Search Results

Search found 3489 results on 140 pages for 'tcp'.

Page 63/140 | < Previous Page | 59 60 61 62 63 64 65 66 67 68 69 70  | Next Page >

  • iptable rules not blocking

    - by psychok7
    so i am trying to allow ssh access to a certain range of ips (from 192.168.1.1 to 192.168.1.24) and block all the rest but since i am new to iptables i can't seem to figure, i have : iptables -A INPUT -s 192.168.1.0/24 -p udp --dport ssh -j ACCEPT iptables -A INPUT -s 192.168.1.0/24 -p tcp --dport ssh -j ACCEPT iptables -A INPUT -p tcp --dport ssh -j REJECT iptables -A INPUT -p udp --dport ssh -j REJECT but this does not work, with a vm set with 192.168.1.89 i can still access through ssh. can someone help?

    Read the article

  • What are the minimal iptables rules to surf the internet?

    - by alexx0186
    I am trying to set minimal rules to my Linux iptables rules file to just be able to surf the internet. Here what I did: * filter -A OUTPUT -p tcp --dport 80 -j ACCEPT -A OUTPUT -p tcp --dport 443 -j ACCEPT -A OUTPUT -p udp --dport 53 -j ACCEPT COMMIT With just those rules, I can't surf the web. I noticed that when I put -A INPUT -j ACCEPT, it works but I don't understand why. So what Input/output port do I need to surf the internet? Thanks a lot. Regards EDIT: It still doesn't work and my rules as as follows: # generated by iptables-save filter :INPUT DROP [10:648] :FORWARD DROP [0:0] :OUTPUT ACCEPT [10:648] -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPTED COMMIT

    Read the article

  • SQL SERVER – Resolving SQL Server Connection Errors – SQL in Sixty Seconds #030 – Video

    - by pinaldave
    One of the most famous errors related to SQL Server is about connecting to SQL Server itself. Here is how it goes, most of the time developers have worked with SQL Server and knows pretty much every error which they face during development language. However, hardly they install fresh SQL Server. As the installation of the SQL Server is a rare occasion unless you are DBA who is responsible for such an instance – the error faced during installations are pretty rare as well. I have earlier written an article about this which describes how to resolve the errors which are related to SQL Server connection. Even though the step by step directions are pretty simple there are many first time IT Professional who are not able to figure out how to resolve this error. I have quickly built a video which is covering most of the solutions related to resolving the connection error. In the Fix SQL Server Connection Error article following workarounds are described: SQL Server Services TCP/IP Settings Firewall Settings Enable Remote Connection Browser Services Firewall exception of sqlbrowser.exe Recreating Alias Related Tips in SQL in Sixty Seconds: SQL SERVER – FIX : ERROR : (provider: Named Pipes Provider, error: 40 – Could not open a connection to SQL Server) (Microsoft SQL Server, Error: ) SQL SERVER – Could not connect to TCP error code 10061: No connection could be made because the target machine actively refused it SQL SERVER – Connecting to Server Using Windows Authentication by SQLCMD SQL SERVER – Fix : Error: 15372 Failed to generate a ser instance od SQL Server due to a failure in starting the process for the user instance. The connection will be closed SQL SERVER – Dedicated Access Control for SQL Server Express Edition – An error occurred while obtaining the dedicated administrator connection (DAC) port. SQL SERVER – Fix : Error: 4064 – Cannot open user default database. Login failed. Login failed for user What would you like to see in the next SQL in Sixty Seconds video? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Database, Pinal Dave, PostADay, SQL, SQL Authority, SQL in Sixty Seconds, SQL Query, SQL Scripts, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology, Video Tagged: Excel

    Read the article

  • Troubleshooting SQL Azure Connectivity

    - by kaleidoscope
    Technorati Tags: Rituraj,Connectivity Issues with SQL Azure Troubleshooting SQL Azure Connectivity How to resolve some of the common connectivity error messages that you would see while connecting to SQL Azure A transport-level error has occurred when receiving results from the server. (Provider: TCP Provider, error: 0 - An existing connection was forcibly closed by the remote host.) System.Data.SqlClient.SqlException: Timeout expired.  The timeout period elapsed prior to completion of the operation or the server is not responding. The statement has been terminated. An error has occurred while establishing a connection to the server. When connecting to SQL Server 2005, this failure may be caused by the fact that under the default settings SQL Server does not allow remote connections Error: Microsoft SQL Native Client: Unable to complete login process due to delay in opening server connection. A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond. Some troubleshooting tips a) Verify Azure Firewall Settings and Service Availability     Reference: SQL Azure Firewall - http://msdn.microsoft.com/en-us/library/ee621782.aspx b) Verify that you can reach our Virtual IP     Reference: Telnet Troubleshooting Guide - http://technet.microsoft.com/en-us/library/cc753360(WS.10).aspx    Reference: How to Use TRACERT to Troubleshoot TCP/IP Problems in Windows - http://support.microsoft.com/kb/314868 c) Windows Firewall on the local machine     Frequently Asked Questions - http://msdn.microsoft.com/en-us/library/bb736261(VS.85).aspx     Reference: Windows Firewall with Advanced Security Getting Started Guide - http://technet.microsoft.com/en-us/library/cc748991(WS.10).aspx d) Other Firewall products     Reference: http://www.whatismyip.com/ e) Generate a Network Trace using Microsoft Network Monitor tool    Reference: How to capture network traffic with Network Monitor - http://support.microsoft.com/kb/148942 f) SQL Azure Denial of Service (DOS) Guard SQL Azure utilizes techniques to prevent denial of service attacks. If your connection is getting reset by our service due to a potential DOS attack you would  be able to see a three way handshake established and then a RESET in your network trace.

    Read the article

  • Building services with .Net Part 1

    - by Allan Rwakatungu
    On the 26th of May 2010 , I made a presentation to the .NET user group meeting (thanks to Malisa Ncube for organizing this event every month … ). If you missed my presentation , we talked about why we should all be building services … better still using the .NET framework. This blog post is an introduction to services , why you would want to build services and how you can build services using the .NET framework. What is a service? OASIS defines service as "a mechanism to enable access to one or more capabilities, where the access is provided using a prescribed interface and is exercised consistent with constraints and policies as specified by the service description." [1]. If the above definition sounds to academic , you can also define a service as loosely coupled units of functionality that have no calls to each other embedded in the. Instead of services embedding calls to each other in their service code they use defined protocols that describe how services pass and parse messages. This is a good way to think about services if you’re from an objected oriented background. While in object oriented programming functions make calls to each other, in service oriented programming, functions pass messages between each other. Why would you want to use services? 1. If your enterprise architecture looks like this   Services are the building blocks for SOA . With SOA you can move away from the sphaggetti infrastructure that is common in most enterprises. The complexity or lack of visibility of the integration points in your enterprises makes it difficult and costly to implement new initiatives and changes into the business - and even impossible in some cases - as it is not possible to identify the impact a change in one system might have to other systems. With services you can move to an architecture like this Your building blocks from Spaghetti infrastructure to something that is more well-defined and manageable to achieve cost efficiency and not least business agility - enabling you to react to changes in the market with speed and achieve operational efficiency and control are services. 2. If you want to become the Gates or Zuckerburger. Have you heard about Web 2.0 ? Mashups? Software as a service (SAAS) ? Cloud computing ?   They all offer you the opportunity to have scalable but low cost business models and they built using services.  Some of my favorite companies that leverage services for their business models include  https://www.salesforce.com/ (cloud CRM) http://www. twitter.com (more people use twitter clients built by 3rd parties than their official clients) http://www.kayak.com/ (compares data from other travel sites to give information to users in one location) Services with the .NET framework      If you are a .NET developer and you want to develop services, Windows Communication Framework (WCF) is the tool for you. WCF is Microsoft’s unified programming model (service model) for building service oriented applications. ( Before .NET 3.0 you had several models for programming services in .NET including .NET remoting, Web services (ASMX), COM +, Microsoft Messaging queuing (MSMQ) etc, after .NET 3.0 the programming model was unified into one i.e. WCF ). Windows Communication Framework (WCF) provides you 1. An Software Development Kit (SDK) for creating SOA applications 2. A runtime for running services on the Windows platform Why should you use Windows Communication Foundation if you’re programming services?   1. It supports interoperable and open standards e.g. WS* protocols for programming SOAP services 2. It has a unified programming model. Whether you use TCP or Http or Pipes or transmitting using Messaging Queues, programmers need to learn just one way to program. Previously you had .NET remoting, MSMQ, Web services, COM+ and they were all done differently 3. Productive programming model You don’t have to worry about all the plumbing involved to write services. You have a rich declarative programming model to add stuff like logging, transactions, and reliable messages in-built in the Windows Communication Framework. Understanding services in WCF The basic principles of WCF are as easy as ABC A – Address This is where the service is located B- Binding This describes how you communicate with the service e.g. Use TCP, HTTP or both. How to exchange security information with the service etc. C – Contract This defines what the service can do. E.g. Pay water bill, Make a phone call A - Addresses In WCF, an address is a combination of transport, server name, port and path Example addresses may include http://localhost:8001 net.tcp://localhost:8002/MyService net.pipe://localhost/MyPipe net.msmq://localhost/private/MyService net.msmq://localhost/MyService B- Binding   There are numerous ways to communicate with services , different ways that a message can be formatted/sent/secured, that allows you to tailor your service for the compatibility/performance you require for your solution. Transport You can use HTTP TCP MSMQ , Named pipes, Your own custom transport etc Message You  can send a plain text binary, Message Transmission Optimization Mechanism (MTOM) message Communication security No security Transport security Message security Authenticating and authorizing callers etc Behaviour You service can support Transactions Be reliable Use queues Support ajax etc C - Contract You define what your service can do using Service contracts :- Define operations that your service can do, communications and behaviours Data contracts :- Define the messages that are passed from and into your service and how they are formatted Fault contracts :- Defines errors types in your service   As an example, suppose your service service shows money. You define your service contract using a interface [ServiceContract] public interface IShowMeTheMoney {   [OperationContract]    Money Show(); } You define the data contract by annotating a class it with the Data Contract attribute and fields you want to pass in the message as Data Members. (Note:- In the latest versions of WCF you dont have to use attributes if you passing all the objects properties in the message) [DataContract] public Money {   [DataMember]   public string Currency { get; set; }   [DataMember]   public Decimal Amount { get; set; }   public string Comment { get; set; } } Features of Windows Communication Foundation Windows Communication Foundation is not only simple but feature rich , offering you several options to tweak your service to fit your business requirements. Some of the features of WCF include 1. Workflow services You can combine WCF with Windows WorkFlow Foundation (WWF) to write workflow type services 2. Control how your data (messages) are transferred and serialized e.g. you can serialize your business objects as XML or binary 3. control over session management , instance creation and concurrency management without writing code if you like 4. Queues and reliable sessions. You can store messages from the sending client and later forward them to the receiving application. You can also guarantee that messages will arrive at their destincation. 5.Transactions:  You can have different services participate in a transaction operations that can be rolled back if needed 6. Security. WCF has rich features for authorization and authentication  as well as keep audit trails 7. Web programming model. WCF allows developers to expose services as non SOAP endpoints 8. Inbuilt features that you can use to write JSON and services that support AJAX applications And lots more In my next blog I will show you how you can use WCF features to write a real world business service.               Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 ]] /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • DRM Tallyrand - The New User Interface

