Search Results

Search found 12934 results on 518 pages for 'magic methods'.

Page 64/518 | < Previous Page | 60 61 62 63 64 65 66 67 68 69 70 71  | Next Page >

  • Adding methods to an Objective C class interface is optional?

    - by Steve the Plant
    Coming from a C++ background, one thing that confuses me about Objective C is the fact that you can add a method to a class without actually specifying it in the class interface. So I had a barrage of questions: Why would someone choose to not add the method in the class interface? Is it simply because of visibility? Methods without a declaration in the interface are private? Is declaring methods in a class interface just optional? Is it different for overriding a base class' method?

    Read the article

  • What methods are there to configure puppet to serve resources for multiple environments?

    - by cclark
    I seem to come across two ways for using puppet in multiple environments: 1) Install a puppetmaster in each environment and only update the recipes from source control for that environment when ready to deploy the recipes in that environment. 2) Use one puppetmaster and use a variable in the puppet.conf of each client to specify the environment and then in the puppetmaster specify a different modulepath for each environment and each of those paths is updated to the branch of the recipe repository intended for that environment (e.g. dev, staging, production). Only running one puppetmaster seems like it is one less piece of infrastructure to keep running but there is some additional complexity in the configuration. Are there additional pros or cons to one of these methods or something which I'm missing entirely?

    Read the article

  • How do I dynamically update an instance array to hold a list of dynamic methods on instantiation?

    - by Will
    I am trying to dynamically define methods based on xml mappings. This works really well. However I want to create an instance variable that is a array of the dynamically defined methods. My code looks something like this def xml_attr_reader(*args) xml_list = "" args.each do |arg| string_val = "def #{arg}; " + " xml_mapping.#{arg}; " + "end; " self.class_eval string_val xml_hash = xml_list + "'#{arg}'," end self.class_eval "@xml_attributes = [] if @xml_attributes.nil?;" + "@xml_attributes = @xml_attributes + [#{xml_list}];" + "puts 'xml_attrs = ' + @xml_attributes.to_s;" + "def xml_attributes;" + " puts 'xml_attrs = ' + @xml_attributes.to_s;" + " @xml_attributes;" + "end" end So everything works except when I call xml_attributes on an instance it return null (and prints out 'xml_attrs = '). While the puts before the definition actually prints out the correct array. (when I instantiate the instance)

    Read the article

  • Performance Impact of Generating 100's of Dynamic Methods in Ruby?

    - by viatropos
    What are the performance issues associated with generating 100's of dynamic methods in Ruby? I've been interested in using the Ruby Preferences Gem and noticed that it generates a bunch of helper methods for each preference you set. For instance: class User < ActiveRecord::Base preference :hot_salsa end ...generates something like: user.prefers_hot_salsa? # => false user.prefers_hot_salsa # => false If there are 100's of preferences like this, how does this impact the application? I assume it's not really a big deal but I'm just wondering, theoretically.

    Read the article

  • Is it a good or bad practice to call instance methods from a java constructor?

    - by Steve
    There are several different ways I can initialize complex objects (with injected dependencies and required set-up of injected members), are all seem reasonable, but have various advantages and disadvantages. I'll give a concrete example: final class MyClass { private final Dependency dependency; @Inject public MyClass(Dependency dependency) { this.dependency = dependency; dependency.addHandler(new Handler() { @Override void handle(int foo) { MyClass.this.doSomething(foo); } }); doSomething(0); } private void doSomething(int foo) { dependency.doSomethingElse(foo+1); } } As you can see, the constructor does 3 things, including calling an instance method. I've been told that calling instance methods from a constructor is unsafe because it circumvents the compiler's checks for uninitialized members. I.e. I could have called doSomething(0) before setting this.dependency, which would have compiled but not worked. What is the best way to refactor this? Make doSomething static and pass in the dependency explicitly? In my actual case I have three instance methods and three member fields that all depend on one another, so this seems like a lot of extra boilerplate to make all three of these static. Move the addHandler and doSomething into an @Inject public void init() method. While use with Guice will be transparent, it requires any manual construction to be sure to call init() or else the object won't be fully-functional if someone forgets. Also, this exposes more of the API, both of which seem like bad ideas. Wrap a nested class to keep the dependency to make sure it behaves properly without exposing additional API:class DependencyManager { private final Dependency dependency; public DependecyManager(Dependency dependency) { ... } public doSomething(int foo) { ... } } @Inject public MyClass(Dependency dependency) { DependencyManager manager = new DependencyManager(dependency); manager.doSomething(0); } This pulls instance methods out of all constructors, but generates an extra layer of classes, and when I already had inner and anonymous classes (e.g. that handler) it can become confusing - when I tried this I was told to move the DependencyManager to a separate file, which is also distasteful because it's now multiple files to do a single thing. So what is the preferred way to deal with this sort of situation?

    Read the article

  • When can we mock an object and its methods?

    - by Shailendra
    I am novice to the Moq and unit testing. I have to write unit tests to a lot of classes which has the objects of other classes. can i mock the methods of the class objects. Here is the exact scenerio- I have a class two classes A and B and A has a private object of B and in a method of A i am internally calling the method of B and then doing some calculation and returning the result. Can i mock the method of B in this scenerio? Please try to give me full detail about the conditions where i can mock the methods and functions of the class. Thanx

    Read the article

  • Is there an automatic way to remove debugging methods for a release build?

    - by Lewis
    Note: This is an extension of an earlier question I asked here: Do additional function/method definitions increase a program's memory footprint? When I write a class, I usually end up writing several testing/debugging methods, used to make sure the class works as it should, or for printing data to help with debugging, or for unit testing, etc. Is there an easy/automatic way to make a release without these methods, or do I need to manually delete the extra code any time I want to compile a release version? I ask this question both from a C++ and a Java perspective. I'm using Code::Blocks and Eclipse as IDEs, if that plays into the answer somehow.

    Read the article

  • What are the methods of separating network spaces in a LAN?

    - by dash17291
    Please detail me the methods. My thoughts: put the servers in separate (sub)networks the servers are forced to go through the firewall but no NAT is required assign more IP addresses to the internal interface of the server choosing gateway addresses from the clients and servers IP address ranges split DNS Netfilter/{iptables, ipset} could be heavily involved, I'm talking about Linux servers. See for example: Destination NAT Onto the Same Network from internal clients Please do not explain what is NAT or DNS. This is a theoretical question, but my poor English knowledge prevent me to describe it in a fancy fashion.

    Read the article

  • What's the deal with a leading underscore in PHP class methods?

    - by nocash
    While looking over various PHP libraries I've noticed that a lot of people choose to prefix some class methods with a single underscore, such as public function _foo() ...instead of... public function foo() I realize that ultimately this comes down to personal preference, but I was wondering if anyone had some insight into where this habit comes from. My thought is that it's probably being carried over from PHP 4, before class methods could be marked as protected or private, as a way of implying "do not call this method from outside the class". However, it also occurred to me that maybe it originates somewhere (a language) I'm not familiar with or that there may be good reasoning behind it that I would benefit from knowing. Any thoughts, insights and/or opinions would be appreciated.

