Search Results

Search found 17406 results on 697 pages for 'option explicit'.

Page 62/697 | < Previous Page | 58 59 60 61 62 63 64 65 66 67 68 69  | Next Page >

  • Autopopulate from Select box from database

    - by Chris Spalton
    hope you can help, please forgive any poor coding or anytihng, I'm new to this and just hacking my way through to get things to work. That said, on one of my projects I have this code, which successfully populates the dropdown from a database when the page is loaded: <select name="Region" id="Region"> <option value="">-- Select Region --</option> <?php $region=$POST['Region']; if ($region); { $regionquery = "SELECT DISTINCT REGION FROM Sales_Execs "; $regionresult = mysql_query($regionquery); while($row = mysql_fetch_array($regionresult)) { echo "<option value=\"".$row['REGION']."\">".$row['REGION']."</option>\n "; } } ?> <script type="text/javascript"> document.getElementById('Region').value = <?php echo json_encode(trim($_POST['Region']));?>; </script> </select> On my next project that I'm working on now, I need to do the same thing, so I copied the above code amended, and placed in my new project: <select name="Sales_Exec" id="Sales_Exec"> <option value="">-- Select SE --</option> <?php $salesexec=$POST['Sales_Exec']; if ($salesexec); { $salesexecquery = "SELECT DISTINCT Assigned FROM Data "; $salesexecresult = mysql_query($salesexecquery); while($row = mysql_fetch_array($salesexecresult)) { echo "<option value=\"".$row['ASSIGNED']."\">".$row['ASSIGNED']."</option>\n "; } } ?> <script type="text/javascript"> document.getElementById('Sales_Exec').value = <?php echo json_encode(trim($_POST['Sales_Exec']));?>; </script> </select> This second chunk of code doesn't work... and I can't work out why as it seems I've copied it all and amended all the neccersary parts, can anyone spot what is wrong? Thankyou!

    Read the article

  • C# setting case constant expressions, do they have to follow a specific order?

    - by Umeed
    Say I'm making a simple program, and the user is in the menu. And the menu options are 1 3 5 7 (i wouldn't actually do that but lets just go with it). and I want to make my switch statement using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace DecisionMaking2 { class Program { static void Main(string[] args) { Console.WriteLine("Please choose an option: "); string SelectedOpt = Console.ReadLine(); double Selection = Convert.ToDouble(SelectedOpt); double MenuOption = (Selection); switch (MenuOption) { case 1: Console.WriteLine("Selected option #1"); break; case 2: Console.WriteLine("Selected option #3"); break; case 3: Console.WriteLine("Selected option #5"); break; case 4: Console.WriteLine("Selected option #7"); break; default: Console.WriteLine("Please choose from the options List!"); break; } } } } would that work? or would I have to name each case constant expression the option number I am using? I went to the microsoft website and I didn't quite pick up on anything i was looking for. . Also while I have your attention, how would I make it so the user chooses from either option and because I don't know which option the user will select " double MenuOption = " could be anything, whatever the user inputs right? so would what I have even work? I am doing this all by hand, and don't get much lab time to work on this as I have tons of other courses to work on and then a boring job to go to, and my PC at home has a restarting issue lol. soo any and all help is greatly appreciated. p.s the computer I'm on right now posting this, doesn't have any compilers, coding programs, and it's not mine just to get that out of the way. Thanks again!

    Read the article

  • MYSQL question - AND or OR?

    - by U22199
    Which is a better way to select ans and quest from the table? SELECT * FROM tablename WHERE option='ans' OR option='quest'"; OR SELECT * FROM tablename WHERE option='ans' AND option='quest'"; Thanks so much!

    Read the article

  • Display DropDown options on Focus

    - by davidylam
    I have a simple html dropdown, I wants to use jQuery if possible to display all the options if this control has the focus(as if the user click on the dropdown). I have tried jQuery trigger(), click(), to avail. <select id="single"> <option>Single</option> <option>Single2</option> </select>

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Works in Firefox & Opera, but not in IE8

    - by Ai Pragma
    1) This issue involves just one html webpage, lets call it "ajax.html".2) I have AJAX functions in this webpage that work in both Firefox and IE8.3) I now attempt generating just the option values of a dropdown list of dates using my ajax functions, and it works in Firefox & Opera, but not IE8.4) The surrounding html code for the dropdown looks like this:<select name="entry_7_single" id="entry_7" onChange="Ajax_PhpResultsWithVar('./secure/db/SummaryCls.php','entry_8','dateval',this.value)"></select>The onchange call refers to an ajax function that successfully(both Firefox & IE8) populates a textarea(entry_8) with a description of an event associated with the date selected in this dropdown. 5) An onload call initiates the ajax function to generate the dropdown list values:<body class="ss-base-body" onLoad="OnLoadWebPage()">6) The js script that calls the ajax function is as follows:function OnLoadWebPage(){    Ajax_PhpResults('./secure/db/GenDateListCls.php','entry_7');}7) Since it works in Firefox, but not IE8, I throw the output of the ajax function into a Firefox large textbox and I get the following:<option selected value="8 JUN 2010">8 JUN 2010</option>                   <option value="9 JUN 2010">9 JUN 2010</option>                   <option value="10 JUN 2010">10 JUN 2010</option>                   <option value="11 JUN 2010">11 JUN 2010</option> 8 ) There are over a hundred generated but you get the gist of what the ajax function generates. Next I will list the PHP function that outputs the above dropdown values://///////////////////////////////////////////////////////////////////////////////////////////////////////<?phpinclude_once 'SPSQLite.class.php';include_once 'misc_funcs.php';class GenDateListCls {    var $dbName;    var $sqlite;        function GenDateListCls()    {        $this->dbName = 'accrsc.db';        $this->ConstructEventDates();    }        function ConstructEventDates()    {         $this->sqlite = new SPSQLite($this->dbName);         $todayarr = getdate();         $today = $todayarr[mday] . " " . substr($todayarr[month],0,3) . " " . $todayarr[year];                  $ICalDate = ChangeToICalDate($today);         $dateQuery = "SELECT dtstart from events where substr(dtstart,1,8) >= '" . $ICalDate . "';";         $this->sqlite->query($dateQuery);         $datesResult = $this->sqlite->returnRows();                      foreach (array_reverse($datesResult) as $indx => $row)         {                       $normDate = NormalizeICalDate(substr($row[dtstart],0,8));              if ($indx==0)              { ?>                 <option selected value=<?php echo('"' . $normDate . '"'); ?>><?php echo $normDate; ?></option><?php                               }                          else              {?>                  <option value=<?php echo('"' . $normDate . '"'); ?>><?php echo $normDate; ?></option><?php                                   }                       }                   $this->sqlite->close();     }}$dateList = new GenDateListCls();    ?>/////////////////////////////////////////////////////////////////////////////////////////////////////////////<<< I appreciate any assistance on this matter. Aipragma >>> My Background: To let you all know, I am a complete newbie to PHP, Ajax, & javascript, and learning it all on my own, no classes. My background is in Linux, Windows, C++, Java, VB,VBA,MS XML, & some html.

    Read the article

  • Works in Firefox & Opera, but not IE 8

    - by Ai Pragma
    1) This issue involves just one html webpage, lets call it "ajax.html".2) I have AJAX functions in this webpage that work in both Firefox and IE8.3) I now attempt generating just the option values of a dropdown list of dates using my ajax functions, and it works in Firefox & Opera, but not IE8.4) The surrounding html code for the dropdown looks like this:<select name="entry_7_single" id="entry_7" onChange="Ajax_PhpResultsWithVar('./secure/db/SummaryCls.php','entry_8','dateval',this.value)"></select>The onchange call refers to an ajax function that successfully(both Firefox & IE8) populates a textarea(entry_8) with a description of an event associated with the date selected in this dropdown. 5) An onload call initiates the ajax function to generate the dropdown list values:<body class="ss-base-body" onLoad="OnLoadWebPage()">6) The js script that calls the ajax function is as follows:function OnLoadWebPage(){    Ajax_PhpResults('./secure/db/GenDateListCls.php','entry_7');}7) Since it works in Firefox, but not IE8, I throw the output of the ajax function into a Firefox large textbox and I get the following:<option selected value="8 JUN 2010">8 JUN 2010</option>                   <option value="9 JUN 2010">9 JUN 2010</option>                   <option value="10 JUN 2010">10 JUN 2010</option>                   <option value="11 JUN 2010">11 JUN 2010</option> 8 ) There are over a hundred generated but you get the gist of what the ajax function generates. Next I will list the PHP function that outputs the above dropdown values://///////////////////////////////////////////////////////////////////////////////////////////////////////<?phpinclude_once 'SPSQLite.class.php';include_once 'misc_funcs.php';class GenDateListCls {    var $dbName;    var $sqlite;        function GenDateListCls()    {        $this->dbName = 'accrsc.db';        $this->ConstructEventDates();    }        function ConstructEventDates()    {         $this->sqlite = new SPSQLite($this->dbName);         $todayarr = getdate();         $today = $todayarr[mday] . " " . substr($todayarr[month],0,3) . " " . $todayarr[year];                  $ICalDate = ChangeToICalDate($today);         $dateQuery = "SELECT dtstart from events where substr(dtstart,1,8) >= '" . $ICalDate . "';";         $this->sqlite->query($dateQuery);         $datesResult = $this->sqlite->returnRows();                      foreach (array_reverse($datesResult) as $indx => $row)         {                       $normDate = NormalizeICalDate(substr($row[dtstart],0,8));              if ($indx==0)              { ?>                 <option selected value=<?php echo('"' . $normDate . '"'); ?>><?php echo $normDate; ?></option><?php                               }                          else              {?>                  <option value=<?php echo('"' . $normDate . '"'); ?>><?php echo $normDate; ?></option><?php                                   }                       }                   $this->sqlite->close();     }}$dateList = new GenDateListCls();    ?>/////////////////////////////////////////////////////////////////////////////////////////////////////////////<<< I appreciate any assistance on this matter. Aipragma >>> My Background: To let you all know, I am a complete newbie to PHP, Ajax, & javascript, and learning it all on my own, no classes. My background is in Linux, Windows, C++, Java, VB,VBA,MS XML, & some html.