    - by russ.bishop
    I received word recently that the Tallyrand (11.1.2.0) build is out of our hands. I'm not sure when it will hit eDelivery, but if it hasn't already it should happen soon. For this post, I want to really quickly show the new user interface. The login screen: When you login, you are browsing versions and hierarchies. Note that Unicode is fully supported: The UI attempts to provide context-sensitive links where possible; notice here that an unloaded version is selected, so the UI shows a link. Clicking the link automatically brings up this Load Version dialog. This same thing applies elsewhere in the UI when you attempt to perform an action with an unloaded version: Here is browsing a hierarchy, with the property grid and context menu displayed (though you can hide the property grid anytime you like to provide more room): Worried about drag and drop? Don't! We support it even though this is a browser app. Also notice the Relationships feature on the right displaying a node's ancestors: Where possible, we try to present the available options, rather than just throwing up an "OK/Cancel" dialog (which most users never read anyway): Context-sensitive shortcuts automatically fill-in the context based on the currently selected node. For example, if you want to run a query using the selected node as the root, you can just click that query in the Shortcuts tab. In this screenshot, clicking Model After would model the selected node: This is just for starters. There is much more to cover, on both the client and server. For example, all communication channels are now configurable (no more DCOM). You can pick the ports, the encoding (binary or XML), and the transport mechanism (TCP, TCP over SSL, or SOAP over HTTP). All the relevant WS-* standards are also supported, eg: WS-Security, etc. Plus new features (besides the web client and unicode support). I hope to cover as much of these things as I can in the coming months. If you have specific requests, comment on this post and I'll try to cover them.

    Read the article

  • How to Avoid Your Next 12-Month Science Project

    - by constant
    While most customers immediately understand how the magic of Oracle's Hybrid Columnar Compression, intelligent storage servers and flash memory make Exadata uniquely powerful against home-grown database systems, some people think that Exalogic is nothing more than a bunch of x86 servers, a storage appliance and an InfiniBand (IB) network, built into a single rack. After all, isn't this exactly what the High Performance Computing (HPC) world has been doing for decades? On the surface, this may be true. And some people tried exactly that: They tried to put together their own version of Exalogic, but then they discover there's a lot more to building a system than buying hardware and assembling it together. IT is not Ikea. Why is that so? Could it be there's more going on behind the scenes than merely putting together a bunch of servers, a storage array and an InfiniBand network into a rack? Let's explore some of the special sauce that makes Exalogic unique and un-copyable, so you can save yourself from your next 6- to 12-month science project that distracts you from doing real work that adds value to your company. Engineering Systems is Hard Work! The backbone of Exalogic is its InfiniBand network: 4 times better bandwidth than even 10 Gigabit Ethernet, and only about a tenth of its latency. What a potential for increased scalability and throughput across the middleware and database layers! But InfiniBand is a beast that needs to be tamed: It is true that Exalogic uses a standard, open-source Open Fabrics Enterprise Distribution (OFED) InfiniBand driver stack. Unfortunately, this software has been developed by the HPC community with fastest speed in mind (which is good) but, despite the name, not many other enterprise-class requirements are included (which is less good). Here are some of the improvements that Oracle's InfiniBand development team had to add to the OFED stack to make it enterprise-ready, simply because typical HPC users didn't have the need to implement them: More than 100 bug fixes in the pieces that were not related to the Message Passing Interface Protocol (MPI), which is the protocol that HPC users use most of the time, but which is less useful in the enterprise. Performance optimizations and tuning across the whole IB stack: From Switches, Host Channel Adapters (HCAs) and drivers to low-level protocols, middleware and applications. Yes, even the standard HPC IB stack could be improved in terms of performance. Ethernet over IB (EoIB): Exalogic uses InfiniBand internally to reach high performance, but it needs to play nicely with datacenters around it. That's why Oracle added Ethernet over InfiniBand technology to it that allows for creating many virtual 10GBE adapters inside Exalogic's nodes that are aggregated and connected to Exalogic's IB gateway switches. While this is an open standard, it's up to the vendor to implement it. In this case, Oracle integrated the EoIB stack with Oracle's own IB to 10GBE gateway switches, and made it fully virtualized from the beginning. This means that Exalogic customers can completely rewire their server infrastructure inside the rack without having to physically pull or plug a single cable - a must-have for every cloud deployment. Anybody who wants to match this level of integration would need to add an InfiniBand switch development team to their project. Or just buy Oracle's gateway switches, which are conveniently shipped with a whole server infrastructure attached! IPv6 support for InfiniBand's Sockets Direct Protocol (SDP), Reliable Datagram Sockets (RDS), TCP/IP over IB (IPoIB) and EoIB protocols. Because no IPv6 = not very enterprise-class. HA capability for SDP. High Availability is not a big requirement for HPC, but for enterprise-class application servers it is. Every node in Exalogic's InfiniBand network is connected twice for redundancy. If any cable or port or HCA fails, there's always a replacement link ready to take over. This requires extra magic at the protocol level to work. So in addition to Weblogic's failover capabilities, Oracle implemented IB automatic path migration at the SDP level to avoid unnecessary failover operations at the middleware level. Security, for example spoof-protection. Another feature that is less important for traditional users of InfiniBand, but very important for enterprise customers. InfiniBand Partitioning and Quality-of-Service (QoS): One of the first questions we get from customers about Exalogic is: “How can we implement multi-tenancy?” The answer is to partition your IB network, which effectively creates many networks that work independently and that are protected at the lowest networking layer possible. In addition to that, QoS allows administrators to prioritize traffic flow in multi-tenancy environments so they can keep their service levels where it matters most. Resilient IB Fabric Management: InfiniBand is a self-managing network, so a lot of the magic lies in coming up with the right topology and in teaching the subnet manager how to properly discover and manage the network. Oracle's Infiniband switches come with pre-integrated, highly available fabric management with seamless integration into Oracle Enterprise Manager Ops Center. In short: Oracle elevated the OFED InfiniBand stack into an enterprise-class networking infrastructure. Many years and multiple teams of manpower went into the above improvements - this is something you can only get from Oracle, because no other InfiniBand vendor can give you these features across the whole stack! Exabus: Because it's not About the Size of Your Network, it's How You Use it! So let's assume that you somehow were able to get your hands on an enterprise-class IB driver stack. Or maybe you don't care and are just happy with the standard OFED one? Anyway, the next step is to actually leverage that InfiniBand performance. Here are the choices: Use traditional TCP/IP on top of the InfiniBand stack, Develop your own integration between your middleware and the lower-level (but faster) InfiniBand protocols. While more bandwidth is always a good thing, it's actually the low latency that enables superior performance for your applications when running on any networking infrastructure: The lower the latency, the faster the response travels through the network and the more transactions you can close per second. The reason why InfiniBand is such a low latency technology is that it gets rid of most if not all of your traditional networking protocol stack: Data is literally beamed from one region of RAM in one server into another region of RAM in another server with no kernel/drivers/UDP/TCP or other networking stack overhead involved! Which makes option 1 a no-go: Adding TCP/IP on top of InfiniBand is like adding training wheels to your racing bike. It may be ok in the beginning and for development, but it's not quite the performance IB was meant to deliver. Which only leaves option 2: Integrating your middleware with fast, low-level InfiniBand protocols. And this is what Exalogic's "Exabus" technology is all about. Here are a few Exabus features that help applications leverage the performance of InfiniBand in Exalogic: RDMA and SDP integration at the JDBC driver level (SDP), for Oracle Weblogic (SDP), Oracle Coherence (RDMA), Oracle Tuxedo (RDMA) and the new Oracle Traffic Director (RDMA) on Exalogic. Using these protocols, middleware can communicate a lot faster with each other and the Oracle database than by using standard networking protocols, Seamless Integration of Ethernet over InfiniBand from Exalogic's Gateway switches into the OS, Oracle Weblogic optimizations for handling massive amounts of parallel transactions. Because if you have an 8-lane Autobahn, you also need to improve your ramps so you can feed it with many cars in parallel. Integration of Weblogic with Oracle Exadata for faster performance, optimized session management and failover. As you see, “Exabus” is Oracle's word for describing all the InfiniBand enhancements Oracle put into Exalogic: OFED stack enhancements, protocols for faster IB access, and InfiniBand support and optimizations at the virtualization and middleware level. All working together to deliver the full potential of InfiniBand performance. Who else has 100% control over their middleware so they can develop their own low-level protocol integration with InfiniBand? Even if you take an open source approach, you're looking at years of development work to create, test and support a whole new networking technology in your middleware! The Extras: Less Hassle, More Productivity, Faster Time to Market And then there are the other advantages of Engineered Systems that are true for Exalogic the same as they are for every other Engineered System: One simple purchasing process: No headaches due to endless RFPs and no “Will X work with Y?” uncertainties. Everything has been engineered together: All kinds of bugs and problems have been already fixed at the design level that would have only manifested themselves after you have built the system from scratch. Everything is built, tested and integrated at the factory level . Less integration pain for you, faster time to market. Every Exalogic machine world-wide is identical to Oracle's own machines in the lab: Instant replication of any problems you may encounter, faster time to resolution. Simplified patching, management and operations. One throat to choke: Imagine finger-pointing hell for systems that have been put together using several different vendors. Oracle's Engineered Systems have a single phone number that customers can call to get their problems solved. For more business-centric values, read The Business Value of Engineered Systems. Conclusion: Buy Exalogic, or get ready for a 6-12 Month Science Project And here's the reason why it's not easy to "build your own Exalogic": There's a lot of work required to make such a system fly. In fact, anybody who is starting to "just put together a bunch of servers and an InfiniBand network" is really looking at a 6-12 month science project. And the outcome is likely to not be very enterprise-class. And it won't have Exalogic's performance either. Because building an Engineered System is literally rocket science: It takes a lot of time, effort, resources and many iterations of design/test/analyze/fix to build such a system. That's why InfiniBand has been reserved for HPC scientists for such a long time. And only Oracle can bring the power of InfiniBand in an enterprise-class, ready-to use, pre-integrated version to customers, without the develop/integrate/support pain. For more details, check the new Exalogic overview white paper which was updated only recently. P.S.: Thanks to my colleagues Ola, Paul, Don and Andy for helping me put together this article! var flattr_uid = '26528'; var flattr_tle = 'How to Avoid Your Next 12-Month Science Project'; var flattr_dsc = 'While most customers immediately understand how the magic of Oracle's Hybrid Columnar Compression, intelligent storage servers and flash memory make Exadata uniquely powerful against home-grown database systems, some people think that Exalogic is nothing more than a bunch of x86 servers, a storage appliance and an InfiniBand (IB) network, built into a single rack.After all, isn't this exactly what the High Performance Computing (HPC) world has been doing for decades?On the surface, this may be true. And some people tried exactly that: They tried to put together their own version of Exalogic, but then they discover there's a lot more to building a system than buying hardware and assembling it together. IT is not Ikea.Why is that so? Could it be there's more going on behind the scenes than merely putting together a bunch of servers, a storage array and an InfiniBand network into a rack? Let's explore some of the special sauce that makes Exalogic unique and un-copyable, so you can save yourself from your next 6- to 12-month science project that distracts you from doing real work that adds value to your company.'; var flattr_tag = 'Engineered Systems,Engineered Systems,Infiniband,Integration,latency,Oracle,performance'; var flattr_cat = 'text'; var flattr_url = 'http://constantin.glez.de/blog/2012/04/how-avoid-your-next-12-month-science-project'; var flattr_lng = 'en_GB'

