectamente. En caso contrario, el software lanza una validación manual.¿Qué pasa si conseguimos que para determinados documentos, el 40%, 50%, 60% o incluso el 70% u 80% de ellos fueran procesados 100% automáticamente?. El ahorro es inmenso, la reducción del tiempo de proceso también, y la integración con nuestras infraestructuras de digitalización es muy sencilla (basta con desviar unos cuantos documentos de un tipo concreto a Oracle Forms Recognition y evaluar el resultado).Os animo a que veáis estos productos y consigamos hacer realidad la reducción de papel.

    Read the article

  • 14.04 default locales

    - by Seán Ó Séaghdha
    After a new install of 14.04 I have quite a few extra locales/languages. Is this normal? I installed using English (GB) I think since en_AU isn't an option. At some point apt offered a list of unused files which I removed. Now when I open Language Support it warns me that "Language support is not installed completely" and offers to reinstall this list... kde-l10n-zhcn thunderbird-locale-en-gb thunderbird-locale-es libreoffice-l10n-en-gb libreoffice-help-es libreoffice-help-en-gb wspanish thunderbird-locale-zh-cn myspell-es ibus-sunpinyin mythes-en-au kde-l10n-es libreoffice-l10n-zh-cn fonts-arphic-uming ibus-table-wubi thunderbird-locale-es-es thunderbird-locale-zh-hans libreoffice-l10n-en-za thunderbird-locale-es-ar hunspell-en-ca libreoffice-l10n-es libreoffice-help-zh-cn kde-l10n-engb fonts-arphic-ukai So are Spanish and Chinese installed by default in all installations now? Why do I need Canadian English spellchecking installed?

    Read the article

  • SDL with OpenGL (freeglut) crashes on call to glutBitmapCharacter

    - by stett
    I have a program using OpenGL through freeglut under SDL. The SDL/OpenGL initialization is as follows: // Initialize SDL SDL_Init(SDL_INIT_VIDEO); // Create the SDL window SDL_SetVideoMode(SCREEN_W, SCREEN_H, SCREEN_DEPTH, SDL_OPENGL); // Initialize OpenGL glClearColor(BG_COLOR_R, BG_COLOR_G, BG_COLOR_B, 1.f); glViewport(0, 0, SCREEN_W, SCREEN_H); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(0.0f, SCREEN_W, SCREEN_H, 0.0f, -1.0f, 1.0f); glEnable(GL_TEXTURE_2D); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); I've been using glBegin() ... glEnd() blocks without any trouble to draw primitives. However, in this program when I call any glutBitmapX function, the program simply exits without an error status. The code I'm using to draw text is: glColor3f(1.f, 1.f, 1.f); glRasterPos2f(x, y); glutStrokeString(GLUT_BITMAP_8_BY_13, (const unsigned char*)"test string"); In previous similar programs I've used glutBitmapCharacter and glutStrokeString to draw text and it's seemed to work. The only difference being that I'm using freeglut with SDL now instead of just GLUT as I did in previous programs. Is there some fundamental problem with my setup that I'm not seeing, or is there a better way of drawing text?

    Read the article

  • File Translator to Export Animated 3D Character from Autodesk Maya as Quake MD2

    - by Andy R
    I'm wondering if anyone knows of a way to export geometry/textures for a rigged, animated character as Quake MD2? I’m developing an app for mobile devices, and I’ve found that MD2 works great for lightweight OpenGL rendering. I have several animated characters, and I’d like to export them as MD2 from Maya. Here are some of the things I have tried: Exporting FBX to 3D Studio Max and using the QTip plugin -- this works, but only if I convert my animation to point cache (pc2) and bring that into Max. When I do that, QTip plugin doesn’t honor the point cache node, and all I get is the model, no animation Exporting OBJ Sequence to Blender, exporting MD2 from there -- I can’t seem to get blender to compile the imported obj sequence into a single animated object Exporting FBX to Milkshape -- the maya rig gets corrupted in the process Bake point cache for animation, export to FBX, import to Milkshape -- again, Milkshape doesn’t honor the geometry cache, so all that appears is a static character. I’m currently writing a plugin for Maya using the blender MD2 export script as reference (but re-writing using the C++ Maya API), but I’m just wondering if anyone has done this before or has any suggestions of how to do this. Also, if anyone has other suggestions for the best format to render a single animated character on an OpenGL ES (Android or iPhone) device, I would be very grateful! I’m open to trying anything to get these animations rendering on device Thanks!

