Search Results

Search found 5221 results on 209 pages for 'low latency'.

Page 66/209 | < Previous Page | 62 63 64 65 66 67 68 69 70 71 72 73  | Next Page >

  • How to disable Middleware and Request Context in some views.

    - by xRobot
    I am creating a chat like facebook chat... so in views.py of my Chat Application, I need to retrieve only the last messages every 3-4 seconds with ajax poll ( the latency is not a problem for me ). If I can disable some Middlewares and some Request Context in this view, the response will be faster... no ? My question is: Is there a way to disable some Middlewares and some Request Context in some views ?

    Read the article

  • Google App Engine - The most awaited feature

    - by systempuntoout
    This list is taken from the official Google App Engine roadmap: SSL for third-party domains Background servers capable of running for longer than 30s Ability to reserve instances to reduce application loading overhead Ability to select different availability vs. latency options for Datastore Support for mapping operations across datasets Datastore dump and restore facility Raise request/response size limits for some APIs Improved monitoring and alerting of application serving Support for Browser Push (Comet) communication Built-in support for OAuth & OpenID What is your most awaited feature and why?

    Read the article

  • C++ open source projects

    - by Chaoz
    Hello, I'm looking for a suitable open source project to work on in C++. It really can be anything. My background is in gaming, on both PC and consoles; but I'd prefer to work on something low latency or real time. I'm also interested in Math stuff. Do any of you guys have suggestions?

    Read the article

  • Logging data with scribe

    - by lukatmyshu
    None of the scribe examples I've seen actually mention the best way to take logs/logfiles and send them to scribe. I could configure a logrotate script that has a postrotate section that "cats" the rotated file to scribe (but then I get minutes latency at best). The other option is to keep a "tail -f= | my_scribe_sender" and hope that the process never gets killed. However then you really can't guarantee that you're not missing/duplicating data.

    Read the article

  • Back to Basics: When does a .NET Assembly Dependency get loaded

    - by Rick Strahl
    When we work on typical day to day applications, it's easy to forget some of the core features of the .NET framework. For me personally it's been a long time since I've learned about some of the underlying CLR system level services even though I rely on them on a daily basis. I often think only about high level application constructs and/or high level framework functionality, but the low level stuff is often just taken for granted. Over the last week at DevConnections I had all sorts of low level discussions with other developers about the inner workings of this or that technology (especially in light of my Low Level ASP.NET Architecture talk and the Razor Hosting talk). One topic that came up a couple of times and ended up a point of confusion even amongst some seasoned developers (including some folks from Microsoft <snicker>) is when assemblies actually load into a .NET process. There are a number of different ways that assemblies are loaded in .NET. When you create a typical project assemblies usually come from: The Assembly reference list of the top level 'executable' project The Assembly references of referenced projects Dynamically loaded at runtime via AppDomain/Reflection loading In addition .NET automatically loads mscorlib (most of the System namespace) the boot process that hosts the .NET runtime in EXE apps, or some other kind of runtime hosting environment (runtime hosting in servers like IIS, SQL Server or COM Interop). In hosting environments the runtime host may also pre-load a bunch of assemblies on its own (for example the ASP.NET host requires all sorts of assemblies just to run itself, before ever routing into your user specific code). Assembly Loading The most obvious source of loaded assemblies is the top level application's assembly reference list. You can add assembly references to a top level application and those assembly references are then available to the application. In a nutshell, referenced assemblies are not immediately loaded - they are loaded on the fly as needed. So regardless of whether you have an assembly reference in a top level project, or a dependent assembly assemblies typically load on an as needed basis, unless explicitly loaded by user code. The same is true of dependent assemblies. To check this out I ran a simple test: I have a utility assembly Westwind.Utilities which is a general purpose library that can work in any type of project. Due to a couple of small requirements for encoding and a logging piece that allows logging Web content (dependency on HttpContext.Current) this utility library has a dependency on System.Web. Now System.Web is a pretty large assembly and generally you'd want to avoid adding it to a non-Web project if it can be helped. So I created a Console Application that loads my utility library: You can see that the top level Console app a reference to Westwind.Utilities and System.Data (beyond the core .NET libs). The Westwind.Utilities project on the other hand has quite a few dependencies including System.Web. I then add a main program that accesses only a simple utillity method in the Westwind.Utilities library that doesn't require any of the classes that access System.Web: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); } StringUtils.NewStringId() calls into Westwind.Utilities, but it doesn't rely on System.Web. Any guesses what the assembly list looks like when I stop the code on the ReadLine() command? I'll wait here while you think about it… … … So, when I stop on ReadLine() and then fire up Process Explorer and check the assembly list I get: We can see here that .NET has not actually loaded any of the dependencies of the Westwind.Utilities assembly. Also not loaded is the top level System.Data reference even though it's in the dependent assembly list of the top level project. Since this particular function I called only uses core System functionality (contained in mscorlib) there's in fact nothing else loaded beyond the main application and my Westwind.Utilities assembly that contains the method accessed. None of the dependencies of Westwind.Utilities loaded. If you were to open the assembly in a disassembler like Reflector or ILSpy, you would however see all the compiled in dependencies. The referenced assemblies are in the dependency list and they are loadable, but they are not immediately loaded by the application. In other words the C# compiler and .NET linker are smart enough to figure out the dependencies based on the code that actually is referenced from your application and any dependencies cascading down into the dependencies from your top level application into the referenced assemblies. In the example above the usage requirement is pretty obvious since I'm only calling a single static method and then exiting the app, but in more complex applications these dependency relationships become very complicated - however it's all taken care of by the compiler and linker figuring out what types and members are actually referenced and including only those assemblies that are in fact referenced in your code or required by any of your dependencies. The good news here is: That if you are referencing an assembly that has a dependency on something like System.Web in a few places that are not actually accessed by any of your code or any dependent assembly code that you are calling, that assembly is never loaded into memory! Some Hosting Environments pre-load Assemblies The load behavior can vary however. In Console and desktop applications we have full control over assembly loading so we see the core CLR behavior. However other environments like ASP.NET for example will preload referenced assemblies explicitly as part of the startup process - primarily to minimize load conflicts. Specifically ASP.NET pre-loads all assemblies referenced in the assembly list and the /bin folder. So in Web applications it definitely pays to minimize your top level assemblies if they are not used. Understanding when Assemblies Load To clarify and see it actually happen what I described in the first example , let's look at a couple of other scenarios. To see assemblies loading at runtime in real time lets create a utility function to print out loaded assemblies to the console: public static void PrintAssemblies() { var assemblies = AppDomain.CurrentDomain.GetAssemblies(); foreach (var assembly in assemblies) { Console.WriteLine(assembly.GetName()); } } Now let's look at the first scenario where I have class method that references internally uses System.Web. In the first scenario lets add a method to my main program like this: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); PrintAssemblies(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } UpdateFromWebRequest() internally accesses HttpContext.Current to read some information of the ASP.NET Request object so it clearly needs a reference System.Web to work. In this first example, the method that holds the calling code is never called, but exists as a static method that can potentially be called externally at some point. What do you think will happen here with the assembly loading? Will System.Web load in this example? No - it doesn't. Because the WebLogEntry() method is never called by the mainline application (or anywhere else) System.Web is not loaded. .NET dynamically loads assemblies as code that needs it is called. No code references the WebLogEntry() method and so System.Web is never loaded. Next, let's add the call to this method, which should trigger System.Web to be loaded because a dependency exists. Let's change the code to: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.WriteLine("--- Before:"); PrintAssemblies(); WebLogEntry(); Console.WriteLine("--- After:"); PrintAssemblies(); Console.ReadLine(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } Looking at the code now, when do you think System.Web will be loaded? Will the before list include it? Yup System.Web gets loaded, but only after it's actually referenced. In fact, just until before the call to UpdateFromRequest() System.Web is not loaded - it only loads when the method is actually called and requires the reference in the executing code. Moral of the Story So what have we learned - or maybe remembered again? Dependent Assembly References are not pre-loaded when an application starts (by default) Dependent Assemblies that are not referenced by executing code are never loaded Dependent Assemblies are just in time loaded when first referenced in code All of this is nothing new - .NET has always worked like this. But it's good to have a refresher now and then and go through the exercise of seeing it work in action. It's not one of those things we think about everyday, and as I found out last week, I couldn't remember exactly how it worked since it's been so long since I've learned about this. And apparently I'm not the only one as several other people I had discussions with in relation to loaded assemblies also didn't recall exactly what should happen or assumed incorrectly that just having a reference automatically loads the assembly. The moral of the story for me is: Trying at all costs to eliminate an assembly reference from a component is not quite as important as it's often made out to be. For example, the Westwind.Utilities module described above has a logging component, including a Web specific logging entry that supports pulling information from the active HTTP Context. Adding that feature requires a reference to System.Web. Should I worry about this in the scope of this library? Probably not, because if I don't use that one class of nearly a hundred, System.Web never gets pulled into the parent process. IOW, System.Web only loads when I use that specific feature and if I am, well I clearly have to be running in a Web environment anyway to use it realistically. The alternative would be considerably uglier: Pulling out the WebLogEntry class and sticking it into another assembly and breaking up the logging code. In this case - definitely not worth it. So, .NET definitely goes through some pretty nifty optimizations to ensure that it loads only what it needs and in most cases you can just rely on .NET to do the right thing. Sometimes though assembly loading can go wrong (especially when signed and versioned local assemblies are involved), but that's subject for a whole other post…© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Residual packages Ubuntu 12.04

    - by hydroxide
    I have an Asus Q500A with win8 and Ubuntu 12.04 64 bit; Linux kernel 3.8.0-32-generic. I have been having residual package issues which have been giving me trouble trying to reconfigure xserver-xorg-lts-raring. I tried removing all residual packages from synaptic but the following were not removed. Output of sudo dpkg -l | grep "^rc" rc gstreamer0.10-plugins-good:i386 0.10.31-1ubuntu1.2 GStreamer plugins from the "good" set rc libaa1:i386 1.4p5-39ubuntu1 ASCII art library rc libaio1:i386 0.3.109-2ubuntu1 Linux kernel AIO access library - shared library rc libao4:i386 1.1.0-1ubuntu2 Cross Platform Audio Output Library rc libasn1-8-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - ASN.1 library rc libasound2:i386 1.0.25-1ubuntu10.2 shared library for ALSA applications rc libasyncns0:i386 0.8-4 Asynchronous name service query library rc libatk1.0-0:i386 2.4.0-0ubuntu1 ATK accessibility toolkit rc libavahi-client3:i386 0.6.30-5ubuntu2 Avahi client library rc libavahi-common3:i386 0.6.30-5ubuntu2 Avahi common library rc libavc1394-0:i386 0.5.3-1ubuntu2 control IEEE 1394 audio/video devices rc libcaca0:i386 0.99.beta17-2.1ubuntu2 colour ASCII art library rc libcairo-gobject2:i386 1.10.2-6.1ubuntu3 The Cairo 2D vector graphics library (GObject library) rc libcairo2:i386 1.10.2-6.1ubuntu3 The Cairo 2D vector graphics library rc libcanberra-gtk0:i386 0.28-3ubuntu3 GTK+ helper for playing widget event sounds with libcanberra rc libcanberra0:i386 0.28-3ubuntu3 simple abstract interface for playing event sounds rc libcap2:i386 1:2.22-1ubuntu3 support for getting/setting POSIX.1e capabilities rc libcdparanoia0:i386 3.10.2+debian-10ubuntu1 audio extraction tool for sampling CDs (library) rc libcroco3:i386 0.6.5-1ubuntu0.1 Cascading Style Sheet (CSS) parsing and manipulation toolkit rc libcups2:i386 1.5.3-0ubuntu8 Common UNIX Printing System(tm) - Core library rc libcupsimage2:i386 1.5.3-0ubuntu8 Common UNIX Printing System(tm) - Raster image library rc libcurl3:i386 7.22.0-3ubuntu4.3 Multi-protocol file transfer library (OpenSSL) rc libdatrie1:i386 0.2.5-3 Double-array trie library rc libdbus-glib-1-2:i386 0.98-1ubuntu1.1 simple interprocess messaging system (GLib-based shared library) rc libdbusmenu-qt2:i386 0.9.2-0ubuntu1 Qt implementation of the DBusMenu protocol rc libdrm-nouveau2:i386 2.4.43-0ubuntu0.0.3 Userspace interface to nouveau-specific kernel DRM services -- runtime rc libdv4:i386 1.0.0-3ubuntu1 software library for DV format digital video (runtime lib) rc libesd0:i386 0.2.41-10build3 Enlightened Sound Daemon - Shared libraries rc libexif12:i386 0.6.20-2ubuntu0.1 library to parse EXIF files rc libexpat1:i386 2.0.1-7.2ubuntu1.1 XML parsing C library - runtime library rc libflac8:i386 1.2.1-6 Free Lossless Audio Codec - runtime C library rc libfontconfig1:i386 2.8.0-3ubuntu9.1 generic font configuration library - runtime rc libfreetype6:i386 2.4.8-1ubuntu2.1 FreeType 2 font engine, shared library files rc libgail18:i386 2.24.10-0ubuntu6 GNOME Accessibility Implementation Library -- shared libraries rc libgconf-2-4:i386 3.2.5-0ubuntu2 GNOME configuration database system (shared libraries) rc libgcrypt11:i386 1.5.0-3ubuntu0.2 LGPL Crypto library - runtime library rc libgd2-xpm:i386 2.0.36~rc1~dfsg-6ubuntu2 GD Graphics Library version 2 rc libgdbm3:i386 1.8.3-10 GNU dbm database routines (runtime version) rc libgdk-pixbuf2.0-0:i386 2.26.1-1 GDK Pixbuf library rc libgif4:i386 4.1.6-9ubuntu1 library for GIF images (library) rc libgl1-mesa-dri-lts-quantal:i386 9.0.3-0ubuntu0.4~precise1 free implementation of the OpenGL API -- DRI modules rc libgl1-mesa-dri-lts-raring:i386 9.1.4-0ubuntu0.1~precise2 free implementation of the OpenGL API -- DRI modules rc libgl1-mesa-glx:i386 8.0.4-0ubuntu0.6 free implementation of the OpenGL API -- GLX runtime rc libgl1-mesa-glx-lts-quantal:i386 9.0.3-0ubuntu0.4~precise1 free implementation of the OpenGL API -- GLX runtime rc libgl1-mesa-glx-lts-raring:i386 9.1.4-0ubuntu0.1~precise2 free implementation of the OpenGL API -- GLX runtime rc libglapi-mesa:i386 8.0.4-0ubuntu0.6 free implementation of the GL API -- shared library rc libglapi-mesa-lts-quantal:i386 9.0.3-0ubuntu0.4~precise1 free implementation of the GL API -- shared library rc libglapi-mesa-lts-raring:i386 9.1.4-0ubuntu0.1~precise2 free implementation of the GL API -- shared library rc libglu1-mesa:i386 8.0.4-0ubuntu0.6 Mesa OpenGL utility library (GLU) rc libgnome-keyring0:i386 3.2.2-2 GNOME keyring services library rc libgnutls26:i386 2.12.14-5ubuntu3.5 GNU TLS library - runtime library rc libgomp1:i386 4.6.3-1ubuntu5 GCC OpenMP (GOMP) support library rc libgpg-error0:i386 1.10-2ubuntu1 library for common error values and messages in GnuPG components rc libgphoto2-2:i386 2.4.13-1ubuntu1.2 gphoto2 digital camera library rc libgphoto2-port0:i386 2.4.13-1ubuntu1.2 gphoto2 digital camera port library rc libgssapi-krb5-2:i386 1.10+dfsg~beta1-2ubuntu0.3 MIT Kerberos runtime libraries - krb5 GSS-API Mechanism rc libgssapi3-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - GSSAPI support library rc libgstreamer-plugins-base0.10-0:i386 0.10.36-1ubuntu0.1 GStreamer libraries from the "base" set rc libgstreamer0.10-0:i386 0.10.36-1ubuntu1 Core GStreamer libraries and elements rc libgtk2.0-0:i386 2.24.10-0ubuntu6 GTK+ graphical user interface library rc libgudev-1.0-0:i386 1:175-0ubuntu9.4 GObject-based wrapper library for libudev rc libhcrypto4-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - crypto library rc libheimbase1-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - Base library rc libheimntlm0-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - NTLM support library rc libhx509-5-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - X509 support library rc libibus-1.0-0:i386 1.4.1-3ubuntu1 Intelligent Input Bus - shared library rc libice6:i386 2:1.0.7-2build1 X11 Inter-Client Exchange library rc libidn11:i386 1.23-2 GNU Libidn library, implementation of IETF IDN specifications rc libiec61883-0:i386 1.2.0-0.1ubuntu1 an partial implementation of IEC 61883 rc libieee1284-3:i386 0.2.11-10build1 cross-platform library for parallel port access rc libjack-jackd2-0:i386 1.9.8~dfsg.1-1ubuntu2 JACK Audio Connection Kit (libraries) rc libjasper1:i386 1.900.1-13 JasPer JPEG-2000 runtime library rc libjpeg-turbo8:i386 1.1.90+svn733-0ubuntu4.2 IJG JPEG compliant runtime library. rc libjson0:i386 0.9-1ubuntu1 JSON manipulation library - shared library rc libk5crypto3:i386 1.10+dfsg~beta1-2ubuntu0.3 MIT Kerberos runtime libraries - Crypto Library rc libkeyutils1:i386 1.5.2-2 Linux Key Management Utilities (library) rc libkrb5-26-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - libraries rc libkrb5-3:i386 1.10+dfsg~beta1-2ubuntu0.3 MIT Kerberos runtime libraries rc libkrb5support0:i386 1.10+dfsg~beta1-2ubuntu0.3 MIT Kerberos runtime libraries - Support library rc liblcms1:i386 1.19.dfsg-1ubuntu3 Little CMS color management library rc libldap-2.4-2:i386 2.4.28-1.1ubuntu4.4 OpenLDAP libraries rc libllvm3.0:i386 3.0-4ubuntu1 Low-Level Virtual Machine (LLVM), runtime library rc libllvm3.1:i386 3.1-2ubuntu1~12.04.1 Low-Level Virtual Machine (LLVM), runtime library rc libllvm3.2:i386 3.2-2ubuntu5~precise1 Low-Level Virtual Machine (LLVM), runtime library rc libltdl7:i386 2.4.2-1ubuntu1 A system independent dlopen wrapper for GNU libtool rc libmad0:i386 0.15.1b-7ubuntu1 MPEG audio decoder library rc libmikmod2:i386 3.1.12-2 Portable sound library rc libmng1:i386 1.0.10-3 Multiple-image Network Graphics library rc libmpg123-0:i386 1.12.1-3.2ubuntu1 MPEG layer 1/2/3 audio decoder -- runtime library rc libmysqlclient18:i386 5.5.32-0ubuntu0.12.04.1 MySQL database client library rc libnspr4:i386 4.9.5-0ubuntu0.12.04.1 NetScape Portable Runtime Library rc libnss3:i386 3.14.3-0ubuntu0.12.04.1 Network Security Service libraries rc libodbc1:i386 2.2.14p2-5ubuntu3 ODBC library for Unix rc libogg0:i386 1.2.2~dfsg-1ubuntu1 Ogg bitstream library rc libopenal1:i386 1:1.13-4ubuntu3 Software implementation of the OpenAL API (shared library) rc liborc-0.4-0:i386 1:0.4.16-1ubuntu2 Library of Optimized Inner Loops Runtime Compiler rc libosmesa6:i386 8.0.4-0ubuntu0.6 Mesa Off-screen rendering extension rc libp11-kit0:i386 0.12-2ubuntu1 Library for loading and coordinating access to PKCS#11 modules - runtime rc libpango1.0-0:i386 1.30.0-0ubuntu3.1 Layout and rendering of internationalized text rc libpixman-1-0:i386 0.24.4-1 pixel-manipulation library for X and cairo rc libproxy1:i386 0.4.7-0ubuntu4.1 automatic proxy configuration management library (shared) rc libpulse-mainloop-glib0:i386 1:1.1-0ubuntu15.4 PulseAudio client libraries (glib support) rc libpulse0:i386 1:1.1-0ubuntu15.4 PulseAudio client libraries rc libqt4-dbus:i386 4:4.8.1-0ubuntu4.4 Qt 4 D-Bus module rc libqt4-declarative:i386 4:4.8.1-0ubuntu4.4 Qt 4 Declarative module rc libqt4-designer:i386 4:4.8.1-0ubuntu4.4 Qt 4 designer module rc libqt4-network:i386 4:4.8.1-0ubuntu4.4 Qt 4 network module rc libqt4-opengl:i386 4:4.8.1-0ubuntu4.4 Qt 4 OpenGL module rc libqt4-qt3support:i386 4:4.8.1-0ubuntu4.4 Qt 3 compatibility library for Qt 4 rc libqt4-script:i386 4:4.8.1-0ubuntu4.4 Qt 4 script module rc libqt4-scripttools:i386 4:4.8.1-0ubuntu4.4 Qt 4 script tools module rc libqt4-sql:i386 4:4.8.1-0ubuntu4.4 Qt 4 SQL module rc libqt4-svg:i386 4:4.8.1-0ubuntu4.4 Qt 4 SVG module rc libqt4-test:i386 4:4.8.1-0ubuntu4.4 Qt 4 test module rc libqt4-xml:i386 4:4.8.1-0ubuntu4.4 Qt 4 XML module rc libqt4-xmlpatterns:i386 4:4.8.1-0ubuntu4.4 Qt 4 XML patterns module rc libqtcore4:i386 4:4.8.1-0ubuntu4.4 Qt 4 core module rc libqtgui4:i386 4:4.8.1-0ubuntu4.4 Qt 4 GUI module rc libqtwebkit4:i386 2.2.1-1ubuntu4 Web content engine library for Qt rc libraw1394-11:i386 2.0.7-1ubuntu1 library for direct access to IEEE 1394 bus (aka FireWire) rc libroken18-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - roken support library rc librsvg2-2:i386 2.36.1-0ubuntu1 SAX-based renderer library for SVG files (runtime) rc librtmp0:i386 2.4~20110711.gitc28f1bab-1 toolkit for RTMP streams (shared library) rc libsamplerate0:i386 0.1.8-4 Audio sample rate conversion library rc libsane:i386 1.0.22-7ubuntu1 API library for scanners rc libsasl2-2:i386 2.1.25.dfsg1-3ubuntu0.1 Cyrus SASL - authentication abstraction library rc libsdl-image1.2:i386 1.2.10-3 image loading library for Simple DirectMedia Layer 1.2 rc libsdl-mixer1.2:i386 1.2.11-7 Mixer library for Simple DirectMedia Layer 1.2, libraries rc libsdl-net1.2:i386 1.2.7-5 Network library for Simple DirectMedia Layer 1.2, libraries rc libsdl-ttf2.0-0:i386 2.0.9-1.1ubuntu1 ttf library for Simple DirectMedia Layer with FreeType 2 support rc libsdl1.2debian:i386 1.2.14-6.4ubuntu3 Simple DirectMedia Layer rc libshout3:i386 2.2.2-7ubuntu1 MP3/Ogg Vorbis broadcast streaming library rc libsm6:i386 2:1.2.0-2build1 X11 Session Management library rc libsndfile1:i386 1.0.25-4 Library for reading/writing audio files rc libsoup-gnome2.4-1:i386 2.38.1-1 HTTP library implementation in C -- GNOME support library rc libsoup2.4-1:i386 2.38.1-1 HTTP library implementation in C -- Shared library rc libspeex1:i386 1.2~rc1-3ubuntu2 The Speex codec runtime library rc libspeexdsp1:i386 1.2~rc1-3ubuntu2 The Speex extended runtime library rc libsqlite3-0:i386 3.7.9-2ubuntu1.1 SQLite 3 shared library rc libssl0.9.8:i386 0.9.8o-7ubuntu3.1 SSL shared libraries rc libstdc++5:i386 1:3.3.6-25ubuntu1 The GNU Standard C++ Library v3 rc libstdc++6:i386 4.6.3-1ubuntu5 GNU Standard C++ Library v3 rc libtag1-vanilla:i386 1.7-1ubuntu5 audio meta-data library - vanilla flavour rc libtasn1-3:i386 2.10-1ubuntu1.1 Manage ASN.1 structures (runtime) rc libtdb1:i386 1.2.9-4 Trivial Database - shared library rc libthai0:i386 0.1.16-3 Thai language support library rc libtheora0:i386 1.1.1+dfsg.1-3ubuntu2 The Theora Video Compression Codec rc libtiff4:i386 3.9.5-2ubuntu1.5 Tag Image File Format (TIFF) library rc libtxc-dxtn-s2tc0:i386 0~git20110809-2.1 Texture compression library for Mesa rc libunistring0:i386 0.9.3-5 Unicode string library for C rc libusb-0.1-4:i386 2:0.1.12-20 userspace USB programming library rc libv4l-0:i386 0.8.6-1ubuntu2 Collection of video4linux support libraries rc libv4lconvert0:i386 0.8.6-1ubuntu2 Video4linux frame format conversion library rc libvisual-0.4-0:i386 0.4.0-4 Audio visualization framework rc libvorbis0a:i386 1.3.2-1ubuntu3 The Vorbis General Audio Compression Codec (Decoder library) rc libvorbisenc2:i386 1.3.2-1ubuntu3 The Vorbis General Audio Compression Codec (Encoder library) rc libvorbisfile3:i386 1.3.2-1ubuntu3 The Vorbis General Audio Compression Codec (High Level API) rc libwavpack1:i386 4.60.1-2 audio codec (lossy and lossless) - library rc libwind0-heimdal:i386 1.6~git20120311.dfsg.1-2ubuntu0.1 Heimdal Kerberos - stringprep implementation rc libwrap0:i386 7.6.q-21 Wietse Venema's TCP wrappers library rc libx11-6:i386 2:1.4.99.1-0ubuntu2.2 X11 client-side library rc libx11-xcb1:i386 2:1.4.99.1-0ubuntu2.2 Xlib/XCB interface library rc libxau6:i386 1:1.0.6-4 X11 authorisation library rc libxaw7:i386 2:1.0.9-3ubuntu1 X11 Athena Widget library rc libxcb-dri2-0:i386 1.8.1-1ubuntu0.2 X C Binding, dri2 extension rc libxcb-glx0:i386 1.8.1-1ubuntu0.2 X C Binding, glx extension rc libxcb-render0:i386 1.8.1-1ubuntu0.2 X C Binding, render extension rc libxcb-shm0:i386 1.8.1-1ubuntu0.2 X C Binding, shm extension rc libxcb1:i386 1.8.1-1ubuntu0.2 X C Binding rc libxcomposite1:i386 1:0.4.3-2build1 X11 Composite extension library rc libxcursor1:i386 1:1.1.12-1ubuntu0.1 X cursor management library rc libxdamage1:i386 1:1.1.3-2build1 X11 damaged region extension library rc libxdmcp6:i386 1:1.1.0-4 X11 Display Manager Control Protocol library rc libxext6:i386 2:1.3.0-3ubuntu0.1 X11 miscellaneous extension library rc libxfixes3:i386 1:5.0-4ubuntu4.1 X11 miscellaneous 'fixes' extension library rc libxft2:i386 2.2.0-3ubuntu2 FreeType-based font drawing library for X rc libxi6:i386 2:1.6.0-0ubuntu2.1 X11 Input extension library rc libxinerama1:i386 2:1.1.1-3ubuntu0.1 X11 Xinerama extension library rc libxml2:i386 2.7.8.dfsg-5.1ubuntu4.6 GNOME XML library rc libxmu6:i386 2:1.1.0-3 X11 miscellaneous utility library rc libxp6:i386 1:1.0.1-2ubuntu0.12.04.1 X Printing Extension (Xprint) client library rc libxpm4:i386 1:3.5.9-4 X11 pixmap library rc libxrandr2:i386 2:1.3.2-2ubuntu0.2 X11 RandR extension library rc libxrender1:i386 1:0.9.6-2ubuntu0.1 X Rendering Extension client library rc libxslt1.1:i386 1.1.26-8ubuntu1.3 XSLT 1.0 processing library - runtime library rc libxss1:i386 1:1.2.1-2 X11 Screen Saver extension library rc libxt6:i386 1:1.1.1-2ubuntu0.1 X11 toolkit intrinsics library rc libxtst6:i386 2:1.2.0-4ubuntu0.1 X11 Testing -- Record extension library rc libxv1:i386 2:1.0.6-2ubuntu0.1 X11 Video extension library rc libxxf86vm1:i386 1:1.1.1-2ubuntu0.1 X11 XFree86 video mode extension library rc odbcinst1debian2:i386 2.2.14p2-5ubuntu3 Support library for accessing odbc ini files rc skype-bin:i386 4.2.0.11-0ubuntu0.12.04.2 client for Skype VOIP and instant messaging service - binary files rc sni-qt:i386 0.2.5-0ubuntu3 indicator support for Qt rc wine-compholio:i386 1.7.4~ubuntu12.04.1 The Compholio Edition is a special build of the popular Wine software rc xaw3dg:i386 1.5+E-18.1ubuntu1 Xaw3d widget set