    Read the article

  • How do you extend a Ruby module with macro-like metaprogramming methods?

    - by Ian Terrell
    Consider the following extension (the pattern popularized by several Rails plugins over the years): module Extension def self.included(recipient) recipient.extend ClassMethods recipient.class_eval { include InstanceMethods } end module ClassMethods def macro_method puts "Called macro_method within #{self.name}" end end module InstanceMethods def instance_method puts "Called instance_method within #{self.object_id}" end end end If you wished to expose this to every class, you can do the following: Object.send :include, Extension Now you can define any class and use the macro method: class FooClass macro_method end #=> Called macro_method within FooClass And instances can use the instance methods: FooClass.new.instance_method #=> Called instance_method within 2148182320 But even though Module.is_a?(Object), you cannot use the macro method in a module: module FooModule macro_method end #=> undefined local variable or method `macro_method' for FooModule:Module (NameError) This is true even if you explicitly include the original Extension into Module with Module.send(:include, Extension). How do you add macro like methods to Ruby modules?

    Read the article

  • New to threading in C#, can you make thread methods generic and what are the dangers?

    - by ibarczewski
    Hey all, I'm just now starting to get into the idea of threading, and wanted to know if I could make this more abstract. Both foo and bar derive methods from a base class, so I'd like to pass in one or the other and be able to do work using a method that was derived. I'd also like to know how you properly name threads and the methods inside threads. if (ChkFoo.Checked) { Thread fooThread = new Thread(new ThreadStart(this.ThreadedFooMethod)); fooThread.Start(); } if (ChkBar.Checked) { Thread barThread = new Thread(new ThreadStart(this.ThreadedBarMethod)); barThread.Start(); } . . . public void ThreadedFooMethod() { Foo newFoo = new Foo(); //Do work on newFoo } public void ThreadedBarMethod() { Bar newBar = new Bar(); //Do similar work } Thanks all!

    Read the article

  • Which is the better way to avoid magic string keys? Using string const keys in a class or using enumeration?

    - by user596314
    My idea is to avoid magic string keys in my Asp.Net MVC application. To do so, I want to create string constant keys to be shared in the application. For example, I can write TempData[MyClass.Message] or TempData[MyEnum.Message.ToString()] instead of TempData["Message"]. public class MyClass { public const string Message = "Message"; } and public enum MyEnum { Message, Others } My questions are: Which is the better way to avoid magic string keys? Using string const keys in a class or using enumeration together with ToString()?

    Read the article

  • Is there any difference in the implementation of these three validation methods?

    - by dontWatchMyProfile
    Core Data is calling these methods in certain situations: - (BOOL)validateForInsert:(NSError **)outError; - (BOOL)validateForUpdate:(NSError **)outError; - (BOOL)validateForDelete:(NSError **)outError; I wonder if they're doing anything different, or if they're essentially doing the exact same things. As far as I know, these methods call the -validateValue:forKey:error: method once for every property. The only difference I can imagine is in the .validateForDelete: method. I see no reason why to validate an object when it shall be deleted, except for applying delete rules, probably only in the case of the DENY rule.

    Read the article

  • What are the typical methods used to scale up/out email storage servers?

    - by nareshov
    Hi, What I've tried: I have two email storage architectures. Old and new. Old: courier-imapds on several (18+) 1TB-storage servers. If one of them show signs of running out of disk space, we migrate a few email accounts to another server. the servers don't have replicas. no backups either. New: dovecot2 on a single huge server with 16TB (SATA) storage and a few SSDs we store fresh mails on the SSDs and run a doveadm purge to move mails older than a day to the SATA disks there is an identical server which has a max-15min-old rsync backup from the primary server higher-ups/management wanted to pack in as much storage as possible per server in order to minimise the cost of SSDs per server the rsync'ing is done because GlusterFS wasn't replicating well under that high small/random-IO. scaling out was expected to be done with provisioning another pair of such huge servers on facing disk-crunch issues like in the old architecture, manual moving of email accounts would be done. Concerns/doubts: I'm not convinced with the synchronously-replicated filesystem idea works well for heavy random/small-IO. GlusterFS isn't working for us yet, I'm not sure if there's another filesystem out there for this use case. The idea was to keep identical pairs and use DNS round-robin for email delivery and IMAP/POP3 access. And if one the servers went down for whatever reasons (planned/unplanned), we'd move the IP to the other server in the pair. In filesystems like Lustre, I get the advantage of a single namespace whereby I do not have to worry about manually migrating accounts around and updating MAILHOME paths and other metadata/data. Questions: What are the typical methods used to scale up/out with the traditional software (courier-imapd / dovecot)? Do traditional software that store on a locally mounted filesystem pose a roadblock to scale out with minimal "problems"? Does one have to re-write (parts of) these to work with an object-storage of some sort - such as OpenStack object storage?

