Search Results

Search found 5954 results on 239 pages for 'cpu cores'.

Page 66/239 | < Previous Page | 62 63 64 65 66 67 68 69 70 71 72 73  | Next Page >

  • NEC uPD720200 USB 3.0 not working on Ubuntu 12.04

    - by Jagged
    I've recently installed Ubuntu 12.04 64-bit on a HP Envy 15 1104tx. Most stuff appears to be working fine with the exception of the two USB3 ports (USB2 port works fine). I've read a lot of articles but so far have not been able to find a solution. I've tried adding 'pci=nomsi' to '/etc/default/grub' but this made no difference. Some articles suggest booting into Windows and upgrading the firmware on the uPD720200. Any body had any experience of this? Is there a way I can checked the firmware version of the NEC uPD720200 in Linux to see if there is an update available? Any help appreciated. uname -a: Linux HP-ENVY-15-1104tx 3.2.0-26-generic #41-Ubuntu SMP Thu Jun 14 17:49:24 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux lshw: hp-envy-15-1104tx description: Notebook product: HP ENVY 15 Notebook PC (WF591PA#ABG) vendor: Hewlett-Packard version: 0492110000241910001420000 serial: CNF0301C79 width: 64 bits capabilities: smbios-2.6 dmi-2.6 vsyscall32 configuration: boot=normal chassis=notebook family=103C_5335KV sku=WF591PA#ABG uuid=434E4630-3330-3143-3739-60EB6906688F *-core description: Motherboard product: 1522 vendor: Hewlett-Packard physical id: 0 version: 36.35 serial: CNF0301C79 slot: Base Board Chassis Location *-firmware description: BIOS vendor: Hewlett-Packard physical id: 0 version: F.2B date: 10/12/2010 size: 1MiB capacity: 1472KiB capabilities: pci upgrade shadowing cdboot bootselect edd int13floppynec int13floppytoshiba int13floppy360 int13floppy1200 int13floppy720 int13floppy2880 int9keyboard int10video acpi usb biosbootspecification *-memory description: System Memory physical id: 13 slot: System board or motherboard size: 16GiB *-bank:0 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: 9905428-043.A00LF physical id: 0 serial: E13C4316 slot: Bottom size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:1 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: 9905428-043.A00LF physical id: 1 serial: E03C3E16 slot: Bottom size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:2 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: 9905428-043.A00LF physical id: 2 serial: 672279CC slot: On Board size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:3 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: 9905428-043.A00LF physical id: 3 serial: 652286CC slot: On Board size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-cpu description: CPU product: Intel(R) Core(TM) i7 CPU Q 820 @ 1.73GHz vendor: Intel Corp. physical id: 1d bus info: cpu@0 version: Intel(R) Core(TM) i7 CPU Q 820 @ 1.73GHz slot: CPU size: 1199MHz capacity: 1199MHz width: 64 bits clock: 1066MHz capabilities: x86-64 fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf pni dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm sse4_1 sse4_2 popcnt lahf_lm ida tpr_shadow vnmi flexpriority ept vpid cpufreq configuration: cores=4 enabledcores=4 threads=8 *-cache:0 description: L3 cache physical id: 1e slot: L3 Cache size: 8MiB capacity: 8MiB capabilities: synchronous internal write-through unified *-cache:1 description: L2 cache physical id: 20 slot: L2 Cache size: 256KiB capacity: 256KiB capabilities: synchronous internal write-through unified *-cache:2 description: L1 cache physical id: 21 slot: L1 Cache size: 32KiB capacity: 32KiB capabilities: synchronous internal write-through instruction *-cache description: L1 cache physical id: 1f slot: L1 Cache size: 32KiB capacity: 32KiB capabilities: synchronous internal write-through data *-pci:0 description: Host bridge product: Core Processor DMI vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 11 width: 32 bits clock: 33MHz *-pci:0 description: PCI bridge product: Core Processor PCI Express Root Port 1 vendor: Intel Corporation physical id: 3 bus info: pci@0000:00:03.0 version: 11 width: 32 bits clock: 33MHz capabilities: pci msi pciexpress pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:16 ioport:4000(size=4096) memory:d4100000-d41fffff ioport:c0000000(size=268435456) *-display description: VGA compatible controller product: Broadway PRO [Mobility Radeon HD 5800 Series] vendor: Hynix Semiconductor (Hyundai Electronics) physical id: 0 bus info: pci@0000:01:00.0 version: 00 width: 64 bits clock: 33MHz capabilities: pm pciexpress msi vga_controller bus_master cap_list rom configuration: driver=fglrx_pci latency=0 resources: irq:58 memory:c0000000-cfffffff memory:d4100000-d411ffff ioport:4000(size=256) memory:d4140000-d415ffff *-multimedia description: Audio device product: Juniper HDMI Audio [Radeon HD 5700 Series] vendor: Hynix Semiconductor (Hyundai Electronics) physical id: 0.1 bus info: pci@0000:01:00.1 version: 00 width: 64 bits clock: 33MHz capabilities: pm pciexpress msi bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:56 memory:d4120000-d4123fff *-pci:1 description: PCI bridge product: Core Processor PCI Express Root Port 3 vendor: Intel Corporation physical id: 5 bus info: pci@0000:00:05.0 version: 11 width: 32 bits clock: 33MHz capabilities: pci msi pciexpress pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:16 memory:d4000000-d40fffff *-usb description: USB controller product: uPD720200 USB 3.0 Host Controller vendor: NEC Corporation physical id: 0 bus info: pci@0000:02:00.0 version: 03 width: 64 bits clock: 33MHz capabilities: pm msi msix pciexpress xhci bus_master cap_list configuration: driver=xhci_hcd latency=0 resources: irq:16 memory:d4000000-d4001fff *-generic:0 UNCLAIMED description: System peripheral product: Core Processor System Management Registers vendor: Intel Corporation physical id: 8 bus info: pci@0000:00:08.0 version: 11 width: 32 bits clock: 33MHz capabilities: pciexpress cap_list configuration: latency=0 *-generic:1 UNCLAIMED description: System peripheral product: Core Processor Semaphore and Scratchpad Registers vendor: Intel Corporation physical id: 8.1 bus info: pci@0000:00:08.1 version: 11 width: 32 bits clock: 33MHz capabilities: pciexpress cap_list configuration: latency=0 *-generic:2 UNCLAIMED description: System peripheral product: Core Processor System Control and Status Registers vendor: Intel Corporation physical id: 8.2 bus info: pci@0000:00:08.2 version: 11 width: 32 bits clock: 33MHz capabilities: pciexpress cap_list configuration: latency=0 *-generic:3 UNCLAIMED description: System peripheral product: Core Processor Miscellaneous Registers vendor: Intel Corporation physical id: 8.3 bus info: pci@0000:00:08.3 version: 11 width: 32 bits clock: 33MHz configuration: latency=0 *-generic:4 UNCLAIMED description: System peripheral product: Core Processor QPI Link vendor: Intel Corporation physical id: 10 bus info: pci@0000:00:10.0 version: 11 width: 32 bits clock: 33MHz configuration: latency=0 *-generic:5 UNCLAIMED description: System peripheral product: Core Processor QPI Routing and Protocol Registers vendor: Intel Corporation physical id: 10.1 bus info: pci@0000:00:10.1 version: 11 width: 32 bits clock: 33MHz configuration: latency=0 *-multimedia description: Audio device product: 5 Series/3400 Series Chipset High Definition Audio vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 05 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:55 memory:d4200000-d4203fff *-pci:2 description: PCI bridge product: 5 Series/3400 Series Chipset PCI Express Root Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: 05 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:17 ioport:3000(size=4096) memory:d3000000-d3ffffff ioport:d0000000(size=16777216) *-network description: Wireless interface product: Centrino Advanced-N 6200 vendor: Intel Corporation physical id: 0 bus info: pci@0000:03:00.0 logical name: wlan0 version: 35 serial: 00:27:10:40:e4:68 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwlwifi driverversion=3.2.0-26-generic firmware=9.221.4.1 build 25532 latency=0 link=no multicast=yes wireless=IEEE 802.11abgn resources: irq:54 memory:d3000000-d3001fff *-pci:3 description: PCI bridge product: 5 Series/3400 Series Chipset PCI Express Root Port 2 vendor: Intel Corporation physical id: 1c.1 bus info: pci@0000:00:1c.1 version: 05 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:16 ioport:2000(size=4096) memory:d2000000-d2ffffff ioport:d1000000(size=16777216) *-network description: Ethernet interface product: AR8131 Gigabit Ethernet vendor: Atheros Communications Inc. physical id: 0 bus info: pci@0000:04:00.0 logical name: eth0 version: c0 serial: 60:eb:69:06:68:8f size: 1Gbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vpd bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=atl1c driverversion=1.0.1.0-NAPI duplex=full firmware=N/A ip=10.161.0.147 latency=0 link=yes multicast=yes port=twisted pair speed=1Gbit/s resources: irq:57 memory:d2000000-d203ffff ioport:2000(size=128) *-usb description: USB controller product: 5 Series/3400 Series Chipset USB2 Enhanced Host Controller vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 05 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=0 resources: irq:20 memory:d4205800-d4205bff *-pci:4 description: PCI bridge product: 82801 Mobile PCI Bridge vendor: Intel Corporation physical id: 1e bus info: pci@0000:00:1e.0 version: a5 width: 32 bits clock: 33MHz capabilities: pci subtractive_decode bus_master cap_list *-isa description: ISA bridge product: Mobile 5 Series Chipset LPC Interface Controller vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 05 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: latency=0 *-storage description: RAID bus controller product: 82801 Mobile SATA Controller [RAID mode] vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 logical name: scsi0 version: 05 width: 32 bits clock: 66MHz capabilities: storage msi pm bus_master cap_list emulated configuration: driver=ahci latency=0 resources: irq:45 ioport:5048(size=8) ioport:5054(size=4) ioport:5040(size=8) ioport:5050(size=4) ioport:5020(size=32) memory:d4205000-d42057ff *-disk description: ATA Disk product: OCZ-VERTEX3 physical id: 0.0.0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: 2.15 serial: OCZ-0350P6H316X5KUQE size: 223GiB (240GB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=000592dd *-volume:0 description: EXT4 volume vendor: Linux physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 logical name: / version: 1.0 serial: e741f18c-cfc5-4bce-b1e7-f80e517a3a22 size: 207GiB capacity: 207GiB capabilities: primary bootable journaled extended_attributes large_files huge_files dir_nlink recover extents ext4 ext2 initialized configuration: created=2012-06-15 06:49:27 filesystem=ext4 lastmountpoint=/ modified=2012-06-14 21:23:42 mount.fstype=ext4 mount.options=rw,relatime,errors=remount-ro,user_xattr,barrier=1,data=ordered mounted=2012-07-10 16:18:20 state=mounted *-volume:1 description: Extended partition physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 size: 15GiB capacity: 15GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume description: Linux swap / Solaris partition physical id: 5 logical name: /dev/sda5 capacity: 15GiB capabilities: nofs *-serial UNCLAIMED description: SMBus product: 5 Series/3400 Series Chipset SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 05 width: 64 bits clock: 33MHz configuration: latency=0 resources: memory:d4205c00-d4205cff ioport:5000(size=32) *-pci:1 description: Host bridge product: Core Processor QuickPath Architecture Generic Non-Core Registers vendor: Intel Corporation physical id: 101 bus info: pci@0000:ff:00.0 version: 04 width: 32 bits clock: 33MHz *-pci:2 description: Host bridge product: Core Processor QuickPath Architecture System Address Decoder vendor: Intel Corporation physical id: 102 bus info: pci@0000:ff:00.1 version: 04 width: 32 bits clock: 33MHz *-pci:3 description: Host bridge product: Core Processor QPI Link 0 vendor: Intel Corporation physical id: 103 bus info: pci@0000:ff:02.0 version: 04 width: 32 bits clock: 33MHz *-pci:4 description: Host bridge product: Core Processor QPI Physical 0 vendor: Intel Corporation physical id: 104 bus info: pci@0000:ff:02.1 version: 04 width: 32 bits clock: 33MHz *-pci:5 description: Host bridge product: Core Processor Integrated Memory Controller vendor: Intel Corporation physical id: 105 bus info: pci@0000:ff:03.0 version: 04 width: 32 bits clock: 33MHz *-pci:6 description: Host bridge product: Core Processor Integrated Memory Controller Target Address Decoder vendor: Intel Corporation physical id: 106 bus info: pci@0000:ff:03.1 version: 04 width: 32 bits clock: 33MHz *-pci:7 description: Host bridge product: Core Processor Integrated Memory Controller Test Registers vendor: Intel Corporation physical id: 107 bus info: pci@0000:ff:03.4 version: 04 width: 32 bits clock: 33MHz *-pci:8 description: Host bridge product: Core Processor Integrated Memory Controller Channel 0 Control Registers vendor: Intel Corporation physical id: 108 bus info: pci@0000:ff:04.0 version: 04 width: 32 bits clock: 33MHz *-pci:9 description: Host bridge product: Core Processor Integrated Memory Controller Channel 0 Address Registers vendor: Intel Corporation physical id: 109 bus info: pci@0000:ff:04.1 version: 04 width: 32 bits clock: 33MHz *-pci:10 description: Host bridge product: Core Processor Integrated Memory Controller Channel 0 Rank Registers vendor: Intel Corporation physical id: 10a bus info: pci@0000:ff:04.2 version: 04 width: 32 bits clock: 33MHz *-pci:11 description: Host bridge product: Core Processor Integrated Memory Controller Channel 0 Thermal Control Registers vendor: Intel Corporation physical id: 10b bus info: pci@0000:ff:04.3 version: 04 width: 32 bits clock: 33MHz *-pci:12 description: Host bridge product: Core Processor Integrated Memory Controller Channel 1 Control Registers vendor: Intel Corporation physical id: 10c bus info: pci@0000:ff:05.0 version: 04 width: 32 bits clock: 33MHz *-pci:13 description: Host bridge product: Core Processor Integrated Memory Controller Channel 1 Address Registers vendor: Intel Corporation physical id: 10d bus info: pci@0000:ff:05.1 version: 04 width: 32 bits clock: 33MHz *-pci:14 description: Host bridge product: Core Processor Integrated Memory Controller Channel 1 Rank Registers vendor: Intel Corporation physical id: 10e bus info: pci@0000:ff:05.2 version: 04 width: 32 bits clock: 33MHz *-pci:15 description: Host bridge product: Core Processor Integrated Memory Controller Channel 1 Thermal Control Registers vendor: Intel Corporation physical id: 10f bus info: pci@0000:ff:05.3 version: 04 width: 32 bits clock: 33MHz *-battery description: Lithium Ion Battery product: NK06053 vendor: SMP-ATL24 physical id: 1 slot: Primary capacity: 4800mWh configuration: voltage=11.1V lspci: 02:00.0 USB controller: NEC Corporation uPD720200 USB 3.0 Host Controller (rev 03) (prog-if 30 [XHCI]) Subsystem: Hewlett-Packard Company Device 1522 Flags: bus master, fast devsel, latency 0, IRQ 16 Memory at d4000000 (64-bit, non-prefetchable) [size=8K] Capabilities: [50] Power Management version 3 Capabilities: [70] MSI: Enable- Count=1/8 Maskable- 64bit+ Capabilities: [90] MSI-X: Enable+ Count=8 Masked- Capabilities: [a0] Express Endpoint, MSI 00 Capabilities: [100] Advanced Error Reporting Capabilities: [140] Device Serial Number ff-ff-ff-ff-ff-ff-ff-ff Capabilities: [150] Latency Tolerance Reporting Kernel driver in use: xhci_hcd lsusb (with thumb drive plugged into USB3 port): Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 003 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 001 Device 002: ID 8087:0020 Intel Corp. Integrated Rate Matching Hub Bus 001 Device 003: ID 5986:01d0 Acer, Inc Bus 001 Device 004: ID 03f0:231d Hewlett-Packard