    Read the article

  • An Introduction to ASP.NET Web API

    - by Rick Strahl
    Microsoft recently released ASP.NET MVC 4.0 and .NET 4.5 and along with it, the brand spanking new ASP.NET Web API. Web API is an exciting new addition to the ASP.NET stack that provides a new, well-designed HTTP framework for creating REST and AJAX APIs (API is Microsoft’s new jargon for a service, in case you’re wondering). Although Web API ships and installs with ASP.NET MVC 4, you can use Web API functionality in any ASP.NET project, including WebForms, WebPages and MVC or just a Web API by itself. And you can also self-host Web API in your own applications from Console, Desktop or Service applications. If you're interested in a high level overview on what ASP.NET Web API is and how it fits into the ASP.NET stack you can check out my previous post: Where does ASP.NET Web API fit? In the following article, I'll focus on a practical, by example introduction to ASP.NET Web API. All the code discussed in this article is available in GitHub: https://github.com/RickStrahl/AspNetWebApiArticle [republished from my Code Magazine Article and updated for RTM release of ASP.NET Web API] Getting Started To start I’ll create a new empty ASP.NET application to demonstrate that Web API can work with any kind of ASP.NET project. Although you can create a new project based on the ASP.NET MVC/Web API template to quickly get up and running, I’ll take you through the manual setup process, because one common use case is to add Web API functionality to an existing ASP.NET application. This process describes the steps needed to hook up Web API to any ASP.NET 4.0 application. Start by creating an ASP.NET Empty Project. Then create a new folder in the project called Controllers. Add a Web API Controller Class Once you have any kind of ASP.NET project open, you can add a Web API Controller class to it. Web API Controllers are very similar to MVC Controller classes, but they work in any kind of project. Add a new item to this folder by using the Add New Item option in Visual Studio and choose Web API Controller Class, as shown in Figure 1. Figure 1: This is how you create a new Controller Class in Visual Studio   Make sure that the name of the controller class includes Controller at the end of it, which is required in order for Web API routing to find it. Here, the name for the class is AlbumApiController. For this example, I’ll use a Music Album model to demonstrate basic behavior of Web API. The model consists of albums and related songs where an album has properties like Name, Artist and YearReleased and a list of songs with a SongName and SongLength as well as an AlbumId that links it to the album. You can find the code for the model (and the rest of these samples) on Github. To add the file manually, create a new folder called Model, and add a new class Album.cs and copy the code into it. There’s a static AlbumData class with a static CreateSampleAlbumData() method that creates a short list of albums on a static .Current that I’ll use for the examples. Before we look at what goes into the controller class though, let’s hook up routing so we can access this new controller. Hooking up Routing in Global.asax To start, I need to perform the one required configuration task in order for Web API to work: I need to configure routing to the controller. Like MVC, Web API uses routing to provide clean, extension-less URLs to controller methods. Using an extension method to ASP.NET’s static RouteTable class, you can use the MapHttpRoute() (in the System.Web.Http namespace) method to hook-up the routing during Application_Start in global.asax.cs shown in Listing 1.using System; using System.Web.Routing; using System.Web.Http; namespace AspNetWebApi { public class Global : System.Web.HttpApplication { protected void Application_Start(object sender, EventArgs e) { RouteTable.Routes.MapHttpRoute( name: "AlbumVerbs", routeTemplate: "albums/{title}", defaults: new { symbol = RouteParameter.Optional, controller="AlbumApi" } ); } } } This route configures Web API to direct URLs that start with an albums folder to the AlbumApiController class. Routing in ASP.NET is used to create extensionless URLs and allows you to map segments of the URL to specific Route Value parameters. A route parameter, with a name inside curly brackets like {name}, is mapped to parameters on the controller methods. Route parameters can be optional, and there are two special route parameters – controller and action – that determine the controller to call and the method to activate respectively. HTTP Verb Routing Routing in Web API can route requests by HTTP Verb in addition to standard {controller},{action} routing. For the first examples, I use HTTP Verb routing, as shown Listing 1. Notice that the route I’ve defined does not include an {action} route value or action value in the defaults. Rather, Web API can use the HTTP Verb in this route to determine the method to call the controller, and a GET request maps to any method that starts with Get. So methods called Get() or GetAlbums() are matched by a GET request and a POST request maps to a Post() or PostAlbum(). Web API matches a method by name and parameter signature to match a route, query string or POST values. In lieu of the method name, the [HttpGet,HttpPost,HttpPut,HttpDelete, etc] attributes can also be used to designate the accepted verbs explicitly if you don’t want to follow the verb naming conventions. Although HTTP Verb routing is a good practice for REST style resource APIs, it’s not required and you can still use more traditional routes with an explicit {action} route parameter. When {action} is supplied, the HTTP verb routing is ignored. I’ll talk more about alternate routes later. When you’re finished with initial creation of files, your project should look like Figure 2.   Figure 2: The initial project has the new API Controller Album model   Creating a small Album Model Now it’s time to create some controller methods to serve data. For these examples, I’ll use a very simple Album and Songs model to play with, as shown in Listing 2. public class Song { public string AlbumId { get; set; } [Required, StringLength(80)] public string SongName { get; set; } [StringLength(5)] public string SongLength { get; set; } } public class Album { public string Id { get; set; } [Required, StringLength(80)] public string AlbumName { get; set; } [StringLength(80)] public string Artist { get; set; } public int YearReleased { get; set; } public DateTime Entered { get; set; } [StringLength(150)] public string AlbumImageUrl { get; set; } [StringLength(200)] public string AmazonUrl { get; set; } public virtual List<Song> Songs { get; set; } public Album() { Songs = new List<Song>(); Entered = DateTime.Now; // Poor man's unique Id off GUID hash Id = Guid.NewGuid().GetHashCode().ToString("x"); } public void AddSong(string songName, string songLength = null) { this.Songs.Add(new Song() { AlbumId = this.Id, SongName = songName, SongLength = songLength }); } } Once the model has been created, I also added an AlbumData class that generates some static data in memory that is loaded onto a static .Current member. The signature of this class looks like this and that's what I'll access to retrieve the base data:public static class AlbumData { // sample data - static list public static List<Album> Current = CreateSampleAlbumData(); /// <summary> /// Create some sample data /// </summary> /// <returns></returns> public static List<Album> CreateSampleAlbumData() { … }} You can check out the full code for the data generation online. Creating an AlbumApiController Web API shares many concepts of ASP.NET MVC, and the implementation of your API logic is done by implementing a subclass of the System.Web.Http.ApiController class. Each public method in the implemented controller is a potential endpoint for the HTTP API, as long as a matching route can be found to invoke it. The class name you create should end in Controller, which is how Web API matches the controller route value to figure out which class to invoke. Inside the controller you can implement methods that take standard .NET input parameters and return .NET values as results. Web API’s binding tries to match POST data, route values, form values or query string values to your parameters. Because the controller is configured for HTTP Verb based routing (no {action} parameter in the route), any methods that start with Getxxxx() are called by an HTTP GET operation. You can have multiple methods that match each HTTP Verb as long as the parameter signatures are different and can be matched by Web API. In Listing 3, I create an AlbumApiController with two methods to retrieve a list of albums and a single album by its title .public class AlbumApiController : ApiController { public IEnumerable<Album> GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); return albums; } public Album GetAlbum(string title) { var album = AlbumData.Current .SingleOrDefault(alb => alb.AlbumName.Contains(title)); return album; }} To access the first two requests, you can use the following URLs in your browser: http://localhost/aspnetWebApi/albumshttp://localhost/aspnetWebApi/albums/Dirty%20Deeds Note that you’re not specifying the actions of GetAlbum or GetAlbums in these URLs. Instead Web API’s routing uses HTTP GET verb to route to these methods that start with Getxxx() with the first mapping to the parameterless GetAlbums() method and the latter to the GetAlbum(title) method that receives the title parameter mapped as optional in the route. Content Negotiation When you access any of the URLs above from a browser, you get either an XML or JSON result returned back. The album list result for Chrome 17 and Internet Explorer 9 is shown Figure 3. Figure 3: Web API responses can vary depending on the browser used, demonstrating Content Negotiation in action as these two browsers send different HTTP Accept headers.   Notice that the results are not the same: Chrome returns an XML response and IE9 returns a JSON response. Whoa, what’s going on here? Shouldn’t we see the same result in both browsers? Actually, no. Web API determines what type of content to return based on Accept headers. HTTP clients, like browsers, use Accept headers to specify what kind of content they’d like to see returned. Browsers generally ask for HTML first, followed by a few additional content types. Chrome (and most other major browsers) ask for: Accept: text/html, application/xhtml+xml,application/xml; q=0.9,*/*;q=0.8 IE9 asks for: Accept: text/html, application/xhtml+xml, */* Note that Chrome’s Accept header includes application/xml, which Web API finds in its list of supported media types and returns an XML response. IE9 does not include an Accept header type that works on Web API by default, and so it returns the default format, which is JSON. This is an important and very useful feature that was missing from any previous Microsoft REST tools: Web API automatically switches output formats based on HTTP Accept headers. Nowhere in the server code above do you have to explicitly specify the output format. Rather, Web API determines what format the client is requesting based on the Accept headers and automatically returns the result based on the available formatters. This means that a single method can handle both XML and JSON results.. Using this simple approach makes it very easy to create a single controller method that can return JSON, XML, ATOM or even OData feeds by providing the appropriate Accept header from the client. By default you don’t have to worry about the output format in your code. Note that you can still specify an explicit output format if you choose, either globally by overriding the installed formatters, or individually by returning a lower level HttpResponseMessage instance and setting the formatter explicitly. More on that in a minute. Along the same lines, any content sent to the server via POST/PUT is parsed by Web API based on the HTTP Content-type of the data sent. The same formats allowed for output are also allowed on input. Again, you don’t have to do anything in your code – Web API automatically performs the deserialization from the content. Accessing Web API JSON Data with jQuery A very common scenario for Web API endpoints is to retrieve data for AJAX calls from the Web browser. Because JSON is the default format for Web API, it’s easy to access data from the server using jQuery and its getJSON() method. This example receives the albums array from GetAlbums() and databinds it into the page using knockout.js.$.getJSON("albums/", function (albums) { // make knockout template visible $(".album").show(); // create view object and attach array var view = { albums: albums }; ko.applyBindings(view); }); Figure 4 shows this and the next example’s HTML output. You can check out the complete HTML and script code at http://goo.gl/Ix33C (.html) and http://goo.gl/tETlg (.js). Figu Figure 4: The Album Display sample uses JSON data loaded from Web API.   The result from the getJSON() call is a JavaScript object of the server result, which comes back as a JavaScript array. In the code, I use knockout.js to bind this array into the UI, which as you can see, requires very little code, instead using knockout’s data-bind attributes to bind server data to the UI. Of course, this is just one way to use the data – it’s entirely up to you to decide what to do with the data in your client code. Along the same lines, I can retrieve a single album to display when the user clicks on an album. The response returns the album information and a child array with all the songs. The code to do this is very similar to the last example where we pulled the albums array:$(".albumlink").live("click", function () { var id = $(this).data("id"); // title $.getJSON("albums/" + id, function (album) { ko.applyBindings(album, $("#divAlbumDialog")[0]); $("#divAlbumDialog").show(); }); }); Here the URL looks like this: /albums/Dirty%20Deeds, where the title is the ID captured from the clicked element’s data ID attribute. Explicitly Overriding Output Format When Web API automatically converts output using content negotiation, it does so by matching Accept header media types to the GlobalConfiguration.Configuration.Formatters and the SupportedMediaTypes of each individual formatter. You can add and remove formatters to globally affect what formats are available and it’s easy to create and plug in custom formatters.The example project includes a JSONP formatter that can be plugged in to provide JSONP support for requests that have a callback= querystring parameter. Adding, removing or replacing formatters is a global option you can use to manipulate content. It’s beyond the scope of this introduction to show how it works, but you can review the sample code or check out my blog entry on the subject (http://goo.gl/UAzaR). If automatic processing is not desirable in a particular Controller method, you can override the response output explicitly by returning an HttpResponseMessage instance. HttpResponseMessage is similar to ActionResult in ASP.NET MVC in that it’s a common way to return an abstract result message that contains content. HttpResponseMessage s parsed by the Web API framework using standard interfaces to retrieve the response data, status code, headers and so on[MS2] . Web API turns every response – including those Controller methods that return static results – into HttpResponseMessage instances. Explicitly returning an HttpResponseMessage instance gives you full control over the output and lets you mostly bypass WebAPI’s post-processing of the HTTP response on your behalf. HttpResponseMessage allows you to customize the response in great detail. Web API’s attention to detail in the HTTP spec really shows; many HTTP options are exposed as properties and enumerations with detailed IntelliSense comments. Even if you’re new to building REST-based interfaces, the API guides you in the right direction for returning valid responses and response codes. For example, assume that I always want to return JSON from the GetAlbums() controller method and ignore the default media type content negotiation. To do this, I can adjust the output format and headers as shown in Listing 4.public HttpResponseMessage GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); // Create a new HttpResponse with Json Formatter explicitly var resp = new HttpResponseMessage(HttpStatusCode.OK); resp.Content = new ObjectContent<IEnumerable<Album>>( albums, new JsonMediaTypeFormatter()); // Get Default Formatter based on Content Negotiation //var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); resp.Headers.ConnectionClose = true; resp.Headers.CacheControl = new CacheControlHeaderValue(); resp.Headers.CacheControl.Public = true; return resp; } This example returns the same IEnumerable<Album> value, but it wraps the response into an HttpResponseMessage so you can control the entire HTTP message result including the headers, formatter and status code. In Listing 4, I explicitly specify the formatter using the JsonMediaTypeFormatter to always force the content to JSON.  If you prefer to use the default content negotiation with HttpResponseMessage results, you can create the Response instance using the Request.CreateResponse method:var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); This provides you an HttpResponse object that's pre-configured with the default formatter based on Content Negotiation. Once you have an HttpResponse object you can easily control most HTTP aspects on this object. What's sweet here is that there are many more detailed properties on HttpResponse than the core ASP.NET Response object, with most options being explicitly configurable with enumerations that make it easy to pick the right headers and response codes from a list of valid codes. It makes HTTP features available much more discoverable even for non-hardcore REST/HTTP geeks. Non-Serialized Results The output returned doesn’t have to be a serialized value but can also be raw data, like strings, binary data or streams. You can use the HttpResponseMessage.Content object to set a number of common Content classes. Listing 5 shows how to return a binary image using the ByteArrayContent class from a Controller method. [HttpGet] public HttpResponseMessage AlbumArt(string title) { var album = AlbumData.Current.FirstOrDefault(abl => abl.AlbumName.StartsWith(title)); if (album == null) { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found")); return resp; } // kinda silly - we would normally serve this directly // but hey - it's a demo. var http = new WebClient(); var imageData = http.DownloadData(album.AlbumImageUrl); // create response and return var result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new ByteArrayContent(imageData); result.Content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg"); return result; } The image retrieval from Amazon is contrived, but it shows how to return binary data using ByteArrayContent. It also demonstrates that you can easily return multiple types of content from a single controller method, which is actually quite common. If an error occurs - such as a resource can’t be found or a validation error – you can return an error response to the client that’s very specific to the error. In GetAlbumArt(), if the album can’t be found, we want to return a 404 Not Found status (and realistically no error, as it’s an image). Note that if you are not using HTTP Verb-based routing or not accessing a method that starts with Get/Post etc., you have to specify one or more HTTP Verb attributes on the method explicitly. Here, I used the [HttpGet] attribute to serve the image. Another option to handle the error could be to return a fixed placeholder image if no album could be matched or the album doesn’t have an image. When returning an error code, you can also return a strongly typed response to the client. For example, you can set the 404 status code and also return a custom error object (ApiMessageError is a class I defined) like this:return Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found") );   If the album can be found, the image will be returned. The image is downloaded into a byte[] array, and then assigned to the result’s Content property. I created a new ByteArrayContent instance and assigned the image’s bytes and the content type so that it displays properly in the browser. There are other content classes available: StringContent, StreamContent, ByteArrayContent, MultipartContent, and ObjectContent are at your disposal to return just about any kind of content. You can create your own Content classes if you frequently return custom types and handle the default formatter assignments that should be used to send the data out . Although HttpResponseMessage results require more code than returning a plain .NET value from a method, it allows much more control over the actual HTTP processing than automatic processing. It also makes it much easier to test your controller methods as you get a response object that you can check for specific status codes and output messages rather than just a result value. Routing Again Ok, let’s get back to the image example. Using the original routing we have setup using HTTP Verb routing there's no good way to serve the image. In order to return my album art image I’d like to use a URL like this: http://localhost/aspnetWebApi/albums/Dirty%20Deeds/image In order to create a URL like this, I have to create a new Controller because my earlier routes pointed to the AlbumApiController using HTTP Verb routing. HTTP Verb based routing is great for representing a single set of resources such as albums. You can map operations like add, delete, update and read easily using HTTP Verbs. But you cannot mix action based routing into a an HTTP Verb routing controller - you can only map HTTP Verbs and each method has to be unique based on parameter signature. You can't have multiple GET operations to methods with the same signature. So GetImage(string id) and GetAlbum(string title) are in conflict in an HTTP GET routing scenario. In fact, I was unable to make the above Image URL work with any combination of HTTP Verb plus Custom routing using the single Albums controller. There are number of ways around this, but all involve additional controllers.  