    Read the article

  • Part 2&ndash;Load Testing In The Cloud

    - by Tarun Arora
    Welcome to Part 2, In Part 1 we discussed the advantages of creating a Test Rig in the cloud, the Azure edge and the Test Rig Topology we want to get to. In Part 2, Let’s start by understanding the components of Azure we’ll be making use of followed by manually putting them together to create the test rig, so… let’s get down dirty start setting up the Test Rig.  What Components of Azure will I be using for building the Test Rig in the Cloud? To run the Test Agents we’ll make use of Windows Azure Compute and to enable communication between Test Controller and Test Agents we’ll make use of Windows Azure Connect.  Azure Connect The Test Controller is on premise and the Test Agents are in the cloud (How will they talk?). To enable communication between the two, we’ll make use of Windows Azure Connect. With Windows Azure Connect, you can use a simple user interface to configure IPsec protected connections between computers or virtual machines (VMs) in your organization’s network, and roles running in Windows Azure. With this you can now join Windows Azure role instances to your domain, so that you can use your existing methods for domain authentication, name resolution, or other domain-wide maintenance actions. For more details refer to an overview of Windows Azure connect. A very useful video explaining everything you wanted to know about Windows Azure connect.  Azure Compute Windows Azure compute provides developers a platform to host and manage applications in Microsoft’s data centres across the globe. A Windows Azure application is built from one or more components called ‘roles.’ Roles come in three different types: Web role, Worker role, and Virtual Machine (VM) role, we’ll be using the Worker role to set up the Test Agents. A very nice blog post discussing the difference between the 3 role types. Developers are free to use the .NET framework or other software that runs on Windows with the Worker role or Web role. Developers can also create applications using languages such as PHP and Java. More on Windows Azure Compute. Each Windows Azure compute instance represents a virtual server... Virtual Machine Size CPU Cores Memory Cost Per Hour Extra Small Shared 768 MB $0.04 Small 1 1.75 GB $0.12 Medium 2 3.50 GB $0.24 Large 4 7.00 GB $0.48 Extra Large 8 14.00 GB $0.96   You might want to review the Windows Azure Pricing FAQ. Let’s Get Started building the Test Rig… Configuration Machine Role Comments VM – 1 Domain Controller for Playpit.com On Premise VM – 2 TFS, Test Controller On Premise VM – 3 Test Agent Cloud   In this blog post I would assume that you have the domain, Team Foundation Server and Test Controller Installed and set up already. If not, please refer to the TFS 2010 Installation Guide and this walkthrough on MSDN to set up your Test Controller. You can also download a preconfigured TFS 2010 VM from Brian Keller's blog, Brian also has some great hands on Labs on TFS 2010 that you may want to explore. I. Lets start building VM – 3: The Test Agent Download the Windows Azure SDK and Tools Open Visual Studio and create a new Windows Azure Project using the Cloud Template                   Choose the Worker Role for reasons explained in the earlier post         The WorkerRole.cs implements the Run() and OnStart() methods, no code changes required. You should be able to compile the project and run it in the compute emulator (The compute emulator should have been installed as part of the Windows Azure Toolkit) on your local machine.                   We will only be making changes to WindowsAzureProject, open ServiceDefinition.csdef. Ensure that the vmsize is small (remember the cost chart above). Import the “Connect” module. I am importing the Connect module because I need to join the Worker role VM to the Playpit domain. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect"/> </Imports> </WorkerRole> </ServiceDefinition> Go to the ServiceConfiguration.Cloud.cscfg and note that settings with key ‘Microsoft.WindowsAzure.Plugins.Connect.%%%%’ have been added to the configuration file. This is because you decided to import the connect module. See the config below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration>             Let’s go step by step and understand all the highlighted parameters and where you can find the values for them.       osFamily – By default this is set to 1 (Windows Server 2008 SP2). Change this to 2 if you want the Windows Server 2008 R2 operating system. The Advantage of using osFamily = “2” is that you get Powershell 2.0 rather than Powershell 1.0. In Powershell 2.0 you could simply use “powershell -ExecutionPolicy Unrestricted ./myscript.ps1” and it will work while in Powershell 1.0 you will have to change the registry key by including the following in your command file “reg add HKLM\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell /v ExecutionPolicy /d Unrestricted /f” before you can execute any power shell. The other reason you might want to move to os2 is if you wanted IIS 7.5.       Activation Token – To enable communication between the on premise machine and the Windows Azure Worker role VM both need to have the same token. Log on to Windows Azure Management Portal, click on Connect, click on Get Activation Token, this should give you the activation token, copy the activation token to the clipboard and paste it in the configuration file. Note – Later in the blog I’ll be showing you how to install connect on the on premise machine.                       EnableDomainJoin – Set the value to true, ofcourse we want to join the on windows azure worker role VM to the domain.       DomainFQDN, DomainControllerFQDN, DomainAccountName, DomainPassword, DomainOU, Administrators – This information is specific to your domain. I have extracted this information from the ‘service manager’ and ‘Active Directory Users and Computers’. Also, i created a new Domain-OU namely ‘CloudInstances’ so all my cloud instances joined to my domain show up here, this is optional. You can encrypt the DomainPassword – refer to the instructions here. Or hold fire, I’ll be covering that when i come to certificates and encryption in the coming section.       Now once you have filled all this information up, the configuration file should look something like below, <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration> Next we will be enabling the Remote Desktop module in to the ServiceDefinition.csdef, we could make changes manually or allow a beautiful wizard to help us make changes. I prefer the second option. So right click on the Windows Azure project and choose Publish       Now once you get the publish wizard, if you haven’t already you would be asked to import your Windows Azure subscription, this is simply the Msdn subscription activation key xml. Once you have done click Next to go to the Settings page and check ‘Enable Remote Desktop for all roles’.       As soon as you do that you get another pop up asking you the details for the user that you would be logging in with (make sure you enter a reasonable expiry date, you do not want the user account to expire today). Notice the more information tag at the bottom, click that to get access to the certificate section. See screen shot below.       From the drop down select the option to create a new certificate        In the pop up window enter the friendly name for your certificate. In my case I entered ‘WAC – Test Rig’ and click ok. This will create a new certificate for you. Click on the view button to see the certificate details. Do you see the Thumbprint, this is the value that will go in the config file (very important). Now click on the Copy to File button to copy the certificate, we will need to import the certificate to the windows Azure Management portal later. So, make sure you save it a safe location.                                Click Finish and enter details of the user you would like to create with permissions for remote desktop access, once you have entered the details on the ‘Remote desktop configuration’ screen click on Ok. From the Publish Windows Azure Wizard screen press Cancel. Cancel because we don’t want to publish the role just yet and Yes because we want to save all the changes in the config file.       Now if you go to the ServiceDefinition.csdef file you will see that the RemoteAccess and RemoteForwarder roles have been imported for you. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect" /> <Import moduleName="RemoteAccess" /> <Import moduleName="RemoteForwarder" /> </Imports> </WorkerRole> </ServiceDefinition> Now go to the ServiceConfiguration.Cloud.cscfg file and you see a whole bunch for setting “Microsoft.WindowsAzure.Plugins.RemoteAccess.%%%” values added for you. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" value="Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" value="MIIBnQYJKoZIhvcNAQcDoIIBjjCCAYoCAQAxggFOMIIBSgIBADAyMB4xHDAaBgNVBAMME1dpbmRvd 3MgQXp1cmUgVG9vbHMCEGa+B46voeO5T305N7TSG9QwDQYJKoZIhvcNAQEBBQAEggEABg4ol5Xol66Ip6QKLbAPWdmD4ae ADZ7aKj6fg4D+ATr0DXBllZHG5Umwf+84Sj2nsPeCyrg3ZDQuxrfhSbdnJwuChKV6ukXdGjX0hlowJu/4dfH4jTJC7sBWS AKaEFU7CxvqYEAL1Hf9VPL5fW6HZVmq1z+qmm4ecGKSTOJ20Fptb463wcXgR8CWGa+1w9xqJ7UmmfGeGeCHQ4QGW0IDSBU6ccg vzF2ug8/FY60K1vrWaCYOhKkxD3YBs8U9X/kOB0yQm2Git0d5tFlIPCBT2AC57bgsAYncXfHvPesI0qs7VZyghk8LVa9g5IqaM Cp6cQ7rmY/dLsKBMkDcdBHuCTAzBgkqhkiG9w0BBwEwFAYIKoZIhvcNAwcECDRVifSXbA43gBApNrp40L1VTVZ1iGag+3O1" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" value="2012-11-27T23:59:59.0000000+00:00" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" value="true" /> </ConfigurationSettings> <Certificates> <Certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" thumbprint="AA23016CF0BDFC344400B5B82706B608B92E4217" thumbprintAlgorithm="sha1" /> </Certificates> </Role> </ServiceConfiguration>          Okay let’s look at them one at a time,       Enabled - Yes, we would like to enable Remote Access.       AccountUserName – This is the user name you entered while you were on the publish windows azure role screen, as detailed above.       AccountEncrytedPassword – Try and decode that, the certificate is used to encrypt the password you specified for the user account. Remember earlier i said, either use the instructions or wait and i’ll be showing you encryption, now the user account i am using for rdp has the same password as my domain password, so i can simply copy the value of the AccountEncryptedPassword to the DomainPassword as well.       AccountExpiration – This is the expiration as you specified in the wizard earlier, make sure your account does not expire today.       Remote Forwarder – Check out the documentation, below is how I understand it, -- One role in an application that implements a remote desktop connection must import the RemoteForwarder module. The two modules work together to enable the remote desktop connections to role instances. -- If you have multiple roles defined in the service model, it does not matter which role you add the RemoteForwarder module to, but you must add it to only one of the role definitions.       Certificate – Remember the certificate thumbprint from the wizard, the on premise machine and windows azure role machine that need to speak to each other must have the same thumbprint. More on that when we install Windows Azure connect Endpoints on the on premise machine. As i said earlier, in this blog post, I’ll be showing you the manual process so i won’t be scripting any star up tasks to install the test agent or register the test agent with the TFS Server. I’ll be showing you all this cool stuff in the next blog post, that’s because it’s important to understand the manual side of it, it becomes easier for you to troubleshoot in case something fails. Having said that, the changes we have made are sufficient to spin up the Windows Azure Worker Role aka Test Agent VM, have it connected with the play.pit.com domain and have remote access enabled on it. Before we deploy the Test Agent VM we need to set up Windows Azure Connect on the TFS Server. II. Windows Azure Connect: Setting up Connect on VM – 2 i.e. TFS & Test Controller Glad you made it so far, now to enable communication between the on premise TFS/Test Controller and Azure-ed Test Agent we need to enable communication. We have set up the Azure connect module in the Test Agent configuration, now the connect end points need to be enabled on the on premise machines, let’s have a look at how we can do this. Log on to VM – 2 running the TFS Server and Test Controller Log on to the Windows Azure Management Portal and click on Virtual Network Click on Virtual Network, if you already have a subscription you should see the below screen shot, if not, you would be asked to complete the subscription first        Click on Install Local Endpoints from the top left on the panel and you get a url appended with a token id in it, remember the token i showed you earlier, in theory the token you get here should match the token you added to the Test Agent config file.        Copy the url to the clip board and paste it in IE explorer (important, the installation at present only works out of IE and you need to have cookies enabled in order to complete the installation). As stated in the pop up, you can NOT download and run the software later, you need to run it as is, since it contains a token. Once the installation completes you should see the Windows Azure connect icon in the system tray.                         Right click the Azure Connect icon, choose Diagnostics and refer to this link for diagnostic detail terminology. NOTE – Unfortunately I could not see the Windows Azure connect icon in the system tray, a bit of binging with Google revealed that the azure connect icon is only shown when the ‘Windows Azure Connect Endpoint’ Service is started. So go to services.msc and make sure that the service is started, if not start it, unfortunately again, the service did not start for me on a manual start and i realised that one of the dependant services was disabled, you can look at the service dependencies and start them and then start windows azure connect. Bottom line, you need to start Windows Azure connect service before you can proceed. Please refer here on MSDN for more on Troubleshooting Windows Azure connect. (Follow the next step as well)   Now go back to the Windows Azure Management Portal and from Groups and Roles create a new group, lets call it ‘Test Rig’. Make sure you add the VM – 2 (the TFS Server VM where you just installed the endpoint).       Now if you go back to the Azure Connect icon in the system tray and click ‘Refresh Policy’ you will notice that the disconnected status of the icon should change to ready for connection. III. Importing Certificate in to Windows Azure Management Portal But before that you need to import the certificate you created in Step I in to the Windows Azure Management Portal. Log on to the Windows Azure Management Portal and click on ‘Hosted Services, Storage Accounts & CDN’ and then ‘Management Certificates’ followed by Add Certificates as shown in the screen shot below        Browse to the location where you saved the certificate earlier, remember… Refer to Step I in case you forgot.        Now you should be able to see the imported certificate here, make sure the thumbprint of the certificate matches the one you inserted in the config files        IV. Publish Windows Azure Worker Role aka Test Agent Having completed I, II and III, you are ready to publish the Test Agent VM – 3 to the cloud. Go to Visual Studio and right click the Windows Azure project and select Publish. Verify the infomration in the wizard, from the advanced settings tab, you can also enabled capture of intellitrace or profiling information.         Click Next and Click Publish! From the view menu bar select the Windows Azure Activity Log window.       Now you should be able to see the deployment progress in real time.             In the Windows Azure Management Portal, you should also be able to see the progress of creation of a new Worker Role.       Once the deployment is complete you should be able to RDP (go to run prompt type mstsc and in the pop up the machine name) in to the Test Agent Worker Role VM from the Playpit network using the domain admin user account. In case you are unable to log in to the Test Agent using the domain admin user account it means the process of joining the Test Agent to the domain has failed! But the good news is, because you imported the connect module, you can connect to the Test Agent machine using Windows Azure Management Portal and troubleshoot the reason for failure, you will be able to log in with the user name and password you specified in the config file for the keys ‘RemoteAccess.AccountUsername, RemoteAccess.EncryptedPassword (just that enter the password unencrypted)’, fix it or manually join the machine to the domain. Once you have managed to Join the Test Agent VM to the Domain move to the next step.      So, log in to the Test Agent Worker Role VM with the Playpit Domain Administrator and verify that you can log in, the machine is connected to the domain and the connect service is successfully running. If yes, give your self a pat on the back, you are 80% mission accomplished!         Go to the Windows Azure Management Portal and click on Virtual Network, click on Groups and Roles and click on Test Rig, click Edit Group, the edit the Test Rig group you created earlier. In the Connect to section, click on Add to select the worker role you have just deployed. Also, check the ‘Allow connections between endpoints in the group’ with this you will enable to communication between test controller and test agents and test agents/test agents. Click Save.      Now, you are ready to deploy the Test Agent software on the Worker Role Test Agent VM and configure it to work with the Test Controller. V. Configuring VM – 3: Installing Test Agent and Associating Test Agent to Controller Log in to the Worker Role Test Agent VM that you have just successfully deployed, make sure you log in with the domain administrator account. Download the All Agents software from MSDN, ‘en_visual_studio_agents_2010_x86_x64_dvd_509679.iso’, extract the iso and navigate to where you have extracted the iso. In my case, i have extracted the iso to “C:\Resources\Temp\VsAgentSetup”. Open the Test Agent folder and double click on setup.exe. Once you have installed the Test Agent you should reach the configuration window. If you face any issues installing TFS Test Agent on the VM, refer to the walkthrough on MSDN.       Once you have successfully installed the Test Agent software you will need to configure the test agent. Right click the test agent configuration tool and run as a different user. i.e. an Administrator. This is really to run the configuration wizard with elevated privileges (you might have UAC block something's otherwise).        In the run options, you can select ‘service’ you do not need to run the agent as interactive un less you are running coded UI tests. I have specified the domain administrator to connect to the TFS Test Controller. In real life, i would never do that, i would create a separate test user service account for this purpose. But for the blog post, we are using the most powerful user so that any policies or restrictions don’t block you.        Click the Apply Settings button and you should be all green! If not, the summary usually gives helpful error messages that you can resolve and proceed. As per my experience, you may run in to either a permission or a firewall blocking communication issue.        And now the moment of truth! Go to VM –2 open up Visual Studio and from the Test Menu select Manage Test Controller       Mission Accomplished! You should be able to see the Test Agent that you have just configured here,         VI. Creating and Running Load Tests on your brand new Azure-ed Test Rig I have various blog posts on Performance Testing with Visual Studio Ultimate, you can follow the links and videos below, Blog Posts: - Part 1 – Performance Testing using Visual Studio 2010 Ultimate - Part 2 – Performance Testing using Visual Studio 2010 Ultimate - Part 3 – Performance Testing using Visual Studio 2010 Ultimate Videos: - Test Tools Configuration & Settings in Visual Studio - Why & How to Record Web Performance Tests in Visual Studio Ultimate - Goal Driven Load Testing using Visual Studio Ultimate Now that you have created your load tests, there is one last change you need to make before you can run the tests on your Azure Test Rig, create a new Test settings file, and change the Test Execution method to ‘Remote Execution’ and select the test controller you have configured the Worker Role Test Agent against in our case VM – 2 So, go on, fire off a test run and see the results of the test being executed on the Azur-ed Test Rig. Review and What’s next? A quick recap of the benefits of running the Test Rig in the cloud and what i will be covering in the next blog post AND I would love to hear your feedback! Advantages Utilizing the power of Azure compute to run a heavy virtual user load. Benefiting from the Azure flexibility, destroy Test Agents when not in use, takes < 25 minutes to spin up a new Test Agent. Most important test Network Latency, (network latency and speed of connection are two different things – usually network latency is very hard to test), by placing the Test Agents in Microsoft Data centres around the globe, one can actually test the lag in transferring the bytes not because of a slow connection but because the page has been requested from the other side of the globe. Next Steps The process of spinning up the Test Agents in windows Azure is not 100% automated. I am working on the Worker process and power shell scripts to make the role deployment, unattended install of test agent software and registration of the test agent to the test controller automated. In the next blog post I will show you how to make the complete process unattended and automated. Remember to subscribe to http://feeds.feedburner.com/TarunArora. Hope you enjoyed this post, I would love to hear your feedback! If you have any recommendations on things that I should consider or any questions or feedback, feel free to leave a comment. See you in Part III.   Share this post : CodeProject