    Read the article

  • Machine Check Exception

    - by Karl Entwistle
    When trying to install ubuntu-12.04-desktop-amd64.iso from USB I get one of the following errors http://en.wikipedia.org/wiki/Machine_Check_Exception states the error can occur due to -poorly fitted heatsink/computer fans (the same problem can happen with excessive dust in the CPU fan) -an overloaded internal or external power supply (fixable by upgrading) So I tried the following -Using rubbing alcohol to remove all the thermal paste from the CPU and heatsink, I then reseated the CPU after checking all the pins on the MOBO, everything seems fine. -Boot without the GPU to see if was the PSU that is being over stressed. -Removing all RAM apart from one stick and running a Memtest86 which it passed -Using Ubuntu 10.04.4 Desktop 64 bit (Different USB slots and USB sticks) -Using Ubuntu 12.04 Desktop 64 bit (Different USB slots and USB sticks) -Reset the BIOS using the Clear CMOS jumper -Removing all HD power cables and SATA cables -Updating the BIOS from F2 to F6 My PC is using the following parts. -Gigabyte GA-Z77-DS3H (F6 BIOS) -Intel Core i7 3770K 3.5GHz Socket 1155 -G-Skill 8GB (2x4GB) DDR3 1600Mhz RipjawsX Memory Kit CL9 (9-9-9-24) 1.5V -Be Quiet Shadow Rock Pro -Be Quiet Pure Power 730W Modular PSU -Sapphire HD 6870 1GB GDDR5 DVI HDMI DisplayPort PCI-E Graphics Card Any ideas?

    Read the article

  • Tuning Red Gate: #5 of Multiple

    - by Grant Fritchey
    In the Tuning Red Gate series I've shown you how to look at a current load on the system and how to drill down to look at historical analysis of the system. I've also shown how you can see the top queries and other information from the current status of the system. I have one more thing I can show you before we need to start fixing things and showing how that affects the data collected, historical moments in time. For example, back in Post #3 I was looking at some spikes in some of the monitored resources that were taking place a couple of weeks back in time. Once I identify a moment in time that I'm interested in, I can go back to the first page of Monitor, Global Overview, and click on the icon: From this you can select the date and time you're interested in. For example, I saw some serious CPU queues last week: This then rolls back the time for all the information that's available to the Global Overview and the drill down to the server and the SQL Server instance there. This then allows me to look at the Top Queries running at this point, sort them by CPU and identify what was potentially the query that was causing the problem right when I saw the CPU queuing This ability to correlate a moment in time with the information available to you in the Analysis window makes for an excellent tool to investigate your systems going backwards in time. It really makes a huge difference in your knowledge. It's not enough to know that something happened at a particular time. You need to know what it was that was occurring. Remember, the key to tuning your systems is having enough knowledge about them. I'll post more on Tuning Red Gate as soon as I can get some queries rewritten. I'm working on that.