Personally, I think it’s easier to use explicit Action routing and then add custom routes if you need to simplify your URLs further. So in order to accommodate some of the other examples, I created another controller – AlbumRpcApiController – to handle all requests that are explicitly routed via actions (/albums/rpc/AlbumArt) or are custom routed with explicit routes defined in the HttpConfiguration. I added the AlbumArt() method to this new AlbumRpcApiController class. For the image URL to work with the new AlbumRpcApiController, you need a custom route placed before the default route from Listing 1.RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); Now I can use either of the following URLs to access the image: Custom route: (/albums/rpc/{title}/image)http://localhost/aspnetWebApi/albums/PowerAge/image Action route: (/albums/rpc/action/{title})http://localhost/aspnetWebAPI/albums/rpc/albumart/PowerAge Sending Data to the Server To send data to the server and add a new album, you can use an HTTP POST operation. Since I’m using HTTP Verb-based routing in the original AlbumApiController, I can implement a method called PostAlbum()to accept a new album from the client. Listing 6 shows the Web API code to add a new album.public HttpResponseMessage PostAlbum(Album album) { if (!this.ModelState.IsValid) { // my custom error class var error = new ApiMessageError() { message = "Model is invalid" }; // add errors into our client error model for client foreach (var prop in ModelState.Values) { var modelError = prop.Errors.FirstOrDefault(); if (!string.IsNullOrEmpty(modelError.ErrorMessage)) error.errors.Add(modelError.ErrorMessage); else error.errors.Add(modelError.Exception.Message); } return Request.CreateResponse<ApiMessageError>(HttpStatusCode.Conflict, error); } // update song id which isn't provided foreach (var song in album.Songs) song.AlbumId = album.Id; // see if album exists already var matchedAlbum = AlbumData.Current .SingleOrDefault(alb => alb.Id == album.Id || alb.AlbumName == album.AlbumName); if (matchedAlbum == null) AlbumData.Current.Add(album); else matchedAlbum = album; // return a string to show that the value got here var resp = Request.CreateResponse(HttpStatusCode.OK, string.Empty); resp.Content = new StringContent(album.AlbumName + " " + album.Entered.ToString(), Encoding.UTF8, "text/plain"); return resp; } The PostAlbum() method receives an album parameter, which is automatically deserialized from the POST buffer the client sent. The data passed from the client can be either XML or JSON. Web API automatically figures out what format it needs to deserialize based on the content type and binds the content to the album object. Web API uses model binding to bind the request content to the parameter(s) of controller methods. Like MVC you can check the model by looking at ModelState.IsValid. If it’s not valid, you can run through the ModelState.Values collection and check each binding for errors. Here I collect the error messages into a string array that gets passed back to the client via the result ApiErrorMessage object. When a binding error occurs, you’ll want to return an HTTP error response and it’s best to do that with an HttpResponseMessage result. In Listing 6, I used a custom error class that holds a message and an array of detailed error messages for each binding error. I used this object as the content to return to the client along with my Conflict HTTP Status Code response. If binding succeeds, the example returns a string with the name and date entered to demonstrate that you captured the data. Normally, a method like this should return a Boolean or no response at all (HttpStatusCode.NoConent). The sample uses a simple static list to hold albums, so once you’ve added the album using the Post operation, you can hit the /albums/ URL to see that the new album was added. The client jQuery code to call the POST operation from the client with jQuery is shown in Listing 7. var id = new Date().getTime().toString(); var album = { "Id": id, "AlbumName": "Power Age", "Artist": "AC/DC", "YearReleased": 1977, "Entered": "2002-03-11T18:24:43.5580794-10:00", "AlbumImageUrl": http://ecx.images-amazon.com/images/…, "AmazonUrl": http://www.amazon.com/…, "Songs": [ { "SongName": "Rock 'n Roll Damnation", "SongLength": 3.12}, { "SongName": "Downpayment Blues", "SongLength": 4.22 }, { "SongName": "Riff Raff", "SongLength": 2.42 } ] } $.ajax( { url: "albums/", type: "POST", contentType: "application/json", data: JSON.stringify(album), processData: false, beforeSend: function (xhr) { // not required since JSON is default output xhr.setRequestHeader("Accept", "application/json"); }, success: function (result) { // reload list of albums page.loadAlbums(); }, error: function (xhr, status, p3, p4) { var err = "Error"; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); The code in Listing 7 creates an album object in JavaScript to match the structure of the .NET Album class. This object is passed to the $.ajax() function to send to the server as POST. The data is turned into JSON and the content type set to application/json so that the server knows what to convert when deserializing in the Album instance. The jQuery code hooks up success and failure events. Success returns the result data, which is a string that’s echoed back with an alert box. If an error occurs, jQuery returns the XHR instance and status code. You can check the XHR to see if a JSON object is embedded and if it is, you can extract it by de-serializing it and accessing the .message property. REST standards suggest that updates to existing resources should use PUT operations. REST standards aside, I’m not a big fan of separating out inserts and updates so I tend to have a single method that handles both. But if you want to follow REST suggestions, you can create a PUT method that handles updates by forwarding the PUT operation to the POST method:public HttpResponseMessage PutAlbum(Album album) { return PostAlbum(album); } To make the corresponding $.ajax() call, all you have to change from Listing 7 is the type: from POST to PUT. Model Binding with UrlEncoded POST Variables In the example in Listing 7 I used JSON objects to post a serialized object to a server method that accepted an strongly typed object with the same structure, which is a common way to send data to the server. However, Web API supports a number of different ways that data can be received by server methods. For example, another common way is to use plain UrlEncoded POST  values to send to the server. Web API supports Model Binding that works similar (but not the same) as MVC's model binding where POST variables are mapped to properties of object parameters of the target method. This is actually quite common for AJAX calls that want to avoid serialization and the potential requirement of a JSON parser on older browsers. For example, using jQUery you might use the $.post() method to send a new album to the server (albeit one without songs) using code like the following:$.post("albums/",{AlbumName: "Dirty Deeds", YearReleased: 1976 … },albumPostCallback); Although the code looks very similar to the client code we used before passing JSON, here the data passed is URL encoded values (AlbumName=Dirty+Deeds&YearReleased=1976 etc.). Web API then takes this POST data and maps each of the POST values to the properties of the Album object in the method's parameter. Although the client code is different the server can both handle the JSON object, or the UrlEncoded POST values. Dynamic Access to POST Data There are also a few options available to dynamically access POST data, if you know what type of data you're dealing with. If you have POST UrlEncoded values, you can dynamically using a FormsDataCollection:[HttpPost] public string PostAlbum(FormDataCollection form) { return string.Format("{0} - released {1}", form.Get("AlbumName"),form.Get("RearReleased")); } The FormDataCollection is a very simple object, that essentially provides the same functionality as Request.Form[] in ASP.NET. Request.Form[] still works if you're running hosted in an ASP.NET application. However as a general rule, while ASP.NET's functionality is always available when running Web API hosted inside of an  ASP.NET application, using the built in classes specific to Web API makes it possible to run Web API applications in a self hosted environment outside of ASP.NET. If your client is sending JSON to your server, and you don't want to map the JSON to a strongly typed object because you only want to retrieve a few simple values, you can also accept a JObject parameter in your API methods:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } There quite a few options available to you to receive data with Web API, which gives you more choices for the right tool for the job. Unfortunately one shortcoming of Web API is that POST data is always mapped to a single parameter. This means you can't pass multiple POST parameters to methods that receive POST data. It's possible to accept multiple parameters, but only one can map to the POST content - the others have to come from the query string or route values. I have a couple of Blog POSTs that explain what works and what doesn't here: Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API   Handling Delete Operations Finally, to round out the server API code of the album example we've been discussin, here’s the DELETE verb controller method that allows removal of an album by its title:public HttpResponseMessage DeleteAlbum(string title) { var matchedAlbum = AlbumData.Current.Where(alb => alb.AlbumName == title) .SingleOrDefault(); if (matchedAlbum == null) return new HttpResponseMessage(HttpStatusCode.NotFound); AlbumData.Current.Remove(matchedAlbum); return new HttpResponseMessage(HttpStatusCode.NoContent); } To call this action method using jQuery, you can use:$(".removeimage").live("click", function () { var $el = $(this).parent(".album"); var txt = $el.find("a").text(); $.ajax({ url: "albums/" + encodeURIComponent(txt), type: "Delete", success: function (result) { $el.fadeOut().remove(); }, error: jqError }); }   Note the use of the DELETE verb in the $.ajax() call, which routes to DeleteAlbum on the server. DELETE is a non-content operation, so you supply a resource ID (the title) via route value or the querystring. Routing Conflicts In all requests with the exception of the AlbumArt image example shown so far, I used HTTP Verb routing that I set up in Listing 1. HTTP Verb Routing is a recommendation that is in line with typical REST access to HTTP resources. However, it takes quite a bit of effort to create REST-compliant API implementations based only on HTTP Verb routing only. You saw one example that didn’t really fit – the return of an image where I created a custom route albums/{title}/image that required creation of a second controller and a custom route to work. HTTP Verb routing to a controller does not mix with custom or action routing to the same controller because of the limited mapping of HTTP verbs imposed by HTTP Verb routing. To understand some of the problems with verb routing, let’s look at another example. Let’s say you create a GetSortableAlbums() method like this and add it to the original AlbumApiController accessed via HTTP Verb routing:[HttpGet] public IQueryable<Album> SortableAlbums() { var albums = AlbumData.Current; // generally should be done only on actual queryable results (EF etc.) // Done here because we're running with a static list but otherwise might be slow return albums.AsQueryable(); } If you compile this code and try to now access the /albums/ link, you get an error: Multiple Actions were found that match the request. HTTP Verb routing only allows access to one GET operation per parameter/route value match. If more than one method exists with the same parameter signature, it doesn’t work. As I mentioned earlier for the image display, the only solution to get this method to work is to throw it into another controller. Because I already set up the AlbumRpcApiController I can add the method there. First, I should rename the method to SortableAlbums() so I’m not using a Get prefix for the method. This also makes the action parameter look cleaner in the URL - it looks less like a method and more like a noun. I can then create a new route that handles direct-action mapping:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); As I am explicitly adding a route segment – rpc – into the route template, I can now reference explicit methods in the Web API controller using URLs like this: http://localhost/AspNetWebApi/rpc/SortableAlbums Error Handling I’ve already done some minimal error handling in the examples. For example in Listing 6, I detected some known-error scenarios like model validation failing or a resource not being found and returning an appropriate HttpResponseMessage result. But what happens if your code just blows up or causes an exception? If you have a controller method, like this:[HttpGet] public void ThrowException() { throw new UnauthorizedAccessException("Unauthorized Access Sucka"); } You can call it with this: http://localhost/AspNetWebApi/albums/rpc/ThrowException The default exception handling displays a 500-status response with the serialized exception on the local computer only. When you connect from a remote computer, Web API throws back a 500  HTTP Error with no data returned (IIS then adds its HTML error page). The behavior is configurable in the GlobalConfiguration:GlobalConfiguration .Configuration .IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never; If you want more control over your error responses sent from code, you can throw explicit error responses yourself using HttpResponseException. When you throw an HttpResponseException the response parameter is used to generate the output for the Controller action. [HttpGet] public void ThrowError() { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.BadRequest, new ApiMessageError("Your code stinks!")); throw new HttpResponseException(resp); } Throwing an HttpResponseException stops the processing of the controller method and immediately returns the response you passed to the exception. Unlike other Exceptions fired inside of WebAPI, HttpResponseException bypasses the Exception Filters installed and instead just outputs the response you provide. In this case, the serialized ApiMessageError result string is returned in the default serialization format – XML or JSON. You can pass any content to HttpResponseMessage, which includes creating your own exception objects and consistently returning error messages to the client. Here’s a small helper method on the controller that you might use to send exception info back to the client consistently:private void ThrowSafeException(string message, HttpStatusCode statusCode = HttpStatusCode.BadRequest) { var errResponse = Request.CreateResponse<ApiMessageError>(statusCode, new ApiMessageError() { message = message }); throw new HttpResponseException(errResponse); } You can then use it to output any captured errors from code:[HttpGet] public void ThrowErrorSafe() { try { List<string> list = null; list.Add("Rick"); } catch (Exception ex) { ThrowSafeException(ex.Message); } }   Exception Filters Another more global solution is to create an Exception Filter. Filters in Web API provide the ability to pre- and post-process controller method operations. An exception filter looks at all exceptions fired and then optionally creates an HttpResponseMessage result. Listing 8 shows an example of a basic Exception filter implementation.public class UnhandledExceptionFilter : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { HttpStatusCode status = HttpStatusCode.InternalServerError; var exType = context.Exception.GetType(); if (exType == typeof(UnauthorizedAccessException)) status = HttpStatusCode.Unauthorized; else if (exType == typeof(ArgumentException)) status = HttpStatusCode.NotFound; var apiError = new ApiMessageError() { message = context.Exception.Message }; // create a new response and attach our ApiError object // which now gets returned on ANY exception result var errorResponse = context.Request.CreateResponse<ApiMessageError>(status, apiError); context.Response = errorResponse; base.OnException(context); } } Exception Filter Attributes can be assigned to an ApiController class like this:[UnhandledExceptionFilter] public class AlbumRpcApiController : ApiController or you can globally assign it to all controllers by adding it to the HTTP Configuration's Filters collection:GlobalConfiguration.Configuration.Filters.Add(new UnhandledExceptionFilter()); The latter is a great way to get global error trapping so that all errors (short of hard IIS errors and explicit HttpResponseException errors) return a valid error response that includes error information in the form of a known-error object. Using a filter like this allows you to throw an exception as you normally would and have your filter create a response in the appropriate output format that the client expects. For example, an AJAX application can on failure expect to see a JSON error result that corresponds to the real error that occurred rather than a 500 error along with HTML error page that IIS throws up. You can even create some custom exceptions so you can differentiate your own exceptions from unhandled system exceptions - you often don't want to display error information from 'unknown' exceptions as they may contain sensitive system information or info that's not generally useful to users of your application/site. This is just one example of how ASP.NET Web API is configurable and extensible. Exception filters are just one example of how you can plug-in into the Web API request flow to modify output. Many more hooks exist and I’ll take a closer look at extensibility in Part 2 of this article in the future. Summary Web API is a big improvement over previous Microsoft REST and AJAX toolkits. The key features to its usefulness are its ease of use with simple controller based logic, familiar MVC-style routing, low configuration impact, extensibility at all levels and tight attention to exposing and making HTTP semantics easily discoverable and easy to use. Although none of the concepts used in Web API are new or radical, Web API combines the best of previous platforms into a single framework that’s highly functional, easy to work with, and extensible to boot. I think that Microsoft has hit a home run with Web API. Related Resources Where does ASP.NET Web API fit? Sample Source Code on GitHub Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API Creating a JSONP Formatter for ASP.NET Web API Removing the XML Formatter from ASP.NET Web API Applications© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Finding the Right Solution to Source and Manage Your Contractors

