Search Results

Search found 9396 results on 376 pages for 'stored procedures'.

Page 64/376 | < Previous Page | 60 61 62 63 64 65 66 67 68 69 70 71  | Next Page >

  • SortedDictionary and SortedList

    - by Simon Cooper
    Apart from Dictionary<TKey, TValue>, there's two other dictionaries in the BCL - SortedDictionary<TKey, TValue> and SortedList<TKey, TValue>. On the face of it, these two classes do the same thing - provide an IDictionary<TKey, TValue> interface where the iterator returns the items sorted by the key. So what's the difference between them, and when should you use one rather than the other? (as in my previous post, I'll assume you have some basic algorithm & datastructure knowledge) SortedDictionary We'll first cover SortedDictionary. This is implemented as a special sort of binary tree called a red-black tree. Essentially, it's a binary tree that uses various constraints on how the nodes of the tree can be arranged to ensure the tree is always roughly balanced (for more gory algorithmical details, see the wikipedia link above). What I'm concerned about in this post is how the .NET SortedDictionary is actually implemented. In .NET 4, behind the scenes, the actual implementation of the tree is delegated to a SortedSet<KeyValuePair<TKey, TValue>>. One example tree might look like this: Each node in the above tree is stored as a separate SortedSet<T>.Node object (remember, in a SortedDictionary, T is instantiated to KeyValuePair<TKey, TValue>): class Node { public bool IsRed; public T Item; public SortedSet<T>.Node Left; public SortedSet<T>.Node Right; } The SortedSet only stores a reference to the root node; all the data in the tree is accessed by traversing the Left and Right node references until you reach the node you're looking for. Each individual node can be physically stored anywhere in memory; what's important is the relationship between the nodes. This is also why there is no constructor to SortedDictionary or SortedSet that takes an integer representing the capacity; there are no internal arrays that need to be created and resized. This may seen trivial, but it's an important distinction between SortedDictionary and SortedList that I'll cover later on. And that's pretty much it; it's a standard red-black tree. Plenty of webpages and datastructure books cover the algorithms behind the tree itself far better than I could. What's interesting is the comparions between SortedDictionary and SortedList, which I'll cover at the end. As a side point, SortedDictionary has existed in the BCL ever since .NET 2. That means that, all through .NET 2, 3, and 3.5, there has been a bona-fide sorted set class in the BCL (called TreeSet). However, it was internal, so it couldn't be used outside System.dll. Only in .NET 4 was this class exposed as SortedSet. SortedList Whereas SortedDictionary didn't use any backing arrays, SortedList does. It is implemented just as the name suggests; two arrays, one containing the keys, and one the values (I've just used random letters for the values): The items in the keys array are always guarenteed to be stored in sorted order, and the value corresponding to each key is stored in the same index as the key in the values array. In this example, the value for key item 5 is 'z', and for key item 8 is 'm'. Whenever an item is inserted or removed from the SortedList, a binary search is run on the keys array to find the correct index, then all the items in the arrays are shifted to accomodate the new or removed item. For example, if the key 3 was removed, a binary search would be run to find the array index the item was at, then everything above that index would be moved down by one: and then if the key/value pair {7, 'f'} was added, a binary search would be run on the keys to find the index to insert the new item, and everything above that index would be moved up to accomodate the new item: If another item was then added, both arrays would be resized (to a length of 10) before the new item was added to the arrays. As you can see, any insertions or removals in the middle of the list require a proportion of the array contents to be moved; an O(n) operation. However, if the insertion or removal is at the end of the array (ie the largest key), then it's only O(log n); the cost of the binary search to determine it does actually need to be added to the end (excluding the occasional O(n) cost of resizing the arrays to fit more items). As a side effect of using backing arrays, SortedList offers IList Keys and Values views that simply use the backing keys or values arrays, as well as various methods utilising the array index of stored items, which SortedDictionary does not (and cannot) offer. The Comparison So, when should you use one and not the other? Well, here's the important differences: Memory usage SortedDictionary and SortedList have got very different memory profiles. SortedDictionary... has a memory overhead of one object instance, a bool, and two references per item. On 64-bit systems, this adds up to ~40 bytes, not including the stored item and the reference to it from the Node object. stores the items in separate objects that can be spread all over the heap. This helps to keep memory fragmentation low, as the individual node objects can be allocated wherever there's a spare 60 bytes. In contrast, SortedList... has no additional overhead per item (only the reference to it in the array entries), however the backing arrays can be significantly larger than you need; every time the arrays are resized they double in size. That means that if you add 513 items to a SortedList, the backing arrays will each have a length of 1024. To conteract this, the TrimExcess method resizes the arrays back down to the actual size needed, or you can simply assign list.Capacity = list.Count. stores its items in a continuous block in memory. If the list stores thousands of items, this can cause significant problems with Large Object Heap memory fragmentation as the array resizes, which SortedDictionary doesn't have. Performance Operations on a SortedDictionary always have O(log n) performance, regardless of where in the collection you're adding or removing items. In contrast, SortedList has O(n) performance when you're altering the middle of the collection. If you're adding or removing from the end (ie the largest item), then performance is O(log n), same as SortedDictionary (in practice, it will likely be slightly faster, due to the array items all being in the same area in memory, also called locality of reference). So, when should you use one and not the other? As always with these sort of things, there are no hard-and-fast rules. But generally, if you: need to access items using their index within the collection are populating the dictionary all at once from sorted data aren't adding or removing keys once it's populated then use a SortedList. But if you: don't know how many items are going to be in the dictionary are populating the dictionary from random, unsorted data are adding & removing items randomly then use a SortedDictionary. The default (again, there's no definite rules on these sort of things!) should be to use SortedDictionary, unless there's a good reason to use SortedList, due to the bad performance of SortedList when altering the middle of the collection.