    Read the article

  • Which Ubuntu version to use on a MAXDATA laptop Eco 3100X ? with this system info

    - by Erjet Malaj
    i am speaking as new ubuntu user, i just have installed ubuntu 10.04 on my laptop, but is running very slow... So i am here to ask you a question: WHich ubuntu version can fit for my laptop MAXDATA Eco 3100x, . My Laptop System Information are: SYSTEM INFORMATION Running Ubuntu Linux, the Ubuntu 10.04 (lucid) release. GNOME: 2.30.2 (Ubuntu 2010-06-25) Kernel version: 2.6.32-40-generic (#87-Ubuntu SMP Mon Mar 5 20:26:31 UTC 2012) GCC: 4.4.3 (i486-linux-gnu) Xorg: unknown (25 February 2012 06:59:39AM) (25 February 2012 06:59:39AM) Hostname: lotus-laptop Uptime: 0 days 1 h 6 min CPU INFORMATION GenuineIntel, Intel(R) Pentium(R) 4 CPU 2.40GHz Number of CPUs: 1 CPU clock currently at 2390.561 MHz with 512 KB cache Numbering: family(15) model(2) stepping(7) Bogomips: 4781.12 Flags: fpu vme de pse tsc msr pae mce cx8 mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe up pebs bts cid MEMORY INFORMATION Total memory: 228 MB Total swap: 455 MB STORAGE INFORMATION SCSI device - scsi0 Vendor: ATA Model: IBM-DJSA-210 SCSI device - scsi1 Vendor: TOSHIBA Model: DVD-ROM SD-C2502 HARDWARE INFORMATION MOTHERBOARD Host bridge Silicon Integrated Systems [SiS] 650/M650 Host (rev 11) PCI bridge(s) Silicon Integrated Systems [SiS] Virtual PCI-to-PCI bridge (AGP) Silicon Integrated Systems [SiS] Virtual PCI-to-PCI bridge (AGP) USB controller(s) Silicon Integrated Systems [SiS] USB 1.1 Controller (rev 0f) (prog-if 10) Silicon Integrated Systems [SiS] USB 1.1 Controller (rev 0f) (prog-if 10) Silicon Integrated Systems [SiS] USB 1.1 Controller (rev 0f) (prog-if 10) Silicon Integrated Systems [SiS] USB 2.0 Controller (prog-if 20) Silicon Integrated Systems [SiS] USB 1.1 Controller (rev 0f) (prog-if 10) Silicon Integrated Systems [SiS] USB 1.1 Controller (rev 0f) (prog-if 10) Silicon Integrated Systems [SiS] USB 1.1 Controller (rev 0f) (prog-if 10) Silicon Integrated Systems [SiS] USB 2.0 Controller (prog-if 20) ISA bridge Silicon Integrated Systems [SiS] SiS962 [MuTIOL Media IO] (rev 04) IDE interface Silicon Integrated Systems [SiS] 5513 [IDE] (prog-if 80 [Master]) Subsystem: Silicon Integrated Systems [SiS] 5513 [IDE] GRAPHIC CARD VGA controller Silicon Integrated Systems [SiS] 65x/M650/740 PCI/AGP VGA Display Adapter Subsystem: Uniwill Computer Corp Device 5103 SOUND CARD Multimedia controller Silicon Integrated Systems [SiS] AC'97 Sound Controller (rev a0) Subsystem: Uniwill Computer Corp Device 5203 NETWORK Ethernet controller Silicon Integrated Systems [SiS] SiS900 PCI Fast Ethernet (rev 91) Subsystem: Uniwill Computer Corp Device 5002 Modem Silicon Integrated Systems [SiS] AC'97 Modem Controller (rev a0) Subsystem: Uniwill Computer Corp Device 4003 Thanks you asap. :-) E

    Read the article

  • links for 2010-06-02

    - by Bob Rhubart
    @eelzinga: Oracle Service Bus 11g communication with Oracle SOA Suite 11g, DirectBindings, part1 Oracle ACE Erikc Elzinga launches a series of post in which he will describe how to develop various  Oracle Service Bus 11g to Oracle SOA Suite  process flows. (tags: oracle otn oracleace soa servicebus) @Atul_Kumar: Integrate UCM (ECM/Content Server) with Microsoft Active Directory as LDAP Provider Atul Kumar's step-by-step instructions. (tags: oracle otn enterprise2.0 ucm ecm ldap) Stefan Hinker: Is my application a good fit for CMT? "The first and most important criterion for suitability is always the service time of your application," says Stefan Hinker.  "If this is sufficient, then the application is OK on CMT. If it is not, and the reason is actually the CPU and not some other high-latency component (like a remote database), you will need to test on other CPU architectures." (tags: oracle sun cpu cmt sparc solaris) @deltalounge: Definitions of Services and Processes Peter Paul shares a collection of useful definitions gathered from the works of many of the big thinkers in the SOA space.  (tags: oracle otn soa businessprocess) OTN TechCast: Oracle Solaris Virtualization - Oracle Solaris Video Joost Pronk, CTO for Oracle Solaris Product Management, provides an overview of the robust virtualization functionality built into the Oracle Solaris OS. (tags: oracle otn solaris virtualization)

    Read the article

  • How to improve batching performance

    - by user4241
    Hello, I am developing a sprite based 2D game for mobile platform(s) and I'm using OpenGL (well, actually Irrlicht) to render graphics. First I implemented sprite rendering in a simple way: every game object is rendered as a quad with its own GPU draw call, meaning that if I had 200 game objects, I made 200 draw calls per frame. Of course this was a bad choice and my game was completely CPU bound because there is a little CPU overhead assosiacted in every GPU draw call. GPU stayed idle most of the time. Now, I thought I could improve performance by collecting objects into large batches and rendering these batches with only a few draw calls. I implemented batching (so that every game object sharing the same texture is rendered in same batch) and thought that my problems are gone... only to find out that my frame rate was even lower than before. Why? Well, I have 200 (or more) game objects, and they are updated 60 times per second. Every frame I have to recalculate new position (translation and rotation) for vertices in CPU (GPU on mobile platforms does not support instancing so I can't do it there), and doing this calculation 48000 per second (200*60*4 since every sprite has 4 vertices) simply seems to be too slow. What I could do to improve performance? All game objects are moving/rotating (almost) every frame so I really have to recalculate vertex positions. Only optimization that I could think of is a look-up table for rotations so that I wouldn't have to calculate them. Would point sprites help? Any nasty hacks? Anything else? Thanks.

    Read the article

  • conky stopped displaying after daul monitors setup -- works when I detect monitors

    - by synaptik
    I just recently installed Ubuntu 12.04 on a clean install. I previously was using 11.10. I am also using a new laptop with a Dell docking-station and two external monitors. When I try to use the .conkyrc file that I used previously, my conky display simply doesn't show up anywhere. However, after I went to System Settings Displays and made some slight change that caused the monitors to refresh, then conky appeared as it should. Here is my .conkyrc file: background yes use_xft yes xftfont DejaVu Sans Mono:size=8 xftalpha 0.8 out_to_console no update_interval 2.0 total_run_times 0 draw_shades no short_units yes # Create own window instead of using desktop (required in nautilus) own_window yes # If own_window is yes, you may use type normal, desktop or override own_window_type override # Use pseudo transparency with own_window? own_window_transparent yes double_buffer yes default_color f0e68c color1 white color2 AD0303 alignment bottom_left gap_x 2 gap_y 30 no_buffers yes use_spacer right pad_percents 3 xftfont Terminus:size=10 TEXT $stippled_hr cpu1: ${color1}${cpu cpu1}% ${color} cpu2: ${color1}${cpu cpu2}% ${color} load: ${color1}$loadavg ${color} hot proc: ${color1}${top cpu 1}% - ${top name 1}${color} $stippled_hr big proc: ${color1}${top_mem mem_res 1} - ${top_mem name 1}${color} memory: ${color1}$mem/$memmax $memperc%${color} $stippled_hr disk: ${color1}${fs_used /}/${fs_size /}${color} swap: ${color1}${swap}/${swapmax}${color} ${diskiograph_read 15,120 color1 0077ff 750} ${diskiograph_write 15,120 color1 0077ff 750} $stippled_hr download: ${color1}${downspeed wlan0} /s${color} ${downspeedgraph eth0 20,120 104E8B 0077ff} upload: ${color1}${upspeed wlan0} /s${color} ${upspeedgraph eth0 20,120 104E8B 0077ff} How can I fix it so that I don't have to tamper with the Displays settings in order for conky to show up?