    - by mark.rosenberg(at)oracle.com
    Many of our PeopleSoft Enterprise applications customers operate in service-based industries, and all of our customers have at least some internal service units, such as IT, marketing, and facilities. Employing the services of contractors, often referred to as "contingent labor," to deliver either or both internal and external services is common practice. As we've transitioned from an industrial age to a knowledge age, talent has become a primary competitive advantage for most organizations. Contingent labor offers talent on flexible terms; it offers the ability to scale up operations, close skill gaps, and manage risk in the process of delivering services. Talent comes from many sources and the rise in the contingent worker (contractor, consultant, temporary, part time) has increased significantly in the past decade and is expected to reach 40 percent in the next decade. Managing the total pool of talent in a seamless integrated fashion not only saves organizations money and increases efficiency, but creates a better place for workers of all kinds to work. Although the term "contingent labor" is frequently used to describe both contractors and employees who have flexible schedules and relationships with an organization, the remainder of this discussion focuses on contractors. The term "contingent labor" is used interchangeably with "contractor." Recognizing the importance of contingent labor, our PeopleSoft customers often ask our team, "What Oracle vendor management system (VMS) applications should I evaluate for managing contractors?" In response, I thought it would be useful to describe and compare the three most common Oracle-based options available to our customers. They are:   The enterprise licensed software model in which you implement and utilize the PeopleSoft Services Procurement (sPro) application and potentially other PeopleSoft applications;  The software-as-a-service model in which you gain access to a derivative of PeopleSoft sPro from an Oracle Business Process Outsourcing Partner; and  The managed service provider (MSP) model in which staffing industry professionals utilize either your enterprise licensed software or the software-as-a-service application to administer your contingent labor program. At this point, you may be asking yourself, "Why three options?" The answer is that since there is no "one size fits all" in terms of talent, there is also no "one size fits all" for effectively sourcing and managing contingent workers. Various factors influence how an organization thinks about and relates to its contractors, and each of the three Oracle-based options addresses an organization's needs and preferences differently. For the purposes of this discussion, I will describe the options with respect to (A) pricing and software provisioning models; (B) control and flexibility; (C) level of engagement with contractors; and (D) approach to sourcing, employment law, and financial settlement. Option 1:  Enterprise Licensed Software In this model, you purchase from Oracle the license and support for the applications you need. Typically, you license PeopleSoft sPro as your VMS tool for sourcing, monitoring, and paying your contract labor. In conjunction with sPro, you can also utilize PeopleSoft Human Capital Management (HCM) applications (if you do not already) to configure more advanced business processes for recruiting, training, and tracking your contractors. Many customers choose this enterprise license software model because of the functionality and natural integration of the PeopleSoft applications and because the cost for the PeopleSoft software is explicit. There is no fee per transaction to source each contractor under this model. Our customers that employ contractors to augment their permanent staff on billable client engagements often find this model appealing because there are no fees to affect their profit margins. With this model, you decide whether to have your own IT organization run the software or have the software hosted and managed by either Oracle or another application services provider. Your organization, perhaps with the assistance of consultants, configures, deploys, and operates the software for managing your contingent workforce. This model offers you the highest level of control and flexibility since your organization can configure the contractor process flow exactly to your business and security requirements and can extend the functionality with PeopleTools. This option has proven very valuable and applicable to our customers engaged in government contracting because their contingent labor management practices are subject to complex standards and regulations. Customers find a great deal of value in the application functionality and configurability the enterprise licensed software offers for managing contingent labor. Some examples of that functionality are... The ability to create a tiered network of preferred suppliers including competencies, pricing agreements, and elaborate candidate management capabilities. Configurable alerts and online collaboration for bid, resource requisition, timesheet, and deliverable entry, routing, and approval for both resource and deliverable-based services. The ability to manage contractors with the same PeopleSoft HCM and Projects applications that are used to manage the permanent workforce. Because it allows you to utilize much of the same PeopleSoft HCM and Projects application functionality for contractors that you use for permanent employees, the enterprise licensed software model supports the deepest level of engagement with the contingent workforce. For example, you can: fill job openings with contingent labor; guide contingent workers through essential safety and compliance training with PeopleSoft Enterprise Learning Management; and source contingent workers directly to project-based assignments in PeopleSoft Resource Management and PeopleSoft Program Management. This option enables contingent workers to collaborate closely with your permanent staff on complex, knowledge-based efforts - R&D projects, billable client contracts, architecture and engineering projects spanning multiple years, and so on. With the enterprise licensed software model, your organization maintains responsibility for the sourcing, onboarding (including adherence to employment laws), and financial settlement processes. This means your organization maintains on staff or hires the expertise in these domains to utilize the software and interact with suppliers and contractors. Option 2:  Software as a Service (SaaS) The effort involved in setting up and operating VMS software to handle a contingent workforce leads many organizations to seek a system that can be activated and configured within a few days and for which they can pay based on usage. Oracle's Business Process Outsourcing partner, Provade, Inc., provides exactly this option to our customers. Provade offers its vendor management software as a service over the Internet and usually charges your organization a fee that is a percentage of your total contingent labor spending processed through the Provade software. (Percentage of spend is the predominant fee model, although not the only one.) In addition to lower implementation costs, the effort of configuring and maintaining the software is largely upon Provade, not your organization. This can be very appealing to IT organizations that are thinly stretched supporting other important information technology initiatives. Built upon PeopleSoft sPro, the Provade solution is tailored for simple and quick deployment and administration. Provade has added capabilities to clone users rapidly and has simplified business documents, like work orders and change orders, to facilitate enterprise-wide, self-service adoption with little to no training. Provade also leverages Oracle Business Intelligence Enterprise Edition (OBIEE) to provide integrated spend analytics and dashboards. Although pure customization is more limited than with the enterprise licensed software model, Provade offers a very effective option for organizations that are regularly on-boarding and off-boarding high volumes of contingent staff hired to perform discrete support tasks (for example, order fulfillment during the holiday season, hourly clerical work, desktop technology repairs, and so on) or project tasks. The software is very configurable and at the same time very intuitive to even the most computer-phobic users. The level of contingent worker engagement your organization can achieve with the Provade option is generally the same as with the enterprise licensed software model since Provade can automatically establish contingent labor resources in your PeopleSoft applications. Provade has pre-built integrations to Oracle's PeopleSoft and the Oracle E-Business Suite procurement, projects, payables, and HCM applications, so that you can evaluate, train, assign, and track contingent workers like your permanent employees. Similar to the enterprise licensed software model, your organization is responsible for the contingent worker sourcing, administration, and financial settlement processes. This means your organization needs to maintain the staff expertise in these domains. Option 3:  Managed Services Provider (MSP) Whether you are using the enterprise licensed model or the SaaS model, you may want to engage the services of sourcing, employment, payroll, and financial settlement professionals to administer your contingent workforce program. Firms that offer this expertise are often referred to as "MSPs," and they are typically staffing companies that also offer permanent and temporary hiring services. (In fact, many of the major MSPs are Oracle applications customers themselves, and they utilize the PeopleSoft Solution for the Staffing Industry to run their own business operations.) Usually, MSPs place their staff on-site at your facilities, and they can utilize either your enterprise licensed PeopleSoft sPro application or the Provade VMS SaaS software to administer the network of suppliers providing contingent workers. When you utilize an MSP, there is a separate fee for the MSP's service that is typically funded by the participating suppliers of the contingent labor. Also in this model, the suppliers of the contingent labor (not the MSP) usually pay the contingent labor force. With an MSP, you are intentionally turning over business process control for the advantages associated with having someone else manage the processes. The software option you choose will to a certain extent affect your process flexibility; however, the MSPs are often able to adapt their processes to the unique demands of your business. When you engage an MSP, you will want to give some thought to the level of engagement and "partnering" you need with your contingent workforce. Because the MSP acts as an intermediary, it can be very valuable in handling high volume, routine contracting for which there is a relatively low need for "partnering" with the contingent workforce. However, if your organization (or part of your organization) engages contingent workers for high-profile client projects that require diplomacy, intensive amounts of interaction, and personal trust, introducing an MSP into the process may prove less effective than handling the process with your own staff. In fact, in many organizations, it is common to enlist an MSP to handle contractors working on internal projects and to have permanent employees handle the contractor relationships that affect the portion of the services portfolio focused on customer-facing, billable projects. One of the key advantages of enlisting an MSP is that you do not have to maintain the expertise required for orchestrating the sourcing, hiring, and paying of contingent workers.  These are the domain of the MSPs. If your own staff members are not prepared to manage the essential "overhead" processes associated with contingent labor, working with an MSP can make solid business sense. Proper administration of a contingent workforce can make the difference between project success and failure, operating profit and loss, and legal compliance and fines. Concluding Thoughts There is little doubt that thoughtfully and purposefully constructing a service delivery strategy that leverages the strengths of contingent workers can lead to better projects, deliverables, and business results. What requires a bit more thinking is determining the platform (or platforms) that will enable each part of your organization to best deliver on its mission.