    Read the article

  • Announcing Unbreakable Enterprise Kernel Release 3 for Oracle Linux

    - by Lenz Grimmer
    We are excited to announce the general availability of the Unbreakable Enterprise Kernel Release 3 for Oracle Linux 6. The Unbreakable Enterprise Kernel Release 3 (UEK R3) is Oracle's third major supported release of its heavily tested and optimized Linux kernel for Oracle Linux 6 on the x86_64 architecture. UEK R3 is based on mainline Linux version 3.8.13. Some notable highlights of this release include: Inclusion of DTrace for Linux into the kernel (no longer a separate kernel image). DTrace for Linux now supports probes for user-space statically defined tracing (USDT) in programs that have been modified to include embedded static probe points Production support for Linux containers (LXC) which were previously released as a technology preview Btrfs file system improvements (subvolume-aware quota groups, cross-subvolume reflinks, btrfs send/receive to transfer file system snapshots or incremental differences, file hole punching, hot-replacing of failed disk devices, device statistics) Improved support for Control Groups (cgroups)  The ext4 file system can now store the content of a small file inside the inode (inline_data) TCP fast open (TFO) can speed up the opening of successive TCP connections between two endpoints FUSE file system performance improvements on NUMA systems Support for the Intel Ivy Bridge (IVB) processor family Integration of the OpenFabrics Enterprise Distribution (OFED) 2.0 stack, supporting a wide range of Infinband protocols including updates to Oracle's Reliable Datagram Sockets (RDS) Numerous driver updates in close coordination with our hardware partners UEK R3 uses the same versioning model as the mainline Linux kernel version. Unlike in UEK R2 (which identifies itself as version "2.6.39", even though it is based on mainline Linux 3.0.x), "uname" returns the actual version number (3.8.13). For further details on the new features, changes and any known issues, please consult the Release Notes. The Unbreakable Enterprise Kernel Release 3 and related packages can be installed using the yum package management tool on Oracle Linux 6 Update 4 or newer, both from the Unbreakable Linux Network (ULN) and our public yum server. Please follow the installation instructions in the Release Notes for a detailed description of the steps involved. The kernel source tree will also available via the git source code revision control system from https://oss.oracle.com/git/?p=linux-uek3-3.8.git If you would like to discuss your experiences with Oracle Linux and UEK R3, we look forward to your feedback on our public Oracle Linux Forum.

    Read the article

  • How do I manage the technical debate over WCF vs. Web API?

    - by Saeed Neamati
    I'm managing a team of like 15 developers now, and we are stuck at a point on choosing the technology, where the team is broken into two completely opposite teams, debating over usage of WCF vs. Web API. Team A which supports usage of Web API, brings forward these reasons: Web API is just the modern way of writing services (Wikipedia) WCF is an overhead for HTTP. It's a solution for TCP, and Net Pipes, and other protocols WCF models are not POCO, because of [DataContract] & [DataMember] and those attributes SOAP is not as readable and handy as JSON SOAP is an overhead for network compared to JSON (transport over HTTP) No method overloading Team B which supports the usage of WCF, says: WCF supports multiple protocols (via configuration) WCF supports distributed transactions Many good examples and success stories exist for WCF (while Web API is still young) Duplex is excellent for two-way communication This debate is continuing, and I don't know what to do now. Personally, I think that we should use a tool only for its right place of usage. In other words, we'd better use Web API, if we want to expose a service over HTTP, but use WCF when it comes to TCP and Duplex. By searching the Internet, we can't get to a solid result. Many posts exist for supporting WCF, but on the contrary we also find people complaint about it. I know that the nature of this question might sound arguable, but we need some good hints to decide. We're stuck at a point where choosing a technology by chance might make us regret it later. We want to choose with open eyes. Our usage would be mostly for web, and we would expose our services over HTTP. In some cases (say 5 to 10 percent) we might need distributed transactions though. What should I do now? How do I manage this debate in a constructive way?

    Read the article

  • Website hosted at home pingable from outside, but not browseable from outside

    - by Richard DesLonde
    I have a simple setup. Server at home has local I.P. 192.168.1.3 IIS is running on the server and the website is up. Windows firewall on the server has an exception rule for port 80 TCP Router has static I.P. XX.XXX.XX.XXX Router is forwarding TCP port 80 to 192.168.1.3 My domain registrar is my DNS host and is pointing to the static I.P. XX.XXX.XX.XXX of the router Here's what I can and can't do. I can browse the website from within my home network either by I.P. or domain name. I can ping the domain and the I.P. from outside the network (from a computer at work). I can't browse the website either by domain name or by I.P. Wierd. Why I can't browse my website? Incidentally, I wasn't sure this question was appropriate for SO, but after finding a few others similar to it on SO, and no comments on those questions saying anything about it being innapropriate, I decided I would post this question. Let me know if this is not appropriate for SO, or is more appropriate for another of the SE websites. Thanks!

    Read the article

  • when to introduce an application services tier in an n-tier application

    - by user20358
    I am developing a web based application whose primary objective is to fetch data from the database, display it on the UI, take in user inputs and write them back to the database. The application is not going to be doing any industrial strength algorithm crunching, but will be receiving a very high number of hits at peak times (described below) which will be changing thru the day. The layers are your typical Presentation, Business, Data. The data layer is taken care of by the database server. The business layer will contain the DAL component to access the database server over tcp. The choices I have to separate these layers into tiers are: The presentation and business layers can be either kept on the same tier. The presentation layer on a separate tier by itself and the business layer on a separate tier by itself. In the case of choice 2, the business layer will be accessed by the presentation layer using a WCF service either over http or tcp. I don't see any heavy processing being done on the Business layer, so I am leaning towards option 1 above. I also feel for the same reason, adding a new tier will only introduce the network latency. However, in terms of scalability in case I need to scale up or scale out, which is a better way to go? This application will need to be able to support up to 6 million users an hour. There will be a reasonable amount of data in each user session, storing user's preferences and other details. I will be using page level caching as well.

    Read the article

  • Using USB to Ethernet with Linux Ubuntu 12.04

    - by Sriram
    Being a newbie, Please excuse if the technical Jargon used is not an universally accepted one :) I have a particular device (say device A) whose USB2.0 driver is available from Linux community. Linux UBUNTU12.04 based PC is able to detect that device via the available driver. My requirement is to ensure that PC can exchange the command as well as data with the device A over TCP/IP packets (In other words, instead of just a USB Based driver, there should be a TCP/IP wrapper over the device USB driver and still does the same job as the USB driver was doing before) Bought an USB (Female) to RJ-45 adapter,connected Device A (male) USB to the USB Female end of the adapter and the Ethernet end connected to the router. PC also is connected to the same router so that both Device A and the PC have the IP address in the same subnet range. So the packets produced by the device A can be routed to the PC via some binding( not sure how I can achieve this, but conceptual idea) Here are the issues I can see as of now 1) USB to RJ-45 is just a hardware signal conversion and not a NIC in itself and hence no MAC/IP ADDRESS assigned. Can we bind a virtual NIC created in PC with this connector? 2) Any available USB TO IP command as well as data translation wrappers available? e.g. command for the device A on Ethernet converted to command for the device A on USB which is then acted upon the device as a command from the USB driver There is some missing link in my understanding and hence it would be of great help if you can bounce off some ideas on how I can take this forward so that Device A and PC exchange data over IP. Thanks and Regards, Sriram

    Read the article

  • Ubuntu 12.04 MySQL 5.5 MyODBC 5.1 or 3.1 query hangs

    - by jorgearr
    I have been able to install Ubuntu 12.04 with LAMP MySQL version 5.5.x It works fine within linux, it allows me to connect from myodbc windows vista or windows 7 I have configured networking access and have been able to access from windows vista using putty and other tcp connections like mysql query browser. I have also configured or disabled ufw firewall and apparmor. The connection works fine until I query data from the tables. It lets me query small amounts of data like: SELECT name FROM users limit 20 but if I do a SELECT * FROM users, it goes on a never-ending loop. This happens even on tables with very few records like 5 or even less. The problems occur with windows because I tried ssh from linux mint and it worked fine. I need to be able to work using MyODBC either 3.51 or 5.1 since my client program is made in VB6 and connects to mysql server via tcp/ip. The server is an HP PROLIANT ML350G6 with Intel Xeon 64 bits. I tried several ubuntu server version (12.04 64bit, 10.10 64bit, 11.04 32bit) and none has worked I even tried CentOS 6.3 and the same. As a reference, it works fine with onother ubuntu server version 6.x on HP Proliant 150 and mysql 5.0.x that is like 7 years old and never updated. Help Please.