    Read the article

  • An Introduction to ASP.NET Web API

    - by Rick Strahl
    Microsoft recently released ASP.NET MVC 4.0 and .NET 4.5 and along with it, the brand spanking new ASP.NET Web API. Web API is an exciting new addition to the ASP.NET stack that provides a new, well-designed HTTP framework for creating REST and AJAX APIs (API is Microsoft’s new jargon for a service, in case you’re wondering). Although Web API ships and installs with ASP.NET MVC 4, you can use Web API functionality in any ASP.NET project, including WebForms, WebPages and MVC or just a Web API by itself. And you can also self-host Web API in your own applications from Console, Desktop or Service applications. If you're interested in a high level overview on what ASP.NET Web API is and how it fits into the ASP.NET stack you can check out my previous post: Where does ASP.NET Web API fit? In the following article, I'll focus on a practical, by example introduction to ASP.NET Web API. All the code discussed in this article is available in GitHub: https://github.com/RickStrahl/AspNetWebApiArticle [republished from my Code Magazine Article and updated for RTM release of ASP.NET Web API] Getting Started To start I’ll create a new empty ASP.NET application to demonstrate that Web API can work with any kind of ASP.NET project. Although you can create a new project based on the ASP.NET MVC/Web API template to quickly get up and running, I’ll take you through the manual setup process, because one common use case is to add Web API functionality to an existing ASP.NET application. This process describes the steps needed to hook up Web API to any ASP.NET 4.0 application. Start by creating an ASP.NET Empty Project. Then create a new folder in the project called Controllers. Add a Web API Controller Class Once you have any kind of ASP.NET project open, you can add a Web API Controller class to it. Web API Controllers are very similar to MVC Controller classes, but they work in any kind of project. Add a new item to this folder by using the Add New Item option in Visual Studio and choose Web API Controller Class, as shown in Figure 1. Figure 1: This is how you create a new Controller Class in Visual Studio   Make sure that the name of the controller class includes Controller at the end of it, which is required in order for Web API routing to find it. Here, the name for the class is AlbumApiController. For this example, I’ll use a Music Album model to demonstrate basic behavior of Web API. The model consists of albums and related songs where an album has properties like Name, Artist and YearReleased and a list of songs with a SongName and SongLength as well as an AlbumId that links it to the album. You can find the code for the model (and the rest of these samples) on Github. To add the file manually, create a new folder called Model, and add a new class Album.cs and copy the code into it. There’s a static AlbumData class with a static CreateSampleAlbumData() method that creates a short list of albums on a static .Current that I’ll use for the examples. Before we look at what goes into the controller class though, let’s hook up routing so we can access this new controller. Hooking up Routing in Global.asax To start, I need to perform the one required configuration task in order for Web API to work: I need to configure routing to the controller. Like MVC, Web API uses routing to provide clean, extension-less URLs to controller methods. Using an extension method to ASP.NET’s static RouteTable class, you can use the MapHttpRoute() (in the System.Web.Http namespace) method to hook-up the routing during Application_Start in global.asax.cs shown in Listing 1.using System; using System.Web.Routing; using System.Web.Http; namespace AspNetWebApi { public class Global : System.Web.HttpApplication { protected void Application_Start(object sender, EventArgs e) { RouteTable.Routes.MapHttpRoute( name: "AlbumVerbs", routeTemplate: "albums/{title}", defaults: new { symbol = RouteParameter.Optional, controller="AlbumApi" } ); } } } This route configures Web API to direct URLs that start with an albums folder to the AlbumApiController class. Routing in ASP.NET is used to create extensionless URLs and allows you to map segments of the URL to specific Route Value parameters. A route parameter, with a name inside curly brackets like {name}, is mapped to parameters on the controller methods. Route parameters can be optional, and there are two special route parameters – controller and action – that determine the controller to call and the method to activate respectively. HTTP Verb Routing Routing in Web API can route requests by HTTP Verb in addition to standard {controller},{action} routing. For the first examples, I use HTTP Verb routing, as shown Listing 1. Notice that the route I’ve defined does not include an {action} route value or action value in the defaults. Rather, Web API can use the HTTP Verb in this route to determine the method to call the controller, and a GET request maps to any method that starts with Get. So methods called Get() or GetAlbums() are matched by a GET request and a POST request maps to a Post() or PostAlbum(). Web API matches a method by name and parameter signature to match a route, query string or POST values. In lieu of the method name, the [HttpGet,HttpPost,HttpPut,HttpDelete, etc] attributes can also be used to designate the accepted verbs explicitly if you don’t want to follow the verb naming conventions. Although HTTP Verb routing is a good practice for REST style resource APIs, it’s not required and you can still use more traditional routes with an explicit {action} route parameter. When {action} is supplied, the HTTP verb routing is ignored. I’ll talk more about alternate routes later. When you’re finished with initial creation of files, your project should look like Figure 2.   Figure 2: The initial project has the new API Controller Album model   Creating a small Album Model Now it’s time to create some controller methods to serve data. For these examples, I’ll use a very simple Album and Songs model to play with, as shown in Listing 2. public class Song { public string AlbumId { get; set; } [Required, StringLength(80)] public string SongName { get; set; } [StringLength(5)] public string SongLength { get; set; } } public class Album { public string Id { get; set; } [Required, StringLength(80)] public string AlbumName { get; set; } [StringLength(80)] public string Artist { get; set; } public int YearReleased { get; set; } public DateTime Entered { get; set; } [StringLength(150)] public string AlbumImageUrl { get; set; } [StringLength(200)] public string AmazonUrl { get; set; } public virtual List<Song> Songs { get; set; } public Album() { Songs = new List<Song>(); Entered = DateTime.Now; // Poor man's unique Id off GUID hash Id = Guid.NewGuid().GetHashCode().ToString("x"); } public void AddSong(string songName, string songLength = null) { this.Songs.Add(new Song() { AlbumId = this.Id, SongName = songName, SongLength = songLength }); } } Once the model has been created, I also added an AlbumData class that generates some static data in memory that is loaded onto a static .Current member. The signature of this class looks like this and that's what I'll access to retrieve the base data:public static class AlbumData { // sample data - static list public static List<Album> Current = CreateSampleAlbumData(); /// <summary> /// Create some sample data /// </summary> /// <returns></returns> public static List<Album> CreateSampleAlbumData() { … }} You can check out the full code for the data generation online. Creating an AlbumApiController Web API shares many concepts of ASP.NET MVC, and the implementation of your API logic is done by implementing a subclass of the System.Web.Http.ApiController class. Each public method in the implemented controller is a potential endpoint for the HTTP API, as long as a matching route can be found to invoke it. The class name you create should end in Controller, which is how Web API matches the controller route value to figure out which class to invoke. Inside the controller you can implement methods that take standard .NET input parameters and return .NET values as results. Web API’s binding tries to match POST data, route values, form values or query string values to your parameters. Because the controller is configured for HTTP Verb based routing (no {action} parameter in the route), any methods that start with Getxxxx() are called by an HTTP GET operation. You can have multiple methods that match each HTTP Verb as long as the parameter signatures are different and can be matched by Web API. In Listing 3, I create an AlbumApiController with two methods to retrieve a list of albums and a single album by its title .public class AlbumApiController : ApiController { public IEnumerable<Album> GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); return albums; } public Album GetAlbum(string title) { var album = AlbumData.Current .SingleOrDefault(alb => alb.AlbumName.Contains(title)); return album; }} To access the first two requests, you can use the following URLs in your browser: http://localhost/aspnetWebApi/albumshttp://localhost/aspnetWebApi/albums/Dirty%20Deeds Note that you’re not specifying the actions of GetAlbum or GetAlbums in these URLs. Instead Web API’s routing uses HTTP GET verb to route to these methods that start with Getxxx() with the first mapping to the parameterless GetAlbums() method and the latter to the GetAlbum(title) method that receives the title parameter mapped as optional in the route. Content Negotiation When you access any of the URLs above from a browser, you get either an XML or JSON result returned back. The album list result for Chrome 17 and Internet Explorer 9 is shown Figure 3. Figure 3: Web API responses can vary depending on the browser used, demonstrating Content Negotiation in action as these two browsers send different HTTP Accept headers.   