    Read the article

  • Announcing: Great Improvements to Windows Azure Web Sites

    - by ScottGu
    I’m excited to announce some great improvements to the Windows Azure Web Sites capability we first introduced earlier this summer.  Today’s improvements include: a new low-cost shared mode scaling option, support for custom domains with shared and reserved mode web-sites using both CNAME and A-Records (the later enabling naked domains), continuous deployment support using both CodePlex and GitHub, and FastCGI extensibility.  All of these improvements are now live in production and available to start using immediately. New “Shared” Scaling Tier Windows Azure allows you to deploy and host up to 10 web-sites in a free, shared/multi-tenant hosting environment. You can start out developing and testing web sites at no cost using this free shared mode, and it supports the ability to run web sites that serve up to 165MB/day of content (5GB/month).  All of the capabilities we introduced in June with this free tier remain the same with today’s update. Starting with today’s release, you can now elastically scale up your web-site beyond this capability using a new low-cost “shared” option (which we are introducing today) as well as using a “reserved instance” option (which we’ve supported since June).  Scaling to either of these modes is easy.  Simply click on the “scale” tab of your web-site within the Windows Azure Portal, choose the scaling option you want to use with it, and then click the “save” button.  Changes take only seconds to apply and do not require any code to be changed, nor the app to be redeployed: Below are some more details on the new “shared” option, as well as the existing “reserved” option: Shared Mode With today’s release we are introducing a new low-cost “shared” scaling mode for Windows Azure Web Sites.  A web-site running in shared mode is deployed in a shared/multi-tenant hosting environment.  Unlike the free tier, though, a web-site in shared mode has no quotas/upper-limit around the amount of bandwidth it can serve.  The first 5 GB/month of bandwidth you serve with a shared web-site is free, and then you pay the standard “pay as you go” Windows Azure outbound bandwidth rate for outbound bandwidth above 5 GB. A web-site running in shared mode also now supports the ability to map multiple custom DNS domain names, using both CNAMEs and A-records, to it.  The new A-record support we are introducing with today’s release provides the ability for you to support “naked domains” with your web-sites (e.g. http://microsoft.com in addition to http://www.microsoft.com).  We will also in the future enable SNI based SSL as a built-in feature with shared mode web-sites (this functionality isn’t supported with today’s release – but will be coming later this year to both the shared and reserved tiers). You pay for a shared mode web-site using the standard “pay as you go” model that we support with other features of Windows Azure (meaning no up-front costs, and you pay only for the hours that the feature is enabled).  A web-site running in shared mode costs only 1.3 cents/hr during the preview (so on average $9.36/month). Reserved Instance Mode In addition to running sites in shared mode, we also support scaling them to run within a reserved instance mode.  When running in reserved instance mode your sites are guaranteed to run isolated within your own Small, Medium or Large VM (meaning no other customers run within it).  You can run any number of web-sites within a VM, and there are no quotas on CPU or memory limits. You can run your sites using either a single reserved instance VM, or scale up to have multiple instances of them (e.g. 2 medium sized VMs, etc).  Scaling up or down is easy – just select the “reserved” instance VM within the “scale” tab of the Windows Azure Portal, choose the VM size you want, the number of instances of it you want to run, and then click save.  Changes take effect in seconds: Unlike shared mode, there is no per-site cost when running in reserved mode.  Instead you pay only for the reserved instance VMs you use – and you can run any number of web-sites you want within them at no extra cost (e.g. you could run a single site within a reserved instance VM or 100 web-sites within it for the same cost).  Reserved instance VMs start at 8 cents/hr for a small reserved VM.  Elastic Scale-up/down Windows Azure Web Sites allows you to scale-up or down your capacity within seconds.  This allows you to deploy a site using the shared mode option to begin with, and then dynamically scale up to the reserved mode option only when you need to – without you having to change any code or redeploy your application. If your site traffic starts to drop off, you can scale back down the number of reserved instances you are using, or scale down to the shared mode tier – all within seconds and without having to change code, redeploy, or adjust DNS mappings.  You can also use the “Dashboard” view within the Windows Azure Portal to easily monitor your site’s load in real-time (it shows not only requests/sec and bandwidth but also stats like CPU and memory usage). Because of Windows Azure’s “pay as you go” pricing model, you only pay for the compute capacity you use in a given hour.  So if your site is running most of the month in shared mode (at 1.3 cents/hr), but there is a weekend when it gets really popular and you decide to scale it up into reserved mode to have it run in your own dedicated VM (at 8 cents/hr), you only have to pay the additional pennies/hr for the hours it is running in the reserved mode.  There is no upfront cost you need to pay to enable this, and once you scale back down to shared mode you return to the 1.3 cents/hr rate.  This makes it super flexible and cost effective. Improved Custom Domain Support Web sites running in either “shared” or “reserved” mode support the ability to associate custom host names to them (e.g. www.mysitename.com).  You can associate multiple custom domains to each Windows Azure Web Site.  With today’s release we are introducing support for A-Records (a big ask by many users). With the A-Record support, you can now associate ‘naked’ domains to your Windows Azure Web Sites – meaning instead of having to use www.mysitename.com you can instead just have mysitename.com (with no sub-name prefix).  Because you can map multiple domains to a single site, you can optionally enable both a www and naked domain for a site (and then use a URL rewrite rule/redirect to avoid SEO problems). We’ve also enhanced the UI for managing custom domains within the Windows Azure Portal as part of today’s release.  Clicking the “Manage Domains” button in the tray at the bottom of the portal now brings up custom UI that makes it easy to manage/configure them: As part of this update we’ve also made it significantly smoother/easier to validate ownership of custom domains, and made it easier to switch existing sites/domains to Windows Azure Web Sites with no downtime. Continuous Deployment Support with Git and CodePlex or GitHub One of the more popular features we released earlier this summer was support for publishing web sites directly to Windows Azure using source control systems like TFS and Git.  This provides a really powerful way to manage your application deployments using source control.  It is really easy to enable this from a website’s dashboard page: The TFS option we shipped earlier this summer provides a very rich continuous deployment solution that enables you to automate builds and run unit tests every time you check in your web-site, and then if they are successful automatically publish to Azure. With today’s release we are expanding our Git support to also enable continuous deployment scenarios and integrate with projects hosted on CodePlex and GitHub.  This support is enabled with all web-sites (including those using the “free” scaling mode). Starting today, when you choose the “Set up Git publishing” link on a website’s “Dashboard” page you’ll see two additional options show up when Git based publishing is enabled for the web-site: You can click on either the “Deploy from my CodePlex project” link or “Deploy from my GitHub project” link to walkthrough a simple workflow to configure a connection between your website and a source repository you host on CodePlex or GitHub.  Once this connection is established, CodePlex or GitHub will automatically notify Windows Azure every time a checkin occurs.  This will then cause Windows Azure to pull the source and compile/deploy the new version of your app automatically.  The below two videos walkthrough how easy this is to enable this workflow and deploy both an initial app and then make a change to it: Enabling Continuous Deployment with Windows Azure Websites and CodePlex (2 minutes) Enabling Continuous Deployment with Windows Azure Websites and GitHub (2 minutes) This approach enables a really clean continuous deployment workflow, and makes it much easier to support a team development environment using Git: Note: today’s release supports establishing connections with public GitHub/CodePlex repositories.  Support for private repositories will be enabled in a few weeks. Support for multiple branches Previously, we only supported deploying from the git ‘master’ branch.  Often, though, developers want to deploy from alternate branches (e.g. a staging or future branch). This is now a supported scenario – both with standalone git based projects, as well as ones linked to CodePlex or GitHub.  This enables a variety of useful scenarios.  For example, you can now have two web-sites - a “live” and “staging” version – both linked to the same repository on CodePlex or GitHub.  You can configure one of the web-sites to always pull whatever is in the master branch, and the other to pull what is in the staging branch.  This enables a really clean way to enable final testing of your site before it goes live. This 1 minute video demonstrates how to configure which branch to use with a web-site. Summary The above features are all now live in production and available to use immediately.  If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using them today.  Visit the Windows Azure Developer Center to learn more about how to build apps with it. We’ll have even more new features and enhancements coming in the weeks ahead – including support for the recent Windows Server 2012 and .NET 4.5 releases (we will enable new web and worker role images with Windows Server 2012 and .NET 4.5 next month).  Keep an eye out on my blog for details as these new features become available. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Optimistic non-locking copy of InnoDB .frm files

    - by jothir
    MySQL Enterprise Backup(MEB) does hot backup of innodb data and log files. Till MEB 3.6.1, the user backs up the only innodb tables in a 3 step process: STEP 1. Take backup using --only-innodb option STEP 2. Temporarily make the table read only by executing “FLUSH TABLES WITH READ LOCK” MEB 3.7.0 has an enhancement to innodb file copying. The .frm files gets copied along with the hot backup done for innodb files. I would like to make the blog a little interactive by explaining the feature as answers: 1. What are these .frm files? The files containing the metadata, such as the table definition, of a MySQL table. For backups, the full set of .frm files are always required along with the backup data, to be able to restore tables that are altered or dropped after the backup. 2. Can the .frm files not be copied by MEB itself? --only-innodb-with-frm is the new option introduced in MEB 3.7.1 to do a copy of .frm files without locking the tables during backup operation itself. This is to reduce the pain of manually copying the .frm files. The option is intended for backups where you can ensure that no ALTER TABLE, CREATE TABLE, DROP TABLE, or other DDL statements modify the .frm files for InnoDB tables during the backup operation. 3. How is data consistency ensured? MEB does validation of the .frm files after copying by comparing with the server directory to see if the timestamps of any of the .frm files is greater than the saved system time (check .frm time).  This change in timestamp of the .frm files will show if a table is altered during the process of backup. The total number of frm files in the server directory is also verified against the copied contents. If the number of .frm files is less compared to server directory, it shows that table/tables have been dropped during the process of backup. If the number of .frm files is more compared to server directory, it shows that new table/tables have been created during backup operation. 4. How does MEB handle data inconsistency? MEB copies the .frm files through several iterations,  does the validation and throws a WARNING if there is any inconsistency found in .frm files at the end of backup operation. This means the user is warned of some DDL operations that had occurred during backup operation, and has to manually copy the .frm files or do a backup again. 5. What is the option and explain its usage? The option introduced is --only-innodb-with-frm which does optimistic copy of .frm files without locking. This can be used when the user wants to backup only innodb tables along with .frm files. The option can take one of the 2 values: all | related. --only-innodb-with-frm=all does copy of all .frm files of all innodb tables. --only-innodb-with-frm=related works in conjunction with --include option.This is to allow partial backup of .frm files corresponding to the tables specified in --include. Let me show the usage with example output: ./mysqlbackup -uroot --backup-dir=/logs/backupWithFrmAll --only-innodb-with-frm=all backup MySQL Enterprise Backup version 3.7.1 [2012/06/05] Copyright (c) 2003, 2012, Oracle and/or its affiliates. All Rights Reserved. INFO: Starting with following command line ... ./mysqlbackup -uroot --backup-dir=/logs/backupWithFrmAll        --only-innodb-with-frm=all backup INFO: Got some server configuration information from running server. IMPORTANT: Please check that mysqlbackup run completes successfully.            At the end of a successful 'backup' run mysqlbackup            prints "mysqlbackup completed OK!". --------------------------------------------------------------------                       Server Repository Options: --------------------------------------------------------------------  datadir                          =  /mysql/trydb/  innodb_data_home_dir             =    innodb_data_file_path            =  ibdata1:10M:autoextend  innodb_log_group_home_dir        =  /mysql/trydb/  innodb_log_files_in_group        =  2  innodb_log_file_size             =  5242880 --------------------------------------------------------------------                       Backup Config Options: --------------------------------------------------------------------  datadir                          =  /logs/backupWithFrmAll/datadir  innodb_data_home_dir             =  /logs/backupWithFrmAll/datadir  innodb_data_file_path            =  ibdata1:10M:autoextend  innodb_log_group_home_dir        =  /logs/backupWithFrmAll/datadir  innodb_log_files_in_group        =  2  innodb_log_file_size             =  5242880 mysqlbackup: INFO: Unique generated backup id for this is 13451979804504860 mysqlbackup: INFO: Uses posix_fadvise() for performance optimization. mysqlbackup: INFO: System tablespace file format is Antelope. mysqlbackup: INFO: Found checkpoint at lsn 1656792. mysqlbackup: INFO: Starting log scan from lsn 1656320. 120817 15:36:22 mysqlbackup: INFO: Copying log... 120817 15:36:22 mysqlbackup: INFO: Log copied, lsn 1656792.          We wait 1 second before starting copying the data files... 120817 15:36:23 mysqlbackup: INFO: Copying /mysql/trydb/ibdata1 (Antelope file format). 120817 15:36:23 mysqlbackup: INFO: Copying /mysql/trydb/innodb1/table2.ibd (Antelope file format). 120817 15:36:23 mysqlbackup: INFO: Copying /mysql/trydb/innodb1/table3.ibd (Antelope file format). 120817 15:36:23 mysqlbackup: INFO: Copying /mysql/trydb/innodb1/table1.ibd (Antelope file format). mysqlbackup: INFO: Opening backup source directory '/mysql/trydb/' 120817 15:36:23 mysqlbackup: INFO: Starting to backup .frm files in the subdirectories of /mysql/trydb/ mysqlbackup: INFO: Copying innodb data and logs during final stage ... mysqlbackup: INFO: A copied database page was modified at 1656792.          (This is the highest lsn found on page)          Scanned log up to lsn 1656792.          Was able to parse the log up to lsn 1656792.          Maximum page number for a log record 0 mysqlbackup: INFO: Copying non-innodb files took 2.000 seconds 120817 15:36:25 mysqlbackup: INFO: Full backup completed! mysqlbackup: INFO: Backup created in directory '/logs/backupWithFrmAll' -------------------------------------------------------------   Parameters Summary          -------------------------------------------------------------   Start LSN                  : 1656320   End LSN                    : 1656792 ------------------------------------------------------------- mysqlbackup completed OK! bash$ ls /logs/backupWithFrmAll/datadir/innodb1/ table1.frm  table1.ibd  table2.frm  table2.ibd  table3.frm  table3.ibd Here the backup directory contains all the .frm files of all the innodb tables. ./mysqlbackup -uroot --backup-dir=/logs/backupWithFrm --include="innodb1.table3.*" --only-innodb-with-frm=related backup MySQL Enterprise Backup version 3.7.1 [2012/06/05] Copyright (c) 2003, 2012, Oracle and/or its affiliates. All Rights Reserved. INFO: Starting with following command line ... ./mysqlbackup -uroot --backup-dir=/logs/backup371frm        --include=innodb1.table3.* --only-innodb-with-frm=related backup INFO: Got some server configuration information from running server. IMPORTANT: Please check that mysqlbackup run completes successfully.            At the end of a successful 'backup' run mysqlbackup            prints "mysqlbackup completed OK!". --------------------------------------------------------------------                       Server Repository Options: --------------------------------------------------------------------  datadir                          = /mysql/trydb/  innodb_data_home_dir             =    innodb_data_file_path            =  ibdata1:10M:autoextend  innodb_log_group_home_dir        =  /mysql/trydb  innodb_log_files_in_group        =  2  innodb_log_file_size             =  5242880 --------------------------------------------------------------------                       Backup Config Options: --------------------------------------------------------------------  datadir                          =  /logs/backupWithFrm/datadir  innodb_data_home_dir             =  /logs/backupWithFrm/datadir  innodb_data_file_path            =  ibdata1:10M:autoextend  innodb_log_group_home_dir        =  /logs/backupWithFrm/datadir  innodb_log_files_in_group        =  2  innodb_log_file_size             =  5242880 mysqlbackup: INFO: Unique generated backup id for this is 13451973458118162 mysqlbackup: INFO: Uses posix_fadvise() for performance optimization. mysqlbackup: INFO: The --include option specified: innodb1.table3.* mysqlbackup: INFO: System tablespace file format is Antelope. mysqlbackup: INFO: Found checkpoint at lsn 1656792. mysqlbackup: INFO: Starting log scan from lsn 1656320. 120817 15:25:47 mysqlbackup: INFO: Copying log... 120817 15:25:47 mysqlbackup: INFO: Log copied, lsn 1656792.          We wait 1 second before starting copying the data files... 120817 15:25:48 mysqlbackup: INFO: Copying /mysql/trydbibdata1 (Antelope file format). 120817 15:25:49 mysqlbackup: INFO: Copying /mysql/trydbinnodb1/table3.ibd (Antelope file format). mysqlbackup: INFO: Opening backup source directory '/mysql/trydb' 120817 15:25:49 mysqlbackup: INFO: Starting to backup .frm files in the subdirectories of /mysql/trydb mysqlbackup: INFO: Copying innodb data and logs during final stage ... mysqlbackup: INFO: A copied database page was modified at 1656792.          (This is the highest lsn found on page)          Scanned log up to lsn 1656792.          Was able to parse the log up to lsn 1656792.          Maximum page number for a log record 0 mysqlbackup: INFO: Copying non-innodb files took 2.000 seconds 120817 15:25:51 mysqlbackup: INFO: Full backup completed! mysqlbackup: INFO: Backup created in directory '/logs/backupWithFrm' -------------------------------------------------------------   Parameters Summary          -------------------------------------------------------------   Start LSN                  : 1656320   End LSN                    : 1656792 ------------------------------------------------------------- mysqlbackup completed OK! bash$ ls /logs/backupWithFrm/datadir/innodb1/ table3.frm table3.ibd Thus the backup directory contains only the .frm file matching the innodb table name specified in --include option. In a nutshell, we present our great new option --only-innodb-with-frm which is a true hot InnoDB-only backup with .frm files, but with an additional check, if any DDL happened during the backup. If a DDL has happened, the DBA can decide if to repeat the backup, or to live with the potential inconsistency. This is the ideal solution for users that have all their "real" data in InnoDB and seldom change their schemas. You may also like: http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/backup-partial-options.html   STEP 3. Manually copy the .frm files of innodb tables to the destination directory where backup is stored.