    Read the article

  • Curing the Database-Application mismatch

    - by Phil Factor
    If an application requires access to a database, then you have to be able to deploy it so as to be version-compatible with the database, in phase. If you can deploy both together, then the application and database must normally be deployed at the same version in which they, together, passed integration and functional testing.  When a single database supports more than one application, then the problem gets more interesting. I’ll need to be more precise here. It is actually the application-interface definition of the database that needs to be in a compatible ‘version’.  Most databases that get into production have no separate application-interface; in other words they are ‘close-coupled’.  For this vast majority, the whole database is the application-interface, and applications are free to wander through the bowels of the database scot-free.  If you’ve spurned the perceived wisdom of application architects to have a defined application-interface within the database that is based on views and stored procedures, any version-mismatch will be as sensitive as a kitten.  A team that creates an application that makes direct access to base tables in a database will have to put a lot of energy into keeping Database and Application in sync, to say nothing of having to tackle issues such as security and audit. It is not the obvious route to development nirvana. I’ve been in countless tense meetings with application developers who initially bridle instinctively at the apparent restrictions of being ‘banned’ from the base tables or routines of a database.  There is no good technical reason for needing that sort of access that I’ve ever come across.  Everything that the application wants can be delivered via a set of views and procedures, and with far less pain for all concerned: This is the application-interface.  If more than zero developers are creating a database-driven application, then the project will benefit from the loose-coupling that an application interface brings. What is important here is that the database development role is separated from the application development role, even if it is the same developer performing both roles. The idea of an application-interface with a database is as old as I can remember. The big corporate or government databases generally supported several applications, and there was little option. When a new application wanted access to an existing corporate database, the developers, and myself as technical architect, would have to meet with hatchet-faced DBAs and production staff to work out an interface. Sure, they would talk up the effort involved for budgetary reasons, but it was routine work, because it decoupled the database from its supporting applications. We’d be given our own stored procedures. One of them, I still remember, had ninety-two parameters. All database access was encapsulated in one application-module. If you have a stable defined application-interface with the database (Yes, one for each application usually) you need to keep the external definitions of the components of this interface in version control, linked with the application source,  and carefully track and negotiate any changes between database developers and application developers.  Essentially, the application development team owns the interface definition, and the onus is on the Database developers to implement it and maintain it, in conformance.  Internally, the database can then make all sorts of changes and refactoring, as long as source control is maintained.  If the application interface passes all the comprehensive integration and functional tests for the particular version they were designed for, nothing is broken. Your performance-testing can ‘hang’ on the same interface, since databases are judged on the performance of the application, not an ‘internal’ database process. The database developers have responsibility for maintaining the application-interface, but not its definition,  as they refactor the database. This is easily tested on a daily basis since the tests are normally automated. In this setting, the deployment can proceed if the more stable application-interface, rather than the continuously-changing database, passes all tests for the version of the application. Normally, if all goes well, a database with a well-designed application interface can evolve gracefully without changing the external appearance of the interface, and this is confirmed by integration tests that check the interface, and which hopefully don’t need to be altered at all often.  If the application is rapidly changing its ‘domain model’  in the light of an increased understanding of the application domain, then it can change the interface definitions and the database developers need only implement the interface rather than refactor the underlying database.  The test team will also have to redo the functional and integration tests which are, of course ‘written to’ the definition.  The Database developers will find it easier if these tests are done before their re-wiring  job to implement the new interface. If, at the other extreme, an application receives no further development work but survives unchanged, the database can continue to change and develop to keep pace with the requirements of the other applications it supports, and needs only to take care that the application interface is never broken. Testing is easy since your automated scripts to test the interface do not need to change. The database developers will, of course, maintain their own source control for the database, and will be likely to maintain versions for all major releases. However, this will not need to be shared with the applications that the database servers. On the other hand, the definition of the application interfaces should be within the application source. Changes in it have to be subject to change-control procedures, as they will require a chain of tests. Once you allow, instead of an application-interface, an intimate relationship between application and database, we are in the realms of impedance mismatch, over and above the obvious security problems.  Part of this impedance problem is a difference in development practices. Whereas the application has to be regularly built and integrated, this isn’t necessarily the case with the database.  An RDBMS is inherently multi-user and self-integrating. If the developers work together on the database, then a subsequent integration of the database on a staging server doesn’t often bring nasty surprises. A separate database-integration process is only needed if the database is deliberately built in a way that mimics the application development process, but which hampers the normal database-development techniques.  This process is like demanding a official walking with a red flag in front of a motor car.  In order to closely coordinate databases with applications, entire databases have to be ‘versioned’, so that an application version can be matched with a database version to produce a working build without errors.  There is no natural process to ‘version’ databases.  Each development project will have to define a system for maintaining the version level. A curious paradox occurs in development when there is no formal application-interface. When the strains and cracks happen, the extra meetings, bureaucracy, and activity required to maintain accurate deployments looks to IT management like work. They see activity, and it looks good. Work means progress.  Management then smile on the design choices made. In IT, good design work doesn’t necessarily look good, and vice versa.

    Read the article

  • Database Activity Monitoring Part 2 - SQL Injection Attacks

    If you think through the web sites you visit on a daily basis the chances are that you will need to login to verify who you are. In most cases your username would be stored in a relational database along with all the other registered users on that web site. Hopefully your password will be encrypted and not stored in plain text.

    Read the article

  • Network Security Risk Assessment

    - by Chandra Vennapoosa
    Information that is gathered everyday regarding client and business transactions are either stored on servers or on user computers. These stored information are considered important and sensitive in the company's interest and hence they need to be protected from network attacks and other unknown circumstances. Network administrator manage and protect the network through a series of passwords and data encryption. Topics First Step for Risk Assessment Identifying Essential Data/System/Hardware Identifying External Blocks Measuring the Risk to Your Enterprise Calculating the Assets Value The Liquid Financial Assets Value Getting Everything Together

    Read the article

  • Hard Disk Failure Factors

    Every one who works with computers whether it is a business or just for private use knows that the information they accumulate on their computers is stored on their hard disk drive. The data stored d... [Author: Michiel Van Kets - Computers and Internet - May 03, 2010]

    Read the article

  • xp_cmdshell for Non-System Admin Individuals

    There may be times when you want to allow non-System Admin logins to be able to execute the xp_cmdshell extended stored procedure. In this articleGreg Larson will show you how to setup xp_cmdshell so non-System Admins can use this extended stored procedure. ‘10 Tips for Efficient Disaster Recovery’Steve Jones gives the final lesson in the ‘Top 5 Hard-earned Lessons of a DBA’. Read now and learn from the best.

    Read the article

  • System.Data.Sqlclient.Sqlexception: Line1 incorrect syntax ...

    - by marocanu2001
    Given a SqlConnection, a SqlCommand if you need to execute a stored procedure it is enough to specify the stored procedure name as the CommandText and it will work. Now the surprise is that if you also add parametres, you get this creepy error: SqlException: Line 1 incorrect syntax near [storedProcedureName]. The quick fix is to specify the CommandType to be StoredProcedure.