    Read the article

  • State of the art Culling and Batching techniques in rendering

    - by Kristian Skarseth
    I'm currently working with upgrading and restructuring an OpenGL render engine. The engine is used for visualising large scenes of architectural data (buildings with interior), and the amount of objects can become rather large. As is the case with any building, there is a lot of occluded objects within walls, and you naturally only see the objects that are in the same room as you, or the exterior if you are on the outside. This leaves a large number of objects that should be occluded through occlusion culling and frustum culling. At the same time there is a lot of repetative geometry that can be batched in renderbatches, and also a lot of objects that can be rendered with instanced rendering. The way I see it, it can be difficult to combine renderbatching and culling in an optimal fashion. If you batch too many objects in the same VBO it's difficult to cull the objects on the CPU in order to skip rendering that batch. At the same time if you skip the culling on the cpu, a lot of objects will be processed by the GPU while they are not visible. If you skip batching copletely in order to more easily cull on the CPU, there will be an unwanted high amount of render calls. I have done some research into existing techniques and theories as to how these problems are solved in modern graphics, but I have not been able to find any concrete solution. An idea a colleague and me came up with was restricting batches to objects relatively close to eachother e.g all chairs in a room or within a radius of n meeters. This could be simplified and optimized through use of oct-trees. Does anyone have any pointers to techniques used for scene managment, culling, batching etc in state of the art modern graphics engines?

    Read the article

  • Why does 'top' say my machine is only 50% idle?

    - by Chris Moore
    What's going on here? I'm running nothing on the system, iotop and iftop show the network and hard drive are both idle, and top (sorted by %CPU) shows nothing running. So why is the system only 50% idle? What's the other 50% waiting for? How can I find out? top - 12:01:05 up 3 days, 15:03, 1 user, load average: 6.00, 6.01, 6.05 Tasks: 179 total, 1 running, 178 sleeping, 0 stopped, 0 zombie Cpu(s): 0.7%us, 0.0%sy, 0.0%ni, 49.7%id, 49.7%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 2053996k total, 1992600k used, 61396k free, 81680k buffers Swap: 4092924k total, 10740k used, 4082184k free, 1338636k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1042 deb 20 0 21468 1412 1000 R 1 0.1 0:00.03 top 1 root 20 0 24188 1952 1152 S 0 0.1 0:01.44 init 2 root 20 0 0 0 0 S 0 0.0 0:00.05 kthreadd Update: dmesg shows the printer driver misbehaving: [28858.561847] cnijnetprn[1503]: segfault at 29 ip 00007f56cf3480f7 sp 00007fffb964ec30 error 4 in libcnnet.so.1.2.0[7f56cf345000+9000] [68851.187802] cnijnetprn[9180]: segfault at 29 ip 00007ffe7636a0f7 sp 00007fff9a8b1990 error 4 in libcnnet.so.1.2.0[7ffe76367000+9000] [155412.107826] cnijnetprn[19966]: segfault at 29 ip 00007fc31de770f7 sp 00007fffc03aa8e0 error 4 in libcnnet.so.1.2.0[7fc31de74000+9000] and also some issue with cp: [248041.172067] INFO: task cp:27488 blocked for more than 120 seconds. [248041.172071] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [248041.172075] cp D ffffffff81805120 0 27488 27345 0x00000004 [248041.172080] ffff880078d57a38 0000000000000046 ffff880078d579d8 ffffffff81032a79 [248041.172085] ffff880078d57fd8 ffff880078d57fd8 ffff880078d57fd8 0000000000012a40 [248041.172090] ffff88007b818000 ffff880069acc560 ffff880078d57a18 ffff88007f8532c0 [248041.172095] Call Trace: [248041.172104] [<ffffffff81032a79>] ? default_spin_lock_flags+0x9/0x10 [248041.172109] [<ffffffff8110a360>] ? __lock_page+0x70/0x70 [248041.172114] [<ffffffff815f0ecf>] schedule+0x3f/0x60 I did try copying something to the USB stick that's plugged into the router and mounted onto this computer using mount.cifs. That almost always causes everything to lock up, so I'm guessing that's the problem. I'll reboot and stop using mount.cifs.

    Read the article

  • Fix for poor hd playback for 11.04 upwards

    - by mark kirby
    Hi guys ive seen loads of posts on this site about poor 720/1080p playback in recent ubuntu versions I had this problem and fixed it so I thought id share it with everyone.... 1 install mplayer 2 install smplayer frontend {in software center} 3 open smplayer 4 go to "OPTIONS" then "PREFRENCES" then "GENRAL" 5 if you have a nvidia card choose "OUTPUT DRIVER" and select "VDPAU" {for ATI or AMD choose xv (0 - ATI Radeon AVIVO video) I dont know if this will work as my card is nvidia but it should) 6 go to performance on the left hand side and set both local and streaming cache to 99999 (this may also fix dvd playback if you set that cache aswell} 7 check the box for "ALLOW HARD FRAME DROP" and set "LOOP FILTER" to skip only on HD 8 Set the "THREDS FOR DECODING OPTION TO THE NUMBER OF CORES YOUR CPU HAS IF YOU HAVE MORE THAN ONE CPU ADD UP ALL THE CORES FOR BEST PERFORMANCE" 9 Enjoy you HD movies again on ubuntu...... I have a pretty avrage machine heres my spec.... 2x Pentium 4 ht 3 ghz Stock dell power and motherboard GFORCE 310 HDMI 24 inch full HD tv as a monitor so any one with dule core cpu should have no problems getting this to work. hope this helps someone out.

    Read the article

  • Laptop runs HOT after 12.10 upgrade!

    - by dinkelk
    I was running 12.04 for 6 months, my laptop ran almost silently and cool enough to hold on my lap. I updated to 12.10 and now my computer gets too hot to hold on my lap and the fan is constantly running on full blast. This is the output of sensors: acpitz-virtual-0 Adapter: Virtual device temp1: +84.0°C (crit = +99.0°C) coretemp-isa-0000 Adapter: ISA adapter Physical id 0: +84.0°C (high = +86.0°C, crit = +100.0°C) Core 0: +74.0°C (high = +86.0°C, crit = +100.0°C) Core 1: +72.0°C (high = +86.0°C, crit = +100.0°C) Core 2: +75.0°C (high = +86.0°C, crit = +100.0°C) Core 3: +84.0°C (high = +86.0°C, crit = +100.0°C) radeon-pci-0100 Adapter: PCI adapter temp1: +76.0°C I have an HP Pavilion dv6, i7, amd radeon graphics. Please let me know if you need additional information. What could be different between the two Ubuntu additions that caused such a drastic change? Edit 1: Per @Paul's suggestion, I ran htop to try to narrow down the problem. Here is the result! This is about 10 minutes after boot-up, htop, yakuake, and a chrome page with 1 tab opened to this question are all that I have manually opened. The most taxing program to the CPU is htop itself. I think that the problem must lie elsewhere; my temps are already up to ~65C for the CPU and ~69C for the GPU, with nearly 0% CPU usage.

    Read the article

  • slow virtualbox guest

    - by ecoologic
    I run a guest ubuntu 12.04 on a host ubuntu 12.04, with virtual box, and the guest is much, much slower than the host (ALT+TAB costs 4-5secs). I had a look around and I found contradicting opinions on virtualbox vs vmware (free), so I taught to keep the former. Both systems are updated, I installed the additions on the guest and I evenly split memory and video memory (64mb) between guest and host. I am running a toshiba m200 laptop with 4GB ram and shared video memory. The host bios does not include a configuration option for machine virtualization. I have 2 cpus and I can't give them both to the vm. Is there anything I overlooked that could solve my problem? Feel free to ask for more info, and thank you for any help. EDIT Idling with the monitor open the (single) guest cpu never gets below 55% and could raise to 80 - 90% just moving the mouse around, opening ff will cause the monitor to run 100% in the guest, while the host shows that both cpus are evenly working around 60%. My cpu is Intel® Core™2 Duo CPU T5450 @ 1.66GHz × 2. If this is not a configuration problem, does it mean my machine is too weak for virtualization?

    Read the article

  • OUCH! Laptop running SUPER HOT after 12.10 upgrade!

    - by dinkelk
    I was running 12.04 for 6 months, my laptop ran almost silently and cool enough to hold on my lap. I updated to 12.10 and now my computer gets too hot to hold on my lap and the fan is constantly running on full blast. This is the output of sensors: acpitz-virtual-0 Adapter: Virtual device temp1: +84.0°C (crit = +99.0°C) coretemp-isa-0000 Adapter: ISA adapter Physical id 0: +84.0°C (high = +86.0°C, crit = +100.0°C) Core 0: +74.0°C (high = +86.0°C, crit = +100.0°C) Core 1: +72.0°C (high = +86.0°C, crit = +100.0°C) Core 2: +75.0°C (high = +86.0°C, crit = +100.0°C) Core 3: +84.0°C (high = +86.0°C, crit = +100.0°C) radeon-pci-0100 Adapter: PCI adapter temp1: +76.0°C I have an HP Pavilion dv6, i7, amd radeon graphics. Please let me know if you need additional information. What could be different between the two Ubuntu editions that caused such a drastic change? Edit 1: Per @Paul's suggestion, I ran htop to try to narrow down the problem. Here is the result! (left side of terminal) (right side of terminal) This is about 10 minutes after boot-up, htop, yakuake, and a chrome page with 1 tab opened to this question are all that I have manually opened. The most taxing program to the CPU is htop itself. I think that the problem must lie elsewhere; my temps are already up to ~65C for the CPU and ~69C for the GPU, with nearly 0% CPU usage.