    Read the article

  • Is it any good to use binary arithmetic in a C++ code like "C style"?

    - by user827992
    I like the fact that the C language lets you use binary arithmetic in an explicit way in your code, sometimes the use of the binary arithmetic can also give you a little edge in terms of performance; but since I started studying C++ i can't really tell how much i have seen the explicit use of something like that in a C++ code, something like a pointer to pointer structure or an instruction for jumping to a specific index value through the binary arithmetic. Is the binary arithmetic still important and relevant in the C++ world? How i can optimize my arithmetic and/or an access to a specific index? What about the C++ and the way in which the bits are arranged according to the standard? ... or i have taken a look at the wrong coding conventions ... ?

    Read the article

  • Sanity checks vs file sizes

    - by Richard Fabian
    In your game assets do you make room for explicit sanity checks, or do you have some generally expected bounds which you assert? I've been thinking about how we compress data and thought that it's much better to have the former, and less of the latter. If your data can exceed your normal valid ranges, but if it does it's an error, then surely that implies you're not compressing the data well enough? What do you do to find out if your data is compressed as far as it can be, and what do you use to ensure your data isn't corrupted and ensure it's an official release? EDIT I'm not interested in sanity checking the file size, but instead, how you manage your sanity checks and whether you arrange the excess size caused by the opportunity to do sanity checks by using explicit extra data, or through allowing the data enough file space (data member size) to be out of valid range and thus able to be checked merely by looking at the asset in memory after loading.

    Read the article

  • Marshalling C# Structs into DX11 cbuffers

    - by Craig
    I'm having some issues with the packing of my structure in C# and passing them through to cbuffers I have registered in HLSL. When I pack my struct in one manner the information seems to be able to pass to the shader: [StructLayout(LayoutKind.Explicit, Size = 16)] internal struct TestStruct { [FieldOffset(0)] public Vector3 mEyePosition; [FieldOffset(12)] public int type; } This works perfectly when used against this HLSL fragment: cbuffer PerFrame : register(b0) { Vector3 eyePos; int type; } float3 GetColour() { float3 returnColour = float(0.0f, 0.0f, 0.0f); switch(type) { case 0: returnColour = float3(1.0f, 0.0f, 0.0f); break; case 1: returnColour = float3(0.0f, 1.0f, 0.0f); break; case 2: returnColour = float3(0.0f, 0.0f, 1.0f); break; } return returnColour; } However, when I use the following structure definitions... // Note this is 16 because HLSL packs in 4 float 'chunks'. // It is also simplified, but still demonstrates the problem. [StructLayout(Layout.Explicit, Size = 16)] internal struct InternalTestStruct { [FieldOffset(0)] public int type; } [StructLayout(LayoutKind.Explicit, Size = 32)] internal struct TestStruct { [FieldOffset(0)] public Vector3 mEyePosition; //Missing 4 bytes here for correct packing. [FieldOffset(16)] public InternalTestStruct mInternal; } ... the following HLSL fragment no longer works. struct InternalType { int type; } cbuffer PerFrame : register(b0) { Vector3 eyePos; InternalType internalStruct; } float3 GetColour() { float3 returnColour = float(0.0f, 0.0f, 0.0f); switch(internaltype.type) { case 0: returnColour = float3(1.0f, 0.0f, 0.0f); break; case 1: returnColour = float3(0.0f, 1.0f, 0.0f); break; case 2: returnColour = float3(0.0f, 0.0f, 1.0f); break; } return returnColour; } Is there a problem with the way I am packing the struct, or is it another issue? To re-iterate: I can pass a struct in a cbuffer so long as it does not contain a nested struct.

    Read the article

  • Symfony sfDoctrineGuard plugin sfGuardUser module

    - by Joe Mc
    When using sfDoctrineGuard plugin, it automatically generates the backend administration functionality where I can edit users of the system and assign them permissions. So I visit http://.../backend_dev.php/sf_guard_user/:id/edit where I am presented with the user's information including the available permissions to select. By default the permissions are shown as a multiple select box, HTML follows: <select name="sf_guard_user[permissions_list][]" multiple="multiple" id="sf_guard_user_permissions_list"> <option value="1">Permission1</option> <option value="2">Permission2</option> <option value="3">Permission3</option> <option value="4">Permission4</option> </select> What I would prefer is a list of checkboxes. So I searched around and found that if I add the option "expanded" set to true to the following code: 'permissions_list' => new sfWidgetFormDoctrineChoice(array('multiple' => true, 'model' => 'sfGuardPermission', 'expanded' => true,)), The code is part of this file: lib/form/doctrine/sfDoctrineGuardPlugin/base/BasesfGuardUserForm.class.php. I don't think I should've edited this file (potential for changes to be overwritten should sfDoctrineGuard ever be re-installed) but couldn't think of another way to make it work. The generated HTML is as follows: <ul class="checkbox_list"> <li><input name="sf_guard_user[permissions_list][]" type="checkbox" value="1" id="sf_guard_user_permissions_list_1" />&nbsp;<label for="sf_guard_user_permissions_list_1">Permission1</label></li> <li><input name="sf_guard_user[permissions_list][]" type="checkbox" value="2" id="sf_guard_user_permissions_list_2" />&nbsp;<label for="sf_guard_user_permissions_list_2">Permission2</label></li> <li><input name="sf_guard_user[permissions_list][]" type="checkbox" value="3" id="sf_guard_user_permissions_list_3" />&nbsp;<label for="sf_guard_user_permissions_list_3">Permission3</label></li> <li><input name="sf_guard_user[permissions_list][]" type="checkbox" value="4" id="sf_guard_user_permissions_list_4" />&nbsp;<label for="sf_guard_user_permissions_list_4">Permission4</label></li> </ul> What I need to do now is split up the permissions based on their prefix. For example if I had permissions named user_action1, user_action2, file_action1, file_action2, they would display like: User checkbox (custom label) Action One checkbox Action Two File checkbox (custom label) Action One checkbox Action Two but have no idea where to start with this. It would be easy if there was a template to edit but since I'm dealing with the Forms framework it is my understanding that the templates are generated on the fly - I can see them in my symonfy cache folder. How would I go about this? I started writing my own sfWidgetFormDoctrineChoicePermission class that extends the same class as sfWidgetFormDoctrineChoice but am struggling to edit the rendering functions correctly for the desired output. Is this the correct way to go about this work? I also need to integrate my sfGuardUserProfile model into the edit user page (same as above), I read somwhere that editing the generator.yml file for the sfGuardUser plugin module and simply adding the field names from the sfGuardUserProfile table would make it work, but sadly it doesn't. Any help with any of my queries would be appreciated. Thanks

    Read the article

  • Event handle in drop-down menu.

    - by QLiu
    Hello fellows, I am trying to develop a dynamic drop down menu by a customized widget style The custom widget has two main features: Read user's location cookies variable to set the proper contact phone number in the CP pages When users select on the drop down menu, it triggers onChange event, it re-select the contact phone number based on users' selections, but it won't reset the location cookies. My widgets conatins two files: Controller.php: Simply one, it uses to handle get cookies variables class serial extends Widget { function __construct() { parent::__construct(); } function generateWidgetInformation() { $this->info['notes'] = "Serial Number search Box"; } function getData() { //Get cookies code will go here, and pass to view.php $this->data['locale'] = 'gb';// for test purpose now } } view.php is about Presentation layer contains HTML, which get the data from my controller <div style="border: 1px solid black; display: block;" id="<?=$this->instanceID;?>"></div> <script>locale2contact('<?=$this->data['locale']?>', '<?=$this->instanceID;?>');</script> And then the Javascript function, call locale2contact var element_id =''; //Define Global Variables, //Receive the cookies locale, and instance id from view.php function locale2contact(locale, instance_id) { var details = ''; this.element_id=instance_id; //assing the instance id into global variable // alert(instance_id); //Check whether we got the instance id from view files if (locale == 'gb') details = 'UK Contact Details<br>' + build_dropdown(locale); else if (locale == 'fr') details = 'French Contact Details<br>'+build_dropdown(locale); else if (locale == 'be') details = 'Belgian Contact Details<br>'+ build_dropdown(locale); else details = 'Unknown Contact Detail'; writeContactInfo(details); } //Build the drop down menu with pre-selected option by using cookies. function build_dropdown(locale) { var dropdown = '<select onChange=changeContactInfo(this.options[selectedIndex].text)>'; dropdown += '<option' + (locale == 'gb' ? ' selected' : '') + '>UK</option>'; dropdown += '<option' + (locale == 'be' ? ' selected' : '') + '>Belgium</option>'; dropdown += '</select>'; return dropdown; } // Not smart way in here, once the people select the drop down box, it reselect the drop down menu and reset the contact info function changeContactInfo(selected) { var details =''; //alert(this.element_id); //alert(locale); if (selected == 'UK') details = 'UK Contact Details<br>' + build_dropdown2(selected); else if (selected == 'fr') details = 'French Contact Details<br>'+ build_dropdown2(selected); else if (selected == 'Belgium') details = 'Belgian Contact Details<br>'+ build_dropdown2(selected); else details = 'Unknown Contact Detail'; writeContactInfo(details); } //Build the drop down menu function build_dropdown2(selected) { var dropdown = '<select onChange=changeContactInfo(this.options[selectedIndex].text)>'; dropdown += '<option' + (selected == 'UK' ? ' selected' : '') + '>UK</option>'; dropdown += '<option' + (selected == 'Belgium' ? ' selected' : '') + '>Belgium</option>'; dropdown += '</select>'; return dropdown; } //Back to view function writeContactInfo(details) { document.getElementById(this.element_id).innerHTML = details; //update the instance field in view } Javascript function is not efficient. As you see, I got two similar duplicate functions to handle events. Users go to the page, the widget read the cookies variable to display contact info (locale2contact)and preselect the drop-down menu (function build_dropdown) If users select the drop down menu, the displya contact info change (function changeContactInfo), and then I need to rebuild the drop down menu with user previously selection (function build_dropdown2). I am looking for best practices for adding this functionality to RightNow widget. Thank you. I really do not like the way i am doing now. It works; but the code looks bad.