    Read the article

  • Akka react vs receive

    - by Will I Am
    I am reading my way through Akka tutorials, but I'd like to get my feet wet with a real-life scenario. I'd like to write both a connectionless UDP server (an echo/ping-pong service) and a TCP server (also an echo service, but it keeps the connection open after it replies). My first question is, is this a good experimental use case for Akka, or am I better served with more common paradigms like IOCP? Would you do something like this with Akka in production? Although I understand conceptually the difference between react() and receive(), I struggle to choose one or the other for the two models. In the UDP model, there is no concept of who the sender is on the server, once the pong is sent, so should I use receive()? In the TCP model, the connection is maintained on the server after the pong, so should I use react()? If someone could give me some guidance, and maybe an opinion on how you'd design these two use cases, it would take me a long way. I have found a number of examples, but they didn't have explanations as to why they chose the paradigms they did.

    Read the article

  • How to design a scriptable communication emulator?

    - by Hawk
    Requirement: We need a tool that simulates a hardware device that communicates via RS232 or TCP/IP to allow us to test our main application which will communicate with the device. Current flow: User loads script Parse script into commands User runs script Execute commands Script / commands (simplified for discussion): Connect RS232 = RS232ConnectCommand Connect TCP/IP = TcpIpConnectCommand Send data = SendCommand Receive data = ReceiveCommand Disconnect = DisconnectCommand All commands implement the ICommand interface. The command runner simply executes a sequence of ICommand implementations sequentially thus ICommand must have an Execute exposure, pseudo code: void Execute(ICommunicator context) The Execute method takes a context argument which allows the command implementations to execute what they need to do. For instance SendCommand will call context.Send, etc. The problem RS232ConnectCommand and TcpIpConnectCommand needs to instantiate the context to be used by subsequent commands. How do you handle this elegantly? Solution 1: Change ICommand Execute method to: ICommunicator Execute(ICommunicator context) While it will work it seems like a code smell. All commands now need to return the context which for all commands except the connection ones will be the same context that is passed in. Solution 2: Create an ICommunicatorWrapper (ICommunicationBroker?) which follows the decorator pattern and decorates ICommunicator. It introduces a new exposure: void SetCommunicator(ICommunicator communicator) And ICommand is changed to use the wrapper: void Execute(ICommunicationWrapper context) Seems like a cleaner solution. Question Is this a good design? Am I on the right track?

    Read the article

  • Oracle Traffic Director – download and check out new cool features in 11.1.1.7.0 by Frances Zhao

    - by JuergenKress
    As Oracle's strategic layer-7 software load balancer product, Oracle Traffic Direct is fast, reliable, secure, easy-to-use and scalable; that you can deploy as the reliable entry point for all TCP, HTTP and HTTPS traffic to application servers and web servers in your network. The latest release Oracle Traffic Director 11.1.1.7.0 is available for ExaLogic and Database Appliance! For download and details please visit the Traffic Director OTN website. It this release, we have introduced some major new functionality and improvements. Web application firewall. Oracle Traffic Director supports web application firewalls. A web application firewall (WAF) is a filter or server plugin that applies a set of rules, called rule sets, to an HTTP request. Using a web application firewall, users can inspect traffic and deny requests to protect back-end applications from CSRF vulnerabilities and common attacks such as cross-site scripting. WebSocket Connections. Oracle Traffic Director handles WebSocket connections by default. WebSocket connections are long-lived and allow support for live content, games in real-time, video chatting, and so on. Support for LDAP/T3 Load Balancing. Oracle Traffic Director now supports basic LDAP/T3 load balancing at layer 7, where requests are handled as generic TCP connections for traffic tunneling. It works in full-NAT mode. Please download and try it out. For more information, check out the data sheet and the documentation. For regular information become a member in the WebLogic Partner Community please visit: http://www.oracle.com/partners/goto/wls-emea ( OPN account required). If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Wiki Technorati Tags: traffic director,WebLogic Community,Oracle,OPN,Jürgen Kress

    Read the article

  • "Oracle Coherence 3.5" Book - My Humble Review

    - by [email protected]
      After reviewing the book in more detail I say again that it is a great guide for sure. Lots of important concepts that sometimes can be somewhat confusing are deeply reviewed, including all types of caching schemes and backing maps, and the cache topologies with their corresponding performances and very useful "When to use it?" sections. Some functionalities that are very desirable or used a lot are reviewed with examples and best practices of implementation, including: Data affinity Querying Pagination Indexes Aggregations Event processing, listening and triggering Data persistence Security Regarding the networking and architecture topics, Coherence*Extend is exhaustively reviewed, including C++ and .NET clients, with very good tips and examples, even including source codes. Personally, I am also glad to see that the address providers (<address-provider> tag), new feature in Coherence 3.5 which is a way to programmatically provide well-known addresses in order to connect to the cluster, is mentioned on the book, because it provides new functionalities to satisfy some special configuration requirements for example: Provide a way to switch extend nodes in cases of failure Implement custom load balancing algorithms and/or dynamic discovery of TCP/IP connection acceptors Dynamically assign TCP address and port settings when binding to a server socket Another very interesting and useful section is the "Coherent Bank Sample Application", which is a great tutorial, useful to understand how Coherence interacts with third party products establishing a clear integration with them, including the use of non-Oracle products like MS Visual Studio.  

    Read the article

  • Bizarre SSH Problem - It won't even start

    - by thallium85
    I recently got Ubuntu 12.04 Precise, got it up and running with some MediaWiki software, static IP on the box and router and was able to access the main page even from a cell phone. Everything seemed great... Then I wanted to finally get rid of the monitor and keyboard and login remotely via SSH. I installed openssh-server, let everything point to port 22 for a test run and installed putty on my Windows XP machine. I got a connection refused. Went back and started checking the Ubuntu install itself... (I'm under root from this point on) $ sudo -s $ service ssh status ssh stop/waiting $ service ssh start ssh start/running, process 2212 $ service ssh status ssh stop/waiting Apparently ssh has stopped or is waiting for something.... $ ssh localhost ssh: connect to host localhost port 22: Connection refused I can't even connect to myself... I checked ufw (firewall) to see if port 22 is doing alright... $ sudo ufw status Status: active To Action From 22 ALLOW Anywhere 22/tcp ALLOW Anywhere 22 ALLOW Anywhere (v6) 22/tcp ALLOW Anywhere (v6) sshd_config shows only Port 22 Is ssh not using the right IP address at all? I just don't get what I did wrong here. When this is up and running I will def change the port number, but for now, I don't want to mess with the default install too much until a test run with putty is successful. Edit: Here are my sshd_config file and my ssh_config file. The command /usr/sbin/sshd -p 22 -D -d -e returns: /etc/ssh/sshd_config line 159: Subsystem 'sftp' already defined. Edit: @phoibus moving the sshd_config file and reinstalling did the trick! service ssh status the above command shows that ssh is now running and I am now able to log in from my windows xp computer remotely via putty. Thanks so much! I can now use my monitor for other things!

    Read the article

  • How-To: Run CMSDK against a RAC cluster

    - by frank.closheim
    Using CMSDK in a production environment often requires a robust, reliable and failover enabled repository. When using Oracle Real Application Cluster (RAC) with your CMSDK repository you need to have a specific configuration in place to support such a setup. This post will explain the configuration steps required when running CMSDK 9.0.4.6 with Oracle WebLogic Server (WLS).In the previous CMSDK 9.0.4.2 version a RAC enabled connect string looked like this: (DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)(HOST = rac1)(PORT = 1521))(ADDRESS = (PROTOCOL = TCP)(HOST = rac2)(PORT = 1521))(LOAD_BALANCE = NO)(FAILOVER = ON)(CONNECT_DATA =(SERVICE_NAME = rac)(failover_mode = (type=select)(method=basic)))CMSDK 9.0.4.6 makes use of data sources to connect to the underlying database. These data sources are configured inside your Application Server, such as Oracle WebLogic Server.In Oracle WebLogic Server 10.3.4, a single data source implementation has been introduced to support an RAC cluster. It responds to Fast Application Notification (FAN) events to provide Fast Connection Failover (FCF), Runtime Connection Load-Balancing (RCLB), and RAC instance graceful shutdown. XA affinity is supported at the global transaction Id level. The new feature is called WebLogic Active GridLink for RAC; which is implemented as the GridLink data source within WebLogic Server.This GridLink data source also works with Oracle Single Client Access Name (SCAN). SCAN is a feature used in RAC environments that provides a single name for clients to access any Oracle Database running in a cluster. You can think of SCAN as a cluster alias for databases in the cluster. The benefit is that the client’s connect information does not need to change if you add or remove nodes or databases in the cluster.The CMSDK 9.0.4.6 documentation describes how to create a regular JDBC data source named jdbc/OracleDS. Please refer to the following document which describes in detail how to create a GridLink data source in WLS.

    Read the article

  • How do I 'see' an external USB drive connected directly to my Broadband Router?

    - by The Cougar Kid
    This is a very frustrating problem! I have a small home network with several dual boot Ubuntu / Windows computers. I have recently upgraded my Broadband connection and the new router permits the direct attachment of an external USB drive which can back up all of the household's computers. There are no problems when booted under Windows, and there were no problems with older versions of UBUNTU, but since upgrading to 11.10 I can no longer "see" the drive. I used to find it via Network / Windows Network / Home / name of Router, but under 11.10 the same method yields an error message Unable to mount location Failed to retrieve share list from server. Can anyone help please? Starting Nmap 5.21 ( http://nmap.org ) at 2011-12-21 10:06 GMT Stats: 0:02:02 elapsed; 0 hosts completed (1 up), 1 undergoing Service Scan Service scan Timing: About 50.00% done; ETC: 10:10 (0:01:56 remaining) Nmap scan report for 192.168.1.254 Host is up (0.0097s latency). Not shown: 998 filtered ports PORT STATE SERVICE VERSION 554/tcp open rtsp? 7070/tcp open realserver? Service detection performed. Please report any incorrect results at http://nmap.org/submit/ . Nmap done: 1 IP address (1 host up) scanned in 152.38 seconds sudo tail -n 30 /var/log/syslog [sudo] password for alaric: Dec 21 10:05:42 UPSTAIRS2U wpa_supplicant[882]: WPA: Group rekeying completed with 00:01:3b:8b:63:1a [GTK=TKIP]

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • i am using winsock2.h in c language the following errors are unuderstandable help required?