    Read the article

  • Right-Time Retail Part 3

    - by David Dorf
    This is part three of the three-part series.  Read Part 1 and Part 2 first. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Right-Time Marketing Real-time isn’t just about executing faster; it extends to interactions with customers as well. As an industry, we’ve spent many years analyzing all the data that’s been collected. Yes, that data has been invaluable in helping us make better decisions like where to open new stores, how to assort those stores, and how to price our products. But the recent advances in technology are now making it possible to analyze and deliver that data very quickly… fast enough to impact a potential sale in near real-time. Let me give you two examples. Salesmen in car dealerships get pretty good at sizing people up. When a potential customer walks in the door, it doesn’t take long for the salesman to figure out the revenue at stake. Is this person a real buyer, or just looking for a fun test drive? Will this person buy today or three months from now? Will this person opt for the expensive packages, or go bare bones? While the salesman certainly asks some leading questions, much of information is discerned through body language. But body language doesn’t translate very well over the web. Eloqua, which was acquired by Oracle earlier this year, reads internet body language. By tracking the behavior of the people visiting your web site, Eloqua categorizes visitors based on their propensity to buy. While Eloqua’s roots have been in B2B, we’ve been looking at leveraging the technology with ATG to target B2C. Knowing what sites were previously visited, how often the customer has been to your site recently, and how long they’ve spent searching can help understand where the customer is in their purchase journey. And knowing that bit of information may be enough to help close the deal with a real-time offer, follow-up email, or online customer service pop-up. This isn’t so different from the days gone by when the clerk behind the counter of the corner store noticed you were lingering in a particular aisle, so he walked over to help you compare two products and close the sale. You appreciated the personalized service, and he knew the value of the long-term relationship. Move that same concept into the digital world and you have Oracle’s CX Suite, a cloud-based offering of end-to-end customer experience tools, assembled primarily from acquisitions. Those tools are Oracle Marketing (Eloqua), Oracle Commerce (ATG, Endeca), Oracle Sales (Oracle CRM On Demand), Oracle Service (RightNow), Oracle Social (Collective Intellect, Vitrue, Involver), and Oracle Content (Fatwire). We are providing the glue that binds the CIO and CMO together to unleash synergies that drive the top-line higher, and by virtue of the cloud-approach, keep costs at bay. My second example of real-time marketing takes place in the store but leverages the concepts of Web marketing. In 1962 the decline of personalized service in retail began. Anyone know the significance of that year? That’s when Target, K-Mart, and Walmart each opened their first stores, and over the succeeding years the industry chose scale over personal service. No longer were you known as “Jane with the snotty kid so make sure we check her out fast,” but you suddenly became “time-starved female age 20-30 with kids.” I’m not saying that was a bad thing – it was the right thing for our industry at the time, and it enabled a huge amount of growth, cheaper prices, and more variety of products. But scale alone is no longer good enough. Today’s sophisticated consumer demands scale, experience, and personal attention. To some extent we’ve delivered that on websites via the magic of cookies, your willingness to log in, and sophisticated data analytics. What store manager wouldn’t love a report detailing all the visitors to his store, where they came from, and which products that examined? People trackers are getting more sophisticated, incorporating infrared, video analytics, and even face recognition. (Next time you walk in front on a mannequin, don’t be surprised if it’s looking back.) But the ultimate marketing conduit is the mobile phone. Since each mobile phone emits a unique number on WiFi networks, it becomes the cookie of the physical world. Assuming congress keeps privacy safeguards reasonable, we’ll have a win-win situation for both retailers and consumers. Retailers get to know more about the consumer’s purchase journey, and consumers get higher levels of service with the retailer. When I call my bank, a couple things happen before the call is connected. A reverse look-up on my phone number identifies me so my accounts can be retrieved from Siebel CRM. Then the system anticipates why I’m calling based on recent transactions. In this example, it sees that I was just charged a foreign currency fee, so it assumes that’s the reason I’m calling. It puts all the relevant information on the customer service rep’s screen as it connects the call. When I complain about the fee, the rep immediately sees I’m a great customer and I travel lots, so she suggests switching me to their traveler’s card that doesn’t have foreign transaction fees. That technology is powered by a product called Oracle Real-Time Decisions, a rules engine built to execute very quickly, basically in the time it takes the phone to ring once. So let’s combine the power of that product with our new-found mobile cookie and provide contextual customer interactions in real-time. Our first opportunity comes when a customer crosses a pre-defined geo-fence, typically a boundary around the store. Context is the key to our interaction: that’s the customer (known or anonymous), the time of day and day of week, and location. Thomas near the downtown store on a Wednesday at noon means he’s heading to lunch. If he were near the mall location on a Saturday morning, that’s a completely different context. But on his way to lunch, we’ll let Thomas know that we’ve got a new shipment of ASICS running shoes on display with a simple text message. We used the context to look-up Thomas’ past purchases and understood he was an avid runner. We used the fact that this was lunchtime to select the type of message, in this case an informational message instead of an offer. Thomas enters the store, phone in hand, and walks to the shoe department. He scans one of the new ASICS shoes using the convenient QR Codes we provided on the shelf-tags, but then he starts scanning low-end Nikes. Each scan is another opportunity to both learn from Thomas and potentially interact via another message. Since he historically buys low-end Nikes and keeps scanning them, he’s likely falling back into his old ways. Our marketing rules are currently set to move loyal customer to higher margin products. We could have set the dials to increase visit frequency, move overstocked items, increase basket size, or many other settings, but today we are trying to move Thomas to higher-margin products. We send Thomas another text message, this time it’s a personalized offer for 10% off ASICS good for 24 hours. Offering him a discount on Nikes would be throwing margin away since he buys those anyway. We are using our marketing dollars to change behavior that increases the long-term value of Thomas. He decides to buy the ASICS and scans the discount code on his phone at checkout. Checkout is yet another opportunity to interact with Thomas, so the transaction is sent back to Oracle RTD for evaluation. Since Thomas didn’t buy anything with the shoes, we’ll print a bounce-back coupon on the receipt offering 30% off ASICS socks if he returns within seven days. We have successfully started moving Thomas from low-margin to high-margin products. In both of these marketing scenarios, we are able to leverage data in near real-time to decide how best to interact with the customer and lead to an increase in the lifetime value of the customer. The key here is acting at the moment the customer shows interest using the context of the situation. We aren’t pushing random products at haphazard times. We are tailoring the marketing to be very specific to this customer, and it’s the technology that allows this to happen in near real-time. Conclusion As we enable more right-time integrations and interactions, retailers will begin to offer increased service to their customers. Localized and personalized service at scale will drive loyalty and lead to meaningful revenue growth for the retailers that execute well. Our industry needs to support Commerce Anywhere…and commerce anytime as well.

    Read the article

  • Announcing: Great Improvements to Windows Azure Web Sites

    - by ScottGu
    I’m excited to announce some great improvements to the Windows Azure Web Sites capability we first introduced earlier this summer.  Today’s improvements include: a new low-cost shared mode scaling option, support for custom domains with shared and reserved mode web-sites using both CNAME and A-Records (the later enabling naked domains), continuous deployment support using both CodePlex and GitHub, and FastCGI extensibility.  All of these improvements are now live in production and available to start using immediately. New “Shared” Scaling Tier Windows Azure allows you to deploy and host up to 10 web-sites in a free, shared/multi-tenant hosting environment. You can start out developing and testing web sites at no cost using this free shared mode, and it supports the ability to run web sites that serve up to 165MB/day of content (5GB/month).  All of the capabilities we introduced in June with this free tier remain the same with today’s update. Starting with today’s release, you can now elastically scale up your web-site beyond this capability using a new low-cost “shared” option (which we are introducing today) as well as using a “reserved instance” option (which we’ve supported since June).  Scaling to either of these modes is easy.  Simply click on the “scale” tab of your web-site within the Windows Azure Portal, choose the scaling option you want to use with it, and then click the “save” button.  Changes take only seconds to apply and do not require any code to be changed, nor the app to be redeployed: Below are some more details on the new “shared” option, as well as the existing “reserved” option: Shared Mode With today’s release we are introducing a new low-cost “shared” scaling mode for Windows Azure Web Sites.  A web-site running in shared mode is deployed in a shared/multi-tenant hosting environment.  Unlike the free tier, though, a web-site in shared mode has no quotas/upper-limit around the amount of bandwidth it can serve.  The first 5 GB/month of bandwidth you serve with a shared web-site is free, and then you pay the standard “pay as you go” Windows Azure outbound bandwidth rate for outbound bandwidth above 5 GB. A web-site running in shared mode also now supports the ability to map multiple custom DNS domain names, using both CNAMEs and A-records, to it.  The new A-record support we are introducing with today’s release provides the ability for you to support “naked domains” with your web-sites (e.g. http://microsoft.com in addition to http://www.microsoft.com).  We will also in the future enable SNI based SSL as a built-in feature with shared mode web-sites (this functionality isn’t supported with today’s release – but will be coming later this year to both the shared and reserved tiers). You pay for a shared mode web-site using the standard “pay as you go” model that we support with other features of Windows Azure (meaning no up-front costs, and you pay only for the hours that the feature is enabled).  A web-site running in shared mode costs only 1.3 cents/hr during the preview (so on average $9.36/month). Reserved Instance Mode In addition to running sites in shared mode, we also support scaling them to run within a reserved instance mode.  When running in reserved instance mode your sites are guaranteed to run isolated within your own Small, Medium or Large VM (meaning no other customers run within it).  You can run any number of web-sites within a VM, and there are no quotas on CPU or memory limits. You can run your sites using either a single reserved instance VM, or scale up to have multiple instances of them (e.g. 2 medium sized VMs, etc).  Scaling up or down is easy – just select the “reserved” instance VM within the “scale” tab of the Windows Azure Portal, choose the VM size you want, the number of instances of it you want to run, and then click save.  Changes take effect in seconds: Unlike shared mode, there is no per-site cost when running in reserved mode.  Instead you pay only for the reserved instance VMs you use – and you can run any number of web-sites you want within them at no extra cost (e.g. you could run a single site within a reserved instance VM or 100 web-sites within it for the same cost).  Reserved instance VMs start at 8 cents/hr for a small reserved VM.  Elastic Scale-up/down Windows Azure Web Sites allows you to scale-up or down your capacity within seconds.  This allows you to deploy a site using the shared mode option to begin with, and then dynamically scale up to the reserved mode option only when you need to – without you having to change any code or redeploy your application. If your site traffic starts to drop off, you can scale back down the number of reserved instances you are using, or scale down to the shared mode tier – all within seconds and without having to change code, redeploy, or adjust DNS mappings.  You can also use the “Dashboard” view within the Windows Azure Portal to easily monitor your site’s load in real-time (it shows not only requests/sec and bandwidth but also stats like CPU and memory usage). Because of Windows Azure’s “pay as you go” pricing model, you only pay for the compute capacity you use in a given hour.  So if your site is running most of the month in shared mode (at 1.3 cents/hr), but there is a weekend when it gets really popular and you decide to scale it up into reserved mode to have it run in your own dedicated VM (at 8 cents/hr), you only have to pay the additional pennies/hr for the hours it is running in the reserved mode.  There is no upfront cost you need to pay to enable this, and once you scale back down to shared mode you return to the 1.3 cents/hr rate.  This makes it super flexible and cost effective. Improved Custom Domain Support Web sites running in either “shared” or “reserved” mode support the ability to associate custom host names to them (e.g. www.mysitename.com).  You can associate multiple custom domains to each Windows Azure Web Site.  With today’s release we are introducing support for A-Records (a big ask by many users). With the A-Record support, you can now associate ‘naked’ domains to your Windows Azure Web Sites – meaning instead of having to use www.mysitename.com you can instead just have mysitename.com (with no sub-name prefix).  Because you can map multiple domains to a single site, you can optionally enable both a www and naked domain for a site (and then use a URL rewrite rule/redirect to avoid SEO problems). We’ve also enhanced the UI for managing custom domains within the Windows Azure Portal as part of today’s release.  Clicking the “Manage Domains” button in the tray at the bottom of the portal now brings up custom UI that makes it easy to manage/configure them: As part of this update we’ve also made it significantly smoother/easier to validate ownership of custom domains, and made it easier to switch existing sites/domains to Windows Azure Web Sites with no downtime. Continuous Deployment Support with Git and CodePlex or GitHub One of the more popular features we released earlier this summer was support for publishing web sites directly to Windows Azure using source control systems like TFS and Git.  This provides a really powerful way to manage your application deployments using source control.  It is really easy to enable this from a website’s dashboard page: The TFS option we shipped earlier this summer provides a very rich continuous deployment solution that enables you to automate builds and run unit tests every time you check in your web-site, and then if they are successful automatically publish to Azure. With today’s release we are expanding our Git support to also enable continuous deployment scenarios and integrate with projects hosted on CodePlex and GitHub.  This support is enabled with all web-sites (including those using the “free” scaling mode). Starting today, when you choose the “Set up Git publishing” link on a website’s “Dashboard” page you’ll see two additional options show up when Git based publishing is enabled for the web-site: You can click on either the “Deploy from my CodePlex project” link or “Deploy from my GitHub project” link to walkthrough a simple workflow to configure a connection between your website and a source repository you host on CodePlex or GitHub.  Once this connection is established, CodePlex or GitHub will automatically notify Windows Azure every time a checkin occurs.  This will then cause Windows Azure to pull the source and compile/deploy the new version of your app automatically.  The below two videos walkthrough how easy this is to enable this workflow and deploy both an initial app and then make a change to it: Enabling Continuous Deployment with Windows Azure Websites and CodePlex (2 minutes) Enabling Continuous Deployment with Windows Azure Websites and GitHub (2 minutes) This approach enables a really clean continuous deployment workflow, and makes it much easier to support a team development environment using Git: Note: today’s release supports establishing connections with public GitHub/CodePlex repositories.  Support for private repositories will be enabled in a few weeks. Support for multiple branches Previously, we only supported deploying from the git ‘master’ branch.  Often, though, developers want to deploy from alternate branches (e.g. a staging or future branch). This is now a supported scenario – both with standalone git based projects, as well as ones linked to CodePlex or GitHub.  This enables a variety of useful scenarios.  For example, you can now have two web-sites - a “live” and “staging” version – both linked to the same repository on CodePlex or GitHub.  You can configure one of the web-sites to always pull whatever is in the master branch, and the other to pull what is in the staging branch.  This enables a really clean way to enable final testing of your site before it goes live. This 1 minute video demonstrates how to configure which branch to use with a web-site. Summary The above features are all now live in production and available to use immediately.  If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using them today.  Visit the Windows Azure Developer Center to learn more about how to build apps with it. We’ll have even more new features and enhancements coming in the weeks ahead – including support for the recent Windows Server 2012 and .NET 4.5 releases (we will enable new web and worker role images with Windows Server 2012 and .NET 4.5 next month).  Keep an eye out on my blog for details as these new features become available. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Cannot log in to the desktop on ubuntu 11.10?