    Read the article

  • NVIDIA x server - "sudo nvidia config" does not generate a working 'xorg.config'

    - by Mike
    I am over 18 hours deep on this challenge. I got to this point and am stuck. very stuck. Maybe you can figure it out? Ubuntu Version 12.04 LTS with all the updates installed. Problem: The default settings in "etc/X11/xorg.conf" that are generated by the "nvidia-xconfig" tool, do not allow the NVIDIA x server to connect to the driver in my "System Settings Additional Driver window". (that's how I understand it. Lots of information below). Symptoms of Problem "System Settings Additional Driver" window has drivers, but the nvidia x server cannot connect/utilize any of the 4 drivers. the drivers are activated, but not in use. When I go to "System Tools Administration NVIDIA x server settings" I get an error that basically tells me to create a default file to initialize the NVIDIA X server (screen shot below). This is the messages the terminal gives after running a "sudo nvidia-xconfig" command for the first time. It seems that the generated file by the tool i just ran is generating a bad/unusable file: If I run the "sudo nvidia-xconfig" command again, I wont get an error the second time. However when I reboot, the default file that is generated (etc/X11/xorg.conf) simply puts the screen resolution at 800 x 600 (or something big like that). When I try to go to NVIDIA x server settings I am greeted with the same screen as the screen shot as in symptom 2 (no option to change the resolution). If I try to go to "system settings display" there are no other resolutions to choose from. At this point I must delete the newly minted "xorg.conf" and reinstate the original in its place. Here are the contents of the "xorg.conf" that is generated first (the one missing required information): # nvidia-xconfig: X configuration file generated by nvidia-xconfig # nvidia-xconfig: version 304.88 (buildmeister@swio-display-x86-rhel47-06) Wed Mar 27 15:32:58 PDT 2013 Section "ServerLayout" Identifier "Layout0" Screen 0 "Screen0" InputDevice "Keyboard0" "CoreKeyboard" InputDevice "Mouse0" "CorePointer" EndSection Section "Files" EndSection Section "InputDevice" # generated from default Identifier "Mouse0" Driver "mouse" Option "Protocol" "auto" Option "Device" "/dev/psaux" Option "Emulate3Buttons" "no" Option "ZAxisMapping" "4 5" EndSection Section "InputDevice" # generated from default Identifier "Keyboard0" Driver "kbd" EndSection Section "Monitor" Identifier "Monitor0" VendorName "Unknown" ModelName "Unknown" HorizSync 28.0 - 33.0 VertRefresh 43.0 - 72.0 Option "DPMS" EndSection Section "Device" Identifier "Device0" Driver "nvidia" VendorName "NVIDIA Corporation" EndSection Section "Screen" Identifier "Screen0" Device "Device0" Monitor "Monitor0" DefaultDepth 24 SubSection "Display" Depth 24 EndSubSection EndSection Hardware: I ran the "lspci|grep VGA". There results are: 00:02.0 VGA compatible controller: Intel Corporation 2nd Generation Core Processor Family Integrated Graphics Controller (rev 09) 01:00.0 VGA compatible controller: NVIDIA Corporation GF108 [Quadro 1000M] (rev a1) More Hardware info: Ram: 16GB CPU: Intel Core i7-2720QM @2.2GHz * 8 Other: 64 bit. This is a triple boot computer and not a VM. Attempts With Not Success on My End: 1) Tried to append the "xorg.conf" with what I perceive is missing information and obviously it didn't fly. 2) All the other stuff I tried got me to this point. 3) See if this link is helpful to you (I barely get it, but i get enough knowing that a smarter person might find this useful): http://manpages.ubuntu.com/manpages/lucid/man1/nvidia-xconfig.1.html 4) I am completely new to Linux (40 hours over past week), but not to programming. However I am very serious about changing over to Linux. When you respond (I hope someone responds...) please respond in a way that a person new to Linux can understand. 5) By the way, the reason I am in this mess is because I MUST have a second monitor running from my laptop, and "System Settings Display" doesn't recognize my second display. I know it is possible to make the second display work in my system, because when I boot from the install CD, I perform work on the native laptop monitor, but the second monitor shows a purple screen with Ubuntu in the middle, so I know the VGA port is sending a signal out. If this is too much for you to tackle please suggest an alternative method to get a second display. I don't want to go to windows but I cannot have a single display. I am really fudged here. I hope some smart person can help. Thanks in advance. Mike. **********************EDIT #1********************** More Details About Graphics Card I was asked "which brand of nvidia-card do you have exactly?" Here is what I did to provide more info (maybe relevant, maybe not, but here is everything): 1) Took my Lenovo W520 right apart to see if there is an identifier on the actual card. However I realized that if I get deep enough to take a look, the laptop "won't like it". so I put it back together. Figuring out the card this way is not an option for me right now. 2) (My computer is triple boot) I logged into Win7 and ran 'dxdiag' command. here is the screen shot: 3) I tried to look on the lenovo website for more details... but no luck. I took a look at my receipts and here is info form receipt: System Unit: W520 NVIDIA Quadro 1000M 2GB 4) In win7 I went to the NVIDIA website and used the option to have my card 'scanned' by a Java applet to determine the latest update for my card. I tried the same with Ubuntu but I can't get the applet to run. Here is the recommended driver from from the NVIDIA Applet for my card for Win7 (I hope this shines some light on the specifics of the card): Quadro/NVS/Tesla/GRID Desktop Driver Release R319 Version: 320.00 WHQL Release Date: 3.5.2013 5) Also I went on the NVIDIA driver search and looked through every possible combination of product type + product series + product to find all the combinations that yield a 1000M card. My card is: Product Type: Quadro Product Series: Quadro Series (Notebooks) Product: 1000M ***********************EDIT #2******************* Additional Symptoms Another question that generated more symptoms I previously didn't mention was: "After generating xorg.conf by nvidia-xconfig, go to additional drivers, do you see nvidia-304?" 1) I took a screen shot of the "additional drivers" right after generating xorg.conf by nvidia-xconfig. Here it is: 2) Then I did a reboot. Now Ubuntu is 600 x 800 resolution. When I logged in after the computer came up I got an error (which I always get after generating xorg.conf by nvidia-xconfig and rebooting) 3) To finally answer the question - No. There is no "NVIDIA-304" driver. Screen shot of additional drivers after generating xorg.conf by nvidia-xconfig and rebooting : At this point I revert to the original xorg.conf and delete the xorg.conf generated by Nvidia.

    Read the article

  • Issue with my wordpress functions.php script

    - by iMayne
    Hello peeps. Im having an issues when activating my theme in wordpress. I got this error message: "Parse error: syntax error, unexpected $end in C:\xampp\htdocs\xampp\wordpress\wp-content\themes\xit\functions.php on line 223". Whats wrong, I totally dont understand. The script of the php is: <?php if ( function_exists('register_sidebar') ) register_sidebar(array( 'before_widget' => '', 'after_widget' => '', 'before_title' => '<h2>', 'after_title' => '</h2>', )); function content($num) { $theContent = get_the_content(); $output = preg_replace('/<img[^>]+./','', $theContent); $limit = $num+1; $content = explode(' ', $output, $limit); array_pop($content); $content = implode(" ",$content)."..."; echo $content; } function post_is_in_descendant_category( $cats, $_post = null ) { foreach ( (array) $cats as $cat ) { // get_term_children() accepts integer ID only $descendants = get_term_children( (int) $cat, 'category'); if ( $descendants && in_category( $descendants, $_post ) ) return true; } return false; } //custom comments function mytheme_comment($comment, $args, $depth) { $GLOBALS['comment'] = $comment; ?> <li <?php comment_class(); ?> id="li-comment-<?php comment_ID() ?>"> <div id="comment-<?php comment_ID(); ?>"> <div class="comment-author vcard"> <div class="comment-meta commentmetadata"> <?php echo get_avatar($comment,$size='32',$default='http://www.gravatar.com/avatar/61a58ec1c1fba116f8424035089b7c71?s=32&d=&r=G' ); ?> <?php printf(__('%1$s at %2$s'), get_comment_date(), get_comment_time()) ?> <br /><?php printf(__('<strong>%s</strong> says:'), get_comment_author_link()) ?><?php edit_comment_link(__('(Edit)'),' ','') ?></div> </div> <?php if ($comment->comment_approved == '0') : ?> <em><?php _e('Your comment is awaiting moderation.') ?></em> <br /> <?php endif; ?> <div class="text"><?php comment_text() ?></div> <div class="reply"> <?php comment_reply_link(array_merge( $args, array('depth' => $depth, 'max_depth' => $args['max_depth']))) ?> </div> </div> <?php } add_action('admin_menu', 'xit_theme_page'); function xit_theme_page () { if ( count($_POST) > 0 && isset($_POST['xit_settings']) ) { $options = array ( 'style','logo_img','logo_alt','logo_txt', 'logo_tagline', 'tagline_width', 'contact_email','ads', 'advertise_page', 'twitter_link', 'facebook_link', 'flickr', 'about_tit', 'about_txt', 'analytics'); foreach ( $options as $opt ) { delete_option ( 'xit_'.$opt, $_POST[$opt] ); add_option ( 'xit_'.$opt, $_POST[$opt] ); } } add_theme_page(__('Xit Options'), __('Xit Options'), 'edit_themes', basename(__FILE__), 'xit_settings'); } function xit_settings () {?> <div class="wrap"> <h2>XIT Options Panel</h2> <form method="post" action=""> <table class="form-table"> <!-- General settings --> <tr> <th colspan="2"><strong>General Settings</strong></th> </tr> <tr valign="top"> <th scope="row"><label for="style">Theme Color Scheme</label></th> <td> <select name="style" id="style"> <option value="pink.css" <?php if(get_option('xit_style') == 'pink.css'){?>selected="selected"<?php }?>>pink.css</option> <option value="blue.css" <?php if(get_option('xit_style') == 'blue.css'){?>selected="selected"<?php }?>>blue.css</option> <option value="orange.css" <?php if(get_option('xit_style') == 'orange.css'){?>selected="selected"<?php }?>>orange.css</option> </select> </td> </tr> <tr valign="top"> <th scope="row"><label for="logo_img">Logo image (full path to image)</label></th> <td> <input name="logo_img" type="text" id="logo_img" value="<?php echo get_option('xit_logo_img'); ?>" class="regular-text" /> </td> </tr> <tr valign="top"> <th scope="row"><label for="logo_alt">Logo image ALT text</label></th> <td> <input name="logo_alt" type="text" id="logo_alt" value="<?php echo get_option('xit_logo_alt'); ?>" class="regular-text" /> </td> </tr> <tr valign="top"> <th scope="row"><label for="logo_txt">Text logo</label></th> <td> <input name="logo_txt" type="text" id="logo_txt" value="<?php echo get_option('xit_logo_txt'); ?>" class="regular-text" /> <br /><em>Leave this empty if you entered an image as logo</em> </td> </tr> <tr valign="top"> <th scope="row"><label for="logo_tagline">Logo Tag Line</label></th> <td> <input name="logo_tagline" type="text" id="logo_tagline" value="<?php echo get_option('xit_logo_tagline'); ?>" class="regular-text" /> </td> </tr> <tr valign="top"> <th scope="row"><label for="tagline_width">Tag Line Box Width (px)</label><br /><em style="font-size:11px">Default width: 300px</em></th> <td> <input name="tagline_width" type="text" id="tagline_width" value="<?php echo get_option('xit_tagline_width'); ?>" class="regular-text" /> </td> </tr> <tr valign="top"> <th scope="row"><label for="contact_email">Email Address for Contact Form</label></th> <td> <input name="contact_email" type="text" id="contact_email" value="<?php echo get_option('xit_contact_email'); ?>" class="regular-text" /> </td> </tr> <tr valign="top"> <th scope="row"><label for="twitter_link">Twitter link</label></th> <td> <input name="twitter_link" type="text" id="twitter_link" value="<?php echo get_option('xit_twitter_link'); ?>" class="regular-text" /> </td> </tr> <tr valign="top"> <th scope="row"><label for="facebook_link">Facebook link</label></th> <td> <input name="facebook_link" type="text" id="facebook_link" value="<?php echo get_option('xit_facebook_link'); ?>" class="regular-text" /> </td> </tr> <tr valign="top"> <th scope="row"><label for="flickr">Flickr Photostream</label></th> <td> <select name="flickr" id="flickr"> <option value="yes" <?php if(get_option('xit_flickr') == 'yes'){?>selected="selected"<?php }?>>Yes</option> <option value="no" <?php if(get_option('xit_flickr') == 'no'){?>selected="selected"<?php }?>>No</option> </select> <br /><em>Make sure you have FlickrRSS plugin activated if you choose to enable Flickr Photostream</em> </td> </tr> <!-- Sidebar ABout Box--> <tr> <th colspan="2"><strong>Sidebar About Box</strong></th> </tr> <tr valign="top"> <th scope="row"><label for="about_tit">Title</label></th> <td> <input name="about_tit" type="text" id="about_tit" value="<?php echo get_option('xit_about_tit'); ?>" class="regular-text" /> </td> </tr> <tr valign="top"> <th scope="row"><label for="about_txt">Text</label></th> <td> <textarea cols="60" rows="5" name="about_txt" type="text" id="about_txt" class="regular-text" /><?php echo get_option('xit_about_txt'); ?></textarea> </td> </tr> <!-- Ads Box Settings --> <tr> <th colspan="2"><strong>Ads Box Settings</strong></th> </tr> <tr> <th><label for="ads">Ads Section Enabled:</label></th> <td> <select name="ads" id="ads"> <option value="yes" <?php if(get_option('xit_ads') == 'yes'){?>selected="selected"<?php }?>>Yes</option> <option value="no" <?php if(get_option('xit_ads') == 'no'){?>selected="selected"<?php }?>>No</option> </select> <br /><em>Make sure you have AdMinister plugin activated and have the position "Sidebar" created within the plugin.</em> </td> </tr> <tr valign="top"> <th scope="row"><label for="advertise_page">Advertise Page</label></th> <td> <?php wp_dropdown_pages("name=advertise_page&show_option_none=".__('- Select -')."&selected=" .get_option('xit_advertise_page')); ?> </td> </tr> <!-- Google Analytics --> <tr> <th><label for="ads">Google Analytics code:</label></th> <td> <textarea name="analytics" id="analytics" rows="7" cols="70" style="font-size:11px;"><?php echo stripslashes(get_option('xit_analytics')); ?></textarea> </td> </tr> </table> <p class="submit"> <input type="submit" name="Submit" class="button-primary" value="Save Changes" /> <input type="hidden" name="xit_settings" value="save" style="display:none;" /> </p> </form> </div> <? }?> <?php function get_first_image() { global $post, $posts; $first_img = ''; ob_start(); ob_end_clean(); $output = preg_match_all('/<img.+src=[\'"]([^\'"]+)[\'"].*>/i', $post->post_content, $matches); $first_img = $matches [1] [0]; if(empty($first_img)){ //Defines a default image $first_img = "/images/default.jpg"; } return $first_img; } ?> The last line is line 223.