    - by moon
    i am going to paste here my code an errors :::: #include "stdio.h" #include "winsock2.h" #define SIO_RCVALL _WSAIOW(IOC_VENDOR,1) //this removes the need of mstcpip.h void StartSniffing (SOCKET Sock); //This will sniff here and there void ProcessPacket (unsigned char* , int); //This will decide how to digest void PrintIpHeader (unsigned char* , int); void PrintUdpPacket (unsigned char* , int); void ConvertToHex (unsigned char* , unsigned int); void PrintData (unsigned char* , int); //IP Header Structure typedef struct ip_hdr { unsigned char ip_header_len:4; // 4-bit header length (in 32-bit words) normally=5 (Means 20 Bytes may be 24 also) unsigned char ip_version :4; // 4-bit IPv4 version unsigned char ip_tos; // IP type of service unsigned short ip_total_length; // Total length unsigned short ip_id; // Unique identifier unsigned char ip_frag_offset :5; // Fragment offset field unsigned char ip_more_fragment :1; unsigned char ip_dont_fragment :1; unsigned char ip_reserved_zero :1; unsigned char ip_frag_offset1; //fragment offset unsigned char ip_ttl; // Time to live unsigned char ip_protocol; // Protocol(TCP,UDP etc) unsigned short ip_checksum; // IP checksum unsigned int ip_srcaddr; // Source address unsigned int ip_destaddr; // Source address } IPV4_HDR; //UDP Header Structure typedef struct udp_hdr { unsigned short source_port; // Source port no. unsigned short dest_port; // Dest. port no. unsigned short udp_length; // Udp packet length unsigned short udp_checksum; // Udp checksum (optional) } UDP_HDR; //ICMP Header Structure typedef struct icmp_hdr { BYTE type; // ICMP Error type BYTE code; // Type sub code USHORT checksum; USHORT id; USHORT seq; } ICMP_HDR; FILE *logfile; int tcp=0,udp=0,icmp=0,others=0,igmp=0,total=0,i,j; struct sockaddr_in source,dest; char hex[2]; //Its free! IPV4_HDR *iphdr; UDP_HDR *udpheader; int main() { SOCKET sniffer; struct in_addr addr; int in; char hostname[100]; struct hostent *local; WSADATA wsa; //logfile=fopen("log.txt","w"); //if(logfile==NULL) printf("Unable to create file."); //Initialise Winsock printf("\nInitialising Winsock..."); if (WSAStartup(MAKEWORD(2,2), &wsa) != 0) { printf("WSAStartup() failed.\n"); return 1; } printf("Initialised"); //Create a RAW Socket printf("\nCreating RAW Socket..."); sniffer = socket(AF_INET, SOCK_RAW, IPPROTO_IP); if (sniffer == INVALID_SOCKET) { printf("Failed to create raw socket.\n"); return 1; } printf("Created."); //Retrive the local hostname if (gethostname(hostname, sizeof(hostname)) == SOCKET_ERROR) { printf("Error : %d",WSAGetLastError()); return 1; } printf("\nHost name : %s \n",hostname); //Retrive the available IPs of the local host local = gethostbyname(hostname); printf("\nAvailable Network Interfaces : \n"); if (local == NULL) { printf("Error : %d.\n",WSAGetLastError()); return 1; } for (i = 0; local->h_addr_list[i] != 0; ++i) { memcpy(&addr, local->h_addr_list[i], sizeof(struct in_addr)); printf("Interface Number : %d Address : %s\n",i,inet_ntoa(addr)); } printf("Enter the interface number you would like to sniff : "); scanf("%d",&in); memset(&dest, 0, sizeof(dest)); memcpy(&dest.sin_addr.s_addr,local->h_addr_list[in],sizeof(dest.sin_addr.s_addr)); dest.sin_family = AF_INET; dest.sin_port = 0; printf("\nBinding socket to local system and port 0 ..."); if (bind(sniffer,(struct sockaddr *)&dest,sizeof(dest)) == SOCKET_ERROR) { printf("bind(%s) failed.\n", inet_ntoa(addr)); return 1; } printf("Binding successful"); //Enable this socket with the power to sniff : SIO_RCVALL is the key Receive ALL ;) j=1; printf("\nSetting socket to sniff..."); if (WSAIoctl(sniffer, SIO_RCVALL,&j, sizeof(j), 0, 0,(LPDWORD)&in,0, 0) == SOCKET_ERROR) { printf("WSAIoctl() failed.\n"); return 1; } printf("Socket set."); //Begin printf("\nStarted Sniffing\n"); printf("Packet Capture Statistics...\n"); StartSniffing(sniffer); //Happy Sniffing //End closesocket(sniffer); WSACleanup(); return 0; } void StartSniffing(SOCKET sniffer) { unsigned char *Buffer = ( unsigned char *)malloc(65536); //Its Big! int mangobyte; if (Buffer == NULL) { printf("malloc() failed.\n"); return; } do { mangobyte = recvfrom(sniffer,(char *)Buffer,65536,0,0,0); //Eat as much as u can if(mangobyte > 0) ProcessPacket(Buffer, mangobyte); else printf( "recvfrom() failed.\n"); } while (mangobyte > 0); free(Buffer); } void ProcessPacket(unsigned char* Buffer, int Size) { iphdr = (IPV4_HDR *)Buffer; ++total; switch (iphdr->ip_protocol) //Check the Protocol and do accordingly... { case 1: //ICMP Protocol ++icmp; //PrintIcmpPacket(Buffer,Size); break; case 2: //IGMP Protocol ++igmp; break; case 6: //TCP Protocol ++tcp; //PrintTcpPacket(Buffer,Size); break; case 17: //UDP Protocol ++udp; PrintUdpPacket(Buffer,Size); break; default: //Some Other Protocol like ARP etc. ++others; break; } printf("TCP : %d UDP : %d ICMP : %d IGMP : %d Others : %d Total : %d\r",tcp,udp,icmp,igmp,others,total); } void PrintIpHeader (unsigned char* Buffer, int Size) { unsigned short iphdrlen; iphdr = (IPV4_HDR *)Buffer; iphdrlen = iphdr->ip_header_len*4; memset(&source, 0, sizeof(source)); source.sin_addr.s_addr = iphdr->ip_srcaddr; memset(&dest, 0, sizeof(dest)); dest.sin_addr.s_addr = iphdr->ip_destaddr; fprintf(logfile,"\n"); fprintf(logfile,"IP Header\n"); fprintf(logfile," |-IP Version : %d\n",(unsigned int)iphdr->ip_version); fprintf(logfile," |-IP Header Length : %d DWORDS or %d Bytes\n",(unsigned int)iphdr->ip_header_len); fprintf(logfile," |-Type Of Service : %d\n",(unsigned int)iphdr->ip_tos); fprintf(logfile," |-IP Total Length : %d Bytes(Size of Packet)\n",ntohs(iphdr->ip_total_length)); fprintf(logfile," |-Identification : %d\n",ntohs(iphdr->ip_id)); fprintf(logfile," |-Reserved ZERO Field : %d\n",(unsigned int)iphdr->ip_reserved_zero); fprintf(logfile," |-Dont Fragment Field : %d\n",(unsigned int)iphdr->ip_dont_fragment); fprintf(logfile," |-More Fragment Field : %d\n",(unsigned int)iphdr->ip_more_fragment); fprintf(logfile," |-TTL : %d\n",(unsigned int)iphdr->ip_ttl); fprintf(logfile," |-Protocol : %d\n",(unsigned int)iphdr->ip_protocol); fprintf(logfile," |-Checksum : %d\n",ntohs(iphdr->ip_checksum)); fprintf(logfile," |-Source IP : %s\n",inet_ntoa(source.sin_addr)); fprintf(logfile," |-Destination IP : %s\n",inet_ntoa(dest.sin_addr)); } void PrintUdpPacket(unsigned char *Buffer,int Size) { unsigned short iphdrlen; iphdr = (IPV4_HDR *)Buffer; iphdrlen = iphdr->ip_header_len*4; udpheader = (UDP_HDR *)(Buffer + iphdrlen); fprintf(logfile,"\n\n***********************UDP Packet*************************\n"); PrintIpHeader(Buffer,Size); fprintf(logfile,"\nUDP Header\n"); fprintf(logfile," |-Source Port : %d\n",ntohs(udpheader->source_port)); fprintf(logfile," |-Destination Port : %d\n",ntohs(udpheader->dest_port)); fprintf(logfile," |-UDP Length : %d\n",ntohs(udpheader->udp_length)); fprintf(logfile," |-UDP Checksum : %d\n",ntohs(udpheader->udp_checksum)); fprintf(logfile,"\n"); fprintf(logfile,"IP Header\n"); PrintData(Buffer,iphdrlen); fprintf(logfile,"UDP Header\n"); PrintData(Buffer+iphdrlen,sizeof(UDP_HDR)); fprintf(logfile,"Data Payload\n"); PrintData(Buffer+iphdrlen+sizeof(UDP_HDR) ,(Size - sizeof(UDP_HDR) - iphdr->ip_header_len*4)); fprintf(logfile,"\n###########################################################"); } void PrintData (unsigned char* data , int Size) { for(i=0 ; i < Size ; i++) { if( i!=0 && i%16==0) //if one line of hex printing is complete... { fprintf(logfile," "); for(j=i-16 ; j<i ; j++) { if(data[j]>=32 && data[j]<=128) fprintf(logfile,"%c",(unsigned char)data[j]); //if its a number or alphabet else fprintf(logfile,"."); //otherwise print a dot } fprintf(logfile,"\n"); } if(i%16==0) fprintf(logfile," "); fprintf(logfile," %02X",(unsigned int)data[i]); if( i==Size-1) //print the last spaces { for(j=0;j<15-i%16;j++) fprintf(logfile," "); //extra spaces fprintf(logfile," "); for(j=i-i%16 ; j<=i ; j++) { if(data[j]>=32 && data[j]<=128) fprintf(logfile,"%c",(unsigned char)data[j]); else fprintf(logfile,"."); } fprintf(logfile,"\n"); } } } following are the errors Error 1 error LNK2019: unresolved external symbol __imp__WSACleanup@0 referenced in function _main sniffer.obj sniffer test Error 2 error LNK2019: unresolved external symbol __imp__closesocket@4 referenced in function _main sniffer.obj sniffer test Error 3 error LNK2019: unresolved external symbol __imp__WSAIoctl@36 referenced in function _main sniffer.obj sniffer test Error 4 error LNK2019: unresolved external symbol __imp__bind@12 referenced in function _main sniffer.obj sniffer test Error 5 error LNK2019: unresolved external symbol __imp__inet_ntoa@4 referenced in function _main sniffer.obj sniffer test Error 6 error LNK2019: unresolved external symbol __imp__gethostbyname@4 referenced in function _main sniffer.obj sniffer test Error 7 error LNK2019: unresolved external symbol __imp__WSAGetLastError@0 referenced in function _main sniffer.obj sniffer test Error 8 error LNK2019: unresolved external symbol __imp__gethostname@8 referenced in function _main sniffer.obj sniffer test Error 9 error LNK2019: unresolved external symbol __imp__socket@12 referenced in function _main sniffer.obj sniffer test Error 10 error LNK2019: unresolved external symbol __imp__WSAStartup@8 referenced in function _main sniffer.obj sniffer test Error 11 error LNK2019: unresolved external symbol __imp__recvfrom@24 referenced in function "void __cdecl StartSniffing(unsigned int)" (?StartSniffing@@YAXI@Z) sniffer.obj sniffer test Error 12 error LNK2019: unresolved external symbol __imp__ntohs@4 referenced in function "void __cdecl PrintIpHeader(unsigned char *,int)" (?PrintIpHeader@@YAXPAEH@Z) sniffer.obj sniffer test Error 13 fatal error LNK1120: 12 unresolved externals E:\CWM\sniffer test\Debug\sniffer test.exe sniffer test