    Read the article

  • SQL Server Integration Services package to delete files from a Network or Local path based on date

    We have a requirement to delete a group of files that are older than the specified number of days from the company file share. Due to the complex folder hierarchy and delicate nature of the data stored in these files, this task has to be originated from SQL Server. However, due to company security policy, and based on SQL Server security best practices, we blocked access to OLE Automation stored procedures, CLR features, and xp_cmdshell. Is there any way to accomplish this task without using these features?

    Read the article

  • When is a SQL function not a function?

    - by Rob Farley
    Should SQL Server even have functions? (Oh yeah – this is a T-SQL Tuesday post, hosted this month by Brad Schulz) Functions serve an important part of programming, in almost any language. A function is a piece of code that is designed to return something, as opposed to a piece of code which isn’t designed to return anything (which is known as a procedure). SQL Server is no different. You can call stored procedures, even from within other stored procedures, and you can call functions and use these in other queries. Stored procedures might query something, and therefore ‘return data’, but a function in SQL is considered to have the type of the thing returned, and can be used accordingly in queries. Consider the internal GETDATE() function. SELECT GETDATE(), SomeDatetimeColumn FROM dbo.SomeTable; There’s no logical difference between the field that is being returned by the function and the field that’s being returned by the table column. Both are the datetime field – if you didn’t have inside knowledge, you wouldn’t necessarily be able to tell which was which. And so as developers, we find ourselves wanting to create functions that return all kinds of things – functions which look up values based on codes, functions which do string manipulation, and so on. But it’s rubbish. Ok, it’s not all rubbish, but it mostly is. And this isn’t even considering the SARGability impact. It’s far more significant than that. (When I say the SARGability aspect, I mean “because you’re unlikely to have an index on the result of some function that’s applied to a column, so try to invert the function and query the column in an unchanged manner”) I’m going to consider the three main types of user-defined functions in SQL Server: Scalar Inline Table-Valued Multi-statement Table-Valued I could also look at user-defined CLR functions, including aggregate functions, but not today. I figure that most people don’t tend to get around to doing CLR functions, and I’m going to focus on the T-SQL-based user-defined functions. Most people split these types of function up into two types. So do I. Except that most people pick them based on ‘scalar or table-valued’. I’d rather go with ‘inline or not’. If it’s not inline, it’s rubbish. It really is. Let’s start by considering the two kinds of table-valued function, and compare them. These functions are going to return the sales for a particular salesperson in a particular year, from the AdventureWorks database. CREATE FUNCTION dbo.FetchSales_inline(@salespersonid int, @orderyear int) RETURNS TABLE AS  RETURN (     SELECT e.LoginID as EmployeeLogin, o.OrderDate, o.SalesOrderID     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101') ) ; GO CREATE FUNCTION dbo.FetchSales_multi(@salespersonid int, @orderyear int) RETURNS @results TABLE (     EmployeeLogin nvarchar(512),     OrderDate datetime,     SalesOrderID int     ) AS BEGIN     INSERT @results (EmployeeLogin, OrderDate, SalesOrderID)     SELECT e.LoginID, o.OrderDate, o.SalesOrderID     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101')     ;     RETURN END ; GO You’ll notice that I’m being nice and responsible with the use of the DATEADD function, so that I have SARGability on the OrderDate filter. Regular readers will be hoping I’ll show what’s going on in the execution plans here. Here I’ve run two SELECT * queries with the “Show Actual Execution Plan” option turned on. Notice that the ‘Query cost’ of the multi-statement version is just 2% of the ‘Batch cost’. But also notice there’s trickery going on. And it’s nothing to do with that extra index that I have on the OrderDate column. Trickery. Look at it – clearly, the first plan is showing us what’s going on inside the function, but the second one isn’t. The second one is blindly running the function, and then scanning the results. There’s a Sequence operator which is calling the TVF operator, and then calling a Table Scan to get the results of that function for the SELECT operator. But surely it still has to do all the work that the first one is doing... To see what’s actually going on, let’s look at the Estimated plan. Now, we see the same plans (almost) that we saw in the Actuals, but we have an extra one – the one that was used for the TVF. Here’s where we see the inner workings of it. You’ll probably recognise the right-hand side of the TVF’s plan as looking very similar to the first plan – but it’s now being called by a stack of other operators, including an INSERT statement to be able to populate the table variable that the multi-statement TVF requires. And the cost of the TVF is 57% of the batch! But it gets worse. Let’s consider what happens if we don’t need all the columns. We’ll leave out the EmployeeLogin column. Here, we see that the inline function call has been simplified down. It doesn’t need the Employee table. The join is redundant and has been eliminated from the plan, making it even cheaper. But the multi-statement plan runs the whole thing as before, only removing the extra column when the Table Scan is performed. A multi-statement function is a lot more powerful than an inline one. An inline function can only be the result of a single sub-query. It’s essentially the same as a parameterised view, because views demonstrate this same behaviour of extracting the definition of the view and using it in the outer query. A multi-statement function is clearly more powerful because it can contain far more complex logic. But a multi-statement function isn’t really a function at all. It’s a stored procedure. It’s wrapped up like a function, but behaves like a stored procedure. It would be completely unreasonable to expect that a stored procedure could be simplified down to recognise that not all the columns might be needed, but yet this is part of the pain associated with this procedural function situation. The biggest clue that a multi-statement function is more like a stored procedure than a function is the “BEGIN” and “END” statements that surround the code. If you try to create a multi-statement function without these statements, you’ll get an error – they are very much required. When I used to present on this kind of thing, I even used to call it “The Dangers of BEGIN and END”, and yes, I’ve written about this type of thing before in a similarly-named post over at my old blog. Now how about scalar functions... Suppose we wanted a scalar function to return the count of these. CREATE FUNCTION dbo.FetchSales_scalar(@salespersonid int, @orderyear int) RETURNS int AS BEGIN     RETURN (         SELECT COUNT(*)         FROM Sales.SalesOrderHeader AS o         LEFT JOIN HumanResources.Employee AS e         ON e.EmployeeID = o.SalesPersonID         WHERE o.SalesPersonID = @salespersonid         AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')         AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101')     ); END ; GO Notice the evil words? They’re required. Try to remove them, you just get an error. That’s right – any scalar function is procedural, despite the fact that you wrap up a sub-query inside that RETURN statement. It’s as ugly as anything. Hopefully this will change in future versions. Let’s have a look at how this is reflected in an execution plan. Here’s a query, its Actual plan, and its Estimated plan: SELECT e.LoginID, y.year, dbo.FetchSales_scalar(p.SalesPersonID, y.year) AS NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID; We see here that the cost of the scalar function is about twice that of the outer query. Nicely, the query optimizer has worked out that it doesn’t need the Employee table, but that’s a bit of a red herring here. There’s actually something way more significant going on. If I look at the properties of that UDF operator, it tells me that the Estimated Subtree Cost is 0.337999. If I just run the query SELECT dbo.FetchSales_scalar(281,2003); we see that the UDF cost is still unchanged. You see, this 0.0337999 is the cost of running the scalar function ONCE. But when we ran that query with the CROSS JOIN in it, we returned quite a few rows. 68 in fact. Could’ve been a lot more, if we’d had more salespeople or more years. And so we come to the biggest problem. This procedure (I don’t want to call it a function) is getting called 68 times – each one between twice as expensive as the outer query. And because it’s calling it in a separate context, there is even more overhead that I haven’t considered here. The cheek of it, to say that the Compute Scalar operator here costs 0%! I know a number of IT projects that could’ve used that kind of costing method, but that’s another story that I’m not going to go into here. Let’s look at a better way. Suppose our scalar function had been implemented as an inline one. Then it could have been expanded out like a sub-query. It could’ve run something like this: SELECT e.LoginID, y.year, (SELECT COUNT(*)     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = p.SalesPersonID     AND o.OrderDate >= DATEADD(year,y.year-2000,'20000101')     AND o.OrderDate < DATEADD(year,y.year-2000+1,'20000101')     ) AS NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID; Don’t worry too much about the Scan of the SalesOrderHeader underneath a Nested Loop. If you remember from plenty of other posts on the matter, execution plans don’t push the data through. That Scan only runs once. The Index Spool sucks the data out of it and populates a structure that is used to feed the Stream Aggregate. The Index Spool operator gets called 68 times, but the Scan only once (the Number of Executions property demonstrates this). Here, the Query Optimizer has a full picture of what’s being asked, and can make the appropriate decision about how it accesses the data. It can simplify it down properly. To get this kind of behaviour from a function, we need it to be inline. But without inline scalar functions, we need to make our function be table-valued. Luckily, that’s ok. CREATE FUNCTION dbo.FetchSales_inline2(@salespersonid int, @orderyear int) RETURNS table AS RETURN (SELECT COUNT(*) as NumSales     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101') ); GO But we can’t use this as a scalar. Instead, we need to use it with the APPLY operator. SELECT e.LoginID, y.year, n.NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID OUTER APPLY dbo.FetchSales_inline2(p.SalesPersonID, y.year) AS n; And now, we get the plan that we want for this query. All we’ve done is tell the function that it’s returning a table instead of a single value, and removed the BEGIN and END statements. We’ve had to name the column being returned, but what we’ve gained is an actual inline simplifiable function. And if we wanted it to return multiple columns, it could do that too. I really consider this function to be superior to the scalar function in every way. It does need to be handled differently in the outer query, but in many ways it’s a more elegant method there too. The function calls can be put amongst the FROM clause, where they can then be used in the WHERE or GROUP BY clauses without fear of calling the function multiple times (another horrible side effect of functions). So please. If you see BEGIN and END in a function, remember it’s not really a function, it’s a procedure. And then fix it. @rob_farley