    Read the article

  • How Do Computers Work? [closed]

    - by Rob P.
    This is almost embarrassing ask...I have a degree in Computer Science (and a second one in progress). I've worked as a full-time .NET Developer for nearly five years. I generally seem competent at what I do. But I Don't Know How Computers Work! Please, bare with me for a second. A quick Google of 'How a Computer Works' will yield lots and lots of results, but I struggled to find one that really answered what I'm looking for. I realize this is a huge, huge question, so really, if you can just give me some keywords or some direction. I know there are components....the power supply, the motherboard, ram, CPU, etc...and I get the 'general idea' of what they do. But I really don't understand how you go from a line of code like Console.Readline() in .NET (or Java or C++) and have it actually do stuff. Sure, I'm vaguely aware of MSIL (in the case of .NET), and that some magic happens with the JIT compiler and it turns into native code (I think). I'm told Java is similar, and C++ cuts out the middle step. I've done some mainframe assembly, it was a few years back now. I remember there were some instructions and some CPU registers, and I wrote code....and then some magic happened....and my program would work (or crash). From what I understand, an 'Emulator' would simulate what happens when you call an instruction and it would update the CPU registers; but what makes those instructions work the way they do? Does this turn into an Electronics question and not a 'Computer' question? I'm guessing there isn't any practical reason for me to understand this, but I feel like I should be able to. (Yes, this is what happens when you spend a day with a small child. It takes them about 10 minutes and five iterations of asking 'Why?' for you to realize how much you don't know)

    Read the article

  • cannot boot ubuntu 13.10 with my usb, Can i change the kernal on my laptop to run it?

    - by Carlos Dunick
    Currently i am running 12.04 and looking for an upgrade to 13.10 I first tried a bootable 64bit usb and failed. With the message saying "Kernal requires an x86-64 CPU but only detected an I686 CPU Unable to boot please use a kernal appropriate for your CPU" then tried 32bit and same message came up. Is this due to my laptop simply being to slow? or can/should i change the kernal somehow? Acer Aspire 5710z Intel Pentium dual core processor, 1.73Ghz, 533 MHz FSB, 1 MB L2 cache. 2GB DDR2 lspci 00:00.0 Host bridge: Intel Corporation Mobile 945GM/PM/GMS, 943/940GML and 945GT Express Memory Controller Hub (rev 03) 00:02.0 VGA compatible controller: Intel Corporation Mobile 945GM/GMS, 943/940GML Express Integrated Graphics Controller (rev 03) 00:02.1 Display controller: Intel Corporation Mobile 945GM/GMS/GME, 943/940GML Express Integrated Graphics Controller (rev 03) 00:1b.0 Audio device: Intel Corporation NM10/ICH7 Family High Definition Audio Controller (rev 02) 00:1c.0 PCI bridge: Intel Corporation NM10/ICH7 Family PCI Express Port 1 (rev 02) 00:1c.2 PCI bridge: Intel Corporation NM10/ICH7 Family PCI Express Port 3 (rev 02) 00:1c.3 PCI bridge: Intel Corporation NM10/ICH7 Family PCI Express Port 4 (rev 02) 00:1d.0 USB controller: Intel Corporation NM10/ICH7 Family USB UHCI Controller #1 (rev 02) 00:1d.1 USB controller: Intel Corporation NM10/ICH7 Family USB UHCI Controller #2 (rev 02) 00:1d.2 USB controller: Intel Corporation NM10/ICH7 Family USB UHCI Controller #3 (rev 02) 00:1d.3 USB controller: Intel Corporation NM10/ICH7 Family USB UHCI Controller #4 (rev 02) 00:1d.7 USB controller: Intel Corporation NM10/ICH7 Family USB2 EHCI Controller (rev 02) 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev e2) 00:1f.0 ISA bridge: Intel Corporation 82801GBM (ICH7-M) LPC Interface Bridge (rev 02) 00:1f.1 IDE interface: Intel Corporation 82801G (ICH7 Family) IDE Controller (rev 02) 00:1f.2 SATA controller: Intel Corporation 82801GBM/GHM (ICH7-M Family) SATA Controller [AHCI mode] (rev 02) 00:1f.3 SMBus: Intel Corporation NM10/ICH7 Family SMBus Controller (rev 02) 04:00.0 Ethernet controller: Broadcom Corporation NetLink BCM5787M Gigabit Ethernet PCI Express (rev 02) 05:00.0 Network controller: Broadcom Corporation BCM4311 802.11b/g WLAN (rev 01) 06:00.0 FLASH memory: ENE Technology Inc ENE PCI Memory Stick Card Reader Controller 06:00.1 SD Host controller: ENE Technology Inc ENE PCI SmartMedia / xD Card Reader Controller 06:00.2 FLASH memory: ENE Technology Inc Memory Stick Card Reader Controller 06:00.3 FLASH memory: ENE Technology Inc ENE PCI Secure Digital / MMC Card Reader Controller

    Read the article

  • Information about rendering, batches, the graphical card, performance etc. + XNA?

    - by Aidiakapi
    I know the title is a bit vague but it's hard to describe what I'm really looking for, but here goes. When it comes to CPU rendering, performance is mostly easy to estimate and straightforward, but when it comes to the GPU due to my lack of technical background information, I'm clueless. I'm using XNA so it'd be nice if theory could be related to that. So what I actually wanna know is, what happens when and where (CPU/GPU) when you do specific draw actions? What is a batch? What influence do effects, projections etc have? Is data persisted on the graphics card or is it transferred over every step? When there's talk about bandwidth, are you talking about a graphics card internal bandwidth, or the pipeline from CPU to GPU? Note: I'm not actually looking for information on how the drawing process happens, that's the GPU's business, I'm interested on all the overhead that precedes that. I'd like to understand what's going on when I do action X, to adapt my architectures and practices to that. Any articles (possibly with code examples), information, links, tutorials that give more insight in how to write better games are very much appreciated. Thanks :)

    Read the article

  • Series On Embedded Development (Part 1)

    - by user12612705
    This is the first in a series of entries on developing applications for the embedded environment. Most of this information is relevant to any type of embedded development (and even for desktop and server too), not just Java. This information is based on a talk Hinkmond Wong and I gave at JavaOne 2012 entitled Reducing Dynamic Memory in Java Embedded Applications. One thing to remember when developing embeddded applications is that memory matters. Yes, memory matters in desktop and server environments as well, but there's just plain less of it in embedded devices. So I'm going to be talking about saving this precious resource as well as another precious resource, CPU cycles...and a bit about power too. CPU matters too, and again, in embedded devices, there's just plain less of it. What you'll find, no surprise, is that there's a trade-off between performance and memory. To get better performance, you need to use more memory, and to save more memory, you need to need to use more CPU cycles. I'll be discussing three Memory Reduction Categories: - Optionality, both build-time and runtime. Optionality is about providing options so you can get rid of the stuff you don't need and include the stuff you do need. - Tunability, which is about providing options so you can tune your application by trading performance for size, and vice-versa. - Efficiency, which is about balancing size savings with performance.

    Read the article

  • ????????

    - by Tatsuya Sugi
    ??????????????????? ?????????????????????????????????????????????????????IT?????????????????????????????????????????????????????????????????????? Java ? .NET ????????????????????????????????...????????????????????????????????????????????????????????????????????????????????COBOL??????????????? Java ???????????????????? ??????????Java????????????????????????????? ??/?????????????????????????? ??????????????????????????????????????? ?????????????·?????????????????HW????????/??????? ????????????????????????? ?????????????????????????????????? ??????????????????????? Java ?????????????????? ???????????????????????????????????????????????????????????????????????????????????? ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ??????????????????????????? ??????????????????????????????????????????????????????????(HPC:?????????·?????????)??????????????????????????????????????????????Java??????????????????? ???????????????? ??????????? ?Java + ??????·????????????????????? ??????·?????????????????????????? ?????????·?????????????????????????CPU????????????????????????????????????????????????????????TOP500???????????????8???x86?CPU????????????????????????? ??????·????????·???????????????????????????????/?????????????????????????????????????????????????? ????????????????????? ???: ??????????????/???????????? ?????????????????????????????????????????????????????/???????????????????????????????????????????? ???????: ?????????·????????????????? ????CPU????????????????????????????????·??????????/??????????????????????????????????????????????????????????????????????????????????????????? ??????????????????Java????????????????? ???JVM???????????????? ???????????????????????JVM?????????·????????????? ??????????????????????????????????????????? ??????????????? Oracle Coherence ???????????????????????????????????(??/????????) ??/???????? ???????????? ?????????????????????????????? ????????

    Read the article

  • ?Oracle DB 11gR2 ?????????????????????????????????????!

    - by Yuichi.Hayashi
    Oracle Database????????????????????????????????????????????????????????????????????????·?????????????????????? ?????????/?????????????????????????????????????11g R2??????????????! ????????? Oracle Database?????????????????????????????????????CPU????·???????????????????????????????????????????????? ?????????????????????????????????????????????? ??????????????????????????????(?????????????·???????)????????????????????????????????????????????????????·?????????????????????????????????????????? ?????????????????????????????????????? ????11g R2??????????????????????????????????????????????? ????????????????? ???????????????????????????????Oracle?????????????????????????????????????? ???????????????????CPU????????????????????????????????????????! Oracle Database????????????????????????????? Oracle ?????? - ??(??), ??, ????? Database Smart Flash Cache Oracle Database??Hard Disk Drive(HDD)???????????????????????SQL??????????????????????????????????????????????????·?????·?????100%??????????????????????????????? ?????????????·??????????CPU????·???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????(????·?????·????????)???????·??????????????????????????? HDD????????????????(???)?????????????????????HDD??IO?????????????????????????? ?????????Solid State Drive/Device(SSD)??? SSD?HDD??????????????????????????????????OLTP????????·??????????????????????????????????????????????????????SSD???????????????????????????? ???11g R2???????????SSD???????????Database Smart Flash Cache????????????Database Smart Flash Cache??????·???????????????????????????(Hot Data)?Oracle?????SSD??????????? ????????!?????????SSD????????????????????SSD????????????????????? SSD???????????????????????????????????? Database Smart Flash Cache?????????????????????? SSD???Oracle???: Database Smart Flash Cache - ??(??), ??, ????? ?????????? ? ???????????????/????????????????!? ? ???????????????????????????????????!?