Notice that the results are not the same: Chrome returns an XML response and IE9 returns a JSON response. Whoa, what’s going on here? Shouldn’t we see the same result in both browsers? Actually, no. Web API determines what type of content to return based on Accept headers. HTTP clients, like browsers, use Accept headers to specify what kind of content they’d like to see returned. Browsers generally ask for HTML first, followed by a few additional content types. Chrome (and most other major browsers) ask for: Accept: text/html, application/xhtml+xml,application/xml; q=0.9,*/*;q=0.8 IE9 asks for: Accept: text/html, application/xhtml+xml, */* Note that Chrome’s Accept header includes application/xml, which Web API finds in its list of supported media types and returns an XML response. IE9 does not include an Accept header type that works on Web API by default, and so it returns the default format, which is JSON. This is an important and very useful feature that was missing from any previous Microsoft REST tools: Web API automatically switches output formats based on HTTP Accept headers. Nowhere in the server code above do you have to explicitly specify the output format. Rather, Web API determines what format the client is requesting based on the Accept headers and automatically returns the result based on the available formatters. This means that a single method can handle both XML and JSON results.. Using this simple approach makes it very easy to create a single controller method that can return JSON, XML, ATOM or even OData feeds by providing the appropriate Accept header from the client. By default you don’t have to worry about the output format in your code. Note that you can still specify an explicit output format if you choose, either globally by overriding the installed formatters, or individually by returning a lower level HttpResponseMessage instance and setting the formatter explicitly. More on that in a minute. Along the same lines, any content sent to the server via POST/PUT is parsed by Web API based on the HTTP Content-type of the data sent. The same formats allowed for output are also allowed on input. Again, you don’t have to do anything in your code – Web API automatically performs the deserialization from the content. Accessing Web API JSON Data with jQuery A very common scenario for Web API endpoints is to retrieve data for AJAX calls from the Web browser. Because JSON is the default format for Web API, it’s easy to access data from the server using jQuery and its getJSON() method. This example receives the albums array from GetAlbums() and databinds it into the page using knockout.js.$.getJSON("albums/", function (albums) { // make knockout template visible $(".album").show(); // create view object and attach array var view = { albums: albums }; ko.applyBindings(view); }); Figure 4 shows this and the next example’s HTML output. You can check out the complete HTML and script code at http://goo.gl/Ix33C (.html) and http://goo.gl/tETlg (.js). Figu Figure 4: The Album Display sample uses JSON data loaded from Web API.   The result from the getJSON() call is a JavaScript object of the server result, which comes back as a JavaScript array. In the code, I use knockout.js to bind this array into the UI, which as you can see, requires very little code, instead using knockout’s data-bind attributes to bind server data to the UI. Of course, this is just one way to use the data – it’s entirely up to you to decide what to do with the data in your client code. Along the same lines, I can retrieve a single album to display when the user clicks on an album. The response returns the album information and a child array with all the songs. The code to do this is very similar to the last example where we pulled the albums array:$(".albumlink").live("click", function () { var id = $(this).data("id"); // title $.getJSON("albums/" + id, function (album) { ko.applyBindings(album, $("#divAlbumDialog")[0]); $("#divAlbumDialog").show(); }); }); Here the URL looks like this: /albums/Dirty%20Deeds, where the title is the ID captured from the clicked element’s data ID attribute. Explicitly Overriding Output Format When Web API automatically converts output using content negotiation, it does so by matching Accept header media types to the GlobalConfiguration.Configuration.Formatters and the SupportedMediaTypes of each individual formatter. You can add and remove formatters to globally affect what formats are available and it’s easy to create and plug in custom formatters.The example project includes a JSONP formatter that can be plugged in to provide JSONP support for requests that have a callback= querystring parameter. Adding, removing or replacing formatters is a global option you can use to manipulate content. It’s beyond the scope of this introduction to show how it works, but you can review the sample code or check out my blog entry on the subject (http://goo.gl/UAzaR). If automatic processing is not desirable in a particular Controller method, you can override the response output explicitly by returning an HttpResponseMessage instance. HttpResponseMessage is similar to ActionResult in ASP.NET MVC in that it’s a common way to return an abstract result message that contains content. HttpResponseMessage s parsed by the Web API framework using standard interfaces to retrieve the response data, status code, headers and so on[MS2] . Web API turns every response – including those Controller methods that return static results – into HttpResponseMessage instances. Explicitly returning an HttpResponseMessage instance gives you full control over the output and lets you mostly bypass WebAPI’s post-processing of the HTTP response on your behalf. HttpResponseMessage allows you to customize the response in great detail. Web API’s attention to detail in the HTTP spec really shows; many HTTP options are exposed as properties and enumerations with detailed IntelliSense comments. Even if you’re new to building REST-based interfaces, the API guides you in the right direction for returning valid responses and response codes. For example, assume that I always want to return JSON from the GetAlbums() controller method and ignore the default media type content negotiation. To do this, I can adjust the output format and headers as shown in Listing 4.public HttpResponseMessage GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); // Create a new HttpResponse with Json Formatter explicitly var resp = new HttpResponseMessage(HttpStatusCode.OK); resp.Content = new ObjectContent<IEnumerable<Album>>( albums, new JsonMediaTypeFormatter()); // Get Default Formatter based on Content Negotiation //var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); resp.Headers.ConnectionClose = true; resp.Headers.CacheControl = new CacheControlHeaderValue(); resp.Headers.CacheControl.Public = true; return resp; } This example returns the same IEnumerable<Album> value, but it wraps the response into an HttpResponseMessage so you can control the entire HTTP message result including the headers, formatter and status code. In Listing 4, I explicitly specify the formatter using the JsonMediaTypeFormatter to always force the content to JSON.  If you prefer to use the default content negotiation with HttpResponseMessage results, you can create the Response instance using the Request.CreateResponse method:var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); This provides you an HttpResponse object that's pre-configured with the default formatter based on Content Negotiation. Once you have an HttpResponse object you can easily control most HTTP aspects on this object. What's sweet here is that there are many more detailed properties on HttpResponse than the core ASP.NET Response object, with most options being explicitly configurable with enumerations that make it easy to pick the right headers and response codes from a list of valid codes. It makes HTTP features available much more discoverable even for non-hardcore REST/HTTP geeks. Non-Serialized Results The output returned doesn’t have to be a serialized value but can also be raw data, like strings, binary data or streams. You can use the HttpResponseMessage.Content object to set a number of common Content classes. Listing 5 shows how to return a binary image using the ByteArrayContent class from a Controller method. [HttpGet] public HttpResponseMessage AlbumArt(string title) { var album = AlbumData.Current.FirstOrDefault(abl => abl.AlbumName.StartsWith(title)); if (album == null) { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found")); return resp; } // kinda silly - we would normally serve this directly // but hey - it's a demo. var http = new WebClient(); var imageData = http.DownloadData(album.AlbumImageUrl); // create response and return var result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new ByteArrayContent(imageData); result.Content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg"); return result; } The image retrieval from Amazon is contrived, but it shows how to return binary data using ByteArrayContent. It also demonstrates that you can easily return multiple types of content from a single controller method, which is actually quite common. If an error occurs - such as a resource can’t be found or a validation error – you can return an error response to the client that’s very specific to the error. In GetAlbumArt(), if the album can’t be found, we want to return a 404 Not Found status (and realistically no error, as it’s an image). Note that if you are not using HTTP Verb-based routing or not accessing a method that starts with Get/Post etc., you have to specify one or more HTTP Verb attributes on the method explicitly. Here, I used the [HttpGet] attribute to serve the image. Another option to handle the error could be to return a fixed placeholder image if no album could be matched or the album doesn’t have an image. When returning an error code, you can also return a strongly typed response to the client. For example, you can set the 404 status code and also return a custom error object (ApiMessageError is a class I defined) like this:return Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found") );   If the album can be found, the image will be returned. The image is downloaded into a byte[] array, and then assigned to the result’s Content property. I created a new ByteArrayContent instance and assigned the image’s bytes and the content type so that it displays properly in the browser. There are other content classes available: StringContent, StreamContent, ByteArrayContent, MultipartContent, and ObjectContent are at your