    - by Jichao
    The problem is, I could log in under the terminal, i could ifup eth0, i could do anything I want in the terminal, but if I use ctrl+alt+f7 goto the gnome login screen, after I input the correct password, the system just send me back to same login screen again. I have created a new user, but it didn't work. I have change all the files under ~/ to jichao:jichao(which is my username) with chown -hR jichao:jichao /home/jichao, but it didn't work too. I searched the internet, somebody said I should see the logs under /var/log/gdm, but there is not a /var/log/gdm directory in my box. Here are the tail of files under /var/log/ tail X.org.log [ 3263.348] (II) Loading /usr/lib/xorg/modules/input/evdev_drv.so [ 3263.348] (**) Dell Dell USB Keyboard: always reports core events [ 3263.348] (**) Dell Dell USB Keyboard: Device: "/dev/input/event5" [ 3263.348] (--) Dell Dell USB Keyboard: Found keys [ 3263.348] (II) Dell Dell USB Keyboard: Configuring as keyboard [ 3263.348] (**) Option "config_info" "udev:/sys/devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.4/2-1.4:1.0/input/input29/event5" [ 3263.348] (II) XINPUT: Adding extended input device "Dell Dell USB Keyboard" (type: KEYBOARD) [ 3263.348] (**) Option "xkb_rules" "evdev" [ 3263.348] (**) Option "xkb_model" "pc105" [ 3263.348] (**) Option "xkb_layout" "us" kern.log Mar 20 09:32:58 jichao-MS-730 kernel: [ 3182.701247] input: Dell Dell USB Keyboard as /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.4/2-1.4:1.0/input/input27 Mar 20 09:32:58 jichao-MS-730 kernel: [ 3182.701392] generic-usb 0003:413C:2003.0018: input,hidraw1: USB HID v1.10 Keyboard [Dell Dell USB Keyboard] on usb-0000:00:1d.0-1.4/input0 Mar 20 09:33:02 jichao-MS-730 kernel: [ 3186.642572] usb 2-1.3: new low speed USB device number 17 using ehci_hcd Mar 20 09:33:02 jichao-MS-730 kernel: [ 3186.741892] input: Microsoft Microsoft 5-Button Mouse with IntelliEye(TM) as /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.3/2-1.3:1.0/input/input28 Mar 20 09:33:02 jichao-MS-730 kernel: [ 3186.742080] generic-usb 0003:045E:0047.0019: input,hidraw2: USB HID v1.10 Mouse [Microsoft Microsoft 5-Button Mouse with IntelliEye(TM)] on usb-0000:00:1d.0-1.3/input0 Mar 20 09:33:27 jichao-MS-730 kernel: [ 3212.473901] usb 2-1.3: USB disconnect, device number 17 Mar 20 09:33:28 jichao-MS-730 kernel: [ 3212.702031] usb 2-1.4: USB disconnect, device number 16 Mar 20 09:34:08 jichao-MS-730 kernel: [ 3253.022655] usb 2-1.4: new low speed USB device number 18 using ehci_hcd Mar 20 09:34:08 jichao-MS-730 kernel: [ 3253.124278] input: Dell Dell USB Keyboard as /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.4/2-1.4:1.0/input/input29 Mar 20 09:34:08 jichao-MS-730 kernel: [ 3253.124423] generic-usb 0003:413C:2003.001A: input,hidraw1: USB HID v1.10 Keyboard [Dell Dell USB Keyboard] on usb-0000:00:1d.0-1.4/input0 Mar 20 09:33:02 jichao-MS-730 kernel: [ 3186.741892] input: Microsoft Microsoft 5-Button Mouse with IntelliEye(TM) as /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.3/2-1.3:1.0/input/input28 Mar 20 09:33:02 jichao-MS-730 kernel: [ 3186.742080] generic-usb 0003:045E:0047.0019: input,hidraw2: USB HID v1.10 Mouse [Microsoft Microsoft 5-Button Mouse with IntelliEye(TM)] on usb-0000:00:1d.0-1.3/input0 syslog Mar 20 09:33:02 jichao-MS-730 mtp-probe: bus: 2, device: 17 was not an MTP device Mar 20 09:33:27 jichao-MS-730 kernel: [ 3212.473901] usb 2-1.3: USB disconnect, device number 17 Mar 20 09:33:28 jichao-MS-730 kernel: [ 3212.702031] usb 2-1.4: USB disconnect, device number 16 Mar 20 09:34:08 jichao-MS-730 kernel: [ 3253.022655] usb 2-1.4: new low speed USB device number 18 using ehci_hcd Mar 20 09:34:08 jichao-MS-730 mtp-probe: checking bus 2, device 18: "/sys/devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.4" Mar 20 09:34:08 jichao-MS-730 mtp-probe: bus: 2, device: 18 was not an MTP device Mar 20 09:34:08 jichao-MS-730 kernel: [ 3253.124278] input: Dell Dell USB Keyboard as /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.4/2-1.4:1.0/input/input29 Mar 20 09:34:08 jichao-MS-730 kernel: [ 3253.124423] generic-usb 0003:413C:2003.001A: input,hidraw1: USB HID v1.10 Keyboard [Dell Dell USB Keyboard] on usb-0000:00:1d.0-1.4/input0 auth.log Mar 20 09:18:52 jichao-MS-730 lightdm: pam_ck_connector(lightdm-autologin:session): nox11 mode, ignoring PAM_TTY :0 Mar 20 09:18:53 jichao-MS-730 lightdm: pam_succeed_if(lightdm:auth): requirement "user ingroup nopasswdlogin" not met by user "jichao" Mar 20 09:18:53 jichao-MS-730 dbus[835]: [system] Rejected send message, 2 matched rules; type="method_call", sender=":1.240" (uid=104 pid=6457 comm="/usr/lib/indicator-datetime/indicator-datetime-ser") interface="org.freedesktop.DBus.Properties" member="GetAll" error name="(unset)" requested_reply="0" destination=":1.11" (uid=0 pid=1156 comm="/usr/sbin/console-kit-daemon --no-daemon ") Mar 20 09:19:38 jichao-MS-730 sudo: jichao : TTY=tty6 ; PWD=/home ; USER=root ; COMMAND=/bin/chown -hR jichao:jichao jicha Mar 20 09:19:39 jichao-MS-730 sudo: jichao : TTY=tty6 ; PWD=/home ; USER=root ; COMMAND=/bin/chown -hR jichao:jichao jichao Mar 20 09:20:10 jichao-MS-730 lightdm: pam_unix(lightdm-autologin:session): session closed for user lightdm Mar 20 09:20:11 jichao-MS-730 lightdm: pam_unix(lightdm-autologin:session): session opened for user lightdm by (uid=0) Mar 20 09:20:11 jichao-MS-730 lightdm: pam_ck_connector(lightdm-autologin:session): nox11 mode, ignoring PAM_TTY :0 Mar 20 09:20:12 jichao-MS-730 lightdm: pam_succeed_if(lightdm:auth): requirement "user ingroup nopasswdlogin" not met by user "jichao" Mar 20 09:20:12 jichao-MS-730 dbus[835]: [system] Rejected send message, 2 matched rules; type="method_call", sender=":1.247" (uid=104 pid=6572 comm="/usr/lib/indicator-datetime/indicator-datetime-ser") interface="org.freedesktop.DBus.Properties" member="GetAll" error name="(unset)" requested_reply="0" destination=":1.11" (uid=0 pid=1156 comm="/usr/sbin/console-kit-daemon --no-daemon ") It seems that my .xsession-errors does not grow since yesterday. Here is my .xsession-error: (gnome-settings-daemon:1550): Gdk-WARNING **: The program 'gnome-settings-daemon' received an X Window System error. This probably reflects a bug in the program. The error was 'BadWindow (invalid Window parameter)'. (Details: serial 26702 error_code 3 request_code 2 minor_code 0) (Note to programmers: normally, X errors are reported asynchronously; that is, you will receive the error a while after causing it. To debug your program, run it with the --sync command line option to change this behavior. You can then get a meaningful backtrace from your debugger if you break on the gdk_x_error() function.) (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed (nautilus:3106): GLib-GObject-CRITICAL **: g_value_get_object: assertion `G_VALUE_HOLDS_OBJECT (value)' failed WARN 2012-03-17 19:28:46 glib <unknown>:0 Unable to fetch children: Method "Children" with signature "" on interface "org.ayatana.bamf.view" doesn't exist WARN 2012-03-17 19:28:46 glib <unknown>:0 Unable to fetch children: Method "Children" with signature "" on interface "org.ayatana.bamf.view" doesn't exist (yunio:2430): Gtk-WARNING **: ??????????????:“pixmap”, (yunio:2430): Gtk-WARNING **: ??????????????:“pixmap”, (polkit-gnome-authentication-agent-1:1601): Gtk-WARNING **: ??????????????:“pixmap”, (yunio:2430): Gtk-WARNING **: ??????????????:“pixmap”, (yunio:2430): Gtk-WARNING **: ??????????????:“pixmap”, (polkit-gnome-authentication-agent-1:1601): Gtk-WARNING **: ??????????????:“pixmap”, (polkit-gnome-authentication-agent-1:1601): Gtk-WARNING **: ??????????????:“pixmap”, (polkit-gnome-authentication-agent-1:1601): Gtk-WARNING **: ??????????????:“pixmap”, /usr/share/system-config-printer/applet.py:336: GtkWarning: ??????????????:“pixmap”, self.loop.run () (unity-window-decorator:1652): Gtk-WARNING **: ??????????????:“pixmap”, (unity-window-decorator:1652): Gtk-WARNING **: ??????????????:“pixmap”, (unity-window-decorator:1652): Gtk-WARNING **: ??????????????:“pixmap”, (unity-window-decorator:1652): Gtk-WARNING **: ??????????????:“pixmap”, common-plugin-Message: checking whether we have a device for 4: yes common-plugin-Message: checking whether we have a device for 5: yes common-plugin-Message: checking whether we have a device for 6: yes common-plugin-Message: checking whether we have a device for 7: yes common-plugin-Message: checking whether we have a device for 10: yes common-plugin-Message: checking whether we have a device for 8: yes common-plugin-Message: checking whether we have a device for 9: yes (gnome-settings-daemon:13791): GLib-GObject-CRITICAL **: g_object_unref: assertion `G_IS_OBJECT (object)' failed [1331983727,000,xklavier.c:xkl_engine_start_listen/] The backend does not require manual layout management - but it is provided by the application ** (gnome-fallback-mount-helper:1584): DEBUG: ConsoleKit session is active 0 (gnome-fallback-mount-helper:1584): Gdk-WARNING **: gnome-fallback-mount-helper: Fatal IO error 11 (???????) on X server :0. (gdu-notification-daemon:1708): Gdk-WARNING **: gdu-notification-daemon: Fatal IO error 11 (???????) on X server :0. unity-window-decorator: Fatal IO error 11 (???????) on X server :0.0. (bluetooth-applet:1583): Gdk-WARNING **: bluetooth-applet: Fatal IO error 11 (???????) on X server :0. (nm-applet:1596): Gdk-WARNING **: nm-applet: Fatal IO error 11 (???????) on X server :0. (nautilus:3106): IBUS-WARNING **: _connection_closed_cb: Underlying GIOStream returned 0 bytes on an async read (update-notifier:1821): Gdk-WARNING **: update-notifier: Fatal IO error 11 (???????) on X server :0. applet.py: Fatal IO error 11 (???????) on X server :0. (nautilus:3106): Gdk-WARNING **: nautilus: Fatal IO error 11 (???????) on X server :0. Could you help me, Thanks.

    Read the article

  • Solving Big Problems with Oracle R Enterprise, Part I

    - by dbayard
    Abstract: This blog post will show how we used Oracle R Enterprise to tackle a customer’s big calculation problem across a big data set. Overview: Databases are great for managing large amounts of data in a central place with rigorous enterprise-level controls.  R is great for doing advanced computations.  Sometimes you need to do advanced computations on large amounts of data, subject to rigorous enterprise-level concerns.  This blog post shows how Oracle R Enterprise enables R plus the Oracle Database enabled us to do some pretty sophisticated calculations across 1 million accounts (each with many detailed records) in minutes. The problem: A financial services customer of mine has a need to calculate the historical internal rate of return (IRR) for its customers’ portfolios.  This information is needed for customer statements and the online web application.  In the past, they had solved this with a home-grown application that pulled trade and account data out of their data warehouse and ran the calculations.  But this home-grown application was not able to do this fast enough, plus it was a challenge for them to write and maintain the code that did the IRR calculation. IRR – a problem that R is good at solving: Internal Rate of Return is an interesting calculation in that in most real-world scenarios it is impractical to calculate exactly.  Rather, IRR is a calculation where approximation techniques need to be used.  In this blog post, we will discuss calculating the “money weighted rate of return” but in the actual customer proof of concept we used R to calculate both money weighted rate of returns and time weighted rate of returns.  You can learn more about the money weighted rate of returns here: http://www.wikinvest.com/wiki/Money-weighted_return First Steps- Calculating IRR in R We will start with calculating the IRR in standalone/desktop R.  In our second post, we will show how to take this desktop R function, deploy it to an Oracle Database, and make it work at real-world scale.  The first step we did was to get some sample data.  For a historical IRR calculation, you have a balances and cash flows.  In our case, the customer provided us with several accounts worth of sample data in Microsoft Excel.      The above figure shows part of the spreadsheet of sample data.  The data provides balances and cash flows for a sample account (BMV=beginning market value. FLOW=cash flow in/out of account. EMV=ending market value). Once we had the sample spreadsheet, the next step we did was to read the Excel data into R.  This is something that R does well.  R offers multiple ways to work with spreadsheet data.  For instance, one could save the spreadsheet as a .csv file.  In our case, the customer provided a spreadsheet file containing multiple sheets where each sheet provided data for a different sample account.  To handle this easily, we took advantage of the RODBC package which allowed us to read the Excel data sheet-by-sheet without having to create individual .csv files.  We wrote ourselves a little helper function called getsheet() around the RODBC package.  Then we loaded all of the sample accounts into a data.frame called SimpleMWRRData. Writing the IRR function At this point, it was time to write the money weighted rate of return (MWRR) function itself.  The definition of MWRR is easily found on the internet or if you are old school you can look in an investment performance text book.  In the customer proof, we based our calculations off the ones defined in the The Handbook of Investment Performance: A User’s Guide by David Spaulding since this is the reference book used by the customer.  (One of the nice things we found during the course of this proof-of-concept is that by using R to write our IRR functions we could easily incorporate the specific variations and business rules of the customer into the calculation.) The key thing with calculating IRR is the need to solve a complex equation with a numerical approximation technique.  For IRR, you need to find the value of the rate of return (r) that sets the Net Present Value of all the flows in and out of the account to zero.  With R, we solve this by defining our NPV function: where bmv is the beginning market value, cf is a vector of cash flows, t is a vector of time (relative to the beginning), emv is the ending market value, and tend is the ending time. Since solving for r is a one-dimensional optimization problem, we decided to take advantage of R’s optimize method (http://stat.ethz.ch/R-manual/R-patched/library/stats/html/optimize.html). The optimize method can be used to find a minimum or maximum; to find the value of r where our npv function is closest to zero, we wrapped our npv function inside the abs function and asked optimize to find the minimum.  Here is an example of using optimize: where low and high are scalars that indicate the range to search for an answer.   To test this out, we need to set values for bmv, cf, t, emv, tend, low, and high.  We will set low and high to some reasonable defaults. For example, this account had a negative 2.2% money weighted rate of return. Enhancing and Packaging the IRR function With numerical approximation methods like optimize, sometimes you will not be able to find an answer with your initial set of inputs.  To account for this, our approach was to first try to find an answer for r within a narrow range, then if we did not find an answer, try calling optimize() again with a broader range.  See the R help page on optimize()  for more details about the search range and its algorithm. At this point, we can now write a simplified version of our MWRR function.  (Our real-world version is  more sophisticated in that it calculates rate of returns for 5 different time periods [since inception, last quarter, year-to-date, last year, year before last year] in a single invocation.  In our actual customer proof, we also defined time-weighted rate of return calculations.  The beauty of R is that it was very easy to add these enhancements and additional calculations to our IRR package.)To simplify code deployment, we then created a new package of our IRR functions and sample data.  For this blog post, we only need to include our SimpleMWRR function and our SimpleMWRRData sample data.  We created the shell of the package by calling: To turn this package skeleton into something usable, at a minimum you need to edit the SimpleMWRR.Rd and SimpleMWRRData.Rd files in the \man subdirectory.  In those files, you need to at least provide a value for the “title” section. Once that is done, you can change directory to the IRR directory and type at the command-line: The myIRR package for this blog post (which has both SimpleMWRR source and SimpleMWRRData sample data) is downloadable from here: myIRR package Testing the myIRR package Here is an example of testing our IRR function once it was converted to an installable package: Calculating IRR for All the Accounts So far, we have shown how to calculate IRR for a single account.  The real-world issue is how do you calculate IRR for all of the accounts?This is the kind of situation where we can leverage the “Split-Apply-Combine” approach (see http://www.cscs.umich.edu/~crshalizi/weblog/815.html).  Given that our sample data can fit in memory, one easy approach is to use R’s “by” function.  (Other approaches to Split-Apply-Combine such as plyr can also be used.  See http://4dpiecharts.com/2011/12/16/a-quick-primer-on-split-apply-combine-problems/). Here is an example showing the use of “by” to calculate the money weighted rate of return for each account in our sample data set.  Recap and Next Steps At this point, you’ve seen the power of R being used to calculate IRR.  There were several good things: R could easily work with the spreadsheets of sample data we were given R’s optimize() function provided a nice way to solve for IRR- it was both fast and allowed us to avoid having to code our own iterative approximation algorithm R was a convenient language to express the customer-specific variations, business-rules, and exceptions that often occur in real-world calculations- these could be easily added to our IRR functions The Split-Apply-Combine technique can be used to perform calculations of IRR for multiple accounts at once. However, there are several challenges yet to be conquered at this point in our story: The actual data that needs to be used lives in a database, not in a spreadsheet The actual data is much, much bigger- too big to fit into the normal R memory space and too big to want to move across the network The overall process needs to run fast- much faster than a single processor The actual data needs to be kept secured- another reason to not want to move it from the database and across the network And the process of calculating the IRR needs to be integrated together with other database ETL activities, so that IRR’s can be calculated as part of the data warehouse refresh processes In our next blog post in this series, we will show you how Oracle R Enterprise solved these challenges.

    Read the article

  • ?????Exadata????