    Read the article

  • 3 Ways to Make Steam Even Faster

    - by Chris Hoffman
    Have you ever noticed how slow Steam’s built-in web browser can be? Do you struggle with slow download speeds? Or is Steam just slow in general? These tips will help you speed it up. Steam isn’t a game itself, so there are no 3D settings to change to achieve maximum performance. But there are some things you can do to speed it up dramatically. Speed Up the Steam Web Browser Steam’s built-in web browser — used in both the Steam store and in Steam’s in-game overlay to provide a web browser you can quickly use within games – can be frustratingly slow on many systems. Rather than the typical speed we’ve come to expect from Chrome, Firefox, or even Internet Explorer, Steam seems to struggle. When you click a link or go to a new page, there’s a noticeable delay before the new page appears — something that doesn’t happen in desktop browsers. Many people seem to have made peace with this slowness, accepting that Steam’s built-in browser is just bad. However, there’s a trick that will eliminate this delay on many systems and make the Steam web browser fast. This problem seems to arise from an incompatibility with the Automatically Detect Proxy Settings option, which is enabled by default on Windows. This is a compatibility option that very few people should actually need, so it’s safe to disable it. To disable this option, open the Internet Options dialog — press the Windows key to access the Start menu or Start screen, type Internet Options, and click the Internet Options shortcut. Select the Connections tab in the Internet Options window and click the LAN settings button. Uncheck the Automatically detect settings option here, then click OK to save your settings. If you experienced a significant delay every time a web page loaded in Steam’s web browser, it should now be gone. In the unlikely event that you encounter some sort of problem with your network connection, you could always re-enable this option. Increase Steam’s Game Download Speed Steam attempts to automatically select the nearest download server to your location. However, it may not always select the ideal download server. Or, in the case of high-traffic events like big seasonal sales and huge game launches, you may benefit from selecting a less-congested server. To do this, open Steam’s settings by clicking the Steam menu in Steam and selecting Settings. Click over to the Downloads tab and select the closest download server from the Download Region box. You should also ensure that Steam’s download bandwidth isn’t limited from here. You may want to restart Steam and see if your download speeds improve after changing this setting. In some cases, the closest server might not be the fastest. One a bit farther away could be faster if your local server is more congested, for example. Steam once provided information about content server load, which allowed you to select a regional server that wasn’t under high-load, but this information no longer seems to be available. Steam still provides a page that shows you the amount of download activity happening in different regions, including statistics about the difference in download speeds in different US states, but this information isn’t as useful. Accelerate Steam and Your Games One way to speed up all your games — and Steam itself —  is by getting a solid-state drive and installing Steam to it. Steam allows you to easily move your Steam folder — at C:\Program Files (x86)\Steam by default — to another hard drive. Just move it like you would any other folder. You can then launch the Steam.exe program as if you had never moved Steam’s files. Steam also allows you to configure multiple game library folders. This means that you can set up a Steam library folder on a solid-state drive and one on your larger magnetic hard drive. Install your most frequently played games to the solid-state drive for maximum speed and your less frequently played ones to the slower magnetic hard drive to save SSD space. To set up additional library folders, open Steam’s Settings window and click the Downloads tab. You’ll find the Steam Library Folders option here. Click the Add Library Folder button and create a new game library on another hard drive. When you install a game in Steam, you’ll be asked which library folder you want to install it to. With the proxy compatibility option disabled, the correct download server chosen, and Steam installed to a fast SSD, it should be a speed demon. There’s not much more you can do to speed up Steam, short of upgrading other hardware like your computer’s CPU. Image Credit: Andrew Nash on Flickr     

    Read the article

  • jquery: why a selector returns me an array, but attribute doesnt?

    - by Shlomi.A.
    Hi. I'm trying to understand JQ better. I'm calling an JQ object $(".FamiliesList li li span[class!='']").prev().find('option:selected') this returns back to me an array of all the options that their span parent's brother has a classname. [option, option] Now- I want to return back an array of the option's values $(".FamiliesList li li span[class!='']").prev().find('option:selected').attr('value') this returns back to me only the first child value, and a full array of the values. Why? I would appreciate to receive help and understand jq better :) Thanks.

    Read the article

  • Database-as-a-Service on Exadata Cloud

    - by Gagan Chawla
    Note – Oracle Enterprise Manager 12c DBaaS is platform agnostic and is designed to work on Exadata/non-Exadata, physical/virtual, Oracle/non Oracle platforms and it’s not a mandatory requirement to use Exadata as the base platform. Database-as-a-Service (DBaaS) is an important trend these days and the top business drivers motivating customers towards private database cloud model include constant pressure to reduce IT Costs and Complexity, and also to be able to improve Agility and Quality of Service. The first step many enterprises take in their journey towards cloud computing is to move to a consolidated and standardized environment and Exadata being already a proven best-in-class popular consolidation platform, we are seeing now more and more customers starting to evolve from Exadata based platform into an agile self service driven private database cloud using Oracle Enterprise Manager 12c. Together Exadata Database Machine and Enterprise Manager 12c provides industry’s most comprehensive and integrated solution to transform from a typical silo’ed environment into enterprise class database cloud with self service, rapid elasticity and pay-per-use capabilities.   In today’s post, I’ll list down the important steps to enable DBaaS on Exadata using Enterprise Manager 12c. These steps are chalked down based on a recent DBaaS implementation from a real customer engagement - Project Planning - First step involves defining the scope of implementation, mapping functional requirements and objectives to use cases, defining high availability, network, security requirements, and delivering the project plan. In a Cloud project you plan around technology, business and processes all together so ensure you engage your actual end users and stakeholders early on in the project right from the scoping and planning stage. Setup your EM 12c Cloud Control Site – Once the project plan approval and sign off from stakeholders is achieved, refer to EM 12c Install guide and these are some important tips to follow during the site setup phase - Review the new EM 12c Sizing paper before you get started with install Cloud, Chargeback and Trending, Exadata plug ins should be selected to deploy during install Refer to EM 12c Administrator’s guide for High Availability, Security, Network/Firewall best practices and options Your management and managed infrastructure should not be combined i.e. EM 12c repository should not be hosted on same Exadata where target Database Cloud is to be setup Setup Roles and Users – Cloud Administrator (EM_CLOUD_ADMINISTRATOR), Self Service Administrator (EM_SSA_ADMINISTRATOR), Self Service User (EM_SSA_USER) are the important roles required for cloud lifecycle management. Roles and users are managed by Super Administrator via Setup menu –> Security option. For Self Service/SSA users custom role(s) based on EM_SSA_USER should be created and EM_USER, PUBLIC roles should be revoked during SSA user account creation. Configure Software Library – Cloud Administrator logs in and in this step configures software library via Enterprise menu –> provisioning and patching option and the storage location is OMS shared filesystem. Software Library is the centralized repository that stores all software entities and is often termed as ‘local store’. Setup Self Update – Self Update is one of the most innovative and cool new features in EM 12c framework. Self update can be accessed via Setup -> Extensibility option by Super Administrator and is the unified delivery mechanism to get all new and updated entities (Agent software, plug ins, connectors, gold images, provisioning bundles etc) in EM 12c. Deploy Agents on all Compute nodes, and discover Exadata targets – Refer to Exadata discovery cookbook for detailed walkthrough to ensure successful discovery of Exadata targets. Configure Privilege Delegation Settings – This step involves deployment of privilege setting template on all the nodes by Super Administrator via Setup menu -> Security option with the option to define whether to use sudo or powerbroker for all provisioning and patching operations. Provision Grid Infrastructure with RAC Database on Compute Nodes – Software is provisioned in this step via a provisioning profile using EM 12c database provisioning. In case of Exadata, Grid Infrastructure and RAC Database software is already deployed on compute nodes via OneCommand from Oracle, so SSA Administrator just needs to discover Oracle Homes and Listener as EM targets. Databases will be created as and when users request for databases from cloud. Customize Create Database Deployment Procedure – the actual database creation steps are "templatized" in this step by Self Service Administrator and the newly saved deployment procedure will be used during service template creation in next step. This is an important step and make sure you have locked all the required variables marked as locked as ‘Y’ in this table. Setup Self Service Portal – This step involves setting up of zones, user quotas, service templates, chargeback plan. The SSA portal is setup by Self Service Administrator via Setup menu -> Cloud -> Database option and following guided workflow. Refer to DBaaS cookbook for details. You also have an option to customize SSA login page via steps documented in EM 12c Cloud Administrator’s guide Final Checks – Define and document process guidelines for SSA users and administrators. Get your SSA users trained on Self Service Portal features and overall DBaaS model and SSA administrators should be familiar with Self Service Portal setup pieces, EM 12c database lifecycle management capabilities and overall EM 12c monitoring framework. GO LIVE – Announce rollout of Database-as-a-Service to your SSA users. Users can login to the Self Service Portal and request/monitor/view their databases in Exadata based database cloud. Congratulations! You just delivered a successful database cloud implementation project! In future posts, we will cover these additional useful topics around database cloud – DBaaS Implementation tips and tricks – right from setup to self service to managing the cloud lifecycle ‘How to’ enable real production databases copies in DBaaS with rapid provisioning in database cloud Case study of a customer who recently achieved success with their transformational journey from traditional silo’ed environment on to Exadata based database cloud using Enterprise Manager 12c. More Information – Podcast on Database as a Service using Oracle Enterprise Manager 12c Oracle Enterprise Manager 12c Installation and Administration guide, Cloud Administration guide DBaaS Cookbook Exadata Discovery Cookbook Screenwatch: Private Database Cloud: Set Up the Cloud Self-Service Portal Screenwatch: Private Database Cloud: Use the Cloud Self-Service Portal Stay Connected: Twitter |  Face book |  You Tube |  Linked in |  Newsletter

    Read the article

  • Emulating HTTP POST via httpclient 3.x for multi options

    - by Frankie Ribery
    I want to emulate a HTTP POST using application/x-www-form-urlencoded encoding to send a option group that allows multiple selections. <select name="groups" multiple="multiple" size="4"> <option value="2">Administration</option> <option value="1">General</option> </select> Does adding 2 NameValuePairs (NVP) with the same name work ? My serverside log shows that only the first NVP was received. e.g PostMethod method = ...; NameValuePair[] nvpairs = { new NameValuePair( "groups", "2" ); new NameValuePair( "groups", "1" ); }; method.addParameter( nvpairs ); Only the groups=1 parameter was received. Thanks

    Read the article

  • Set text based on Form <select> value

    - by danit
    I have the following <select> in a form: <select style="width: 100px; text-align: center;"> <option value="email">Email</option> <option value="telephone">Phone</option> </select> The default option is Email so the following <input> is show: <p class="email_form">Please supply your Email Address</p> <input onfocus="if(!this._haschanged){this.value=''};this._haschanged=true;" style="width: 270px" type="email" name="email" id="email" value="[email protected]"> However if they choose telephone I want to change the above to ask for a telephone number?

    Read the article

< Previous Page | 58 59 60 61 62 63 64 65 66 67 68 69  | Next Page >