disposal to return just about any kind of content. You can create your own Content classes if you frequently return custom types and handle the default formatter assignments that should be used to send the data out . Although HttpResponseMessage results require more code than returning a plain .NET value from a method, it allows much more control over the actual HTTP processing than automatic processing. It also makes it much easier to test your controller methods as you get a response object that you can check for specific status codes and output messages rather than just a result value. Routing Again Ok, let’s get back to the image example. Using the original routing we have setup using HTTP Verb routing there's no good way to serve the image. In order to return my album art image I’d like to use a URL like this: http://localhost/aspnetWebApi/albums/Dirty%20Deeds/image In order to create a URL like this, I have to create a new Controller because my earlier routes pointed to the AlbumApiController using HTTP Verb routing. HTTP Verb based routing is great for representing a single set of resources such as albums. You can map operations like add, delete, update and read easily using HTTP Verbs. But you cannot mix action based routing into a an HTTP Verb routing controller - you can only map HTTP Verbs and each method has to be unique based on parameter signature. You can't have multiple GET operations to methods with the same signature. So GetImage(string id) and GetAlbum(string title) are in conflict in an HTTP GET routing scenario. In fact, I was unable to make the above Image URL work with any combination of HTTP Verb plus Custom routing using the single Albums controller. There are number of ways around this, but all involve additional controllers.  Personally, I think it’s easier to use explicit Action routing and then add custom routes if you need to simplify your URLs further. So in order to accommodate some of the other examples, I created another controller – AlbumRpcApiController – to handle all requests that are explicitly routed via actions (/albums/rpc/AlbumArt) or are custom routed with explicit routes defined in the HttpConfiguration. I added the AlbumArt() method to this new AlbumRpcApiController class. For the image URL to work with the new AlbumRpcApiController, you need a custom route placed before the default route from Listing 1.RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); Now I can use either of the following URLs to access the image: Custom route: (/albums/rpc/{title}/image)http://localhost/aspnetWebApi/albums/PowerAge/image Action route: (/albums/rpc/action/{title})http://localhost/aspnetWebAPI/albums/rpc/albumart/PowerAge Sending Data to the Server To send data to the server and add a new album, you can use an HTTP POST operation. Since I’m using HTTP Verb-based routing in the original AlbumApiController, I can implement a method called PostAlbum()to accept a new album from the client. Listing 6 shows the Web API code to add a new album.public HttpResponseMessage PostAlbum(Album album) { if (!this.ModelState.IsValid) { // my custom error class var error = new ApiMessageError() { message = "Model is invalid" }; // add errors into our client error model for client foreach (var prop in ModelState.Values) { var modelError = prop.Errors.FirstOrDefault(); if (!string.IsNullOrEmpty(modelError.ErrorMessage)) error.errors.Add(modelError.ErrorMessage); else error.errors.Add(modelError.Exception.Message); } return Request.CreateResponse<ApiMessageError>(HttpStatusCode.Conflict, error); } // update song id which isn't provided foreach (var song in album.Songs) song.AlbumId = album.Id; // see if album exists already var matchedAlbum = AlbumData.Current .SingleOrDefault(alb => alb.Id == album.Id || alb.AlbumName == album.AlbumName); if (matchedAlbum == null) AlbumData.Current.Add(album); else matchedAlbum = album; // return a string to show that the value got here var resp = Request.CreateResponse(HttpStatusCode.OK, string.Empty); resp.Content = new StringContent(album.AlbumName + " " + album.Entered.ToString(), Encoding.UTF8, "text/plain"); return resp; } The PostAlbum() method receives an album parameter, which is automatically deserialized from the POST buffer the client sent. The data passed from the client can be either XML or JSON. Web API automatically figures out what format it needs to deserialize based on the content type and binds the content to the album object. Web API uses model binding to bind the request content to the parameter(s) of controller methods. Like MVC you can check the model by looking at ModelState.IsValid. If it’s not valid, you can run through the ModelState.Values collection and check each binding for errors. Here I collect the error messages into a string array that gets passed back to the client via the result ApiErrorMessage object. When a binding error occurs, you’ll want to return an HTTP error response and it’s best to do that with an HttpResponseMessage result. In Listing 6, I used a custom error class that holds a message and an array of detailed error messages for each binding error. I used this object as the content to return to the client along with my Conflict HTTP Status Code response. If binding succeeds, the example returns a string with the name and date entered to demonstrate that you captured the data. Normally, a method like this should return a Boolean or no response at all (HttpStatusCode.NoConent). The sample uses a simple static list to hold albums, so once you’ve added the album using the Post operation, you can hit the /albums/ URL to see that the new album was added. The client jQuery code to call the POST operation from the client with jQuery is shown in Listing 7. var id = new Date().getTime().toString(); var album = { "Id": id, "AlbumName": "Power Age", "Artist": "AC/DC", "YearReleased": 1977, "Entered": "2002-03-11T18:24:43.5580794-10:00", "AlbumImageUrl": http://ecx.images-amazon.com/images/…, "AmazonUrl": http://www.amazon.com/…, "Songs": [ { "SongName": "Rock 'n Roll Damnation", "SongLength": 3.12}, { "SongName": "Downpayment Blues", "SongLength": 4.22 }, { "SongName": "Riff Raff", "SongLength": 2.42 } ] } $.ajax( { url: "albums/", type: "POST", contentType: "application/json", data: JSON.stringify(album), processData: false, beforeSend: function (xhr) { // not required since JSON is default output xhr.setRequestHeader("Accept", "application/json"); }, success: function (result) { // reload list of albums page.loadAlbums(); }, error: function (xhr, status, p3, p4) { var err = "Error"; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); The code in Listing 7 creates an album object in JavaScript to match the structure of the .NET Album class. This object is passed to the $.ajax() function to send to the server as POST. The data is turned into JSON and the content type set to application/json so that the server knows what to convert when deserializing in the Album instance. The jQuery code hooks up success and failure events. Success returns the result data, which is a string that’s echoed back with an alert box. If an error occurs, jQuery returns the XHR instance and status code. You can check the XHR to see if a JSON object is embedded and if it is, you can extract it by de-serializing it and accessing the .message property. REST standards suggest that updates to existing resources should use PUT operations. REST standards aside, I’m not a big fan of separating out inserts and updates so I tend to have a single method that handles both. But if you want to follow REST suggestions, you can create a PUT method that handles updates by forwarding the PUT operation to the POST method:public HttpResponseMessage PutAlbum(Album album) { return PostAlbum(album); } To make the corresponding $.ajax() call, all you have to change from Listing 7 is the type: from POST to PUT. Model Binding with UrlEncoded POST Variables In the example in Listing 7 I used JSON objects to post a serialized object to a server method that accepted an strongly typed object with the same structure, which is a common way to send data to the server. However, Web API supports a number of different ways that data can be received by server methods. For example, another common way is to use plain UrlEncoded POST  values to send to the server. Web API supports Model Binding that works similar (but not the same) as MVC's model binding where POST variables are mapped to properties of object parameters of the target method. This is actually quite common for AJAX calls that want to avoid serialization and the potential requirement of a JSON parser on older browsers. For example, using jQUery you might use the $.post() method to send a new album to the server (albeit one without songs) using code like the following:$.post("albums/",{AlbumName: "Dirty Deeds", YearReleased: 1976 … },albumPostCallback); Although the code looks very similar to the client code we used before passing JSON, here the data passed is URL encoded values (AlbumName=Dirty+Deeds&YearReleased=1976 etc.). Web API then takes this POST data and maps each of the POST values to the properties of the Album object in the method's parameter. Although the client code is different the server can both handle the JSON object, or the UrlEncoded POST values. Dynamic Access to POST Data There are also a few options available to dynamically access POST data, if you know what type of data you're dealing with. If you have POST UrlEncoded values, you can dynamically using a FormsDataCollection:[HttpPost] public string PostAlbum(FormDataCollection form) { return string.Format("{0} - released {1}", form.Get("AlbumName"),form.Get("RearReleased")); } The FormDataCollection is a very simple object, that essentially provides the same functionality as Request.Form[] in ASP.NET. Request.Form[] still works if you're running hosted in an ASP.NET application. However as a general rule, while ASP.NET's functionality is always available when running Web API hosted inside of an  ASP.NET application, using the built in classes specific to Web API makes it possible to run Web API applications in a self hosted environment outside of ASP.NET. If your client is sending JSON to your server, and you don't want to map the JSON to a strongly typed object because you