    - by Liu Maclean(???)
    ??check Exadata Image & OS versions , GI & DB patches sundiag exacheck cellserv ==> imageinfo dbhost ==> /usr/local/bin/imagehistory Also check the version of the switch. Login to Switch and execute the following command [root@myswitch-1 sbin]# version [root@dmorlsw-ib2 sbin]# cd /usr/local/bin [root@dmorlsw-ib2 bin]# ls -lrt version -rwxr-xr-x 1 root root 20356 Apr 4 2011 version Output will look as below. [root@dmorlsw-ib2 ~]# version SUN DCS 36p version: 1.3.3-2 Build time: Apr 4 2011 11:15:19 SP board info: Manufacturing Date: 2009.05.05 Serial Number: "NCD3X0178" Hardware Revision: 0x0006 Firmware Revision: 0x0102 BIOS version: NOW1R112 BIOS date: 04/24/2009 ib8# cat /sys/class/infiniband/is4_0/fw_ver 7.2.300 ib8 # cat /sys/class/dmi/id/bios_version NOW1R112 ib8 # nm2version NM2-36p version: 1.0.1-1 Build time: Sep 14 2009 12:52:51 ComExpress info: Manufacturing Date: 2009.08.19 Serial Number: Hardware Revision: 0x0006 Firmware Revision: 0x0102 { case `uname` in Linux ) ILOM="/usr/bin/ipmitool sunoem cli" ;; SunOS ) ILOM="/opt/ipmitool/bin/ipmitool sunoem cli" ;; esac ; ImageInfo="/opt/oracle.cellos/imageinfo" ; uname -srm ; head -1 /etc/*release ; uptime | cut -d, -f1 ; $ILOM "show /SP system_description system_identifier" | grep = ; $ImageInfo -activated -node -status -ver | grep -v ^$ ; } | tee /tmp/ExaInfo.log $GRID_HOME/OPatch/opatch lsinv -all -oh $GRID_HOME | tee /tmp/OPatchInv.log $ORACLE_HOME/OPatch/opatch lsinv -all | tee -a /tmp/OPatchInv.log cat /tmp/ExaInfo.log Linux 2.6.18-128.1.16.0.1.el5 x86_64 ==> /etc/enterprise-release <== Enterprise Linux Enterprise Linux Server release 5.3 (Carthage) ==> /etc/redhat-release <== Enterprise Linux Enterprise Linux Server release 5.3 (Carthage) 20:37:56 up 458 days system_description = SUN FIRE X4170 SERVER, ILOM v3.0.6.10.b, r52264 system_identifier = Sun Oracle Database Machine Active image version: 11.2.1.2.3 Active image activated: XXXX-XX-XX 12:27:12 +0800 Active image status: success Active node type: COMPUTE Inactive image version: undefined FileName: OPatchInv.log ---------------- ... Oracle Home       : /u01/app/11.2.0/grid Central Inventory : /u01/app/oraInventory   from           : /etc/oraInst.loc OPatch version    : 11.2.0.1.2 OUI version       : 11.2.0.1.0 OUI location      : /u01/app/11.2.0/grid/oui ... -------------------------------------------------------------------------------- List of Oracle Homes:   Name                                       Location   Ora11g_gridinfrahome1         /u01/app/11.2.0/grid   OraDb11g_home1                  /u01/app/oracle/product/11.2.0/dbhome_1 -------------------------------------------------------------------------------- Installed Top-level Products (1): Oracle Grid Infrastructure                                           11.2.0.1.0 ... Interim patches (2) : Patch  9524394      : applied on Thu Jun 03 20:46:05 CST 2010 ... {TRACKING BUG FOR 11.2.0.1 DB MACHINE BUNDLE PATCH 3} Patch  9455587      : applied on Fri Apr 02 18:27:47 CST 2010 ... {MERGE REQUEST ON TOP OF 11.2.0.1.0 FOR BUGS 8483425 8667622 8702731 8730804} Rac system comprising of multiple nodes  Local node = dbserv01  Remote node = dbserv02  Remote node = dbserv03  Remote node = dbserv04 -------------------------------------------------------------------------------- OPatch succeeded. ... Oracle Home       : /u01/app/oracle/product/11.2.0/dbhome_1 ... Oracle Database 11g                                                  11.2.0.1.0 ... Interim patches (5) : Patch  8888434      : applied on Sat Jan 08 00:27:33 CST 2011 ... {AIX-ASM-CF: LMHB TERMINATE INSTANCE WHEN OFFLINE ONE FAILGROUP IN ASM DG} Patch  8730312      : applied on Thu Jun 03 21:30:03 CST 2010 ... {FWD MERGE FOR BASE BUG 8715387 FOR 12G} Patch  9502717      : applied on Thu Jun 03 21:25:54 CST 2010 ... {LMS HIT ORA-600 [KJBLDRMNEXTPKEY:SEEN] AND CRASHED THE INSTANCE} { + same 2 as GI above} ?? cell server Cache Policy cell08# MegaCli64 -LDInfo -Lall -aALL | grep 'Current Cache Policy' Current Cache Policy: WriteThrough, ReadAheadNone, Direct, No Write Cache if Bad BBU cell09# MegaCli64 -LDInfo -Lall -aALL | grep 'Current Cache Policy' Current Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU Default Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU Current Cache Policy: WriteThrough, ReadAheadNone, Direct, No Write Cache if Bad BBU Cache policy is in WB Would recommend proactive  battery repalcement. Example : a. /opt/MegaRAID/MegaCli/MegaCli64 -LDGetProp  -Cache -LALL -aALL ####( Will list the cache policy) b. /opt/MegaRAID/MegaCli/MegaCli64 -LDSetProp  -WB  -LALL -aALL ####( Will try to change teh policy from xx to WB)     So policy Change to WB will not come into effect immediately     Set Write Policy to WriteBack on Adapter 0, VD 0 (target id: 0) success     Battery capacity is below the threshold value ??cell BBU??????: cell08# /opt/MegaRAID/MegaCli/MegaCli64 -AdpBbuCmd -GetBbuStatus -a0 BBU status for Adapter: 0 BatteryType: iBBU Voltage: 4061 mV Current: 0 mA Temperature: 36 C BBU Firmware Status: Charging Status : None Voltage : OK Temperature : OK Learn Cycle Requested : No Learn Cycle Active : No Learn Cycle Status : OK Learn Cycle Timeout : No I2c Errors Detected : No Battery Pack Missing : No Battery Replacement required : No Remaining Capacity Low : Yes Periodic Learn Required : No Battery state: GasGuageStatus: Fully Discharged : No Fully Charged : Yes Discharging : Yes Initialized : Yes Remaining Time Alarm : No Remaining Capacity Alarm: No Discharge Terminated : No Over Temperature : No Charging Terminated : No Over Charged : No Relative State of Charge: 99 % Charger System State: 49168 Charger System Ctrl: 0 Charging current: 0 mA Absolute state of charge: 21 % Max Error: 2 % Exit Code: 0x00 ????BBU ??: dcli -g ~/cell_group -l root -t '{ uname -srm ; head -1 /etc/*release ; uptime | cut -d, -f1 ; imagehistory ; ipmitool sunoem cli "show /SP system_description system_identifier" | grep = ; ipmitool sunoem cli "show /SP/policy FLASH_ACCELERATOR_CARD_INSTALLED /opt/MegaRAID/MegaCli/MegaCli64 -AdpBbuCmd -GetBbuStatus -a0 | egrep -i 'BBU|Battery|Charge:|Fully|Low|Learn' ; }' | tee /tmp/ExaInfo.log Target cells: ['cellserv01', 'cellserv02', 'cellserv03', 'cellserv04', 'cellserv05', 'cellserv06', 'cellserv07'] cellserv01: Linux 2.6.18-128.1.16.0.1.el5 x86_64 cellserv01: ==> /etc/enterprise-release <== cellserv01: Enterprise Linux Enterprise Linux Server release 5.3 (Carthage) cellserv01: cellserv01: ==> /etc/redhat-release <== cellserv01: Enterprise Linux Enterprise Linux Server release 5.3 (Carthage) cellserv01: 01:17:39 up 635 days cellserv01: Version : 11.2.1.2.1 cellserv01: Image activation date : 2011-03-25 11:59:34 -0800 cellserv01: Imaging mode : fresh cellserv01: Imaging status : success cellserv01: cellserv01: Version : 11.2.1.2.3 cellserv01: Image activation date : 2011-04-13 12:15:46 +0800 cellserv01: Imaging mode : patch cellserv01: Imaging status : success cellserv01: cellserv01: Version : 11.2.1.2.6 cellserv01: Image activation date : 2011-05-27 23:08:22 +0800 cellserv01: Imaging mode : patch cellserv01: Imaging status : success cellserv01: cellserv01: system_description = SUN FIRE X4275 SERVER, ILOM v3.0.6.10.b, r52264 cellserv01: system_identifier = Sun Oracle Database Machine cellserv01: Connected. Use ^D to exit. cellserv01: -> show /SP/policy FLASH_ACCELERATOR_CARD_INSTALLED cellserv01: show: No matching properties found. cellserv01: cellserv01: -> Session closed cellserv01: Disconnected cellserv01: BBU status for Adapter: 0 cellserv01: BatteryType: iBBU cellserv01: BBU Firmware Status: cellserv01: Learn Cycle Requested : No cellserv01: Learn Cycle Active : No cellserv01: Learn Cycle Status : OK cellserv01: Learn Cycle Timeout : No cellserv01: Battery Pack Missing : No cellserv01: Battery Replacement required : No cellserv01: Remaining Capacity Low : Yes cellserv01: Periodic Learn Required : No cellserv01: Battery state: cellserv01: Fully Discharged : No cellserv01: Fully Charged : Yes cellserv01: Relative State of Charge: 99 % cellserv01: Absolute state of charge: 21 % dcli -l root -g /root/all_group '/opt/MegaRAID/MegAaCli/MegaCli64 -AdpBbuCmd -a0' > BBU.out check ipmi: dcli -g ~/cell_group -l root -t '{ > ipmitool sunoem cli "show /SP/policy FLASH_ACCELERATOR_CARD_INSTALLED" | grep = ; MegaCli64 -LDInfo -Lall -aALL | grep 'Current Cache Policy' ; }' | tee /tmp/ExaCells.log

    Read the article

  • Disk operations freeze Debian

    - by Grzenio
    Hi, I have just installed Debian testing on my new desktop and I am not very happy with performance - when I perform a disk intensive operation, e.g. upgrade packages in the system, everything seems to freeze, e.g. changing tabs in Iceweasel takes 3 seconds. I run the Debian on my 3 year old Thinkpad X60 ultra-portable, and I don't have these issues. (every single parameter of the laptop is much worse than the desktop). I am using the default packaged kernel and scripts. I run hdparm -t /dev/sda1 And I got around 96GB/s, which is expected. What else can I try to make it work better? EDIT: grzes:/home/ga# hdparm -i /dev/sda /dev/sda: Model=WDC WD15EARS-00Z5B1, FwRev=80.00A80, SerialNo=WD-WMAVU1362357 Config={ HardSect NotMFM HdSw>15uSec SpinMotCtl Fixed DTR>5Mbs FmtGapReq } RawCHS=16383/16/63, TrkSize=0, SectSize=0, ECCbytes=50 BuffType=unknown, BuffSize=unknown, MaxMultSect=16, MultSect=16 CurCHS=16383/16/63, CurSects=16514064, LBA=yes, LBAsects=2930277168 IORDY=on/off, tPIO={min:120,w/IORDY:120}, tDMA={min:120,rec:120} PIO modes: pio0 pio3 pio4 DMA modes: mdma0 mdma1 mdma2 UDMA modes: udma0 udma1 udma2 udma3 udma4 udma5 *udma6 AdvancedPM=no WriteCache=enabled Drive conforms to: Unspecified: ATA/ATAPI-1,2,3,4,5,6,7 * signifies the current active mode EDIT2: Even my wife said "on this new computer I can't do anything when I copy the photos from the camera and its much worse than on the old one". So it must be serious. EDIT3: Updated to 2.6.32, but still no improvement EDIT4: I forgot to mention that the new disk is ext4, the old was ext3. EDIT5: Still not solved. I have a P43 ASUS P5QL-E board. Lines from dmesg that seem relevant: [ 0.370850] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 253) [ 0.370852] io scheduler noop registered [ 0.370853] io scheduler anticipatory registered [ 0.370854] io scheduler deadline registered [ 0.370876] io scheduler cfq registered (default) ... [ 0.908233] ata_piix 0000:00:1f.2: version 2.13 [ 0.908243] ata_piix 0000:00:1f.2: PCI INT B -> GSI 19 (level, low) -> IRQ 19 [ 0.908246] ata_piix 0000:00:1f.2: MAP [ P0 P2 P1 P3 ] [ 0.908275] ata_piix 0000:00:1f.2: setting latency timer to 64 [ 0.908316] scsi0 : ata_piix [ 0.908374] scsi1 : ata_piix [ 0.909180] ata1: SATA max UDMA/133 cmd 0xa000 ctl 0x9c00 bmdma 0x9480 irq 19 [ 0.909183] ata2: SATA max UDMA/133 cmd 0x9880 ctl 0x9800 bmdma 0x9488 irq 19 [ 0.909199] ata_piix 0000:00:1f.5: PCI INT B -> GSI 19 (level, low) -> IRQ 19 [ 0.909202] ata_piix 0000:00:1f.5: MAP [ P0 -- P1 -- ] [ 0.909228] ata_piix 0000:00:1f.5: setting latency timer to 64 [ 0.909279] scsi2 : ata_piix [ 0.909326] scsi3 : ata_piix [ 0.910021] ata3: SATA max UDMA/133 cmd 0xb000 ctl 0xac00 bmdma 0xa480 irq 19 [ 0.910024] ata4: SATA max UDMA/133 cmd 0xa880 ctl 0xa800 bmdma 0xa488 irq 19 [ 0.915575] FDC 0 is a post-1991 82077 ... [ 1.716062] ata1.00: SATA link up 3.0 Gbps (SStatus 123 SControl 300) [ 1.716074] ata1.01: SATA link down (SStatus 0 SControl 300) [ 1.724318] ata1.00: ATA-8: WDC WD15EARS-00Z5B1, 80.00A80, max UDMA/133 [ 1.724322] ata1.00: 2930277168 sectors, multi 16: LBA48 NCQ (depth 0/32) [ 1.740339] ata1.00: configured for UDMA/133 [ 1.740428] scsi 0:0:0:0: Direct-Access ATA WDC WD15EARS-00Z 80.0 PQ: 0 ANSI: 5 [ 1.746788] scsi 6:0:0:0: CD-ROM ASUS DRW-1608P 1.17 PQ: 0 ANSI: 5 ... [ 1.925981] sd 0:0:0:0: [sda] 2930277168 512-byte logical blocks: (1.50 TB/1.36 TiB) [ 1.926005] sd 0:0:0:0: [sda] Write Protect is off [ 1.926007] sd 0:0:0:0: [sda] Mode Sense: 00 3a 00 00 [ 1.926020] sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA [ 1.926092] sda:sr0: scsi3-mmc drive: 40x/40x writer cd/rw xa/form2 cdda tray [ 1.931106] Uniform CD-ROM driver Revision: 3.20 [ 1.931191] sr 6:0:0:0: Attached scsi CD-ROM sr0 ... [ 1.941936] sda1 sda2 sda3 sda4 < sda5 sda6 > [ 1.967691] sd 0:0:0:0: [sda] Attached SCSI disk [ 1.970938] sd 0:0:0:0: Attached scsi generic sg0 type 0 [ 1.970959] sr 6:0:0:0: Attached scsi generic sg1 type 5 ... [ 2.500086] EXT4-fs (sda3): mounted filesystem with ordered data mode ... [ 7.150468] EXT4-fs (sda6): mounted filesystem with ordered data mode

    Read the article

  • Oracle Support Master Note for Troubleshooting Advanced Queuing and Oracle Streams Propagation Issues (Doc ID 233099.1)