    Read the article

  • Using the ASP.NET Membership API with SQL Server / SQL Azure: The new &ldquo;System.Web.Providers&rdquo; namespace

    - by Harish Ranganathan
    The Membership API came in .NET 2.0 and was a huge enhancement in building web applications with users, managing roles, permissions etc.,  The Membership API by default uses SQL Express and until Visual Studio 2008, it was available only through the ASP.NET Configuration manager screen (Website – ASP.NET Configuration) or (Project – ASP.NET Configuration) and for every application, one has to manually visit this place to start using the Security and other settings.  Upon doing that the default SQL Express database aspnet.mdf is created to store all the user profiles. Starting Visual Studio 2010 and .NET 4.0, the Default Website template includes the Membership API controls as a part of the page i.e. When you create a “File – New – ASP.NET Web Application” or an “ASP.NET MVC Application”, by default the Login/Register controls are enabled in the MasterPage and they are termed under “ApplicationServices” setting in the web.config file with connection string pointed to the SQL Express database. In fact, when you run the default website and click on “Logon” –> “Register”, and enter the details for registration and click “Register”, that is the time the aspnet.mdf file is created with the tables for Users, Roles, UsersInRoles, Profile etc., Now, this uses the default SQL Express database within the App_Data folder.  If you want to move your Membership information to some other database such as SQL Server, SQL CE or SQL Azure, you need to manually run the aspnet_regsql command and specify the destination database name. This would create all the Tables, Procedures and Views required to handle the Membership information.  Thereafter you can change the connection string for “ApplicationServices” to point to the database where you had run all the scripts. Now, enter “System.Web.Providers” Alpha. This is available as a part of the NuGet package library.  Scott Hanselman has a neat post describing the steps required to get it up and running as well as doing the basic changes  at http://www.hanselman.com/blog/IntroducingSystemWebProvidersASPNETUniversalProvidersForSessionMembershipRolesAndUserProfileOnSQLCompactAndSQLAzure.aspx Pretty much, it covers what the new System.Web.Providers do. One thing I wanted to clarify is that, the new “System.Web.Providers” add a lot of new settings which are also marked as the defaults, in the web.config.  Even now, they use SQL Express as the default database.  But, if you change the connection string for “DefaultConnection” under connectionStrings to point to your SQL Server or SQL Azure, Membership API would now be able to create all the tables, procedures and views at the destination specified (i.e. SQL Server or SQL Azure). In my case, I modified the DefaultConneciton to point to my SQL Azure database.  Next, I hit F5 to run the application.  The default view loads.  I clicked on “LogOn” and then “Register” since I knew there are no tables/users as of then.  One thing to note is that, I had put “NewDB” as the database name in the connection string that points to SQL Azure.  NewDB wasn’t existing and I would assume it would be created before the tables/views/procedures for Membership are created. Once I clicked on the “Register” to register my first username, it took a while and then registered as well as logged in me in.  Also, I went to the SQL Azure Management Portal and verified that there exists “NewDB” which has just been created I could also connect to the SQL Azure database “NewDB” from Management Studio and found that the tables now don’t have the aspnet_ prefix.  The tables were simply Users, Roles, UsersInRoles, Profiles etc., So, with a few clicks and configuration change, I could actually set up the user base for my application on SQL Azure and even make the SessionState, Roles, Profiles being stored in SQL Azure database. The new System.Web.Proivders also required MARS (MultipleActiveResultSets=true) setting since it uses Entity Framework for the DAL operations.  Also, the “Project – ASP.NET Configuration” screen can be used to further create/manage users/roles etc., although the data is stored on the remote database. With that, a long pending request from the community to have the ability to configure and use remote databases for Application users management without having to run the scripts from SQL Express is fulfilled. Cheers !!!