only want to retrieve a few simple values, you can also accept a JObject parameter in your API methods:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } There quite a few options available to you to receive data with Web API, which gives you more choices for the right tool for the job. Unfortunately one shortcoming of Web API is that POST data is always mapped to a single parameter. This means you can't pass multiple POST parameters to methods that receive POST data. It's possible to accept multiple parameters, but only one can map to the POST content - the others have to come from the query string or route values. I have a couple of Blog POSTs that explain what works and what doesn't here: Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API   Handling Delete Operations Finally, to round out the server API code of the album example we've been discussin, here’s the DELETE verb controller method that allows removal of an album by its title:public HttpResponseMessage DeleteAlbum(string title) { var matchedAlbum = AlbumData.Current.Where(alb => alb.AlbumName == title) .SingleOrDefault(); if (matchedAlbum == null) return new HttpResponseMessage(HttpStatusCode.NotFound); AlbumData.Current.Remove(matchedAlbum); return new HttpResponseMessage(HttpStatusCode.NoContent); } To call this action method using jQuery, you can use:$(".removeimage").live("click", function () { var $el = $(this).parent(".album"); var txt = $el.find("a").text(); $.ajax({ url: "albums/" + encodeURIComponent(txt), type: "Delete", success: function (result) { $el.fadeOut().remove(); }, error: jqError }); }   Note the use of the DELETE verb in the $.ajax() call, which routes to DeleteAlbum on the server. DELETE is a non-content operation, so you supply a resource ID (the title) via route value or the querystring. Routing Conflicts In all requests with the exception of the AlbumArt image example shown so far, I used HTTP Verb routing that I set up in Listing 1. HTTP Verb Routing is a recommendation that is in line with typical REST access to HTTP resources. However, it takes quite a bit of effort to create REST-compliant API implementations based only on HTTP Verb routing only. You saw one example that didn’t really fit – the return of an image where I created a custom route albums/{title}/image that required creation of a second controller and a custom route to work. HTTP Verb routing to a controller does not mix with custom or action routing to the same controller because of the limited mapping of HTTP verbs imposed by HTTP Verb routing. To understand some of the problems with verb routing, let’s look at another example. Let’s say you create a GetSortableAlbums() method like this and add it to the original AlbumApiController accessed via HTTP Verb routing:[HttpGet] public IQueryable<Album> SortableAlbums() { var albums = AlbumData.Current; // generally should be done only on actual queryable results (EF etc.) // Done here because we're running with a static list but otherwise might be slow return albums.AsQueryable(); } If you compile this code and try to now access the /albums/ link, you get an error: Multiple Actions were found that match the request. HTTP Verb routing only allows access to one GET operation per parameter/route value match. If more than one method exists with the same parameter signature, it doesn’t work. As I mentioned earlier for the image display, the only solution to get this method to work is to throw it into another controller. Because I already set up the AlbumRpcApiController I can add the method there. First, I should rename the method to SortableAlbums() so I’m not using a Get prefix for the method. This also makes the action parameter look cleaner in the URL - it looks less like a method and more like a noun. I can then create a new route that handles direct-action mapping:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); As I am explicitly adding a route segment – rpc – into the route template, I can now reference explicit methods in the Web API controller using URLs like this: http://localhost/AspNetWebApi/rpc/SortableAlbums Error Handling I’ve already done some minimal error handling in the examples. For example in Listing 6, I detected some known-error scenarios like model validation failing or a resource not being found and returning an appropriate HttpResponseMessage result. But what happens if your code just blows up or causes an exception? If you have a controller method, like this:[HttpGet] public void ThrowException() { throw new UnauthorizedAccessException("Unauthorized Access Sucka"); } You can call it with this: http://localhost/AspNetWebApi/albums/rpc/ThrowException The default exception handling displays a 500-status response with the serialized exception on the local computer only. When you connect from a remote computer, Web API throws back a 500  HTTP Error with no data returned (IIS then adds its HTML error page). The behavior is configurable in the GlobalConfiguration:GlobalConfiguration .Configuration .IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never; If you want more control over your error responses sent from code, you can throw explicit error responses yourself using HttpResponseException. When you throw an HttpResponseException the response parameter is used to generate the output for the Controller action. [HttpGet] public void ThrowError() { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.BadRequest, new ApiMessageError("Your code stinks!")); throw new HttpResponseException(resp); } Throwing an HttpResponseException stops the processing of the controller method and immediately returns the response you passed to the exception. Unlike other Exceptions fired inside of WebAPI, HttpResponseException bypasses the Exception Filters installed and instead just outputs the response you provide. In this case, the serialized ApiMessageError result string is returned in the default serialization format – XML or JSON. You can pass any content to HttpResponseMessage, which includes creating your own exception objects and consistently returning error messages to the client. Here’s a small helper method on the controller that you might use to send exception info back to the client consistently:private void ThrowSafeException(string message, HttpStatusCode statusCode = HttpStatusCode.BadRequest) { var errResponse = Request.CreateResponse<ApiMessageError>(statusCode, new ApiMessageError() { message = message }); throw new HttpResponseException(errResponse); } You can then use it to output any captured errors from code:[HttpGet] public void ThrowErrorSafe() { try { List<string> list = null; list.Add("Rick"); } catch (Exception ex) { ThrowSafeException(ex.Message); } }   Exception Filters Another more global solution is to create an Exception Filter. Filters in Web API provide the ability to pre- and post-process controller method operations. An exception filter looks at all exceptions fired and then optionally creates an HttpResponseMessage result. Listing 8 shows an example of a basic Exception filter implementation.public class UnhandledExceptionFilter : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { HttpStatusCode status = HttpStatusCode.InternalServerError; var exType = context.Exception.GetType(); if (exType == typeof(UnauthorizedAccessException)) status = HttpStatusCode.Unauthorized; else if (exType == typeof(ArgumentException)) status = HttpStatusCode.NotFound; var apiError = new ApiMessageError() { message = context.Exception.Message }; // create a new response and attach our ApiError object // which now gets returned on ANY exception result var errorResponse = context.Request.CreateResponse<ApiMessageError>(status, apiError); context.Response = errorResponse; base.OnException(context); } } Exception Filter Attributes can be assigned to an ApiController class like this:[UnhandledExceptionFilter] public class AlbumRpcApiController : ApiController or you can globally assign it to all controllers by adding it to the HTTP Configuration's Filters collection:GlobalConfiguration.Configuration.Filters.Add(new UnhandledExceptionFilter()); The latter is a great way to get global error trapping so that all errors (short of hard IIS errors and explicit HttpResponseException errors) return a valid error response that includes error information in the form of a known-error object. Using a filter like this allows you to throw an exception as you normally would and have your filter create a response in the appropriate output format that the client expects. For example, an AJAX application can on failure expect to see a JSON error result that corresponds to the real error that occurred rather than a 500 error along with HTML error page that IIS throws up. You can even create some custom exceptions so you can differentiate your own exceptions from unhandled system exceptions - you often don't want to display error information from 'unknown' exceptions as they may contain sensitive system information or info that's not generally useful to users of your application/site. This is just one example of how ASP.NET Web API is configurable and extensible. Exception filters are just one example of how you can plug-in into the Web API request flow to modify output. Many more hooks exist and I’ll take a closer look at extensibility in Part 2 of this article in the future. Summary Web API is a big improvement over previous Microsoft REST and AJAX toolkits. The key features to its usefulness are its ease of use with simple controller based logic, familiar MVC-style routing, low configuration impact, extensibility at all levels and tight attention to exposing and making HTTP semantics easily discoverable and easy to use. Although none of the concepts used in Web API are new or radical, Web API combines the best of previous platforms into a single framework that’s highly functional, easy to work with, and extensible to boot. I think that Microsoft has hit a home run with Web API. Related Resources Where does ASP.NET Web API fit? Sample Source Code on GitHub Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API Creating a JSONP Formatter for ASP.NET Web API Removing the XML Formatter from ASP.NET Web API Applications© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Best Way to Load Streaming Media Content in Intranet