    Read the article

  • ZFS for Database Log Files

    - by user12620111
    I've been troubled by drop outs in CPU usage in my application server, characterized by the CPUs suddenly going from close to 90% CPU busy to almost completely CPU idle for a few seconds. Here is an example of a drop out as shown by a snippet of vmstat data taken while the application server is under a heavy workload. # vmstat 1  kthr      memory            page            disk          faults      cpu  r b w   swap  free  re  mf pi po fr de sr s3 s4 s5 s6   in   sy   cs us sy id  1 0 0 130160176 116381952 0 16 0 0 0 0  0  0  0  0  0 207377 117715 203884 70 21 9  12 0 0 130160160 116381936 0 25 0 0 0 0 0  0  0  0  0 200413 117162 197250 70 20 9  11 0 0 130160176 116381920 0 16 0 0 0 0 0  0  1  0  0 203150 119365 200249 72 21 7  8 0 0 130160176 116377808 0 19 0 0 0 0  0  0  0  0  0 169826 96144 165194 56 17 27  0 0 0 130160176 116377800 0 16 0 0 0 0  0  0  0  0  1 10245 9376 9164 2  1 97  0 0 0 130160176 116377792 0 16 0 0 0 0  0  0  0  0  2 15742 12401 14784 4 1 95  0 0 0 130160176 116377776 2 16 0 0 0 0  0  0  1  0  0 19972 17703 19612 6 2 92  14 0 0 130160176 116377696 0 16 0 0 0 0 0  0  0  0  0 202794 116793 199807 71 21 8  9 0 0 130160160 116373584 0 30 0 0 0 0  0  0 18  0  0 203123 117857 198825 69 20 11 This behavior occurred consistently while the application server was processing synthetic transactions: HTTP requests from JMeter running on an external machine. I explored many theories trying to explain the drop outs, including: Unexpected JMeter behavior Network contention Java Garbage Collection Application Server thread pool problems Connection pool problems Database transaction processing Database I/O contention Graphing the CPU %idle led to a breakthrough: Several of the drop outs were 30 seconds apart. With that insight, I went digging through the data again and looking for other outliers that were 30 seconds apart. In the database server statistics, I found spikes in the iostat "asvc_t" (average response time of disk transactions, in milliseconds) for the disk drive that was being used for the database log files. Here is an example:                     extended device statistics     r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 2053.6    0.0 8234.3  0.0  0.2    0.0    0.1   0  24 c3t60080E5...F4F6d0s0     0.0 2162.2    0.0 8652.8  0.0  0.3    0.0    0.1   0  28 c3t60080E5...F4F6d0s0     0.0 1102.5    0.0 10012.8  0.0  4.5    0.0    4.1   0  69 c3t60080E5...F4F6d0s0     0.0   74.0    0.0 7920.6  0.0 10.0    0.0  135.1   0 100 c3t60080E5...F4F6d0s0     0.0  568.7    0.0 6674.0  0.0  6.4    0.0   11.2   0  90 c3t60080E5...F4F6d0s0     0.0 1358.0    0.0 5456.0  0.0  0.6    0.0    0.4   0  55 c3t60080E5...F4F6d0s0     0.0 1314.3    0.0 5285.2  0.0  0.7    0.0    0.5   0  70 c3t60080E5...F4F6d0s0 Here is a little more information about my database configuration: The database and application server were running on two different SPARC servers. Storage for the database was on a storage array connected via 8 gigabit Fibre Channel Data storage and log file were on different physical disk drives Reliable low latency I/O is provided by battery backed NVRAM Highly available: Two Fibre Channel links accessed via MPxIO Two Mirrored cache controllers The log file physical disks were mirrored in the storage device Database log files on a ZFS Filesystem with cutting-edge technologies, such as copy-on-write and end-to-end checksumming Why would I be getting service time spikes in my high-end storage? First, I wanted to verify that the database log disk service time spikes aligned with the application server CPU drop outs, and they did: At first, I guessed that the disk service time spikes might be related to flushing the write through cache on the storage device, but I was unable to validate that theory. After searching the WWW for a while, I decided to try using a separate log device: # zpool add ZFS-db-41 log c3t60080E500017D55C000015C150A9F8A7d0 The ZFS log device is configured in a similar manner as described above: two physical disks mirrored in the storage array. This change to the database storage configuration eliminated the application server CPU drop outs: Here is the zpool configuration: # zpool status ZFS-db-41   pool: ZFS-db-41  state: ONLINE  scan: none requested config:         NAME                                     STATE         ZFS-db-41                                ONLINE           c3t60080E5...F4F6d0  ONLINE         logs           c3t60080E5...F8A7d0  ONLINE Now, the I/O spikes look like this:                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1053.5    0.0 4234.1  0.0  0.8    0.0    0.7   0  75 c3t60080E5...F8A7d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1131.8    0.0 4555.3  0.0  0.8    0.0    0.7   0  76 c3t60080E5...F8A7d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1167.6    0.0 4682.2  0.0  0.7    0.0    0.6   0  74 c3t60080E5...F8A7d0s0     0.0  162.2    0.0 19153.9  0.0  0.7    0.0    4.2   0  12 c3t60080E5...F4F6d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1247.2    0.0 4992.6  0.0  0.7    0.0    0.6   0  71 c3t60080E5...F8A7d0s0     0.0   41.0    0.0   70.0  0.0  0.1    0.0    1.6   0   2 c3t60080E5...F4F6d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1241.3    0.0 4989.3  0.0  0.8    0.0    0.6   0  75 c3t60080E5...F8A7d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1193.2    0.0 4772.9  0.0  0.7    0.0    0.6   0  71 c3t60080E5...F8A7d0s0 We can see the steady flow of 4k writes to the ZIL device from O_SYNC database log file writes. The spikes are from flushing the transaction group. Like almost all problems that I run into, once I thoroughly understand the problem, I find that other people have documented similar experiences. Thanks to all of you who have documented alternative approaches. Saved for another day: now that the problem is obvious, I should try "zfs:zfs_immediate_write_sz" as recommended in the ZFS Evil Tuning Guide. References: The ZFS Intent Log Solaris ZFS, Synchronous Writes and the ZIL Explained ZFS Evil Tuning Guide: Cache Flushes ZFS Evil Tuning Guide: Tuning ZFS for Database Performance

    Read the article

  • SQL SERVER – Reducing CXPACKET Wait Stats for High Transactional Database

    - by pinaldave
    While engaging in a performance tuning consultation for a client, a situation occurred where they were facing a lot of CXPACKET Waits Stats. The client asked me if I could help them reduce this huge number of wait stats. I usually receive this kind of request from other client as well, but the important thing to understand is whether this question has any merits or benefits, or not. Before we continue the resolution, let us understand what CXPACKET Wait Stats are. The official definition suggests that CXPACKET Wait Stats occurs when trying to synchronize the query processor exchange iterator. You may consider lowering the degree of parallelism if a conflict concerning this wait type develops into a problem. (from BOL) In simpler words, when a parallel operation is created for SQL Query, there are multiple threads for a single query. Each query deals with a different set of the data (or rows). Due to some reasons, one or more of the threads lag behind, creating the CXPACKET Wait Stat. Threads which came first have to wait for the slower thread to finish. The Wait by a specific completed thread is called CXPACKET Wait Stat. Note that CXPACKET Wait is done by completed thread and not the one which are unfinished. “Note that not all the CXPACKET wait types are bad. You might experience a case when it totally makes sense. There might also be cases when this is also unavoidable. If you remove this particular wait type for any query, then that query may run slower because the parallel operations are disabled for the query.” Now let us see what the best practices to reduce the CXPACKET Wait Stats are. The suggestions, with which you will find that if you search online through the browser, would play a major role as and might be asked about their jobs In addition, might tell you that you should set ‘maximum degree of parallelism’ to 1. I do agree with these suggestions, too; however, I think this is not the final resolutions. As soon as you set your entire query to run on single CPU, you will get a very bad performance from the queries which are actually performing okay when using parallelism. The best suggestion to this is that you set ‘the maximum degree of parallelism’ to a lower number or 1 (be very careful with this – it can create more problems) but tune the queries which can be benefited from multiple CPU’s. You can use query hint OPTION (MAXDOP 0) to run the server to use parallelism. Here is the two-quick script which helps to resolve these issues: Change MAXDOP at Server Level EXEC sys.sp_configure N'max degree of parallelism', N'1' GO RECONFIGURE WITH OVERRIDE GO Run Query with all the CPU (using parallelism) USE AdventureWorks GO SELECT * FROM Sales.SalesOrderDetail ORDER BY ProductID OPTION (MAXDOP 0) GO Below is the blog post which will help you to find all the parallel query in your server. SQL SERVER – Find Queries using Parallelism from Cached Plan Please note running Queries in single CPU may worsen your performance and it is not recommended at all. Infect this can be very bad advise. I strongly suggest that you identify the queries which are offending and tune them instead of following any other suggestions. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL White Papers, SQLAuthority News, T SQL, Technology