    Read the article

  • How to Assign a Static IP Address in XP, Vista, or Windows 7

    - by Mysticgeek
    When organizing your home network it’s easier to assign each computer it’s own IP address than using DHCP. Here we will take a look at doing it in XP, Vista, and Windows 7. If you have a home network with several computes and devices, it’s a good idea to assign each of them a specific address. If you use DHCP (Dynamic Host Configuration Protocol), each computer will request and be assigned an address every time it’s booted up. When you have to do troubleshooting on your network, it’s annoying going to each machine to figure out what IP they have. Using Static IPs prevents address conflicts between devices and allows you to manage them more easily. Assigning IPs to Windows is essentially the same process, but getting to where you need to be varies between each version. Windows 7 To change the computer’s IP address in Windows 7, type network and sharing into the Search box in the Start Menu and select Network and Sharing Center when it comes up.   Then when the Network and Sharing Center opens, click on Change adapter settings. Right-click on your local adapter and select Properties. In the Local Area Connection Properties window highlight Internet Protocol Version 4 (TCP/IPv4) then click the Properties button. Now select the radio button Use the following IP address and enter in the correct IP, Subnet mask, and Default gateway that corresponds with your network setup. Then enter your Preferred and Alternate DNS server addresses. Here we’re on a home network and using a simple Class C network configuration and Google DNS. Check Validate settings upon exit so Windows can find any problems with the addresses you entered. When you’re finished click OK. Now close out of the Local Area Connections Properties window. Windows 7 will run network diagnostics and verify the connection is good. Here we had no problems with it, but if you did, you could run the network troubleshooting wizard. Now you can open the command prompt and do an ipconfig  to see the network adapter settings have been successfully changed.   Windows Vista Changing your IP from DHCP to a Static address in Vista is similar to Windows 7, but getting to the correct location is a bit different. Open the Start Menu, right-click on Network, and select Properties. The Network and Sharing Center opens…click on Manage network connections. Right-click on the network adapter you want to assign an IP address and click Properties. Highlight Internet Protocol Version 4 (TCP/IPv4) then click the Properties button. Now change the IP, Subnet mask, Default Gateway, and DNS Server Addresses. When you’re finished click OK. You’ll need to close out of Local Area Connection Properties for the settings to go into effect. Open the Command Prompt and do an ipconfig to verify the changes were successful.   Windows XP In this example we’re using XP SP3 Media Center Edition and changing the IP address of the Wireless adapter. To set a Static IP in XP right-click on My Network Places and select Properties. Right-click on the adapter you want to set the IP for and select Properties. Highlight Internet Protocol (TCP/IP) and click the Properties button. Now change the IP, Subnet mask, Default Gateway, and DNS Server Addresses. When you’re finished click OK. You will need to close out of the Network Connection Properties screen before the changes go into effect.   Again you can verify the settings by doing an ipconfig in the command prompt. In case you’re not sure how to do this, click on Start then Run.   In the Run box type in cmd and click OK. Then at the prompt type in ipconfig and hit Enter. This will show the IP address for the network adapter you changed.   If you have a small office or home network, assigning each computer a specific IP address makes it a lot easier to manage and troubleshoot network connection problems. Similar Articles Productive Geek Tips Change Ubuntu Desktop from DHCP to a Static IP AddressChange Ubuntu Server from DHCP to a Static IP AddressVista Breadcrumbs for Windows XPCreate a Shortcut or Hotkey for the Safely Remove Hardware DialogCreate a Shortcut or Hotkey to Eject the CD/DVD Drive TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips HippoRemote Pro 2.2 Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Nice Websites To Watch TV Shows Online 24 Million Sites Windows Media Player Glass Icons (icons we like) How to Forecast Weather, without Gadgets Outlook Tools, one stop tweaking for any Outlook version Zoofs, find the most popular tweeted YouTube videos

    Read the article

  • Unable to sign in. How to debug?