    - by Magic
    Hello, What would be the best way to deal with large streaming media content in Intranet. We have a 50 MB file that is to be loaded to our Intranet site. Currently we have just pointed it to a file location instead of using a Data Streaming Server. This will download to each client when selected and is obviously not a good approach to accessing streaming media when accessing from overseas offices. Any suggestions? Cheers, Magic

    Read the article

  • What are some fast methods for navigating to frequently used folders in Windows 7?

    - by fostandy
    (This is a followup question from my previous question.) In windows XP I used to be able to quickly navigate to frequently used folders by making use of the 'Favorites' menu item and the hotkey behaviour. In certain conditions it could be set up so that getting to a particular folder was as easy as alt-a x (and without a file explorer window open it was as fast as win-e alt-a x). I am struggling to get anywhere near this speed in Windows 7 and would like to solicit advice from others regarding fast folder navigation to see if I am missing any methods. My current way to navigate quickly is basically move hand to mouse move cursor to navigation pane/pain. scroll all the way to the top (because normally I the panel is focused on whatever deep directory structure I am already in). sift through my 50+ favorites to get the one I want, or click a link to a folder that contains further links in some sort of 'pseudo-tree' functionality. select it. This is slower than my previous method by upwards of an order of magnitude. There are a couple of things I've contemplated: add expandable folders, not just direct links, to the favorites menu. add expandable folders, not just direct links, to the start menu. add links of my favorite folders to a submenu of the start menu so that they come up when I search them. They do but this still rather cumbersome started using 7stacks - url here (I cannot link the url directly due to lack of reputation but http://www.alastria.com/index.php?p=software-7s). This is about the closest I've gotten to some sort of compact, customizeable, easy to access, tree based navigation structure. How do you power users quickly navigate to your favorite folders? Are there keyboard shortcuts I am missing? Can someone recommend other apps or addon or extensions that can achieve this sort of functionality? The Current solution (thanks to the answers below) I am going to use is a combination of Autohotkey and 7stacks - autohotkey to launch 7stacks, 7stacks with the 'menu' stack type for fast, key-enabled navigation to folders organised in a tree structure. This solves about 90% of the issue, the only issues are (note that these are really minor, I am really splitting hairs more than anything here) Can't use this for existing folder navigation (ie already have a explorer window open, want to go to another directory) A bit more cumbersome to add/remove entries to compared to xp favorites. A little slower than xp favorites. Whatever. I'm happy. Thanks guys. I think the answer is a split to John T and Kelbizzle - I've elected to give the answer to John T and +1 to Kelbizzle as I had already mentioned 7stacks.

    Read the article

  • Application workflow

    - by manseuk
    I am in the planning process for a new application, the application will be written in PHP (using the Symfony 2 framework) but I'm not sure how relevant that is. The application will be browser based, although there will eventually be API access for other systems to interact with the data stored within the application, again probably not relavent at this point. The application manages SIM cards for lots of different providers - each SIM card belongs to a single provider but a single customer might have many SIM cards across many providers. The application allows the user to perform actions against the SIM card - for example Activate it, Barr it, Check on its status etc Some of the providers provide an API for doing this - so a single access point with multiple methods eg activateSIM, getStatus, barrSIM etc. The method names differ for each provider and some providers offer methods for extra functions that others don't. Some providers don't have APIs but do offer these methods by sending emails with attachments - the attachments are normally a CSV file that contains the SIM reference and action required - the email is processed by the provider and replied to once the action has been complete. To give you an example - the front end of my application will provide a customer with a list of SIM cards they own and give them access to the actions that are provided by the provider of each specific SIM card - some methods may require extra data which will either be stored in the backend or collected from the user frontend. Once the user has selected their action and added any required data I will handle the process in the backend and provide either instant feedback, in the case of the providers with APIs, or start the process off by sending an email and waiting for its reply before processing it and updating the backend so that next time the user checks the SIM card its status is correct (ie updated by a backend process). My reason for creating this question is because I'm stuck !! I'm confused about how to approach the actual workflow logic. I was thinking about creating a Provider Interface with the most common methods getStatus, activateSIM and barrSIM and then implementing that interface for each provider. So class Provider1 implements Provider - Then use a Factory to create the required class depending on user selected SIM card and invoking the method selected. This would work fine if all providers offered the same methods but they don't - there are a subset which are common but some providers offer extra methods - how can I implement that flexibly ? How can I deal with the processes where the workflow is different - ie some methods require and API call and value returned and some require an email to be sent and the next stage of the process doesn't start until the email reply is recieved ... Please help ! (I hope this is a readable question and that this is the correct place to be asking) Update I guess what I'm trying to avoid is a big if or switch / case statement - some design pattern that gives me a flexible approach to implementing this kind of fluid workflow .. anyone ?