    Read the article

  • SQL SERVER – How to Get SQL Server Restart Notification?

    - by Pinal Dave
    Few days back my friend called me to know if there is any tool which can be used to get restart notification about SQL in their environment. I told that SQL Server can do it by itself with some configurations. He was happy and surprised to know that he need not spend any extra money. In SQL Server, we can configure stored procedure(s) to run at start-up of SQL Server. This blog would give steps to achieve how to achieve it. There are many situations where this feature can be used. Below are few. Logging SQL Server startup timings Modify data in some table during startup (i.e. table in tempdb) Sending notification about SQL start. Step 1 – Enable ‘scan for startup procs’ This can be done either using T-SQL or User Interface of Management Studio. EXEC sys.sp_configure N'Show Advanced Options', N'1' GO RECONFIGURE WITH OVERRIDE GO EXEC sys.sp_configure N'scan for startup procs', N'1' GO RECONFIGURE WITH OVERRIDE GO Below is the interface to change the setting. We need to go to “Server” > “Properties” and use “Advanced” tab. “Scan for Startup Procs” is the parameter under “Miscellaneous” section as shown below. We need to make value as “True” and hit OK. Step 2 – Create stored procedure It’s important to note that the procedure is executed after recovery is finished for ALL databases. Here is a sample stored procedure. You can use your own logic in the procedure. CREATE PROCEDURE SQLStartupProc AS BEGIN CREATE TABLE ##ThisTableShouldAlwaysExists (AnyColumn INT) END Step 3 – Set Procedure to run at startup We need to use sp_procoption to mark the procedure to run at startup. Here is the code to let SQL know that this is startup proc. sp_procoption 'SQLStartupProc', 'startup', 'true' This can be used only for procedures in master database. Msg 15398, Level 11, State 1, Procedure sp_procoption, Line 89 Only objects in the master database owned by dbo can have the startup setting changed. We also need to remember that such procedure should not have any input/output parameter. Here is the error which would be raised. Msg 15399, Level 11, State 1, Procedure sp_procoption, Line 107 Could not change startup option because this option is restricted to objects that have no parameters. Verification Here is the query to find which procedures is marked as startup procedures. SELECT name FROM sys.objects WHERE OBJECTPROPERTY(OBJECT_ID, 'ExecIsStartup') = 1 Once this is done, I have restarted SQL instance and here is what we would see in SQL ERRORLOG Launched startup procedure 'SQLStartupProc'. This confirms that stored procedure is executed. You can also notice that this is done after all databases are recovered. Recovery is complete. This is an informational message only. No user action is required. After few days my friend again called me and asked – I want to turn this OFF? Use comments section and post the answer for him.  Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Utility, T SQL

    Read the article

  • Multitenancy in SQL Azure

    - by cibrax
    If you are building a SaaS application in Windows Azure that relies on SQL Azure, it’s probably that you will need to support multiple tenants at database level. This is short overview of the different approaches you can use for support that scenario, A different database per tenant A new database is created and assigned when a tenant is provisioned. Pros Complete isolation between tenants. All the data for a tenant lives in a database only he can access. Cons It’s not cost effective. SQL Azure databases are not cheap, and the minimum size for a database is 1GB.  You might be paying for storage that you don’t really use. A different connection pool is required per database. Updates must be replicated across all the databases You need multiple backup strategies across all the databases Multiple schemas in a database shared by all the tenants A single database is shared among all the tenants, but every tenant is assigned to a different schema and database user. Pros You only pay for a single database. Data is isolated at database level. If the credentials for one tenant is compromised, the rest of the data for the other tenants is not. Cons You need to replicate all the database objects in every schema, so the number of objects can increase indefinitely. Updates must be replicated across all the schemas. The connection pool for the database must maintain a different connection per tenant (or set of credentials) A different user is required per tenant, which is stored at server level. You have to backup that user independently. Centralizing the database access with store procedures in a database shared by all the tenants A single database is shared among all the tenants, but nobody can read the data directly from the tables. All the data operations are performed through store procedures that centralize the access to the tenant data. The store procedures contain some logic to map the database user to an specific tenant. Pros You only pay for a single database. You only have a set of objects to maintain and backup. Cons There is no real isolation. All the data for the different tenants is shared in the same tables. You can not use traditional ORM like EF code first for consuming the data. A different user is required per tenant, which is stored at server level. You have to backup that user independently. SQL Federations A single database is shared among all the tenants, but a different federation is used per tenant. A federation in few words, it’s a mechanism for horizontal scaling in SQL Azure, which basically uses the idea of logical partitions to distribute data based on certain criteria. Pros You only have a single database with multiple federations. You can use filtering in the connections to pick the right federation, so any ORM could be used to consume the data. Cons There is no real isolation at that database level. The isolation is enforced programmatically with federations.

    Read the article

  • Index a low-cost NAS on Windows 7

    - by JcMaco
    Has anyone found a way to index the files stored on a Networked Attached Storage on Windows 7 so that the files can be available in Windows Search and Libraries? I am referring to the cheap and available NAS like the Western Digital My Book series that use an embedded linux server. Similar question: http://windows7forums.com/windows-7-networking/6700-indexing-nas-drive-libraries.html EDIT Windows help proposes to make the files stored on the NAS available offline. This is obviously not a good solution if the NAS has more data than what the client can store. If the folder is on a network device that is not part of your homegroup, it can be included as long as the content of the folder is indexed. If the folder is already indexed on the device where it is stored, you should be able to include it directly in the library. If the network folder is not indexed, an easy way to index it is to make the folder available offline. This will create offline versions of the files in the folder, and add these files to the index on your computer. Once you make a folder available offline, you can include it in a library. When you make a network folder available offline, copies of all the files in that folder will be stored on your computer's hard disk. Take this into consideration if the network folder contains a large number of files.

    Read the article

  • What is going on when I can't access an SMB server share (not accessible error) until I run cmdkey to delete the credential?