    Read the article

  • SQL SERVER – Speed Up! – Parallel Processes and Unparalleled Performance – TechEd 2012 India

    - by pinaldave
    TechEd India 2012 is just around the corner and I will be presenting there on two different session. SQL Server Performance Tuning is a very challenging subject that requires expertise in Database Administration and Database Development. I always have enjoyed talking about SQL Server Performance tuning subject. Just like doctors I like to call my every attempt to improve the performance of SQL Server queries and database server as a practice too. I have been working with SQL Server for more than 8 years and I believe that many of the performance tuning concept I have mastered. However, performance tuning is not a simple subject. However there are occasions when I feel stumped, there are occasional when I am not sure what should be the next step. When I face situation where I cannot figure things out easily, it makes me most happy because I clearly see this as a learning opportunity. I have been presenting in TechEd India for last three years. This is my fourth time opportunity to present a technical session on SQL Server. Just like every other year, I decided to present something different, something which I have spend years of learning. This time, I am going to present about parallel processes. It is widely believed that more the CPU will improve performance of the server. It is true in many cases. However, there are cases when limiting the CPU usages have improved overall health of the server. I will be presenting on the subject of Parallel Processes and its effects. I have spent more than a year working on this subject only. After working on various queries on multi-CPU systems I have personally learned few things. In coming TechEd session, I am going to share my experience with parallel processes and performance tuning. Session Details Title: Speed Up! – Parallel Processes and Unparalleled Performance (Add to Calendar) Abstract: “More CPU More Performance” – A  very common understanding is that usage of multiple CPUs can improve the performance of the query. To get maximum performance out of any query – one has to master various aspects of the parallel processes. In this deep dive session, we will explore this complex subject with a very simple interactive demo. An attendee will walk away with proper understanding of CX_PACKET wait types, MAXDOP, parallelism threshold and various other concepts. Date and Time: March 23, 2012, 12:15 to 13:15 Location: Hotel Lalit Ashok - Kumara Krupa High Grounds, Bengaluru – 560001, Karnataka, India. Add to Calendar Please submit your questions in the comments area and I will be for sure discussing them during my session. If I pick your question to discuss during my session, here is your gift I commit right now – SQL Server Interview Questions and Answers Book. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology Tagged: TechEd, TechEdIn

    Read the article

  • Thread placement policies on NUMA systems - update

    - by Dave
    In a prior blog entry I noted that Solaris used a "maximum dispersal" placement policy to assign nascent threads to their initial processors. The general idea is that threads should be placed as far away from each other as possible in the resource topology in order to reduce resource contention between concurrently running threads. This policy assumes that resource contention -- pipelines, memory channel contention, destructive interference in the shared caches, etc -- will likely outweigh (a) any potential communication benefits we might achieve by packing our threads more densely onto a subset of the NUMA nodes, and (b) benefits of NUMA affinity between memory allocated by one thread and accessed by other threads. We want our threads spread widely over the system and not packed together. Conceptually, when placing a new thread, the kernel picks the least loaded node NUMA node (the node with lowest aggregate load average), and then the least loaded core on that node, etc. Furthermore, the kernel places threads onto resources -- sockets, cores, pipelines, etc -- without regard to the thread's process membership. That is, initial placement is process-agnostic. Keep reading, though. This description is incorrect. On Solaris 10 on a SPARC T5440 with 4 x T2+ NUMA nodes, if the system is otherwise unloaded and we launch a process that creates 20 compute-bound concurrent threads, then typically we'll see a perfect balance with 5 threads on each node. We see similar behavior on an 8-node x86 x4800 system, where each node has 8 cores and each core is 2-way hyperthreaded. So far so good; this behavior seems in agreement with the policy I described in the 1st paragraph. I recently tried the same experiment on a 4-node T4-4 running Solaris 11. Both the T5440 and T4-4 are 4-node systems that expose 256 logical thread contexts. To my surprise, all 20 threads were placed onto just one NUMA node while the other 3 nodes remained completely idle. I checked the usual suspects such as processor sets inadvertently left around by colleagues, processors left offline, and power management policies, but the system was configured normally. I then launched multiple concurrent instances of the process, and, interestingly, all the threads from the 1st process landed on one node, all the threads from the 2nd process landed on another node, and so on. This happened even if I interleaved thread creating between the processes, so I was relatively sure the effect didn't related to thread creation time, but rather that placement was a function of process membership. I this point I consulted the Solaris sources and talked with folks in the Solaris group. The new Solaris 11 behavior is intentional. The kernel is no longer using a simple maximum dispersal policy, and thread placement is process membership-aware. Now, even if other nodes are completely unloaded, the kernel will still try to pack new threads onto the home lgroup (socket) of the primordial thread until the load average of that node reaches 50%, after which it will pick the next least loaded node as the process's new favorite node for placement. On the T4-4 we have 64 logical thread contexts (strands) per socket (lgroup), so if we launch 48 concurrent threads we will find 32 placed on one node and 16 on some other node. If we launch 64 threads we'll find 32 and 32. That means we can end up with our threads clustered on a small subset of the nodes in a way that's quite different that what we've seen on Solaris 10. So we have a policy that allows process-aware packing but reverts to spreading threads onto other nodes if a node becomes too saturated. It turns out this policy was enabled in Solaris 10, but certain bugs suppressed the mixed packing/spreading behavior. There are configuration variables in /etc/system that allow us to dial the affinity between nascent threads and their primordial thread up and down: see lgrp_expand_proc_thresh, specifically. In the OpenSolaris source code the key routine is mpo_update_tunables(). This method reads the /etc/system variables and sets up some global variables that will subsequently be used by the dispatcher, which calls lgrp_choose() in lgrp.c to place nascent threads. Lgrp_expand_proc_thresh controls how loaded an lgroup must be before we'll consider homing a process's threads to another lgroup. Tune this value lower to have it spread your process's threads out more. To recap, the 'new' policy is as follows. Threads from the same process are packed onto a subset of the strands of a socket (50% for T-series). Once that socket reaches the 50% threshold the kernel then picks another preferred socket for that process. Threads from unrelated processes are spread across sockets. More precisely, different processes may have different preferred sockets (lgroups). Beware that I've simplified and elided details for the purposes of explication. The truth is in the code. Remarks: It's worth noting that initial thread placement is just that. If there's a gross imbalance between the load on different nodes then the kernel will migrate threads to achieve a better and more even distribution over the set of available nodes. Once a thread runs and gains some affinity for a node, however, it becomes "stickier" under the assumption that the thread has residual cache residency on that node, and that memory allocated by that thread resides on that node given the default "first-touch" page-level NUMA allocation policy. Exactly how the various policies interact and which have precedence under what circumstances could the topic of a future blog entry. The scheduler is work-conserving. The x4800 mentioned above is an interesting system. Each of the 8 sockets houses an Intel 7500-series processor. Each processor has 3 coherent QPI links and the system is arranged as a glueless 8-socket twisted ladder "mobius" topology. Nodes are either 1 or 2 hops distant over the QPI links. As an aside the mapping of logical CPUIDs to physical resources is rather interesting on Solaris/x4800. On SPARC/Solaris the CPUID layout is strictly geographic, with the highest order bits identifying the socket, the next lower bits identifying the core within that socket, following by the pipeline (if present) and finally the logical thread context ("strand") on the core. But on Solaris on the x4800 the CPUID layout is as follows. [6:6] identifies the hyperthread on a core; bits [5:3] identify the socket, or package in Intel terminology; bits [2:0] identify the core within a socket. Such low-level details should be of interest only if you're binding threads -- a bad idea, the kernel typically handles placement best -- or if you're writing NUMA-aware code that's aware of the ambient placement and makes decisions accordingly. Solaris introduced the so-called critical-threads mechanism, which is expressed by putting a thread into the FX scheduling class at priority 60. The critical-threads mechanism applies to placement on cores, not on sockets, however. That is, it's an intra-socket policy, not an inter-socket policy. Solaris 11 introduces the Power Aware Dispatcher (PAD) which packs threads instead of spreading them out in an attempt to be able to keep sockets or cores at lower power levels. Maximum dispersal may be good for performance but is anathema to power management. PAD is off by default, but power management polices constitute yet another confounding factor with respect to scheduling and dispatching. If your threads communicate heavily -- one thread reads cache lines last written by some other thread -- then the new dense packing policy may improve performance by reducing traffic on the coherent interconnect. On the other hand if your threads in your process communicate rarely, then it's possible the new packing policy might result on contention on shared computing resources. Unfortunately there's no simple litmus test that says whether packing or spreading is optimal in a given situation. The answer varies by system load, application, number of threads, and platform hardware characteristics. Currently we don't have the necessary tools and sensoria to decide at runtime, so we're reduced to an empirical approach where we run trials and try to decide on a placement policy. The situation is quite frustrating. Relatedly, it's often hard to determine just the right level of concurrency to optimize throughput. (Understanding constructive vs destructive interference in the shared caches would be a good start. We could augment the lines with a small tag field indicating which strand last installed or accessed a line. Given that, we could augment the CPU with performance counters for misses where a thread evicts a line it installed vs misses where a thread displaces a line installed by some other thread.)