    Read the article

  • .NET remoting exception: Permission denied: cannot call non-public or static methods remotely.

    - by Vilx-
    I'm writing a program which will allow to load a specific managed .DLL file and play with it. Since I want the ability to unload the .DLL file, I'm creating two AppDomains - one for the app itself, the other for the currently loaded .DLL. Since most of the objects in the loaded .DLL do not serialize well, I'm creating a MarshalByRefObject wrapper class which will keep the object itself in its own AppDomain, and expose some reflection functions to the main application AppDomain. However when I try to invoke a method on the remote object I get stuck with an exception: Permission denied: cannot call non-public or static methods remotely. This is very strange, because I'm not using any non-public or static methods at all. In essence, what I have is: class RemoteObjectWrapper: MarshalByRefObject { private Type SourceType; private object Source; public RemoteObjectWrapper(object source) { if (source == null) throw new ArgumentNullException("source"); this.Source = source; this.SourceType = source.GetType(); } public T WrapValue<T>(object value) { if ( value == null ) return default(T); var TType = typeof(T); if (TType == typeof(RemoteObjectWrapper)) value = new RemoteObjectWrapper(value); return (T)value; } public T InvokeMethod<T>(string methodName, params object[] args) { return WrapValue<T>(SourceType.InvokeMember(methodName, System.Reflection.BindingFlags.FlattenHierarchy | System.Reflection.BindingFlags.Instance | System.Reflection.BindingFlags.InvokeMethod | System.Reflection.BindingFlags.Public, null, this.Source, args)); } } And I get the exception when I try to do: var c = SomeInstanceOfRemoteObjectWrapper.InvokeMethod<RemoteObjectWrapper>("somePublicMethod", "some string parameter"); What's going on here? As far as I can understand, the InvokeMethod method doesn't even get executed, the exception is thrown when I try to run it. Added: To clarify - SomeInstanceOfRemoteObjectWrapper is constructed in the .DLL's AppDomain and then returned to my main AppDomain, The InvokeMethod<T>() is called from my main AppDomain (and I expect it to execute in the .DLL's AppDomain).

    Read the article

  • Any way to avoid creating a huge C# COM interface wrapper when only a few methods needed?

    - by Paul Accisano
    Greetings all, I’m working on a C# program that requires being able to get the index of the hot item in Windows 7 Explorer’s new ItemsView control. Fortunately, Microsoft has provided a way to do this through UI Automation, by querying custom properties of the control. Unfortunately, the System.Windows.Automation namespace inexplicably does not seem to provide a way to query custom properties! This leaves me with the undesirable position of having to completely ditch the C# Automation namespace and use only the unmanaged COM version. One way to do it would be to put all the Automation code in a separate C++/CLI module and call it from my C# application. However, I would like to avoid this option if possible, as it adds more files to my project, and I’d have to worry about 32/64-bit problems and such. The other option is to make use of the ComImport attribute to declare the relevant interfaces and do everything through COM-interop. This is what I would like to do. However, the relevant interfaces, such as IUIAutomation and IUIAutomationElement, are FREAKING HUGE. They have hundreds of methods in total, and reference tons and tons of interfaces (which I assume I would have to also declare), almost all of which I will never ever use. I don’t think the UI Automation interfaces are declared in any Type Library either, so I can’t use TLBIMP. Is there any way I can avoid having to manually translate a bajillion method signatures into C# and instead only declare the ten or so methods I actually need? I see that C# 4.0 added a new “dynamic” type that is supposed to ease COM interop; is that at all relevant to my problem? Thanks

    Read the article

  • How to determine which inheriting class is using an abstract class' methods.

    - by Kin
    In my console application have an abstract Factory class "Listener" which contains code for listening and accepting connections, and spawning client classes. This class is inherited by two more classes (WorldListener, and MasterListener) that contain more protocol specific overrides and functions. I also have a helper class (ConsoleWrapper) which encapsulates and extends System.Console, containing methods for writing to console info on what is happening to instances of the WorldListener and MasterListener. I need a way to determine in the abstract ListenerClass which Inheriting class is calling its methods. Any help with this problem would be greatly appreciated! I am stumped :X Simplified example of what I am trying to do. abstract class Listener { public void DoSomething() { if(inheriting class == WorldListener) ConsoleWrapper.WorldWrite("Did something!"); if(inheriting class == MasterListener) ConsoleWrapper.MasterWrite("Did something!"); } } public static ConsoleWrapper { public void WorldWrite(string input) { System.Console.WriteLine("[World] {0}", input); } } public class WorldListener : Listener { public void DoSomethingSpecific() { ConsoleWrapper.WorldWrite("I did something specific!"); } } public void Main() { new WorldListener(); new MasterListener(); } Expected output [World] Did something! [World] I did something specific! [Master] Did something! [World] I did something specific!

    Read the article

  • Ruby on Rails: How to sanitize a string for SQL when not using find and other built-in methods?

    - by williamjones
    I'm trying to sanitize a string that involves user input without having to resort to manually crafting my own possibly buggy regex if possible. There are a number of methods in Rails that can allow you to enter in native SQL commands, how do people escape user input for those? The question I'm asking is a broad one, but in my particular case, I'm working with a column in my Postgres database that Rails does not natively understand as far as I know, the tsvector, which holds plain text search information. Rails is able to write and read from it as if it's a string, however, unlike a string, it doesn't seem to be automatically escaping it when I do things like vector= inside the model. For example, when I do model.name='::', where name is a string, it works fine. When I do model.vector='::' it errors out: ActiveRecord::StatementInvalid: PGError: ERROR: syntax error in tsvector: "::" "vectors" = E'::' WHERE "id" = 1 This seems to be a problem caused by lack of escaping of the semicolons, and I can manually set the vector='\:\:' fine. I also had the bright idea, maybe I can just call something like: ActiveRecord::Base.connection.execute "UPDATE medias SET vectors = ? WHERE id = 1", "::" However, this syntax doesn't work, because the raw SQL commands don't have access to find's method of escaping and inputting strings by using the ? mark. This strikes me as the same problem as calling connection.execute with any type of user input, as it all boils down to sanitizing the strings, but I can't seem to find any way to manually call Rails' SQL string sanitization methods. Can anyone provide any advice?

    Read the article

< Previous Page | 60 61 62 63 64 65 66 67 68 69 70 71  | Next Page >