    - by Dmitriy Budnik
    I had to reboot system with reset button. After reboot I can't sign in. When I enter my password It seems like X-server just restarts. I can sing in as guest and also I can sign in in text TTY. Here is first 150 lines of my lightdm.log: [+0.04s] DEBUG: Logging to /var/log/lightdm/lightdm.log [+0.04s] DEBUG: Starting Light Display Manager 1.2.1, UID=0 PID=1070 [+0.04s] DEBUG: Loaded configuration from /etc/lightdm/lightdm.conf [+0.04s] DEBUG: Using D-Bus name org.freedesktop.DisplayManager [+0.04s] DEBUG: Registered seat module xlocal [+0.04s] DEBUG: Registered seat module xremote [+0.04s] DEBUG: Adding default seat [+0.04s] DEBUG: Starting seat [+0.04s] DEBUG: Starting new display for automatic login as user dmytro [+0.04s] DEBUG: Starting local X display [+3.64s] DEBUG: X server :0 will replace Plymouth [+3.66s] DEBUG: Using VT 7 [+3.66s] DEBUG: Activating VT 7 [+3.66s] DEBUG: Logging to /var/log/lightdm/x-0.log [+3.66s] DEBUG: Writing X server authority to /var/run/lightdm/root/:0 [+3.66s] DEBUG: Launching X Server [+3.66s] DEBUG: Launching process 1154: /usr/bin/X :0 -auth /var/run/lightdm/root/:0 -nolisten tcp vt7 -novtswitch -background none [+3.66s] DEBUG: Waiting for ready signal from X server :0 [+3.66s] DEBUG: Acquired bus name org.freedesktop.DisplayManager [+3.66s] DEBUG: Registering seat with bus path /org/freedesktop/DisplayManager/Seat0 [+10.78s] DEBUG: Got signal 10 from process 1154 [+10.78s] DEBUG: Got signal from X server :0 [+10.78s] DEBUG: Stopping Plymouth, X server is ready [+10.80s] DEBUG: Connecting to XServer :0 [+10.80s] DEBUG: Automatically logging in user dmytro [+10.80s] DEBUG: Started session 1303 with service 'lightdm-autologin', username 'dmytro' [+13.22s] DEBUG: Session 1303 authentication complete with return value 0: Success [+13.26s] DEBUG: Autologin user dmytro authorized [+13.27s] DEBUG: Autologin using session ubuntu [+14.44s] DEBUG: Dropping privileges to uid 1000 [+14.48s] DEBUG: Restoring privileges [+14.49s] DEBUG: Dropping privileges to uid 1000 [+14.49s] DEBUG: Writing /home/dmytro/.dmrc [+14.61s] DEBUG: Restoring privileges [+14.81s] DEBUG: Starting session ubuntu as user dmytro [+14.81s] DEBUG: Session 1303 running command /usr/sbin/lightdm-session gnome-session --session=ubuntu [+15.76s] DEBUG: New display ready, switching to it [+15.76s] DEBUG: Activating VT 7 [+15.76s] DEBUG: Registering session with bus path /org/freedesktop/DisplayManager/Session0 [+16.63s] DEBUG: Session 1303 exited with return value 0 [+16.63s] DEBUG: User session quit [+16.63s] DEBUG: Stopping display [+16.63s] DEBUG: Sending signal 15 to process 1154 [+17.19s] DEBUG: Process 1154 exited with return value 0 [+17.19s] DEBUG: X server stopped [+17.19s] DEBUG: Removing X server authority /var/run/lightdm/root/:0 [+17.19s] DEBUG: Releasing VT 7 [+17.19s] DEBUG: Display server stopped [+17.19s] DEBUG: Display stopped [+17.19s] DEBUG: Active display stopped, switching to greeter [+17.19s] DEBUG: Switching to greeter [+17.19s] DEBUG: Starting new display for greeter [+17.19s] DEBUG: Starting local X display [+17.19s] DEBUG: Using VT 7 [+17.19s] DEBUG: Logging to /var/log/lightdm/x-0.log [+17.19s] DEBUG: Writing X server authority to /var/run/lightdm/root/:0 [+17.19s] DEBUG: Launching X Server [+17.19s] DEBUG: Launching process 1563: /usr/bin/X :0 -auth /var/run/lightdm/root/:0 -nolisten tcp vt7 -novtswitch [+17.19s] DEBUG: Waiting for ready signal from X server :0 [+17.48s] DEBUG: Got signal 10 from process 1563 [+17.48s] DEBUG: Got signal from X server :0 [+17.48s] DEBUG: Connecting to XServer :0 [+17.48s] DEBUG: Starting greeter [+17.48s] DEBUG: Started session 1575 with service 'lightdm', username 'lightdm' [+17.61s] DEBUG: Session 1575 authentication complete with return value 0: Success [+17.61s] DEBUG: Greeter authorized [+17.61s] DEBUG: Logging to /var/log/lightdm/x-0-greeter.log [+17.68s] DEBUG: Session 1575 running command /usr/lib/lightdm/lightdm-greeter-session /usr/sbin/unity-greeter [+20.86s] DEBUG: Greeter connected version=1.2.1 [+20.86s] DEBUG: Greeter connected, display is ready [+20.86s] DEBUG: New display ready, switching to it [+20.86s] DEBUG: Activating VT 7 [+20.86s] DEBUG: Stopping greeter display being switched from [+24.90s] DEBUG: Greeter start authentication for dmytro [+24.90s] DEBUG: Started session 1746 with service 'lightdm', username 'dmytro' [+25.10s] DEBUG: Session 1746 got 1 message(s) from PAM [+25.10s] DEBUG: Prompt greeter with 1 message(s) [+31.87s] DEBUG: Continue authentication [+33.75s] DEBUG: Session 1746 authentication complete with return value 7: Authentication failure [+33.75s] DEBUG: Authenticate result for user dmytro: Authentication failure [+33.75s] DEBUG: Greeter start authentication for dmytro [+33.75s] DEBUG: Session 1746: Sending SIGTERM [+33.75s] DEBUG: Started session 2264 with service 'lightdm', username 'dmytro' [+33.75s] DEBUG: Session 2264 got 1 message(s) from PAM [+33.75s] DEBUG: Prompt greeter with 1 message(s) [+36.41s] DEBUG: Continue authentication [+36.53s] DEBUG: Session 2264 authentication complete with return value 0: Success [+36.53s] DEBUG: Authenticate result for user dmytro: Success [+36.54s] DEBUG: User dmytro authorized [+36.54s] DEBUG: Greeter requests session ubuntu [+36.54s] DEBUG: Using session ubuntu [+36.54s] DEBUG: Stopping greeter [+36.54s] DEBUG: Session 1575: Sending SIGTERM [+37.41s] DEBUG: Greeter closed communication channel [+37.41s] DEBUG: Session 1575 exited with return value 0 [+37.41s] DEBUG: Greeter quit [+37.42s] DEBUG: Dropping privileges to uid 1000 [+37.42s] DEBUG: Restoring privileges [+37.43s] DEBUG: Dropping privileges to uid 1000 [+37.43s] DEBUG: Writing /home/dmytro/.dmrc [+38.35s] DEBUG: Restoring privileges [+40.37s] DEBUG: Starting session ubuntu as user dmytro [+40.37s] DEBUG: Session 2264 running command /usr/sbin/lightdm-session gnome-session --session=ubuntu [+40.39s] DEBUG: Registering session with bus path /org/freedesktop/DisplayManager/Session1 [+50.78s] DEBUG: Session 2264 exited with return value 0 [+50.78s] DEBUG: User session quit [+50.78s] DEBUG: Stopping display [+50.78s] DEBUG: Sending signal 15 to process 1563 [+51.53s] DEBUG: Process 1563 exited with return value 0 [+51.53s] DEBUG: X server stopped [+51.53s] DEBUG: Removing X server authority /var/run/lightdm/root/:0 [+51.53s] DEBUG: Releasing VT 7 [+51.53s] DEBUG: Display server stopped [+51.53s] DEBUG: Display stopped [+51.53s] DEBUG: Active display stopped, switching to greeter [+51.53s] DEBUG: Switching to greeter [+51.53s] DEBUG: Starting new display for greeter [+51.53s] DEBUG: Starting local X display [+51.53s] DEBUG: Using VT 7 [+51.53s] DEBUG: Logging to /var/log/lightdm/x-0.log [+51.53s] DEBUG: Writing X server authority to /var/run/lightdm/root/:0 [+51.53s] DEBUG: Launching X Server [+51.53s] DEBUG: Launching process 2894: /usr/bin/X :0 -auth /var/run/lightdm/root/:0 -nolisten tcp vt7 -novtswitch [+51.53s] DEBUG: Waiting for ready signal from X server :0 [+51.75s] DEBUG: Got signal 10 from process 2894 [+51.75s] DEBUG: Got signal from X server :0 [+51.75s] DEBUG: Connecting to XServer :0 [+51.75s] DEBUG: Starting greeter [+51.75s] DEBUG: Started session 2898 with service 'lightdm', username 'lightdm' [+51.76s] DEBUG: Session 2898 authentication complete with return value 0: Success [+51.76s] DEBUG: Greeter authorized [+51.76s] DEBUG: Logging to /var/log/lightdm/x-0-greeter.log [+51.76s] DEBUG: Session 2898 running command /usr/lib/lightdm/lightdm-greeter-session /usr/sbin/unity-greeter [+53.26s] DEBUG: Greeter connected version=1.2.1 [+53.26s] DEBUG: Greeter connected, display is ready [+53.26s] DEBUG: New display ready, switching to it [+53.26s] DEBUG: Activating VT 7 [+53.26s] DEBUG: Stopping greeter display being switched from [+54.17s] DEBUG: Greeter start authentication for dmytro [+54.17s] DEBUG: Started session 3152 with service 'lightdm', username 'dmytro' [+54.18s] DEBUG: Session 3152 got 1 message(s) from PAM [+54.18s] DEBUG: Prompt greeter with 1 message(s) [+58.61s] DEBUG: Continue authentication [+58.65s] DEBUG: Session 3152 authentication complete with return value 0: Success [+58.65s] DEBUG: Authenticate result for user dmytro: Success [+58.66s] DEBUG: User dmytro authorized [+58.66s] DEBUG: Greeter requests session ubuntu [+58.66s] DEBUG: Using session ubuntu [+58.66s] DEBUG: Stopping greeter [+58.66s] DEBUG: Session 2898: Sending SIGTERM How can I fix it? What other .log files could possibly give me a clue? Update: Possibly it's duplicate of Desktop login fails, terminal works