    - by faye.todd(at)oracle.com
    Master Note for Troubleshooting Advanced Queuing and Oracle Streams Propagation Issues (Doc ID 233099.1) Copyright (c) 2010, Oracle Corporation. All Rights Reserved. In this Document  Purpose  Last Review Date  Instructions for the Reader  Troubleshooting Details     1. Scope and Application      2. Definitions and Classifications     3. How to Use This Guide     4. Basic AQ Propagation Troubleshooting     5. Additional Troubleshooting Steps for AQ Propagation of User-Enqueued and Dequeued Messages     6. Additional Troubleshooting Steps for Propagation in an Oracle Streams Environment     7. Performance Issues  References Applies to: Oracle Server - Enterprise Edition - Version: 8.1.7.0 to 11.2.0.2 - Release: 8.1.7 to 11.2Information in this document applies to any platform. Purpose This document presents a step-by-step methodology for troubleshooting and resolving problems with Advanced Queuing Propagation in both Streams and basic Advanced Queuing environments. It also serves as a master reference for other more specific notes on Oracle Streams Propagation and Advanced Queuing Propagation issues. Last Review Date December 20, 2010 Instructions for the Reader A Troubleshooting Guide is provided to assist in debugging a specific issue. When possible, diagnostic tools are included in the document to assist in troubleshooting. Troubleshooting Details 1. Scope and Application This note is intended for Database Administrators of Oracle databases where issues are being encountered with propagating messages between advanced queues, whether the queues are used for user-created messaging systems or for Oracle Streams. It contains troubleshooting steps and links to notes for further problem resolution.It can also be used a template to document a problem when it is necessary to engage Oracle Support Services. Knowing what is NOT happening can frequently speed up the resolution process by focusing solely on the pertinent problem area. This guide is divided into five parts: Section 2: Definitions and Classifications (discusses the different types and features of propagations possible - helpful for understanding the rest of the guide) Section 3: How to Use this Guide (to be used as a start part for determining the scope of the problem and what sections to consult) Section 4. Basic AQ propagation troubleshooting (applies to both AQ propagation of user enqueued and dequeued messages as well as Oracle Streams propagations) Section 5. Additional troubleshooting steps for AQ propagation of user enqueued and dequeued messages Section 6. Additional troubleshooting steps for Oracle Streams propagation Section 7. Performance issues 2. Definitions and Classifications Given the potential scope of issues that can be encountered with AQ propagation, the first recommended step is to do some basic diagnosis to determine the type of problem that is being encountered. 2.1. What Type of Propagation is Being Used? 2.1.1. Buffered Messaging For an advanced queue, messages can be maintained on disk (persistent messaging) or in memory (buffered messaging). To determine if a queue is buffered or not, reference the GV_$BUFFERED_QUEUES view. If the queue does not appear in this view, it is persistent. 2.1.2. Propagation mode - queue-to-dblink vs queue-to-queue As of 10.2, an AQ propagation can also be defined as queue-to-dblink, or queue-to-queue: queue-to-dblink: The propagation delivers messages or events from the source queue to all subscribing queues at the destination database identified by the dblink. A single propagation schedule is used to propagate messages to all subscribing queues. Hence any changes made to this schedule will affect message delivery to all the subscribing queues. This mode does not support multiple propagations from the same source queue to the same target database. queue-to-queue: Added in 10.2, this propagation mode delivers messages or events from the source queue to a specific destination queue identified on the database link. This allows the user to have fine-grained control on the propagation schedule for message delivery. This new propagation mode also supports transparent failover when propagating to a destination Oracle RAC system. With queue-to-queue propagation, you are no longer required to re-point a database link if the owner instance of the queue fails on Oracle RAC. This mode supports multiple propagations to the same target database if the target queues are different. The default is queue-to-dblink. To verify if queue-to-queue propagation is being used, in non-Streams environments query DBA_QUEUE_SCHEDULES.DESTINATION - if a remote queue is listed along with the remote database link, then queue-to-queue propagation is being used. For Streams environments, the DBA_PROPAGATION.QUEUE_TO_QUEUE column can be checked.See the following note for a method to switch between the two modes:Document 827473.1 How to alter propagation from queue-to-queue to queue-to-dblink 2.1.3. Combined Capture and Apply (CCA) for Streams In 11g Oracle Streams environments, an optimization called Combined Capture and Apply (CCA) is implemented by default when possible. Although a propagation is configured in this case, Streams does not use it; instead it passes information directly from capture to an apply receiver. To see if CCA is in use: COLUMN CAPTURE_NAME HEADING 'Capture Name' FORMAT A30COLUMN OPTIMIZATION HEADING 'CCA Mode?' FORMAT A10SELECT CAPTURE_NAME, DECODE(OPTIMIZATION,0, 'No','Yes') OPTIMIZATIONFROM V$STREAMS_CAPTURE; Also, see the following note:Document 463820.1 Streams Combined Capture and Apply in 11g 2.2. Queue Table Compatibility There are three types of queue table compatibility. In more recent databases, queue tables may be present in all three modes of compatibility: 8.0 - earliest version, deprecated in 10.2 onwards 8.1 - support added for RAC, asynchronous notification, secure queues, queue level access control, rule-based subscribers, separate storage of history information 10.0 - if the database is in 10.1-compatible mode, then the default value for queue table compatibility is 10.0 2.3. Single vs Multiple Consumer Queue Tables If more than one recipient can dequeue a message from a queue, then its queue table is multiple consumer. You can propagate messages from a multiple-consumer queue to a single-consumer queue. Propagation from a single-consumer queue to a multiple-consumer queue is not possible. 3. How to Use This Guide 3.1. Are Messages Being Propagated at All, or is the Propagation Just Slow? Run the following query on the source database for the propagation (assuming that it is running): select TOTAL_NUMBER from DBA_QUEUE_SCHEDULES where QNAME='<source_queue_name>'; If TOTAL_NUMBER is increasing, then propagation is most likely functioning, although it may be slow. For performance issues, see Section 7. 3.2. Propagation Between Persistent User-Created Queues See Sections 4 and 5 (and optionally Section 6 if performance is an issue). 3.3. Propagation Between Buffered User-Created Queues See Sections 4, 5, and 6 (and optionally Section 7 if performance is an issue). 3.4. Propagation between Oracle Streams Queues (without Combined Capture and Apply (CCA) Optimization) See Sections 4 and 6 (and optionally Section 7 if performance is an issue). 3.5. Propagation between Oracle Streams Queues (with Combined Capture and Apply (CCA) Optimization) Although an AQ propagation is not used directly in this case, some characteristics of the message transfer are inferred from the propagation parameters used. Some parts of Sections 4 and 6 still apply. 3.6. Messaging Gateway Propagations This note does not apply to Messaging Gateway propagations. 4. Basic AQ Propagation Troubleshooting 4.1. Double-check Your Code Make sure that you are consistent in your usage of the database link(s) names, queue names, etc. It may be useful to plot a diagram of which queues are connected via which database links to make sure that the logical structure is correct. 4.2. Verify that Job Queue Processes are Running 4.2.1. Versions 10.2 and Lower - DBA_JOBS Package For versions 10.2 and lower, a scheduled propagation is managed by DBMS_JOB package. The propagation is performed by job queue process background processes. Therefore we need to verify that there are sufficient processes available for the propagation process. We should have at least 4 job queue processes running and preferably more depending on the number of other jobs running in the database. It should be noted that for AQ specific work, AQ will only ever use half of the job queue processes available.An issue caused by an inadequate job queue processes parameter setting is described in the following note:Document 298015.1 Kwqjswproc:Excep After Loop: Assigning To Self 4.2.1.1. Job Queue Processes in Initalization Parameter File The parameter JOB_QUEUE_PROCESSES in the init.ora/spfile should be > 0. The value can be changed dynamically via connect / as sysdbaalter system set JOB_QUEUE_PROCESSES=10; 4.2.1.2. Job Queue Processes in Memory The following command will show how many job queue processes are currentlyin use by this instance (this may be different than what is in the init.ora/spfile): connect / as sysdbashow parameter job; 4.2.1.3. OS PIDs Corresponding to Job Queue Processes Identify the operating system process ids (spids) of job queue processes involved in propagation via select p.SPID, p.PROGRAM from V$PROCESS p, DBA_JOBS_RUNNING jr, V$SESSION s, DBA_JOBS j where s.SID=jr.SID and s.PADDR=p.ADDR and jr.JOB=j.JOBand j.WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%'; and these SPIDs can be used to check at the operating system level that they exist.In 8i a job queue process will have a name similar to: ora_snp1_<instance_name>.In 9i onwards you will see a coordinator process: ora_cjq0_ and multiple slave processes: ora_jnnn_<instance_name>, where nnn is an integer between 1 and 999. 4.2.2. Version 11.1 and Above - Oracle Scheduler In version 11.1 and above, Oracle Scheduler is used to perform AQ and Streams propagations. Oracle Scheduler automatically tunes the number of slave processes for these jobs based on the load on the computer system, and the JOB_QUEUE_PROCESSES initialization parameter is only used to specify the maximum number of slave processes. Therefore, the JOB_QUEUE_PROCESSES initialization parameter does not need to be set (it defaults to a very high number), unless you want to limit the number of slaves that can be created. If JOB_QUEUE_PROCESSES = 0, no propagation jobs will run.See the following note for a discussion of Oracle Streams 11g and Oracle Scheduler:Document 1083608.1 11g Streams and Oracle Scheduler 4.2.2.1. Job Queue Processes in Initalization Parameter File The parameter JOB_QUEUE_PROCESSES in the init.ora/spfile should be > 0, and preferably be left at its default value. The value can be changed dynamically via connect / as sysdbaalter system set JOB_QUEUE_PROCESSES=10; To set the JOB_QUEUE_PROCESSES parameter to its default value, run: connect / as sysdbaalter system reset JOB_QUEUE_PROCESSES; and then bounce the instance. 4.2.2.2. Job Queue Processes in Memory The following command will show how many job queue processes are currently in use by this instance (this may be different than what is in the init.ora/spfile): connect / as sysdbashow parameter job; 4.2.2.3. OS PIDs Corresponding to Job Queue Processes Identify the operating system process ids (SPIDs) of job queue processes involved in propagation via col PROGRAM for a30select p.SPID, p.PROGRAM, j.JOB_namefrom v$PROCESS p, DBA_SCHEDULER_RUNNING_JOBS jr, V$SESSION s, DBA_SCHEDULER_JOBS j where s.SID=jr.SESSION_ID and s.PADDR=p.ADDRand jr.JOB_name=j.JOB_NAME and j.JOB_NAME like '%AQ_JOB$_%'; and these SPIDs can be used to check at the operating system level that they exist.You will see a coordinator process: ora_cjq0_ and multiple slave processes: ora_jnnn_<instance_name>, where nnn is an integer between 1 and 999. 4.3. Check the Alert Log and Any Associated Trace Files The first place to check for propagation failures is the alert logs at all sites (local and if relevant all remote sites). When a job queue process attempts to execute a schedule and fails it will always write an error stack to the alert log. This error stack will also be written in a job queue process trace file, which will be written to the BACKGROUND_DUMP_DEST location for 10.2 and below, and in the DIAGNOSTIC_DEST location for 11g. The fact that errors are written to the alert log demonstrates that the schedule is executing. This means that the problem could be with the set up of the schedule. In this example the ORA-02068 demonstrates that the failure was at the remote site. Further investigation revealed that the remote database was not open, hence the ORA-03114 error. Starting the database resolved the problem. Thu Feb 14 10:40:05 2002 Propagation Schedule for (AQADM.MULTIPLEQ, SHANE816.WORLD) encountered following error:ORA-04052: error occurred when looking up Remote object [email protected]: error occurred at recursive SQL level 4ORA-02068: following severe error from SHANE816ORA-03114: not connected to ORACLEORA-06512: at "SYS.DBMS_AQADM_SYS", line 4770ORA-06512: at "SYS.DBMS_AQADM", line 548ORA-06512: at line 1 Other potential errors that may be written to the alert log can be found in the following notes:Document 827184.1 AQ Propagation with CLOB data types Fails with ORA-22990 (11.1)Document 846297.1 AQ Propagation Fails : ORA-00600[kope2upic2954] or Ora-00600[Kghsstream_copyn] (10.2, 11.1)Document 731292.1 ORA-25215 Reported on Local Propagation When Using Transformation with ANYDATA queue tables (10.2, 11.1, 11.2)Document 365093.1 ORA-07445 [kwqppay2aqe()+7360] Reported on Propagation of a Transformed Message (10.1, 10.2)Document 219416.1 Advanced Queuing Propagation Fails with ORA-22922 (9.0)Document 1203544.1 AQ Propagation Aborted with ORA-600 [ociksin: invalid status] on SYS.DBMS_AQADM_SYS.AQ$_PROPAGATION_PROCEDURE After Upgrade (11.1, 11.2)Document 1087324.1 ORA-01405 ORA-01422 reported by Advanced Queuing Propagation schedules after RAC reconfiguration (10.2)Document 1079577.1 Advanced Queuing Propagation Fails With "ORA-22370 incorrect usage of method" (9.2, 10.2, 11.1, 11.2)Document 332792.1 ORA-04061 error relating to SYS.DBMS_PRVTAQIP reported when setting up Statspack (8.1, 9.0, 9.2, 10.1)Document 353325.1 ORA-24056: Internal inconsistency for QUEUE <queue_name> and destination <dblink> (8.1, 9.0, 9.2, 10.1, 10.2, 11.1, 11.2)Document 787367.1 ORA-22275 reported on Propagating Messages with LOB component when propagating between 10.1 and 10.2 (10.1, 10.2)Document 566622.1 ORA-22275 when propagating >4K AQ$_JMS_TEXT_MESSAGEs from 9.2.0.8 to 10.2.0.1 (9.2, 10.1)Document 731539.1 ORA-29268: HTTP client error 401 Unauthorized Error when the AQ Servlet attempts to Propagate a message via HTTP (9.0, 9.2, 10.1, 10.2, 11.1)Document 253131.1 Concurrent Writes May Corrupt LOB Segment When Using Auto Segment Space Management (ORA-1555) (9.2)Document 118884.1 How to unschedule a propagation schedule stuck in pending stateDocument 222992.1 DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE Returns ORA-24082Document 282987.1 Propagated Messages marked UNDELIVERABLE after Drop and Recreate Of Remote QueueDocument 1204080.1 AQ Propagation Failing With ORA-25329 After Upgraded From 8i or 9i to 10g or 11g.Document 1233675.1 AQ Propagation stops after upgrade to 11.2.0.1 ORA-30757 4.3.1. Errors Related to Incorrect Network Configuration The most common propagation errors result from an incorrect network configuration. The list below contains common errors caused by tnsnames.ora file or database links being configured incorrectly: - ORA-12154: TNS:could not resolve service name- ORA-12505: TNS:listener does not currently know of SID given in connect descriptor- ORA-12514: TNS:listener could not resolve SERVICE_NAME - ORA-12541: TNS-12541 TNS:no listener 4.4. Check the Database Links Exist and are Functioning Correctly For schedules to remote databases confirm the database link exists via. SQL> col DBLINK for a45SQL> select QNAME, NVL(REGEXP_SUBSTR(DESTINATION, '[^@]+', 1, 2), DESTINATION) dblink2 from DBA_QUEUE_SCHEDULES3 where MESSAGE_DELIVERY_MODE = 'PERSISTENT';QNAME DBLINK------------------------------ ---------------------------------------------MY_QUEUE ORCL102B.WORLD Connect as the owner of the link and select across it to verify it works and connects to the database we expect. i.e. select * from ALL_QUEUES@ ORCL102B.WORLD; You need to ensure that the userid that scheduled the propagation (using DBMS_AQADM.SCHEDULE_PROPAGATION or DBMS_PROPAGATION_ADM.CREATE_PROPAGATION if using Streams) has access to the database link for the destination. 4.5. Has Propagation Been Correctly Scheduled? Check that the propagation schedule has been created and that a job queue process has been assigned. Look for the entry in DBA_QUEUE_SCHEDULES and SYS.AQ$_SCHEDULES for your schedule. For 10g and below, check that it has a JOBNO entry in SYS.AQ$_SCHEDULES, and that there is an entry in DBA_JOBS with that JOBNO. For 11g and above, check that the schedule has a JOB_NAME entry in SYS.AQ$_SCHEDULES, and that there is an entry in DBA_SCHEDULER_JOBS with that JOB_NAME. Check the destination is as intended and spelled correctly. SQL> select SCHEMA, QNAME, DESTINATION, SCHEDULE_DISABLED, PROCESS_NAME from DBA_QUEUE_SCHEDULES;SCHEMA QNAME DESTINATION S PROCESS------- ---------- ------------------ - -----------AQADM MULTIPLEQ AQ$_LOCAL N J000 AQ$_LOCAL in the destination column shows that the queue to which we are propagating to is in the same database as the source queue. If the propagation was to a remote (different) database, a database link will be in the DESTINATION column. The entry in the SCHEDULE_DISABLED column, N, means that the schedule is NOT disabled. If Y (yes) appears in this column, propagation is disabled and the schedule will not be executed. If not using Oracle Streams, propagation should resume once you have enabled the schedule by invoking DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE (for 10.2 Oracle Streams and above, the DBMS_PROPAGATION_ADM.START_PROPAGATION procedure should be used). The PROCESS_NAME is the name of the job queue process currently allocated to execute the schedule. This process is allocated dynamically at execution time. If the PROCESS_NAME column is null (empty) the schedule is not currently executing. You may need to execute this statement a number of times to verify if a process is being allocated. If a process is at some time allocated to the schedule, it is attempting to execute. SQL> select SCHEMA, QNAME, LAST_RUN_DATE, NEXT_RUN_DATE from DBA_QUEUE_SCHEDULES;SCHEMA QNAME LAST_RUN_DATE NEXT_RUN_DATE------ ----- ----------------------- ----------------------- AQADM MULTIPLEQ 13-FEB-2002 13:18:57 13-FEB-2002 13:20:30 In 11g, these dates are expressed in TIMESTAMP WITH TIME ZONE datatypes. If the NEXT_RUN_DATE and NEXT_RUN_TIME columns are null when this statement is executed, the scheduled propagation is currently in progress. If they never change it would suggest that the schedule itself is never executing. If the next scheduled execution is too far away, change the NEXT_TIME parameter of the schedule so that schedules are executed more frequently (assuming that the window is not set to be infinite). Parameters of a schedule can be changed using the DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE call. In 10g and below, scheduling propagation posts a job in the DBA_JOBS view. The columns are more or less the same as DBA_QUEUE_SCHEDULES so you just need to recognize the job and verify that it exists. SQL> select JOB, WHAT from DBA_JOBS where WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%';JOB WHAT---- ----------------- 720 next_date := sys.dbms_aqadm.aq$_propaq(job); For 11g, scheduling propagation posts a job in DBA_SCHEDULER_JOBS instead: SQL> select JOB_NAME from DBA_SCHEDULER_JOBS where JOB_NAME like 'AQ_JOB$_%';JOB_NAME------------------------------AQ_JOB$_41 If no job exists, check DBA_QUEUE_SCHEDULES to make sure that the schedule has not been disabled. For 10g and below, the job number is dynamic for AQ propagation schedules. The procedure that is executed to expedite a propagation schedule runs, removes itself from DBA_JOBS, and then reposts a new job for the next scheduled propagation. The job number should therefore always increment unless the schedule has been set up to run indefinitely. 4.6. Is the Schedule Executing but Failing to Complete? Run the following query: SQL> select FAILURES, LAST_ERROR_MSG from DBA_QUEUE_SCHEDULES;FAILURES LAST_ERROR_MSG------------ -----------------------1 ORA-25207: enqueue failed, queue AQADM.INQ is disabled from enqueueingORA-02063: preceding line from SHANE816 The failures column shows how many times we have attempted to execute the schedule and failed. Oracle will attempt to execute the schedule 16 times after which it will be removed from the DBA_JOBS or DBA_SCHEDULER_JOBS view and the schedule will become disabled. The column DBA_QUEUE_SCHEDULES.SCHEDULE_DISABLED will show 'Y'. For 11g and above, the DBA_SCHEDULER_JOBS.STATE column will show 'BROKEN' for the job corresponding to DBA_QUEUE_SCHEDULES.JOB_NAME. Prior to 10g the back off algorithm for failures was exponential, whereas from 10g onwards it is linear. The propagation will become disabled on the 17th attempt. Only the last execution failure will be reflected in the LAST_ERROR_MSG column. That is, if the schedule fails 5 times for 5 different reasons, only the last set of errors will be recorded in DBA_QUEUE_SCHEDULES. Any errors need to be resolved to allow propagation to continue. If propagation has also become disabled due to 17 failures, first resolve the reason for the error and then re-enable the schedule using the DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE procedure, or DBMS_PROPAGATION_ADM.START_PROPAGATION if using 10.2 or above Oracle Streams. As soon as the schedule executes successfully the error message entries will be deleted. Oracle does not keep a history of past failures. However, when using Oracle Streams, the errors will be retained in the DBA_PROPAGATION view even after the schedule resumes successfully. See the following note for instructions on how to clear out the errors from the DBA_PROPAGATION view:Document 808136.1 How to clear the old errors from DBA_PROPAGATION view?If a schedule is active and no errors are being reported then the source queue may not have any messages to be propagated. 4.7. Do the Propagation Notification Queue Table and Queue Exist? Check to see that the propagation notification queue table and queue exist and are enabled for enqueue and dequeue. Propagation makes use of the propagation notification queue for handling propagation run-time events, and the messages in this queue are stored in a SYS-owned queue table. This queue should never be stopped or dropped and the corresponding queue table never be dropped. 10g and belowThe propagation notification queue table is of the format SYS.AQ$_PROP_TABLE_n, where 'n' is the RAC instance number, i.e. '1' for a non-RAC environment. This queue and queue table are created implicitly when propagation is first scheduled. If propagation has been scheduled and these objects do not exist, try unscheduling and rescheduling propagation. If they still do not exist contact Oracle Support. SQL> select QUEUE_TABLE from DBA_QUEUE_TABLES2 where QUEUE_TABLE like '%PROP_TABLE%' and OWNER = 'SYS';QUEUE_TABLE------------------------------AQ$_PROP_TABLE_1SQL> select NAME, ENQUEUE_ENABLED, DEQUEUE_ENABLED2 from DBA_QUEUES where owner='SYS'3 and QUEUE_TABLE like '%PROP_TABLE%';NAME ENQUEUE DEQUEUE------------------------------ ------- -------AQ$_PROP_NOTIFY_1 YES YESAQ$_AQ$_PROP_TABLE_1_E NO NO If the AQ$_PROP_NOTIFY_1 queue is not enabled for enqueue or dequeue, it should be so enabled using DBMS_AQADM.START_QUEUE. However, the exception queue AQ$_AQ$_PROP_TABLE_1_E should not be enabled for enqueue or dequeue.11g and aboveThe propagation notification queue table is of the format SYS.AQ_PROP_TABLE, and is created when the database is created. If they do not exist, contact Oracle Support. SQL> select QUEUE_TABLE from DBA_QUEUE_TABLES2 where QUEUE_TABLE like '%PROP_TABLE%' and OWNER = 'SYS';QUEUE_TABLE------------------------------AQ_PROP_TABLESQL> select NAME, ENQUEUE_ENABLED, DEQUEUE_ENABLED2 from DBA_QUEUES where owner='SYS'3 and QUEUE_TABLE like '%PROP_TABLE%';NAME ENQUEUE DEQUEUE------------------------------ ------- -------AQ_PROP_NOTIFY YES YESAQ$_AQ_PROP_TABLE_E NO NO If the AQ_PROP_NOTIFY queue is not enabled for enqueue or dequeue, it should be so enabled using DBMS_AQADM.START_QUEUE. However, the exception queue AQ$_AQ$_PROP_TABLE_E should not be enabled for enqueue or dequeue. 4.8. Does the Remote Queue Exist and is it Enabled for Enqueueing? Check that the remote queue the propagation is transferring messages to exists and is enabled for enqueue: SQL> select DESTINATION from USER_QUEUE_SCHEDULES where QNAME = 'OUTQ';DESTINATION-----------------------------------------------------------------------------"AQADM"."INQ"@M2V102.ESSQL> select OWNER, NAME, ENQUEUE_ENABLED, DEQUEUE_ENABLED from [email protected];OWNER NAME ENQUEUE DEQUEUE-------- ------ ----------- -----------AQADM INQ YES YES 4.9. Do the Target and Source Database Charactersets Differ? If a message fails to propagate, check the database charactersets of the source and target databases. Investigate whether the same message can propagate between the databases with the same characterset or it is only a particular combination of charactersets which causes a problem. 4.10. Check the Queue Table Type Agreement Propagation is not possible between queue tables which have types that differ in some respect. One way to determine if this is the case is to run the DBMS_AQADM.VERIFY_QUEUE_TYPES procedure for the two queues that the propagation operates on. If the types do not agree, DBMS_AQADM.VERIFY_QUEUE_TYPES will return '0'.For AQ propagation between databases which have different NLS_LENGTH_SEMANTICS settings, propagation will not work, unless the queues are Oracle Streams ANYDATA queues.See the following notes for issues caused by lack of type agreement:Document 1079577.1 Advanced Queuing Propagation Fails With "ORA-22370: incorrect usage of method"Document 282987.1 Propagated Messages marked UNDELIVERABLE after Drop and Recreate Of Remote QueueDocument 353754.1 Streams Messaging Propagation Fails between Single and Multi-byte Charactersets when using Chararacter Length Semantics in the ADT 4.11. Enable Propagation Tracing 4.11.1. System Level This is set it in the init.ora/spfile as follows: event="24040 trace name context forever, level 10" and restart the instanceThis event cannot be set dynamically with an alter system command until version 10.2: SQL> alter system set events '24040 trace name context forever, level 10'; To unset the event: SQL> alter system set events '24040 trace name context off'; Debugging information will be logged to job queue trace file(s) (jnnn) as propagation takes place. You can check the trace file for errors, and for statements indicating that messages have been sent. For the most part the trace information is understandable. This trace should also be uploaded to Oracle Support if a service request is created. 