    Read the article

  • Roadmap to Android development

    - by Matthew
    Hello, I've done a little research, and am interested in developing for Android. I've never programmed before, and have no idea how to go from zero experience to developing for a mobile device. My interest is in eventually making some sort of 2d game. Is there a lesson plan for starting from the ground up? I would think one would need to learn the Java language to start. Looking at the Sun website, it's a bit daunting. Is there a book, specifically, that would wrap up this knowledge in a bit of a directed lesson plan? I'm not sure if opengl-es is what would be required for 2d games. I've done a little research on this, and it's even far more daunting than Java itself. I can't even begin to figure out where to start with even just opengl, sans -es. My best guess would be that I need further knowledge in Java to continue with this, but even still, is it possible to learn concurrently with Java?

    Read the article

  • wxOSX/Carbon: wxGLCanvas mouse offset in non-floating window classes

    - by srose
    Hi All, I mainly program plugins using wxWidgets within a Carbon bundle which is loaded at runtime. The host-applications where my plugins are running in provide a native window handle (WindowRef), which I can use to add my custom, wxWidgets-based GUI-classes. To use the native window handle with wxWidgets classes I had to write a wxTopLevelWindow wrapper class, which does all the WindowRef encapsulation. So far, this works pretty well, but under some circumstances I got vertical mouse offsets within a wxGLCanvas if the window class of the native window handle is not of the type "kFloatingWindowClass". I am able to bypass the problem if I display an info panel (wxPanel) over the whole wxGlCanvas and if the user hides the info panel then the mouse offset is gone. Now my questions: Is there a "simple" explanation for this behaviour? Is it possible to use certain method calls to imitate info panel effect without using the panel itself? I tried several combinations of Update() and Refresh() calls of all involved components, but none of them worked so far. Even the use of wxSizer couldn't help here. Window hierarchy used by plugin-applications: wxCustomTopLevelWindow (WindowRef provided by host-application) wxPanel (parent window for all application panel) wxPanel (application info panel) wxPanel (application main panel) wxPanel (opengl main panel) wxGlCanvas (main opengl canvas) Any ideas? Any help is very appreciated.

    Read the article

  • iPhone openGLES performance tuning

    - by genesys
    Hey there! I'm trying now for quite a while to optimize the framerate of my game without really making progress. I'm running on the newest iPhone SDK and have a iPhone 3G 3.1.2 device. I invoke arround 150 drawcalls, rendering about 1900 Triangles in total (all objects are textured using two texturelayers and multitexturing. most textures come from the same textureAtlasTexture stored in pvrtc 2bpp compressed texture). This renders on my phone at arround 30 fps, which appears to me to be way too low for only 1900 triangles. I tried many things to optimize the performance, including batching together the objects, transforming the vertices on the CPU and rendering them in a single drawcall. this yelds 8 drawcalls (as oposed to 150 drawcalls), but performance is about the same (fps drop to arround 26fps) I'm using 32byte vertices stored in an interleaved array (12bytes position, 12bytes normals, 8bytes uv). I'm rendering triangleLists and the vertices are ordered in TriStrip order. I did some profiling but I don't really know how to interprete it. instruments-sampling using Instruments and Sampling yelds this result: http://neo.cycovery.com/instruments_sampling.gif telling me that a lot of time is spent in "mach_msg_trap". I googled for it and it seems this function is called in order to wait for some other things. But wait for what?? instruments-openGL instruments with the openGL module yelds this result: http://neo.cycovery.com/intstruments_openglES_debug.gif but here i have really no idea what those numbers are telling me shark profiling: profiling with shark didn't tell me much either: http://neo.cycovery.com/shark_profile_release.gif the largest number is 10%, spent by DrawTriangles - and the whole rest is spent in very small percentage functions Can anyone tell me what else I could do in order to figure out the bottleneck and could help me to interprete those profiling information? Thanks a lot!