    Read the article

  • Coherence - How to develop a custom push replication publisher

    - by cosmin.tudor(at)oracle.com
    CoherencePushReplicationDB.zipIn the example bellow I'm describing a way of developing a custom push replication publisher that publishes data to a database via JDBC. This example can be easily changed to publish data to other receivers (JMS,...) by performing changes to step 2 and small changes to step 3, steps that are presented bellow. I've used Eclipse as the development tool. To develop a custom push replication publishers we will need to go through 6 steps: Step 1: Create a custom publisher scheme class Step 2: Create a custom publisher class that should define what the publisher is doing. Step 3: Create a class data is performing the actions (publish to JMS, DB, etc ) for the custom publisher. Step 4: Register the new publisher against a ContentHandler. Step 5: Add the new custom publisher in the cache configuration file. Step 6: Add the custom publisher scheme class to the POF configuration file. All these steps are detailed bellow. The coherence project is attached and conclusions are presented at the end. Step 1: In the Coherence Eclipse project create a class called CustomPublisherScheme that should implement com.oracle.coherence.patterns.pushreplication.publishers.AbstractPublisherScheme. In this class define the elements of the custom-publisher-scheme element. For instance for a CustomPublisherScheme that looks like that: <sync:publisher> <sync:publisher-name>Active2-JDBC-Publisher</sync:publisher-name> <sync:publisher-scheme> <sync:custom-publisher-scheme> <sync:jdbc-string>jdbc:oracle:thin:@machine-name:1521:XE</sync:jdbc-string> <sync:username>hr</sync:username> <sync:password>hr</sync:password> </sync:custom-publisher-scheme> </sync:publisher-scheme> </sync:publisher> the code is: package com.oracle.coherence; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import com.oracle.coherence.patterns.pushreplication.Publisher; import com.oracle.coherence.configuration.Configurable; import com.oracle.coherence.configuration.Mandatory; import com.oracle.coherence.configuration.Property; import com.oracle.coherence.configuration.parameters.ParameterScope; import com.oracle.coherence.environment.Environment; import com.tangosol.io.pof.PofReader; import com.tangosol.io.pof.PofWriter; import com.tangosol.util.ExternalizableHelper; @Configurable public class CustomPublisherScheme extends com.oracle.coherence.patterns.pushreplication.publishers.AbstractPublisherScheme { /** * */ private static final long serialVersionUID = 1L; private String jdbcString; private String username; private String password; public String getJdbcString() { return this.jdbcString; } @Property("jdbc-string") @Mandatory public void setJdbcString(String jdbcString) { this.jdbcString = jdbcString; } public String getUsername() { return username; } @Property("username") @Mandatory public void setUsername(String username) { this.username = username; } public String getPassword() { return password; } @Property("password") @Mandatory public void setPassword(String password) { this.password = password; } public Publisher realize(Environment environment, ClassLoader classLoader, ParameterScope parameterScope) { return new CustomPublisher(getJdbcString(), getUsername(), getPassword()); } public void readExternal(DataInput in) throws IOException { super.readExternal(in); this.jdbcString = ExternalizableHelper.readSafeUTF(in); this.username = ExternalizableHelper.readSafeUTF(in); this.password = ExternalizableHelper.readSafeUTF(in); } public void writeExternal(DataOutput out) throws IOException { super.writeExternal(out); ExternalizableHelper.writeSafeUTF(out, this.jdbcString); ExternalizableHelper.writeSafeUTF(out, this.username); ExternalizableHelper.writeSafeUTF(out, this.password); } public void readExternal(PofReader reader) throws IOException { super.readExternal(reader); this.jdbcString = reader.readString(100); this.username = reader.readString(101); this.password = reader.readString(102); } public void writeExternal(PofWriter writer) throws IOException { super.writeExternal(writer); writer.writeString(100, this.jdbcString); writer.writeString(101, this.username); writer.writeString(102, this.password); } } Step 2: Define what the CustomPublisher should basically do by creating a new java class called CustomPublisher that implements com.oracle.coherence.patterns.pushreplication.Publisher package com.oracle.coherence; import com.oracle.coherence.patterns.pushreplication.EntryOperation; import com.oracle.coherence.patterns.pushreplication.Publisher; import com.oracle.coherence.patterns.pushreplication.exceptions.PublisherNotReadyException; import java.io.BufferedWriter; import java.util.Iterator; public class CustomPublisher implements Publisher { private String jdbcString; private String username; private String password; private transient BufferedWriter bufferedWriter; public CustomPublisher() { } public CustomPublisher(String jdbcString, String username, String password) { this.jdbcString = jdbcString; this.username = username; this.password = password; this.bufferedWriter = null; } public String getJdbcString() { return this.jdbcString; } public String getUsername() { return username; } public String getPassword() { return password; } public void publishBatch(String cacheName, String publisherName, Iterator<EntryOperation> entryOperations) { DatabasePersistence databasePersistence = new DatabasePersistence( jdbcString, username, password); while (entryOperations.hasNext()) { EntryOperation entryOperation = (EntryOperation) entryOperations .next(); databasePersistence.databasePersist(entryOperation); } } public void start(String cacheName, String publisherName) throws PublisherNotReadyException { System.err .printf("Started: Custom JDBC Publisher for Cache %s with Publisher %s\n", new Object[] { cacheName, publisherName }); } public void stop(String cacheName, String publisherName) { System.err .printf("Stopped: Custom JDBC Publisher for Cache %s with Publisher %s\n", new Object[] { cacheName, publisherName }); } } In the publishBatch method from above we inform the publisher that he is supposed to persist data to a database: DatabasePersistence databasePersistence = new DatabasePersistence( jdbcString, username, password); while (entryOperations.hasNext()) { EntryOperation entryOperation = (EntryOperation) entryOperations .next(); databasePersistence.databasePersist(entryOperation); } Step 3: The class that deals with the persistence is a very basic one that uses JDBC to perform inserts/updates against a database. package com.oracle.coherence; import com.oracle.coherence.patterns.pushreplication.EntryOperation; import java.sql.*; import java.text.SimpleDateFormat; import com.oracle.coherence.Order; public class DatabasePersistence { public static String INSERT_OPERATION = "INSERT"; public static String UPDATE_OPERATION = "UPDATE"; public Connection dbConnection; public DatabasePersistence(String jdbcString, String username, String password) { this.dbConnection = createConnection(jdbcString, username, password); } public Connection createConnection(String jdbcString, String username, String password) { Connection connection = null; System.err.println("Connecting to: " + jdbcString + " Username: " + username + " Password: " + password); try { // Load the JDBC driver String driverName = "oracle.jdbc.driver.OracleDriver"; Class.forName(driverName); // Create a connection to the database connection = DriverManager.getConnection(jdbcString, username, password); System.err.println("Connected to:" + jdbcString + " Username: " + username + " Password: " + password); } catch (ClassNotFoundException e) { e.printStackTrace(); } // driver catch (SQLException e) { e.printStackTrace(); } return connection; } public void databasePersist(EntryOperation entryOperation) { if (entryOperation.getOperation().toString() .equalsIgnoreCase(INSERT_OPERATION)) { insert(((Order) entryOperation.getPublishableEntry().getValue())); } else if (entryOperation.getOperation().toString() .equalsIgnoreCase(UPDATE_OPERATION)) { update(((Order) entryOperation.getPublishableEntry().getValue())); } } public void update(Order order) { String update = "UPDATE Orders set QUANTITY= '" + order.getQuantity() + "', AMOUNT='" + order.getAmount() + "', ORD_DATE= '" + (new SimpleDateFormat("dd-MMM-yyyy")).format(order .getOrdDate()) + "' WHERE SYMBOL='" + order.getSymbol() + "'"; System.err.println("UPDATE = " + update); try { Statement stmt = getDbConnection().createStatement(); stmt.execute(update); stmt.close(); } catch (SQLException ex) { System.err.println("SQLException: " + ex.getMessage()); } } public void insert(Order order) { String insert = "insert into Orders values('" + order.getSymbol() + "'," + order.getQuantity() + "," + order.getAmount() + ",'" + (new SimpleDateFormat("dd-MMM-yyyy")).format(order .getOrdDate()) + "')"; System.err.println("INSERT = " + insert); try { Statement stmt = getDbConnection().createStatement(); stmt.execute(insert); stmt.close(); } catch (SQLException ex) { System.err.println("SQLException: " + ex.getMessage()); } } public Connection getDbConnection() { return dbConnection; } public void setDbConnection(Connection dbConnection) { this.dbConnection = dbConnection; } } Step 4: Now we need to register our publisher against a ContentHandler. In order to achieve that we need to create in our eclipse project a new class called CustomPushReplicationNamespaceContentHandler that should extend the com.oracle.coherence.patterns.pushreplication.configuration.PushReplicationNamespaceContentHandler. In the constructor of the new class we define a new handler for our custom publisher. package com.oracle.coherence; import com.oracle.coherence.configuration.Configurator; import com.oracle.coherence.environment.extensible.ConfigurationContext; import com.oracle.coherence.environment.extensible.ConfigurationException; import com.oracle.coherence.environment.extensible.ElementContentHandler; import com.oracle.coherence.patterns.pushreplication.PublisherScheme; import com.oracle.coherence.environment.extensible.QualifiedName; import com.oracle.coherence.patterns.pushreplication.configuration.PushReplicationNamespaceContentHandler; import com.tangosol.run.xml.XmlElement; public class CustomPushReplicationNamespaceContentHandler extends PushReplicationNamespaceContentHandler { public CustomPushReplicationNamespaceContentHandler() { super(); registerContentHandler("custom-publisher-scheme", new ElementContentHandler() { public Object onElement(ConfigurationContext context, QualifiedName qualifiedName, XmlElement xmlElement) throws ConfigurationException { PublisherScheme publisherScheme = new CustomPublisherScheme(); Configurator.configure(publisherScheme, context, qualifiedName, xmlElement); return publisherScheme; } }); } } Step 5: Now we should define our CustomPublisher in the cache configuration file according to the following documentation. <cache-config xmlns:sync="class:com.oracle.coherence.CustomPushReplicationNamespaceContentHandler" xmlns:cr="class:com.oracle.coherence.environment.extensible.namespaces.InstanceNamespaceContentHandler"> <caching-schemes> <sync:provider pof-enabled="false"> <sync:coherence-provider /> </sync:provider> <caching-scheme-mapping> <cache-mapping> <cache-name>publishing-cache</cache-name> <scheme-name>distributed-scheme-with-publishing-cachestore</scheme-name> <autostart>true</autostart> <sync:publisher> <sync:publisher-name>Active2 Publisher</sync:publisher-name> <sync:publisher-scheme> <sync:remote-cluster-publisher-scheme> <sync:remote-invocation-service-name>remote-site1</sync:remote-invocation-service-name> <sync:remote-publisher-scheme> <sync:local-cache-publisher-scheme> <sync:target-cache-name>publishing-cache</sync:target-cache-name> </sync:local-cache-publisher-scheme> </sync:remote-publisher-scheme> <sync:autostart>true</sync:autostart> </sync:remote-cluster-publisher-scheme> </sync:publisher-scheme> </sync:publisher> <sync:publisher> <sync:publisher-name>Active2-Output-Publisher</sync:publisher-name> <sync:publisher-scheme> <sync:stderr-publisher-scheme> <sync:autostart>true</sync:autostart> <sync:publish-original-value>true</sync:publish-original-value> </sync:stderr-publisher-scheme> </sync:publisher-scheme> </sync:publisher> <sync:publisher> <sync:publisher-name>Active2-JDBC-Publisher</sync:publisher-name> <sync:publisher-scheme> <sync:custom-publisher-scheme> <sync:jdbc-string>jdbc:oracle:thin:@machine_name:1521:XE</sync:jdbc-string> <sync:username>hr</sync:username> <sync:password>hr</sync:password> </sync:custom-publisher-scheme> </sync:publisher-scheme> </sync:publisher> </cache-mapping> </caching-scheme-mapping> <!-- The following scheme is required for each remote-site when using a RemoteInvocationPublisher --> <remote-invocation-scheme> <service-name>remote-site1</service-name> <initiator-config> <tcp-initiator> <remote-addresses> <socket-address> <address>localhost</address> <port>20001</port> </socket-address> </remote-addresses> <connect-timeout>2s</connect-timeout> </tcp-initiator> <outgoing-message-handler> <request-timeout>5s</request-timeout> </outgoing-message-handler> </initiator-config> </remote-invocation-scheme> <!-- END: com.oracle.coherence.patterns.pushreplication --> <proxy-scheme> <service-name>ExtendTcpProxyService</service-name> <acceptor-config> <tcp-acceptor> <local-address> <address>localhost</address> <port>20002</port> </local-address> </tcp-acceptor> </acceptor-config> <autostart>true</autostart> </proxy-scheme> </caching-schemes> </cache-config> As you can see in the red-marked text from above I've:       - set new Namespace Content Handler       - define the new custom publisher that should work together with other publishers like: stderr and remote publishers in our case. Step 6: Add the com.oracle.coherence.CustomPublisherScheme to your custom-pof-config file: <pof-config> <user-type-list> <!-- Built in types --> <include>coherence-pof-config.xml</include> <include>coherence-common-pof-config.xml</include> <include>coherence-messagingpattern-pof-config.xml</include> <include>coherence-pushreplicationpattern-pof-config.xml</include> <!-- Application types --> <user-type> <type-id>1901</type-id> <class-name>com.oracle.coherence.Order</class-name> <serializer> <class-name>com.oracle.coherence.OrderSerializer</class-name> </serializer> </user-type> <user-type> <type-id>1902</type-id> <class-name>com.oracle.coherence.CustomPublisherScheme</class-name> </user-type> </user-type-list> </pof-config> CONCLUSIONSThis approach allows for publishers to publish data to almost any other receiver (database, JMS, MQ, ...). The only thing that needs to be changed is the DatabasePersistence.java class that should be adapted to the chosen receiver. Only minor changes are needed for the rest of the code (to publishBatch method from CustomPublisher class).

    Read the article

< Previous Page | 59 60 61 62 63 64 65 66 67 68 69 70  | Next Page >