4.11.2. Attaching to a Specific Process We can also attach to an existing job queue processes that is running a propagation schedule and trace it individually using the oradebug utility, as follows:10.2 and below connect / as sysdbaselect p.SPID, p.PROGRAM from v$PROCESS p, DBA_JOBS_RUNNING jr, V$SESSION s, DBA_JOBS j where s.SID=jr.SID and s.PADDR=p.ADDR and jr.JOB=j.JOB and j.WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%';-- For the process id (SPID) attach to it via oradebug and generate the following traceoradebug setospid <SPID>oradebug unlimitoradebug Event 10046 trace name context forever, level 12oradebug Event 24040 trace name context forever, level 10-- Trace the process for 5 minutesoradebug Event 10046 trace name context offoradebug Event 24040 trace name context off-- The following command returns the pathname/filename to the file being written tooradebug tracefile_name 11g connect / as sysdbacol PROGRAM for a30select p.SPID, p.PROGRAM, j.JOB_NAMEfrom v$PROCESS p, DBA_SCHEDULER_RUNNING_JOBS jr, V$SESSION s, DBA_SCHEDULER_JOBS j where s.SID=jr.SESSION_ID and s.PADDR=p.ADDR and jr.JOB_NAME=j.JOB_NAME and j.JOB_NAME like '%AQ_JOB$_%';-- For the process id (SPID) attach to it via oradebug and generate the following traceoradebug setospid <SPID>oradebug unlimitoradebug Event 10046 trace name context forever, level 12oradebug Event 24040 trace name context forever, level 10-- Trace the process for 5 minutesoradebug Event 10046 trace name context offoradebug Event 24040 trace name context off-- The following command returns the pathname/filename to the file being written tooradebug tracefile_name 4.11.3. Further Tracing The previous tracing steps only trace the job queue process executing the propagation on the source. At times it is useful to trace the propagation receiver process (the session which is enqueueing the messages into the target queue) on the target database which is associated with the job queue process on the source database.These following queries provide ways of identifying the processes involved in propagation so that you can attach to them via oradebug to generate trace information.In order to identify the propagation receiver process you need to execute the query as a user with privileges to access the v$ views in both the local and remote databases so the database link must connect as a user with those privileges in the remote database. The <DBLINK> in the queries should be replaced by the appropriate database link.The queries have two forms due to the differences between operating systems. The value returned by 'Rem Process' is the operating system identifier of the propagation receiver on the remote database. Once identified, this process can be attached to and traced on the remote database using the commands given in Section 4.11.2.10.2 and below - Windows select pl.SPID "JobQ Process", pl.PROGRAM, sr.PROCESS "Rem Process" from v$PROCESS pl, DBA_JOBS_RUNNING jr, V$SESSION s, DBA_JOBS j, V$SESSION@<DBLINK> sr where s.SID=jr.SID and s.PADDR=pl.ADDR and jr.JOB=j.JOB and j.WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%' and pl.SPID=substr(sr.PROCESS, instr(sr.PROCESS,':')+1); 10.2 and below - Unix select pl.SPID "JobQ Process", pl.PROGRAM, sr.PROCESS "Rem Process" from V$PROCESS pl, DBA_JOBS_RUNNING jr, V$SESSION s, DBA_JOBS j, V$SESSION@<DBLINK> sr where s.SID=jr.SID and s.PADDR=pl.ADDR and jr.JOB=j.JOB and j.WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%' and pl.SPID=sr.PROCESS; 11g - Windows select pl.SPID "JobQ Process", pl.PROGRAM, sr.PROCESS "Rem Process" from V$PROCESS pl, DBA_SCHEDULER_RUNNING_JOBS jr, V$SESSION s, DBA_SCHEDULER_JOBS j, V$SESSION@<DBLINK> sr where s.SID=jr.SESSION_ID and s.PADDR=pl.ADDR and jr.JOB_NAME=j.JOB_NAME and j.JOB_NAME like '%AQ_JOB$_%%' and pl.SPID=substr(sr.PROCESS, instr(sr.PROCESS,':')+1); 11g - Unix select pl.SPID "JobQ Process", pl.PROGRAM, sr.PROCESS "Rem Process" from V$PROCESS pl, DBA_SCHEDULER_RUNNING_JOBS jr, V$SESSION s, DBA_SCHEDULER_JOBS j, V$SESSION@<DBLINK> sr where s.SID=jr.SESSION_ID and s.PADDR=pl.ADDR and jr.JOB_NAME=j.JOB_NAME and j.JOB_NAME like '%AQ_JOB$_%%' and pl.SPID=sr.PROCESS;   5. Additional Troubleshooting Steps for AQ Propagation of User-Enqueued and Dequeued Messages 5.1. Check the Privileges of All Users Involved Ensure that the owner of the database link has the necessary privileges on the aq packages. SQL> select TABLE_NAME, PRIVILEGE from USER_TAB_PRIVS;TABLE_NAME PRIVILEGE------------------------------ ----------------------------------------DBMS_LOCK EXECUTEDBMS_AQ EXECUTEDBMS_AQADM EXECUTEDBMS_AQ_BQVIEW EXECUTEQT52814_BUFFER SELECT Note that when queue table is created, a view called QT<nnn>_BUFFER is created in the SYS schema, and the queue table owner is given SELECT privileges on it. The <nnn> corresponds to the object_id of the associated queue table. SQL> select * from USER_ROLE_PRIVS;USERNAME GRANTED_ROLE ADM DEF OS_------------------------------ ------------------------------ ---- ---- ---AQ_USER1 AQ_ADMINISTRATOR_ROLE NO YES NOAQ_USER1 CONNECT NO YES NOAQ_USER1 RESOURCE NO YES NO It is good practice to configure central AQ administrative user. All admin and processing jobs are created, executed and administered as this user. This configuration is not mandatory however, and the database link can be owned by any existing queue user. If this latter configuration is used, ensure that the connecting user has the necessary privileges on the AQ packages and objects involved. Privileges for an AQ Administrative user Execute on DBMS_AQADM Execute on DBMS_AQ Granted the AQ_ADMINISTRATOR_ROLE Privileges for an AQ user Execute on DBMS_AQ Execute on the message payload Enqueue privileges on the remote queue Dequeue privileges on the originating queue Privileges need to be confirmed on both sites when propagation is scheduled to remote destinations. Verify that the user ID used to login to the destination through the database link has been granted privileges to use AQ. 5.2. Verify Queue Payload Types AQ will not propagate messages from one queue to another if the payload types of the two queues are not verified to be equivalent. An AQ administrator can verify if the source and destination's payload types match by executing the DBMS_AQADM.VERIFY_QUEUE_TYPES procedure. The results of the type checking will be stored in the SYS.AQ$_MESSAGE_TYPES table. This table can be accessed using the object identifier OID of the source queue and the address database link of the destination queue, i.e. [schema.]queue_name[@destination]. Prior to Oracle 9i the payload (message type) had to be the same for all the queue tables involved in propagation. From Oracle9i onwards a transformation can be used so that payloads can be converted from one type to another. The following procedural call made on the source database can verify whether we can propagate between the source and the destination queue tables. connect aq_user1/[email protected] serverout onDECLARErc_value number;BEGINDBMS_AQADM.VERIFY_QUEUE_TYPES(src_queue_name => 'AQ_USER1.Q_1', dest_queue_name => 'AQ_USER2.Q_2',destination => 'dbl_aq_user2.es',rc => rc_value);dbms_output.put_line('rc_value code is '||rc_value);END;/ If propagation is possible then the return code value will be 1. If it is 0 then propagation is not possible and further investigation of the types and transformations used by and in conjunction with the queue tables is required. With regard to comparison of the types the following sql can be used to extract the DDL for a specific type with' %' changed appropriately on the source and target. This can then be compared for the source and target. SET LONG 20000 set pagesize 50 EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_TRANSFORM, 'STORAGE',false); SELECT DBMS_METADATA.GET_DDL('TYPE',t.type_name) from user_types t WHERE t.type_name like '%'; EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_TRANSFORM, 'DEFAULT'); 5.3. Check Message State and Destination The first step in this process is to identify the queue table associated with the problem source queue. Although you schedule propagation for a specific queue, most of the meta-data associated with that queue is stored in the underlying queue table. The following statement finds the queue table for a given queue (note that this is a multiple-consumer queue table). SQL> select QUEUE_TABLE from DBA_QUEUES where NAME = 'MULTIPLEQ';QUEUE_TABLE --------------------MULTIPLEQTABLE For a small amount of messages in a multiple-consumer queue table, the following query can be run: SQL> select MSG_STATE, CONSUMER_NAME, ADDRESS from AQ$MULTIPLEQTABLE where QUEUE = 'MULTIPLEQ';MSG_STATE CONSUMER_NAME ADDRESS-------------- ----------------------- -------------READY AQUSER2 [email protected] AQUSER1READY AQUSER3 AQADM.INQ In this example we see 2 messages ready to be propagated to remote queues and 1 that is not. If the address column is blank, the message is not scheduled for propagation and can only be dequeued from the queue upon which it was enqueued. The MSG_STATE column values are discussed in Document 102330.1 Advanced Queueing MSG_STATE Values and their Interpretation. If the address column has a value, the message has been enqueued for propagation to another queue. The first row in the example includes a database link (@M2V102.ES). This demonstrates that the message should be propagated to a queue at a remote database. The third row does not include a database link so will be propagated to a queue that resides on the same database as the source queue. The consumer name is the intended recipient at the target queue. Note that we are not querying the base queue table directly; rather, we are querying a view that is available on top of every queue table, AQ$<queue_table_name>.A more realistic query in an environment where the queue table contains thousands of messages is8.0.3-compatible multiple-consumer queue table and all compatibility single-consumer queue tables select count(*), MSG_STATE, QUEUE from AQ$<queue_table_name>  group by MSG_STATE, QUEUE; 8.1.3 and 10.0-compatible queue tables select count(*), MSG_STATE, QUEUE, CONSUMER_NAME from AQ$<queue_table_name>group by MSG_STATE, QUEUE, CONSUMER_NAME; For multiple-consumer queue tables, if you did not see the expected CONSUMER_NAME , check the syntax of the enqueue code and verify the recipients are declared correctly. If a recipients list is not used on enqueue, check the subscriber list in the AQ$_<queue_table_name>_S view (note that a single-consumer queue table does not have a subscriber view. This view records all members of the default subscription list which were added using the DBMS_AQADM.ADD_SUBSCRIBER procedure and also those enqueued using a recipient list. SQL> select QUEUE, NAME, ADDRESS from AQ$MULTIPLEQTABLE_S;QUEUE NAME ADDRESS---------- ----------- -------------MULTIPLEQ AQUSER2 [email protected] AQUSER1 In this example we have 2 subscribers registered with the queue. We have a local subscriber AQUSER1, and a remote subscriber AQUSER2, on the queue INQ, owned by AQADM, at M2V102.ES. Unless overridden with a recipient list during enqueue every message enqueued to this queue will be propagated to INQ at M2V102.ES.For 8.1 style and above multiple consumer queue tables, you can also check the following information at the target: select CONSUMER_NAME, DEQ_TXN_ID, DEQ_TIME, DEQ_USER_ID, PROPAGATED_MSGID from AQ$<queue_table_name> where QUEUE = '<QUEUE_NAME>'; For 8.0 style queues, if the queue table supports multiple consumers you can obtain the same information from the history column of the queue table: select h.CONSUMER, h.TRANSACTION_ID, h.DEQ_TIME, h.DEQ_USER, h.PROPAGATED_MSGIDfrom AQ$<queue_table_name> t, table(t.history) h where t.Q_NAME = '<QUEUE_NAME>'; A non-NULL TRANSACTION_ID indicates that the message was successfully propagated. Further, the DEQ_TIME indicates the time of propagation, the DEQ_USER indicates the userid used for propagation, and the PROPAGATED_MSGID indicates the message ID of the message that was enqueued at the destination. 6. Additional Troubleshooting Steps for Propagation in an Oracle Streams Environment 6.1. Is the Propagation Enabled? For a propagation job to propagate messages, the propagation must be enabled. For Streams, a special view called DBA_PROPAGATION exists to convey information about Streams propagations. If messages are not being propagated by a propagation as expected, then the propagation might not be enabled. To query for this: SELECT p.PROPAGATION_NAME, DECODE(s.SCHEDULE_DISABLED, 'Y', 'Disabled','N', 'Enabled') SCHEDULE_DISABLED, s.PROCESS_NAME, s.FAILURES, s.LAST_ERROR_MSGFROM DBA_QUEUE_SCHEDULES s, DBA_PROPAGATION pWHERE p.DESTINATION_DBLINK = NVL(REGEXP_SUBSTR(s.DESTINATION, '[^@]+', 1, 2), s.DESTINATION) AND s.SCHEMA = p.SOURCE_QUEUE_OWNER AND s.QNAME = p.SOURCE_QUEUE_NAME AND MESSAGE_DELIVERY_MODE = 'PERSISTENT' order by PROPAGATION_NAME; At times, the propagation job may become "broken" or fail to start after an error has been encountered or after a database restart. If an error is indicated by the above query, an attempt to disable the propagation and then re-enable it can be made. In the examples below, for the propagation named STRMADMIN_PROPAGATE where the queue name is STREAMS_QUEUE owned by STRMADMIN and the destination database link is ORCL2.WORLD, the commands would be:10.2 and above exec dbms_propagation_adm.stop_propagation('STRMADMIN_PROPAGATE'); exec dbms_propagation_adm.start_propagation('STRMADMIN_PROPAGATE'); If the above does not fix the problem, stop the propagation specifying the force parameter (2nd parameter on stop_propagation) as TRUE: exec dbms_propagation_adm.stop_propagation('STRMADMIN_PROPAGATE',true); exec dbms_propagation_adm.start_propagation('STRMADMIN_PROPAGATE'); The statistics for the propagation as well as any old error messages are cleared when the force parameter is set to TRUE. Therefore if the propagation schedule is stopped with FORCE set to TRUE, and upon restart there is still an error message in DBA_PROPAGATION, then the error message is current.9.2 or 10.1 exec dbms_aqadm.disable_propagation_schedule('STRMADMIN.STREAMS_QUEUE','ORCL2.WORLD'); exec dbms.aqadm.enable_propagation_schedule('STRMADMIN.STREAMS_QUEUE','ORCL2.WORLD'); If the above does not fix the problem, perform an unschedule of propagation and then schedule_propagation: exec dbms_aqadm.unschedule_propagation('STRMADMIN.STREAMS_QUEUE','ORCL2.WORLD'); exec dbms_aqadm.schedule_propagation('STRMADMIN.STREAMS_QUEUE','ORCL2.WORLD'); Typically if the error from the first query in Section 6.1 recurs after restarting the propagation as shown above, further troubleshooting of the error is needed. 6.2. Check Propagation Rule Sets and Transformations Inspect the configuration of the rules in the rule set that is associated with the propagation process to make sure that they evaluate to TRUE as expected. If not, then the object or schema will not be propagated. Remember that when a negative rule evaluates to TRUE, the specified object or schema will not be propagated. Finally inspect any rule-based transformations that are implemented with propagation to make sure they are changing the data in the intended way.The following query shows what rule sets are assigned to a propagation: select PROPAGATION_NAME, RULE_SET_OWNER||'.'||RULE_SET_NAME "Positive Rule Set",NEGATIVE_RULE_SET_OWNER||'.'||NEGATIVE_RULE_SET_NAME "Negative Rule Set"from DBA_PROPAGATION; The next two queries list the propagation rules and their conditions. The first is for the positive rule set, the second is for the negative rule set: set long 4000select rsr.RULE_SET_OWNER||'.'||rsr.RULE_SET_NAME RULE_SET ,rsr.RULE_OWNER||'.'||rsr.RULE_NAME RULE_NAME,r.RULE_CONDITION CONDITION fromDBA_RULE_SET_RULES rsr, DBA_RULES rwhere rsr.RULE_NAME = r.RULE_NAME and rsr.RULE_OWNER = r.RULE_OWNER and RULE_SET_NAME in(select RULE_SET_NAME from DBA_PROPAGATION) order by rsr.RULE_SET_OWNER, rsr.RULE_SET_NAME;   set long 4000select c.PROPAGATION_NAME, rsr.RULE_SET_OWNER||'.'||rsr.RULE_SET_NAME RULE_SET ,rsr.RULE_OWNER||'.'||rsr.RULE_NAME RULE_NAME,r.RULE_CONDITION CONDITION fromDBA_RULE_SET_RULES rsr, DBA_RULES r ,DBA_PROPAGATION cwhere rsr.RULE_NAME = r.RULE_NAME and rsr.RULE_OWNER = r.RULE_OWNER andrsr.RULE_SET_OWNER=c.NEGATIVE_RULE_SET_OWNER and rsr.RULE_SET_NAME=c.NEGATIVE_RULE_SET_NAMEand rsr.RULE_SET_NAME in(select NEGATIVE_RULE_SET_NAME from DBA_PROPAGATION) order by rsr.RULE_SET_OWNER, rsr.RULE_SET_NAME; 6.3. Determining the Total Number of Messages and Bytes Propagated As in Section 3.1, determining if messages are flowing can be instructive to see whether the propagation is entirely hung or just slow. If the propagation is not in flow control (see Section 6.5.2), but the statistics are incrementing slowly, there may be a performance issue. For Streams implementations two views are available that can assist with this that can show the number of messages sent by a propagation, as well as the number of acknowledgements being returned from the target site: the V$PROPAGATION_SENDER view at the Source site and the V$PROPAGATION_RECEIVER view at the destination site. It is helpful to query both to determine if messages are being delivered to the target. Look for the statistics to increase.Source: select QUEUE_SCHEMA, QUEUE_NAME, DBLINK,HIGH_WATER_MARK, ACKNOWLEDGEMENT, TOTAL_MSGS, TOTAL_BYTESfrom V$PROPAGATION_SENDER; Target: select SRC_QUEUE_SCHEMA, SRC_QUEUE_NAME, SRC_DBNAME, DST_QUEUE_SCHEMA, DST_QUEUE_NAME, HIGH_WATER_MARK, ACKNOWLEDGEMENT, TOTAL_MSGS from V$PROPAGATION_RECEIVER; 6.4. Check Buffered Subscribers The V$BUFFERED_SUBSCRIBERS view displays information about subscribers for all buffered queues in the instance. This view can be queried to make sure that the site that the propagation is propagating to is listed as a subscriber address for the site being propagated from: select QUEUE_SCHEMA, QUEUE_NAME, SUBSCRIBER_ADDRESS from V$BUFFERED_SUBSCRIBERS; The SUBSCRIBER_ADDRESS column will not be populated when the propagation is local (between queues on the same database). 6.5. Common Streams Propagation Errors 6.5.1. ORA-02082: A loopback database link must have a connection qualifier. This error can occur if you use the Streams Setup Wizard in Oracle Enterprise Manager without first configuring the GLOBAL_NAME for your database. 6.5.2. ORA-25307: Enqueue rate too high. Enable flow control DBA_QUEUE_SCHEDULES will display this informational message for propagation when the automatic flow control (10g feature of Streams) has been invoked.Similar to Streams capture processes, a Streams propagation process can also go into a state of 'flow control. This is an informative message that indicates flow control has been automatically enabled to reduce the rate at which messages are being enqueued into at target queue.This typically occurs when the target site is unable to keep up with the rate of messages flowing from the source site. Other than checking that the apply process is running normally on the target site, usually no action is required by the DBA. Propagation and the capture process will be resumed automatically when the target site is able to accept more messages.The following document contains more information:Document 302109.1 Streams Propagation Error: ORA-25307 Enqueue rate too high. Enable flow controlSee the following document for one potential cause of this situation:Document 1097115.1 Oracle Streams Apply Reader is in 'Paused' State 6.5.3. ORA-25315 unsupported configuration for propagation of buffered messages This error typically occurs when the target database is RAC and usually indicates that an attempt was made to propagate buffered messages with the database link pointing to an instance in the destination database which is not the owner instance of the destination queue. To resolve the problem, use queue-to-queue propagation for buffered messages. 6.5.4. ORA-600 [KWQBMCRCPTS101] after dropping / recreating propagation For cause/fixes refer to:Document 421237.1 ORA-600 [KWQBMCRCPTS101] reported by a Qmon slave process after dropping a Streams Propagation 6.5.5. Stopping or Dropping a Streams Propagation Hangs See the following note:Document 1159787.1 Troubleshooting Streams Propagation When It is Not Functioning and Attempts to Stop It Hang 6.6. Streams Propagation-Related Notes for Common Issues Document 437838.1 Streams Specific PatchesDocument 749181.1 How to Recover Streams After Dropping PropagationDocument 368912.1 Queue to Queue Propagation Schedule encountered ORA-12514 in a RAC environmentDocument 564649.1 ORA-02068/ORA-03114/ORA-03113 Errors From Streams Propagation Process - Remote Database is Available and Unschedule/Reschedule Does Not ResolveDocument 553017.1 Stream Propagation Process Errors Ora-4052 Ora-6554 From 11g To 10201Document 944846.1 Streams Propagation Fails Ora-7445 [kohrsmc]Document 745601.1 ORA-23603 'STREAMS enqueue aborted due to low SGA' Error from Streams Propagation, and V$STREAMS_CAPTURE.STATE Hanging on 'Enqueuing Message'Document 333068.1 ORA-23603: Streams Enqueue Aborted Eue To Low SGADocument 363496.1 Ora-25315 Propagating on RAC StreamsDocument 368237.1 Unable to Unschedule Propagation. Streams Queue is InvalidDocument 436332.1 dbms_propagation_adm.stop_propagation hangsDocument 727389.1 Propagation Fails With ORA-12528Document 730911.1 ORA-4063 Is Reported After Dropping Negative Prop.RulesetDocument 460471.1 Propagation Blocked by Qmon Process - Streams_queue_table / 'library cache lock' waitsDocument 1165583.1 ORA-600 [kwqpuspse0-ack] In Streams EnvironmentDocument 1059029.1 Combined Capture and Apply (CCA) : Capture aborts : ORA-1422 after schedule_propagationDocument 556309.1 Changing Propagation/ queue_to_queue : false -> true does does not work; no LCRs propagatedDocument 839568.1 Propagation failing with error: ORA-01536: space quota exceeded for tablespace ''Document 311021.1 Streams Propagation Process : Ora 12154 After Reboot with Transparent Application Failover TAF configuredDocument 359971.1 STREAMS propagation to Primary of physical Standby configuation errors with Ora-01033, Ora-02068Document 1101616.1 DBMS_PROPAGATION_ADM.DROP_PROPAGATION FAILS WITH ORA-1747 7. Performance Issues A propagation may seem to be slow if the queries from Sections 3.1 and 6.3 show that the message statistics are not changing quickly. In Oracle Streams, this more usually is due to a slow apply process at the target rather than a slow propagation. Propagation could be inferred to be slow if the message statistics are changing, and the state of a capture process according to V$STREAMS_CAPTURE.STATE is PAUSED FOR FLOW CONTROL, but an ORA-25307 'Enqueue rate too high. Enable flow control' warning is NOT observed in DBA_QUEUE_SCHEDULES per Section 6.5.2. If this is the case, see the following notes / white papers for suggestions to increase performance:Document 335516.1 Master Note for Streams Performance RecommendationsDocument 730036.1 Overview for Troubleshooting Streams Performance IssuesDocument 780733.1 Streams Propagation Tuning with Network ParametersWhite Paper: http://www.oracle.com/technetwork/database/features/availability/maa-wp-10gr2-streams-performance-130059.pdfWhite Paper: Oracle Streams Configuration Best Practices: Oracle Database 10g Release 10.2, http://www.oracle.com/technetwork/database/features/availability/maa-10gr2-streams-configuration-132039.pdf, See APPENDIX A: USING STREAMS CONFIGURATIONS OVER A NETWORKFor basic AQ propagation, the network tuning in the aforementioned Appendix A of the white paper 'Oracle Streams Configuration Best Practices: Oracle Database 10g Release 10.2' is applicable. References NOTE:102330.1 - Advanced Queueing MSG_STATE Values and their InterpretationNOTE:102771.1 - Advanced Queueing Propagation using PL/SQLNOTE:1059029.1 - Combined Capture and Apply (CCA) : Capture aborts : ORA-1422 after schedule_propagationNOTE:1079577.1 - Advanced Queuing Propagation Fails With "ORA-22370: incorrect usage of method"NOTE:1083608.1 - 11g Streams and Oracle SchedulerNOTE:1087324.1 - ORA-01405 ORA-01422 reported by Adavanced Queueing Propagation schedules after RAC reconfigurationNOTE:1097115.1 - Oracle Streams Apply Reader is in 'Paused' StateNOTE:1101616.1 - DBMS_PROPAGATION_ADM.DROP_PROPAGATION FAILS WITH ORA-1747NOTE:1159787.1 - Troubleshooting Streams Propagation When It is Not Functioning and Attempts to Stop It HangNOTE:1165583.1 - ORA-600 [kwqpuspse0-ack] In Streams EnvironmentNOTE:118884.1 - How to unschedule a propagation schedule stuck in pending stateNOTE:1203544.1 - AQ PROPAGATION ABORTED WITH ORA-600[OCIKSIN: INVALID STATUS] ON SYS.DBMS_AQADM_SYS.AQ$_PROPAGATION_PROCEDURE AFTER UPGRADENOTE:1204080.1 - AQ Propagation Failing With ORA-25329 After Upgraded From 8i or 9i to 10g or 11g.NOTE:219416.1 - Advanced Queuing Propagation fails with ORA-22922NOTE:222992.1 - DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE Returns ORA-24082NOTE:253131.1 - Concurrent Writes May Corrupt LOB Segment When Using Auto Segment Space Management (ORA-1555)NOTE:282987.1 - Propagated Messages marked UNDELIVERABLE after Drop and Recreate Of Remote QueueNOTE:298015.1 - Kwqjswproc:Excep After Loop: Assigning To SelfNOTE:302109.1 - Streams Propagation Error: ORA-25307 Enqueue rate too high. Enable flow controlNOTE:311021.1 - Streams Propagation Process : Ora 12154 After Reboot with Transparent Application Failover TAF configuredNOTE:332792.1 - ORA-04061 error relating to SYS.DBMS_PRVTAQIP reported when setting up StatspackNOTE:333068.1 - ORA-23603: Streams Enqueue Aborted Eue To Low SGANOTE:335516.1 - Master Note for Streams Performance RecommendationsNOTE:353325.1 - ORA-24056: Internal inconsistency for QUEUE and destination NOTE:353754.1 - Streams Messaging Propagation Fails between Single and Multi-byte Charactersets when using Chararacter Length Semantics in the ADT.NOTE:359971.1 - STREAMS propagation to Primary of physical Standby configuation errors with Ora-01033, Ora-02068NOTE:363496.1 - Ora-25315 Propagating on RAC StreamsNOTE:365093.1 - ORA-07445 [kwqppay2aqe()+7360] reported on Propagation of a Transformed MessageNOTE:368237.1 - Unable to Unschedule Propagation. Streams Queue is InvalidNOTE:368912.1 - Queue to Queue Propagation Schedule encountered ORA-12514 in a RAC environmentNOTE:421237.1 - ORA-600 [KWQBMCRCPTS101] reported by a Qmon slave process after dropping a Streams PropagationNOTE:436332.1 - dbms_propagation_adm.stop_propagation hangsNOTE:437838.1 - Streams Specific PatchesNOTE:460471.1 - Propagation Blocked by Qmon Process - Streams_queue_table / 'library cache lock' waitsNOTE:463820.1 - Streams Combined Capture and Apply in 11gNOTE:553017.1 - Stream Propagation Process Errors Ora-4052 Ora-6554 From 11g To 10201NOTE:556309.1 - Changing Propagation/ queue_to_queue : false -> true does does not work; no LCRs propagatedNOTE:564649.1 - ORA-02068/ORA-03114/ORA-03113 Errors From Streams Propagation Process - Remote Database is Available and Unschedule/Reschedule Does Not ResolveNOTE:566622.1 - ORA-22275 when propagating >4K AQ$_JMS_TEXT_MESSAGEs from 9.2.0.8 to 10.2.0.1NOTE:727389.1 - Propagation Fails With ORA-12528NOTE:730036.1 - Overview for Troubleshooting Streams Performance IssuesNOTE:730911.1 - ORA-4063 Is Reported After Dropping Negative Prop.RulesetNOTE:731292.1 - ORA-25215 Reported On Local Propagation When Using Transformation with ANYDATA queue tablesNOTE:731539.1 - ORA-29268: HTTP client error 401 Unauthorized Error when the AQ Servlet attempts to Propagate a message via HTTPNOTE:745601.1 - ORA-23603 'STREAMS enqueue aborted due to low SGA' Error from Streams Propagation, and V$STREAMS_CAPTURE.STATE Hanging on 'Enqueuing Message'NOTE:749181.1 - How to Recover Streams After Dropping PropagationNOTE:780733.1 - Streams Propagation Tuning with Network ParametersNOTE:787367.1 - ORA-22275 reported on Propagating Messages with LOB component when propagating between 10.1 and 10.2NOTE:808136.1 - How to clear the old errors from DBA_PROPAGATION view ?NOTE:827184.1 - AQ Propagation with CLOB data types Fails with ORA-22990NOTE:827473.1 - How to alter propagation from queue_to_queue to queue_to_dblinkNOTE:839568.1 - Propagation failing with error: ORA-01536: space quota exceeded for tablespace ''NOTE:846297.1 - AQ Propagation Fails : ORA-00600[kope2upic2954] or Ora-00600[Kghsstream_copyn]NOTE:944846.1 - Streams Propagation Fails Ora-7445 [kohrsmc]