    Read the article

  • Drawing only part of a

    - by Ben Reeves
    ..Continued on from my previous question I have a 320*480 RGB565 framebuffer which I wish to draw using OpenGL ES 1.0 on the iPhone. - (void)setupView { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_CROP_RECT_OES, (int[4]){0, 0, 480, 320}); glEnable(GL_TEXTURE_2D); } // Updates the OpenGL view when the timer fires - (void)drawView { // Make sure that you are drawing to the current context [EAGLContext setCurrentContext:context]; //Get the 320*480 buffer const int8_t * frameBuf = [source getNextBuffer]; //Create enough storage for a 512x512 power of 2 texture int8_t lBuf[2*512*512]; memcpy (lBuf, frameBuf, 320*480*2); //Upload the texture glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 512, 512, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, lBuf); //Draw it glDrawTexiOES(0, 0, 1, 480, 320); [context presentRenderbuffer:GL_RENDERBUFFER_OES]; } If I produce the original texture in 512*512 the output is cropped incorrectly but other than that looks fine. However using the require output size of 320*480 everything is distorted and messed up. I'm pretty sure it's the way I'm copying the framebuffer into the new 512*512 buffer. I have tried this routine int8_t lBuf[512][512][2]; const char * frameDataP = frameData; for (int ii = 0; ii < 480; ++ii) { memcpy(lBuf[ii], frameDataP, 320); frameDataP += 320; } Which is better, but the width appears to be stretched and the height is messed up. Any help appreciated.

    Read the article

  • GL_COLOR_MATERIAL with lighting on Android

    - by kostmo
    It appears that glColorMaterial() is absent from OpenGL ES. According to this post (for iPhone), you may still enable GL_COLOR_MATERIAL in OpenGL ES 1.x, but you're stuck with the default settings of GL_FRONT_AND_BACK and GL_AMBIENT_AND_DIFFUSE that you would otherwise set with glColorMaterial(). I would be OK with this, but the diffuse lighting is not working correctly. I set up my scene and tested it with one light, setting glMaterialfv() for GL_AMBIENT and GL_DIFFUSE once in the initialization. The normals have been set correctly, and lighting works the way it's supposed to. I see the Gourad shading. With GL_LIGHTING disabled, the flat colors I have set with glColor4f() appear on the various objects in the scene. This also functions as expected. However, when glEnable(GL_COLOR_MATERIAL) is called, the flat colors remain. I would expect to see the lighting effects. What might be missing? glColorMaterial() is also mentioned on anddev.org, but I'm not sure if the information there is accurate. I'm testing this on an Android 2.1 handset (Motorola Droid). Edit: It works properly on my 1.6 handset (ADP1).

    Read the article

  • NSOpenGLFullScreen and SetSystemUIMode freeze bug!?

    - by Mattias
    Hi! I have a really strange problem which is perfectly re-producable using sample code! If I use Apple's NSOpenGLFullScreen sample I can click a button to enter fullscreen OpenGL mode. However if I click the mouse in the area where the menubar would be if I was running windowed mode, the entire program freezes because I really activate the menu-choice behind the OpenGL screen, so to speak. The solution I have found after some Googling is to use SetSystemUIMode to hide the menubar. Also I want to initiate the application to fullscreen at startup by adding a call to EnterFullScreen after initialization. Entering FullScreen works perfectly, BUT - if I add the call to SetSystemUIMode I get a really strange error! The entire screen hangs, the animation stops and no mouse coordinates seem to be reported. If I then exit the Fullscreen mode and press the FullScreen button again everything works and the menubar is gone.. What could be wrong here? I mean it obviously works to remove the menubar in that manner and it obviously works to enter fullscreen mode like that (using Cocoa), but why doesn't the combination work!? Pleeease help :) Sincerely, / Mattias

    Read the article

< Previous Page | 58 59 60 61 62 63 64 65 66 67 68 69  | Next Page >