    - by Warren P
    I have a network connection share issue. The first connection works, and seems to stay connected for at least a few hours. However, after each time my windows 7 PC reboots, it can no longer form a network connection to the shared folder, nor browse to it, until I not only unmap and remap the mapped drive, but also, I have to use cmdkey to delete the stored credentials like this: cmdkey /delete:Domain:target=HOSTNAME My work PC is on a domain, and I am not the IT administrator, but I'm curious if there is anything I can do to investigate this issue. Any settings in registry or group policy that I could examine to see why the first connection works, but each subsequent attempt (once a stored credential exists) to browse or use the connection, fails with a connection error saying it is "not accessible", like this: I do not even get any error until at least several minutes go by. THe first thing I see is a window frozen and empty, and then I get this error: This has happened when connecting to a share on a DROBO device, and on a share which is not on the domain, but which was a Microsoft Home Server. I wonder if there's something broken in WIndows 7 professional with regards to connecting to non-domain shares when an active directory domain controller exists, and a particular workstation is joined to a domain? The problem only occurs if I click "remember credentials". It is not fixed by any amount of working with net use. Usingcmdkey to delete all stored credentials for the host is the only way to get back in, and it affects all non-domain shared folders. Update I'm hoping there are some registry locations I could check that could be misconfigured in some way that might explain why SMB/CIFS stored credentials for non-domain systems seem to be auto-invalidated in this weird way. Knowing how whacko Microsoft Windows domain and security handling is sometimes, this could be some kind of stupid "feature".

    Read the article

  • Integration transport choice (Oracle + SQL Server)

    - by lak-b
    We have several systems with Oracle (A) and SQL Server (B) databases on backend. I have to consolidate data from those systems into the new SQL Server database. Something like that: (A) =>|---------------| | some software | => SQL Server (B) =>|---------------| where some software is: transport (A and B systems located in the network) processing business logic (custom .NET code) Due to first point, I need some queue software or something similar (like MSMQ, Service Broker or something). In another hand, I can implement a web-service instead of queue. (A) =>|---------------|-------------| | queue/service | custom code | => SQL Server (B) =>|---------------|-------------| The question is: which queue/transport framework should I use with Oracle and SQL Server databases? It would be nice, if I can post messages to MSMQ in both Oracle and SQL Server stored procedures (can I?) It would be nice, if I can call a web-service in both Oracle and SQL Server stored procedures (can I?) It would be nice, if I can use something similar in both Oracle and SQL Server stored procedures (what exactly?) What software should I prefer to my requirements?

    Read the article

  • The Interaction between Three-Tier Client/Server Model and Three-Tier Application Architecture Model

    The three-tier client/server model is a network architectural approach currently used in modern networking. This approach divides a network in to three distinct components. Three-Tier Client/Server Model Components Client Component Server Component Database Component The Client Component of the network typically represents any device on the network. A basic example of this would be computer or another network/web enabled devices that are connected to a network. Network clients request resources on the network, and are usually equipped with a user interface for the presentation of the data returned from the Server Component. This process is done through the use of various software clients, and example of this can be seen through the use of a web browser client. The web browser request information from the Server Component located on the network and then renders the results for the user to process. The Server Components of the network return data based on specific client request back to the requesting client.  Server Components also inherit the attributes of a Client Component in that they are a device on the network and that they can also request information from other Server Components. However what differentiates a Client Component from a Server Component is that a Server Component response to requests from devices on the network. An example of a Server Component can be seen in a web server. A web server listens for new requests and then interprets the request, processes the web pages, and then returns the processed data back to the web browser client so that it may render the data for the user to interpret. The Database Component of the network returns unprocessed data from databases or other resources. This component also inherits attributes from the Server Component in that it is a device on a network, it can request information from other server components and database components, and it also listens for new requests so that it can return data when needed. The three-tier client/server model is very similar to the three-tier application architecture model, and in fact the layers can be mapped to one another. Three-Tier Application Architecture Model Presentation Layer/Logic Business Layer/Logic Data Layer/Logic The Presentation Layer including its underlying logic is very similar to the Client Component of the three-tiered model. The Presentation Layer focuses on interpreting the data returned by the Business Layer as well as presents the data back to the user.  Both the Presentation Layer and the Client Component focus primarily on the user and their experience. This allows for segments of the Business Layer to be distributable and interchangeable because the Presentation Layer is not directly integrated in with Business Layer. The Presentation Layer does not care where the data comes from as long as it is in the proper format. This allows for the Presentation Layer and Business Layer to be stored on one or more different servers so that it can provide a higher availability to clients requesting data. A good example of this is a web site that uses load balancing. When a web site decides to take on the task of load balancing they must obtain a network device that sits in front of a one or machines in order to distribute the request across multiple servers. When a user comes in through the load balanced device they are redirected to a specific server based on a few factors. Common Load Balancing Factors Current Server Availability Current Server Response Time Current Server Priority The Business Layer and corresponding logic are business rules applied to data prior to it being sent to the Presentation Layer. These rules are used to manipulate the data coming from the Data Access Layer, in addition to validating any data prior to being stored in the Data Access Layer. A good example of this would be when a user is trying to create multiple accounts under one email address. The Business Layer logic can prevent duplicate accounts by enforcing a unique email for every new account before the data is even stored in the Data Access Layer. The Server Component can be directly tied to this layer in that the server typically stores and process the Business Layer before it is returned to the end-user via the Presentation Layer. In addition the Server Component can also run automated process through the Business Layer on the data in the Data Access Layer so that additional business analysis can be derived from the data that has been already collected. The Data Layer and its logic are responsible for storing information so that it can be easily retrieved. Typical in most modern applications data is stored in a database management system however data can also be in the form of files stored on a file server. In addition a database can take on one of several forms. Common Database Formats XML File Pipe Delimited File Tab Delimited File Comma Delimited File (CSV) Plain Text File Microsoft Access Microsoft SQL Server MySql Oracle Sybase The Database component of the Networking model can be directly tied to the Data Layer because this is where the Data Layer obtains the data to return back the Business Layer. The Database Component basically allows for a place on the network to store data for future use. This enables applications to save data when they can and then quickly recall the saved data as needed so that the application does not have to worry about storing the data in memory. This prevents overhead that could be created when an application must retain all data in memory. As you can see the Three-Tier Client/Server Networking Model and the Three-Tiered Application Architecture Model rely very heavily on one another to function especially if different aspects of an application are distributed across an entire network. The use of various servers and database servers are wonderful when an application has a need to distribute work across the network. Network Components and Application Layers Interaction Database components will store all data needed for the Data Access Layer to manipulate and return to the Business Layer Server Component executes the Business Layer that manipulates data so that it can be returned to the Presentation Layer Client Component hosts the Presentation Layer that  interprets the data and present it to the user