    Read the article

  • A problem with conky in Gnome 3.4 [closed]

    - by Pranit Bauva
    Possible Duplicate: Conky not working in Gnome 3.4 My conky in Gnome 3.4 is not working. When I run a conky script nothing appears but the process is running. Please also see the debug code : pungi-man@pungi-man:~$ sh conky_startup.sh Conky: forked to background, pid is 3157 Conky: desktop window (c00023) is subwindow of root window (aa) Conky: window type - override Conky: drawing to created window (0x2200001) Conky: drawing to double buffer My conky script is : background yes update_interval 1 cpu_avg_samples 2 net_avg_samples 2 temperature_unit celsius double_buffer yes no_buffers yes text_buffer_size 2048 gap_x 10 gap_y 30 minimum_size 190 450 maximum_width 190 own_window yes own_window_type override own_window_transparent yes own_window_hints undecorate,sticky,skip_taskbar,skip_pager,below border_inner_margin 0 border_outer_margin 0 alignment tr draw_shades no draw_outline no draw_borders no draw_graph_borders no override_utf8_locale yes use_xft yes xftfont caviar dreams:size=8 xftalpha 0.5 uppercase no default_color FFFFFF color1 DDDDDD color2 AAAAAA color3 888888 color4 666666 lua_load /home/pungi-man/.conky/conky_grey.lua lua_draw_hook_post main TEXT ${voffset 35} ${goto 95}${color4}${font ubuntu:size=22}${time %e}${color1}${offset -50}${font ubuntu:size=10}${time %A} ${goto 85}${color2}${voffset -2}${font ubuntu:size=9}${time %b}${voffset -2} ${color3}${font ubuntu:size=12}${time %Y}${font} ${voffset 80} ${goto 90}${font Ubuntu:size=7,weight:bold}${color}CPU ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${top name 1}${alignr}${top cpu 1}% ${goto 90}${font Ubuntu:size=7,weight:normal}${color2}${top name 2}${alignr}${top cpu 2}% ${goto 90}${font Ubuntu:size=7,weight:normal}${color3}${top name 3}${alignr}${top cpu 3}% ${goto 90}${cpugraph 10,100 666666 666666} ${goto 90}${voffset -10}${font Ubuntu:size=7,weight:normal}${color}${threads} process ${voffset 20} ${goto 90}${font Ubuntu:size=7,weight:bold}${color}MEM ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${top_mem name 1} ${alignr}${top_mem mem 1}% ${goto 90}${font Ubuntu:size=7,weight:normal}${color2}${top_mem name 2} ${alignr}${top_mem mem 2}% ${goto 90}${font Ubuntu:size=7,weight:normal}${color3}${top_mem name 3} ${alignr}${top_mem mem 3}% ${voffset 15} ${goto 90}${font Ubuntu:size=7,weight:bold}${color}DISKS ${goto 90}${diskiograph 30,100 666666 666666}${voffset -30} ${goto 90}${font Ubuntu:size=7,weight:normal}${color}used: ${fs_used /home} /home ${goto 90}${font Ubuntu:size=7,weight:normal}${color}used: ${fs_used /} / ${voffset 10} ${goto 70}${font Ubuntu:size=18,weight:bold}${color3}NET${alignr}${color2}${font Ubuntu:size=7,weight:bold}${color1}${if_up eth0}eth ${addr eth0} ${endif}${if_up wlan0}wifi ${addr wlan0}${endif} ${goto 90}${font Ubuntu:size=7,weight:bold}${color}open ports: ${alignr}${color2}${tcp_portmon 1 65535 count} ${goto 90}${font Ubuntu:size=7,weight:bold}${color}${offset 10}IP${alignr}DPORT ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 0}${alignr 1}${tcp_portmon 1 65535 rport 0} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 1}${alignr 1}${tcp_portmon 1 65535 rport 1} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 2}${alignr 1}${tcp_portmon 1 65535 rport 2} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 3}${alignr 1}${tcp_portmon 1 65535 rport 3} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 4}${alignr 1}${tcp_portmon 1 65535 rport 4} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 5}${alignr 1}${tcp_portmon 1 65535 rport 5} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 6}${alignr 1}${tcp_portmon 1 65535 rport 6} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 7}${alignr 1}${tcp_portmon 1 65535 rport 7} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 8}${alignr 1}${tcp_portmon 1 65535 rport 8} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 9}${alignr 1}${tcp_portmon 1 65535 rport 9} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 10}${alignr 1}${tcp_portmon 1 65535 rport 10} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 11}${alignr 1}${tcp_portmon 1 65535 rport 11} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 12}${alignr 1}${tcp_portmon 1 65535 rport 12} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 13}${alignr 1}${tcp_portmon 1 65535 rport 13} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 14}${alignr 1}${tcp_portmon 1 65535 rport 14} This script works fine with unity but faces problems in gnome 3.4 Can anyone please sort it out?

    Read the article

  • Whether to use UNION or OR in SQL Server Queries

    - by Dinesh Asanka
    Recently I came across with an article on DB2 about using Union instead of OR. So I thought of carrying out a research on SQL Server on what scenarios UNION is optimal in and which scenarios OR would be best. I will analyze this with a few scenarios using samples taken  from the AdventureWorks database Sales.SalesOrderDetail table. Scenario 1: Selecting all columns So we are going to select all columns and you have a non-clustered index on the ProductID column. --Query 1 : OR SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 714 OR ProductID =709 OR ProductID =998 OR ProductID =875 OR ProductID =976 OR ProductID =874 --Query 2 : UNION SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 714 UNION SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 709 UNION SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 998 UNION SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 875 UNION SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 976 UNION SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 874 So query 1 is using OR and the later is using UNION. Let us analyze the execution plans for these queries. Query 1 Query 2 As expected Query 1 will use Clustered Index Scan but Query 2, uses all sorts of things. In this case, since it is using multiple CPUs you might have CX_PACKET waits as well. Let’s look at the profiler results for these two queries: CPU Reads Duration Row Counts OR 78 1252 389 3854 UNION 250 7495 660 3854 You can see from the above table the UNION query is not performing well as the  OR query though both are retuning same no of rows (3854).These results indicate that, for the above scenario UNION should be used. Scenario 2: Non-Clustered and Clustered Index Columns only --Query 1 : OR SELECT ProductID,SalesOrderID, SalesOrderDetailID FROM Sales.SalesOrderDetail WHERE ProductID = 714 OR ProductID =709 OR ProductID =998 OR ProductID =875 OR ProductID =976 OR ProductID =874 GO --Query 2 : UNION SELECT ProductID,SalesOrderID, SalesOrderDetailID FROM Sales.SalesOrderDetail WHERE ProductID = 714 UNION SELECT ProductID,SalesOrderID, SalesOrderDetailID FROM Sales.SalesOrderDetail WHERE ProductID = 709 UNION SELECT ProductID,SalesOrderID, SalesOrderDetailID FROM Sales.SalesOrderDetail WHERE ProductID = 998 UNION SELECT ProductID,SalesOrderID, SalesOrderDetailID FROM Sales.SalesOrderDetail WHERE ProductID = 875 UNION SELECT ProductID,SalesOrderID, SalesOrderDetailID FROM Sales.SalesOrderDetail WHERE ProductID = 976 UNION SELECT ProductID,SalesOrderID, SalesOrderDetailID FROM Sales.SalesOrderDetail WHERE ProductID = 874 GO So this time, we will be selecting only index columns, which means these queries will avoid a data page lookup. As in the previous case we will analyze the execution plans: Query 1 Query 2 Again, Query 2 is more complex than Query 1. Let us look at the profile analysis: CPU Reads Duration Row Counts OR 0 24 208 3854 UNION 0 38 193 3854 In this analyzis, there is only slight difference between OR and UNION. Scenario 3: Selecting all columns for different fields Up to now, we were using only one column (ProductID) in the where clause.  What if we have two columns for where clauses and let us assume both are covered by non-clustered indexes? --Query 1 : OR SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 714 OR CarrierTrackingNumber LIKE 'D0B8%' --Query 2 : UNION SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 714 UNION SELECT * FROM Sales.SalesOrderDetail WHERE CarrierTrackingNumber  LIKE 'D0B8%' Query 1 Query 2: As we can see, the query plan for the second query has improved. Let us see the profiler results. CPU Reads Duration Row Counts OR 47 1278 443 1228 UNION 31 1334 400 1228 So in this case too, there is little difference between OR and UNION. Scenario 4: Selecting Clustered index columns for different fields Now let us go only with clustered indexes: --Query 1 : OR SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 714 OR CarrierTrackingNumber LIKE 'D0B8%' --Query 2 : UNION SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 714 UNION SELECT * FROM Sales.SalesOrderDetail WHERE CarrierTrackingNumber  LIKE 'D0B8%' Query 1 Query 2 Now both execution plans are almost identical except is an additional Stream Aggregate is used in the first query. This means UNION has advantage over OR in this scenario. Let us see profiler results for these queries again. CPU Reads Duration Row Counts OR 0 319 366 1228 UNION 0 50 193 1228 Now see the differences, in this scenario UNION has somewhat of an advantage over OR. Conclusion Using UNION or OR depends on the scenario you are faced with. So you need to do your analyzing before selecting the appropriate method. Also, above the four scenarios are not all an exhaustive list of scenarios, I selected those for the broad description purposes only.

    Read the article

< Previous Page | 62 63 64 65 66 67 68 69 70 71 72 73  | Next Page >