    Read the article

  • Migrating SQL Server Databases – The DBA’s Checklist (Part 2)

    - by Sadequl Hussain
    Continuing from Part 1  , our Migration Checklist continues: Step 5: Update statistics It is always a good idea to update the statistics of the database that you have just installed or migrated. To do this, run the following command against the target database: sp_updatestats The sp_updatestats system stored procedure runs the UPDATE STATISTICS command against every user and system table in the database.  However, a word of caution: running the sp_updatestats against a database with a compatibility level below 90 (SQL Server 2005) will reset the automatic UPDATE STATISTICS settings for every index and statistics of every table in the database. You may therefore want to change the compatibility mode before you run the command. Another thing you should remember to do is to ensure the new database has its AUTO_CREATE_STATISTICS and AUTO_UPDATE_STATISTICS properties set to ON. You can do so using the ALTER DATABASE command or from the SSMS. Step 6: Set database options You may have to change the state of a database after it has been restored. If the database was changed to single-user or read-only mode before backup, the restored copy will also retain these settings. This may not be an issue when you are manually restoring from Enterprise Manager or the Management Studio since you can change the properties. However, this is something to be mindful of if the restore process is invoked by an automated job or script and the database needs to be written to immediately after restore. You may want to check the database’s status programmatically in such cases. Another important option you may want to set for the newly restored / attached database is PAGE_VERIFY. This option specifies how you want SQL Server to ensure the physical integrity of the data. It is a new option from SQL Server 2005 and can have three values: CHECKSUM (default for SQL Server 2005 and latter databases), TORN_PAGE_DETECTION (default when restoring a pre-SQL Server 2005 database) or NONE. Torn page detection was itself an option for SQL Server 2000 databases. From SQL Server 2005, when PAGE_VERIFY is set to CHECKSUM, the database engine calculates the checksum for a page’s contents and writes it to the page header before storing it in disk. When the page is read from the disk, the checksum is computed again and compared with the checksum stored in the header.  Torn page detection works much like the same way in that it stores a bit in the page header for every 512 byte sector. When data is read from the page, the torn page bits stored in the header is compared with the respective sector contents. When PAGE_VERIFY is set to NONE, SQL Server does not perform any checking, even if torn page data or checksums are present in the page header.  This may not be something you would want to set unless there is a very specific reason.  Microsoft suggests using the CHECKSUM page verify option as this offers more protection. Step 7: Map database users to logins A common database migration issue is related to user access. Windows and SQL Server native logins that existed in the source instance and had access to the database may not be present in the destination. Even if the logins exist in the destination, the mapping between the user accounts and the logins will not be automatic. You can use a special system stored procedure called sp_change_users_login to address these situations. The procedure needs to be run against the newly attached or restored database and can accept four parameters. Depending on what you want to do, you may be using less than four though. The first parameter, @Action, can take three values. When you specify @Action = ‘Report’, the system will provide you with a list of database users which are not mapped to any login. If you want to map a database user to an existing SQL Server login, the value for @Action will be ‘Update_One’. In this case, you will only need to provide the database user name and the login it will map to. So if your newly restored database has a user account called “bob” and there is already a SQL Server login with the same name and you want to map the user to the login, you will execute a query like the following: sp_change_users_login         @Action = ‘Update_One’,         @UserNamePattern = ‘bob’,         @LoginName = ‘bob’ If the login does not exist, you can instruct SQL Server to create the login with the same name. In this case you will need to provide a password for the login and the value of the @Action parameter will be ‘Auto_Fix’. If the login already exists, it will be automatically mapped to the user account. Unfortunately sp_change_users_login system stored procedure cannot be used to map database users to trusted logins (Windows accounts) in SQL Server. You will need to follow a manual process to re-map the database user accounts.  Continues…

    Read the article

  • MySQL for Excel 1.1.0 GA has been released

    - by Javier Treviño
    The MySQL Windows Experience Team is proud to announce the release of MySQL for Excel version 1.1.0 GA, one of our newest products contained in the MySQL Installer suite. You can download it from our official Downloads page at http://dev.mysql.com/downloads/installer/. The 1.1.0 release of MySQL for Excel introduces the following features: Edit MySQL Data. Edit MySQL Data This may be the coolest feature so far; users will be able to edit the data in a MySQL table using MS Excel in a very friendly and intuitive way.  Edit Data supports inserting new rows, deleting existing rows and updating existing data as easy as playing with data in an Excel’s spreadsheet and pushing changes back to the server.  Also this version contains the following bug fixes: Enabled the following checkboxes in the Append Data's Advanced Options dialog and added code in the Append Data dialog to use the checkboxes as follows: Automatically store the column mapping for the given table     If checked the current mapping will be stored automatically after clicking the Append button if the append operation is successful and there is no mapping for the current connection.schema.table already; the new mapping is stored with a proposed name of Mapping. Reload stored column mapping for the selected table automatically     If checked the first Stored Mapping found where all column names in the source grid match all column names in the target grid is automatically selected and applied when the Append Data dialog is loaded. Fixed code in Append Data that applies a stored column mapping to skip target columns where the associated mapping is empty (saved as a -1). Enclosed the Add-In's startup code in a try-catch block in order to log any possible error thrown during startup; and added information messages to the log at the beginning of the Add-In's startup code and at the end of the shutdown code.  Also changed the wrapper method that calls the MySQLUtility to write messages to the log to make logging easier, thus changed the log call throughout all the code that contains a try-catch block. Added code to the main wix configuration file to check if a newer version is already installed and if so abort the installation Fixed code to refresh the Import Procedure Form's preview grid's data source to repaint its contents every time the Call button is pressed. Added code to re-pull connections after connections are migrated from Excel to Workbench. Fixed code so when the Append Data's Automatic Mapping is performed any subsequent change on a mapping resets the mapping to a Manual Mapping. Added code to the InfoDialog class to set the button text to "Show Details" or "Hide Details" depending on the status of the Details text container. Fixed a GUID in the main wix configuration file so now previous versions are uninstalled during a new installation. Added an option to the Export Data's Advanced Options dialog to remove columns with no data, by default the Export Dialog will only flag those columns as Excluded. Added code to display a warning and paint a column red if the column name in the Export Data dialog is not set, display a warning if the table name is not set, and stack warnings but not display them if a column is Excluded, warnings are displayed normally for columns if they are not Excluded anymore.  Added code to prevent the Append and Export of Data if more than 1 selection is made (selecting more than 1 area holding the Ctrl key while selecting Excel cells). Fixed problem that prevented MySQL for Excel from loading when Display settings in Windows 7 is set to Adjust to Best Performance (Oracle bug 14521405 - UNHANDLED EXCEPTION IS THROWN WHEN LOADING MYSQL FOR EXCEL). Fixed code that renames the auto-generated Primary Key column when the Table name changes since it was not detecting if a column with the same name already existed in the table. The column duplication was not actually happening, it looked that way because the automatically generated PK column was not detecting a column had that same name. Fixed code in Export Data dialog to always set an empty string instead of null to the MySQLDataColumn properties that stores MySQL data types (MySQLDataType, RowsFrom1stDataType and RowsFrom2ndDataType). Added code to display a warning and color red a column which Data Type has not been set by the user or has been manually cleared. Added code to output to the application log exception messages consistently in all places where exceptions are catched. A series of blog posts explaining the new Edit MySQL Data feature and the other existing features are coming in this blog. You can access the MySQL for Excel documentation at http://dev.mysql.com/doc/refman/5.5/en/mysql-for-excel.html You can also post questions on our MySQL for Excel forum found at http://forums.mysql.com/. You can also post questions on our MySQL for Excel forum found at http://forums.mysql.com/. Enjoy and thanks for the support!

    Read the article

  • Is there a way to add AD LDS users to an AD Domain Group or allow them domain security rights?

    - by Tom
    I have a web application in which our outside customers need access to run transactions (stored procs on Sql Server) on our domain. We have looked into LDS to keep these users separate from our domain. The problem we are having is allowing the LDS users the AD security rights to access these stored procs. For administration purposes we would like to use an AD group for each transaction (stored proc) which has access to execute. Is there a way to add LDS users to this AD group or allow them the security rights to do this? We have setup LDS and can authenicate an AD user thru to runs these transactions. LDS is running on Server 08 R2. AD is also Server 08 R2. Thanks.

    Read the article

  • Chrome: Saved username/password filled in incognito mode

    - by Wouter Coekaerts
    If I open an incognito window in Google Chrome and go to a webpage where Chrome has a saved username and password from (for example the login form on http://gmail.com), I see that my username and password are automatically filled in. Does that mean that I am not really incognito? Can the website see my username even if I don't explicitly log in? Or is there some mechanism behind the scenes that prevents the webpage from grabbing auto-filled values unless I actually log in? Clarification: Stored usernames (and passwords) are a lot like cookies: your unique identifier linked to a certain site, stored locally in your browser, available to the site when you open it. When you go incognito you ask your browser not to identify you to the sites you visit. It does that by (among other things) not exposing its cookies. Exposing the stored username in this mode does not make sense to me (but maybe I'm missing something...).

    Read the article

  • Is this a bug in Profiler or Entity Framework?

    - by AjarnMark
    Using Entity Framework 4 with stored procedures and SQL Server 2008 SP1... When running SQL Server Profiler (TSQL_SPs template), the lines that show my stored procedure call and its statements say that they executed in DatabaseID = 1 (Master) but it is actually happening in my application database (ID = 8). The procedures execute properly and return the data, and they only exist in my application database, so why does Profiler mark those lines as being in Master? Is this a bug in Profiler? Is it a bug in EF4? Note that running the same code against a SQL 2000 instance, Profiler correctly shows the application's database ID.

    Read the article

  • SQL Server 2008 lincensing question relating to web servers

    - by Matty Brown
    We purchased SQL Server 2008 Standard licences last year under the server + device CAL licencing model. Since our server has 2 physical CPUs and only 46 clients, this option was by far the cheapest. Now we'd like to be able to query a small number of stored procedures from our Windows Server 2003 Web Edition server, which is in a seperate zone on our firewall. I think SQL Server 2008 Web Edition could be an option to us, but is it possible to replicate/mirror stored procedures and tables to such a server and would we be breaking any rules by doing so? Is this a form of multiplexing? Also, would replication/mirroring work both ways, if we were to want to write back data from the web server?

    Read the article

  • Backup media manager, library or similar reference application

    - by Tarnschaf
    I'm looking for a backup media manager that will keep me up-to-date on where my backups are, how they're stored and what's stored on them. I want it to be able to do and keep track of the following: my used backup media (e.g. DVD1, DVD2) my backed-up assets in high-level (such as "family-photos from 2003", "laptop drivers") details of the assets ("Ninas Birthday 2003") where the backup media is currently stored when the media has been burned (to re-burn in case of media degeneration). It should be possible to navigate back and forth between media and assets. I also thought about marking assets as "deprecated". If all assets on a media are deprecated, the program should tell me so I don't have to keep it any more. Does anyone know of a program with this feature-set? Or will I have to start my own reference in something like Access?

    Read the article

  • opening Dbf files in oracle 10g

    - by nagaraju
    This nagaraju,from India,Hyderabad. I have installed oracle 10g trail version in my system(E drive),created one database with my name(database:-nagaraju),in that created tables, prodecures ,functions ,sequences etc for my project. Due to some sudden problem,i formatted my machine C drive,now iam not ablle to open my database, i need all procedures ,tables which i created in that. Now I newly installed oracle10g again in another folder,how can i copy my old database into my inew installation database. Or can i copy the script of procedures so that ican run in new database. I have all data in Oradata folder,like DBF files etc. Could you please help me, how to do that?

    Read the article

  • High disk time on sql-server

    - by Patrik
    Hi We have a dedicated sql-server 2008 r2 enterprise edition. The setup is: D: (data files) - stored on local ssd disks (not the same disks as log files) (raid 10) E: (log files) - stored on local ssd disks (not the same disks as data files) (raid 1) F: (transaction log backup) - stored remote on a SAN Today we moved our log files to new disks (from F: to E:). From a shared volume ( F:(SAN)) to dedicated local disks (E:). What then happend was that the "disk time", "avg. transfer time" and "avg disk write queue length" increased on the volume where we have the data files (D:) (not on the volume where the log files are located). The data volume and log volume does not share disks, however they share the same controller card. "Disk idle time" is low for all volumes. One thought is ofcourse that the controller card might be overloaded. But, we need more ideas on where the problem might be.

    Read the article

< Previous Page | 60 61 62 63 64 65 66 67 68 69 70 71  | Next Page >