    Read the article

  • Romanian parter Omnilogic Delivers “No Limits” Scalability, Performance, Security, and Affordability through Next-Generation, Enterprise-Grade Engineered Systems

    - by swalker
    Omnilogic SRL is a leading technology and information systems provider in Romania and central and Eastern Europe. An Oracle Value-Added Distributor Partner, Omnilogic resells Oracle software, hardware, and engineered systems to Oracle Partner Network members and provides specialized training, support, and testing facilities. Independent software vendors (ISVs) also use Omnilogic’s demonstration and testing facilities to upgrade the performance and efficiency of their solutions and those of their customers by migrating them from competitor technologies to Oracle platforms. Omnilogic also has a dedicated offering for ISV solutions, based on Oracle technology in a hosting service provider model. Omnilogic wanted to help Oracle Partners and ISVs migrate solutions to Oracle Exadata and sell Oracle Exadata to end-customers. It installed Oracle Exadata Database Machine X2-2 Quarter Rack at its data center to create a demonstration and testing environment. Demonstrations proved that Oracle Exadata achieved processing speeds up to 100 times faster than competitor systems, cut typical back-up times from 6 hours to 20 minutes, and stored 10 times more data. Oracle Partners and ISVs learned that migrating solutions to Oracle Exadata’s preconfigured, pre-integrated hardware and software can be completed rapidly, at low cost, without business disruption, and with reduced ongoing operating costs. Challenges A word from Omnilogic “Oracle Exadata is the new killer application—the smartest solution on the market. There is no competition.” – Sorin Dragomir, Chief Operating Officer, Omnilogic SRL Enable Oracle Partners in Romania and central and eastern Europe to achieve Oracle Exadata Ready status by providing facilities to test and optimize existing applications and build real-life proofs of concept (POCs) for new solutions on Oracle Exadata Database Machine Provide technical support and demonstration facilities for ISVs migrating their customers’ solutions from competitor technologies to Oracle Exadata to maximize performance, scalability, and security; optimize hardware and datacenter space; cut maintenance costs; and improve return on investment Demonstrate power of Oracle Exadata’s high-performance, high-capacity engineered systems for customer-facing businesses, such as government organizations, telecommunications, banking and insurance, and utility companies, which typically require continuous availability to support very large data volumes Showcase Oracle Exadata’s unchallenged online transaction processing (OLTP) capabilities that cut application run times to provide unrivalled query turnaround and user response speeds while significantly reducing back-up times and eliminating risk of unplanned outages Capitalize on providing a world-class training and demonstration environment for Oracle Exadata to accelerate sales with Oracle Partners Solutions Created a testing environment to enable Oracle Partners and ISVs to test their own solutions and those of their customers on Oracle Exadata running on Oracle Enterprise Linux or Oracle Solaris Express to benchmark performance prior to migration Leveraged expertise on Oracle Exadata to offer Oracle Exadata training, migration, support seminars and to showcase live demonstrations for Oracle Partners Proved how Oracle Exadata’s pre-engineered systems, that come assembled, configured, and ready to run, reduce deployment time and cost, minimize risk, and help customers achieve the full performance potential immediately after go live Increased processing speeds 10-fold and with zero data loss for a telecommunications provider’s client-facing customer relationship management solution Achieved performance improvements of between 6 and 100 times faster for financial and utility company applications currently running on IBM, Microsoft, or SAP HANA platforms Showed how daily closure procedures carried out overnight by banks, insurance companies, and other financial institutions to analyze each day’s business, can typically be cut from around six hours to 20 minutes, some 18 times faster, when running on Oracle Exadata Simulated concurrent back-ups while running applications under normal working conditions to prove that Oracle Exadata-based solutions can be backed up during business hours without causing bottlenecks or impacting the end-user experience Demonstrated that Oracle Exadata’s built-in analytics, data mining and OLTP capabilities make it the highest-performance, lowest-cost choice for large data warehousing operations Showed how Oracle Exadata’s columnar compression and intelligent storage architecture allows 10 times more data to be stored than on competitor platforms Demonstrated how Oracle Exadata cuts hardware requirements significantly by consolidating workloads on to fewer servers which delivers greater power efficiency and lower operating costs that competing systems from IBM and other manufacturers Proved to ISVs that migrating solutions to Oracle Exadata’s preconfigured, pre-integrated hardware and software can be completed rapidly, at low cost, and with minimal business disruption Demonstrated how storage servers, database servers, and network switches can be added incrementally and inexpensively to the Oracle Exadata platform to support business expansion On track to grow revenues by 10% in year one and by 15% annually thereafter through increased business generated from Oracle Partners and ISVs

    Read the article

  • FFmpeg Video Hosting for Linux and Windows Server

    - by Aditi
    FFmpeg hosting is a special type of web hosting where the host servers have video transcoding software loaded on them, which allows the automatic conversion of videos from one format to another. FFmpeg is a cross-platform solution for recording, converting, transcoding and stream audio and video. It includes libavcodec – the leading audio/video codec library. FFmpeg hosting gets its name from a set of server side programs (modules) called FFmpeg. There are a number of applications or web scripts available, which allow webmasters to create their own video sharing websites. Video hosting typically requires: PHP 4.3 and above (including support of CLI) Mencoder and also Mplayer FFMpeg-PHP MySQL database server LAME MP3 Encoder Libogg + Libvorbis GD Library 2 or higher CGI-BIN There are number of web service providers who provide FFmpeg hosting service. Following is a list of some of the Best FFmpeg hosting providers for both Linux and Windows Server below. Dream Host Dreamhost provides for web based email access, mail filtering, spam filtering, unlimited email ids, vacation autoresponder, python support, full CGI access and many more services. Price: $7.95 View Details Micfo It offers unlimited disk space and bandwidth. Other services include free domain for life and free Website Transfer with many more services. All in all one of the best option to consider. Price: $5 View Details Host Upon HostUpon offers FFMpeg Hosting on all their hosting packages, with readily installed modules to start a Video website or Social Network with Video uploading. These scripts such as Boonex Dolphin / PHPMotion / Social Engine / ABKsoft Scripts / Joomla Video Plugin / Clipshare / ClipBucket / Social Media / Rayzz / Vidi Script work with their ffmpeg. Their FFMPEG hosting plan offers 24/7/365 support with typical response time of 15min or less. Price: $5.95 View Details DownTown Host DownTown Host provides full and exceptional support by live chat and telephone. It has high-power, modern servers and the finest web server technology. It offers free search engine Submission and continuous data backup protection with free email forwarding and site move. There are many more services too. Site5 This ffmpeg service provider offers uptime guarantee, a real time stats on each server and many more attractive services. Price: $4.95 View Details Cirtex Hosting Cirtex Hosting allows to host 7 websites & domains and provides for unlimited storage space and monthly bandwidth. It also offers FTP and email accounts and many more services. Price: $2.49 View Details FLV Hosting FLV hosting supplies RTMP SERVER STREAMING for large size video streaming and server side recording. It is flexible and costs less. They customize to the clients requirements. Price: $9.95 View Details AptHost This hosting service provides for 24x7x365 Premium Support and fully ffmpeg enabled services. Price: $4.95 View Details HostMDS Great Support, Priced Low. It provides for SSH access, CGI, Ruby on Rails, Perl, PHP, MySQL, front page extentions, 24/7 Support, FREE Domain transfer and spam filtering. It offers instant account setup, low latency fast bandwidth & much more! They were formerly known as Vistapages. Price: $4.95 View Details Related posts:Best WordPress Video Themes for a Video Blog Free Web Based Applications 24+ Coda Alternatives for Windows and Linux

    Read the article

  • MySQL Cluster 7.2: Over 8x Higher Performance than Cluster 7.1

    - by Mat Keep
    0 0 1 893 5092 Homework 42 11 5974 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Summary The scalability enhancements delivered by extensions to multi-threaded data nodes enables MySQL Cluster 7.2 to deliver over 8x higher performance than the previous MySQL Cluster 7.1 release on a recent benchmark What’s New in MySQL Cluster 7.2 MySQL Cluster 7.2 was released as GA (Generally Available) in February 2012, delivering many enhancements to performance on complex queries, new NoSQL Key / Value API, cross-data center replication and ease-of-use. These enhancements are summarized in the Figure below, and detailed in the MySQL Cluster New Features whitepaper Figure 1: Next Generation Web Services, Cross Data Center Replication and Ease-of-Use Once of the key enhancements delivered in MySQL Cluster 7.2 is extensions made to the multi-threading processes of the data nodes. Multi-Threaded Data Node Extensions The MySQL Cluster 7.2 data node is now functionally divided into seven thread types: 1) Local Data Manager threads (ldm). Note – these are sometimes also called LQH threads. 2) Transaction Coordinator threads (tc) 3) Asynchronous Replication threads (rep) 4) Schema Management threads (main) 5) Network receiver threads (recv) 6) Network send threads (send) 7) IO threads Each of these thread types are discussed in more detail below. MySQL Cluster 7.2 increases the maximum number of LDM threads from 4 to 16. The LDM contains the actual data, which means that when using 16 threads the data is more heavily partitioned (this is automatic in MySQL Cluster). Each LDM thread maintains its own set of data partitions, index partitions and REDO log. The number of LDM partitions per data node is not dynamically configurable, but it is possible, however, to map more than one partition onto each LDM thread, providing flexibility in modifying the number of LDM threads. The TC domain stores the state of in-flight transactions. This means that every new transaction can easily be assigned to a new TC thread. Testing has shown that in most cases 1 TC thread per 2 LDM threads is sufficient, and in many cases even 1 TC thread per 4 LDM threads is also acceptable. Testing also demonstrated that in some instances where the workload needed to sustain very high update loads it is necessary to configure 3 to 4 TC threads per 4 LDM threads. In the previous MySQL Cluster 7.1 release, only one TC thread was available. This limit has been increased to 16 TC threads in MySQL Cluster 7.2. The TC domain also manages the Adaptive Query Localization functionality introduced in MySQL Cluster 7.2 that significantly enhanced complex query performance by pushing JOIN operations down to the data nodes. Asynchronous Replication was separated into its own thread with the release of MySQL Cluster 7.1, and has not been modified in the latest 7.2 release. To scale the number of TC threads, it was necessary to separate the Schema Management domain from the TC domain. The schema management thread has little load, so is implemented with a single thread. The Network receiver domain was bound to 1 thread in MySQL Cluster 7.1. With the increase of threads in MySQL Cluster 7.2 it is also necessary to increase the number of recv threads to 8. This enables each receive thread to service one or more sockets used to communicate with other nodes the Cluster. The Network send thread is a new thread type introduced in MySQL Cluster 7.2. Previously other threads handled the sending operations themselves, which can provide for lower latency. To achieve highest throughput however, it has been necessary to create dedicated send threads, of which 8 can be configured. It is still possible to configure MySQL Cluster 7.2 to a legacy mode that does not use any of the send threads – useful for those workloads that are most sensitive to latency. The IO Thread is the final thread type and there have been no changes to this domain in MySQL Cluster 7.2. Multiple IO threads were already available, which could be configured to either one thread per open file, or to a fixed number of IO threads that handle the IO traffic. Except when using compression on disk, the IO threads typically have a very light load. Benchmarking the Scalability Enhancements The scalability enhancements discussed above have made it possible to scale CPU usage of each data node to more than 5x of that possible in MySQL Cluster 7.1. In addition, a number of bottlenecks have been removed, making it possible to scale data node performance by even more than 5x. Figure 2: MySQL Cluster 7.2 Delivers 8.4x Higher Performance than 7.1 The flexAsynch benchmark was used to compare MySQL Cluster 7.2 performance to 7.1 across an 8-node Intel Xeon x5670-based cluster of dual socket commodity servers (6 cores each). As the results demonstrate, MySQL Cluster 7.2 delivers over 8x higher performance per data nodes than MySQL Cluster 7.1. More details of this and other benchmarks will be published in a new whitepaper – coming soon, so stay tuned! In a following blog post, I’ll provide recommendations on optimum thread configurations for different types of server processor. You can also learn more from the Best Practices Guide to Optimizing Performance of MySQL Cluster Conclusion MySQL Cluster has achieved a range of impressive benchmark results, and set in context with the previous 7.1 release, is able to deliver over 8x higher performance per node. As a result, the multi-threaded data node extensions not only serve to increase performance of MySQL Cluster, they also enable users to achieve significantly improved levels of utilization from current and future generations of massively multi-core, multi-thread processor designs.

    Read the article

  • Book review (Book 6) - Wikinomics

    - by BuckWoody
    This is a continuation of the books I challenged myself to read to help my career - one a month, for year. You can read my first book review here. The book I chose for November 2011 was: Wikinomics: How Mass Collaboration Changes Everything, by Don Tapscott   Why I chose this Book: I’ve heard a lot about this book - was one of the “must read” kind of business books (many of which are very “fluffy”) and supposedly deals with collaborating using technology - so I want to see what it says about collaborative efforts and how I can leverage them. What I learned: I really disliked this book. I’ve never been a fan of the latest “business book”, and sadly that’s what this felt like to me. A “business book” is what I call a work that has a fairly simple concept to get across, and then proceeds to use various made-up terms, analogies and other mechanisms to fill hundreds of pages doing it. This perception is at my own – the book is pretty old, and these things go stale quickly. The author’s general point (at least what I took away from it) was: Open Source is good, proprietary is bad. Collaboration is the hallmark of successful companies. In my mind, you can save yourself the trouble of reading this work if you get these two concepts down. Don’t get me wrong – open source is awesome, and collaboration is a good thing, especially in places where it fits. But it’s not a panacea as the author seems to indicate. For instance, he continuously uses the example of MySpace to show a “2.0” company, which I think means that you can enter text as well as read it on a web page. All well and good. But we all know what happened to MySpace, and of course he missed the point entirely about this new web environment: low barriers to entry often mean low barriers to exit. And the open, collaborative company being the best model – well, I think we all know a certain computer company famous for phones and music that is arguably quite successful, and is probably one of the most closed, non-collaborative (at least with its customers) on the planet. So that sort of takes away that argument. The reality of business is far more complicated. Collaboration is an amazing tool, and should be leveraged heavily. However, at the end of the day, after you do your research you need to pick a strategy and stick with it. Asking thousands of people to assist you in building your product probably will not work well. Open Source is great – but some proprietary products are quite functional as well, have a long track record, are well supported, and will probably be upgraded. Everything has its place, so use what works where it is needed. There is no single answer, sadly. So did I waste my time reading the book? Did I make a bad choice? Not at all! Reading the opinions and thoughts of others is almost always useful, and it’s important to consider opinions other than your own. If nothing else, thinking through the process either convinces you that you are wrong, or helps you understand better why you are right.

    Read the article

  • External usb 3.0 hard drive is not recognised when plugged into usb 3 port (ubuntu natty 64 bit).

    - by kimangroo
    I have an Iomega Prestige Portable External Hard Drive 1TB USB 3.0. It works fine on windows 7 as a usb 3.0 drive. It isn't detected on ubuntu natty 64bit, 2.6.38-8-generic. fdisk -l cannot see it at all: Disk /dev/sda: 500.1 GB, 500107862016 bytes 255 heads, 63 sectors/track, 60801 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x1bed746b Device Boot Start End Blocks Id System /dev/sda1 1 1689 13560832 27 Unknown /dev/sda2 * 1689 1702 102400 7 HPFS/NTFS /dev/sda3 1702 19978 146805760 7 HPFS/NTFS /dev/sda4 19978 60802 327914497 5 Extended /dev/sda5 25555 60802 283120640 7 HPFS/NTFS /dev/sda6 19978 23909 31571968 83 Linux /dev/sda7 23909 25555 13218816 82 Linux swap / Solaris Partition table entries are not in disk order lsusb can see it: Bus 003 Device 003: ID 059b:0070 Iomega Corp. Bus 003 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 002 Device 004: ID 05fe:0011 Chic Technology Corp. Browser Mouse Bus 002 Device 003: ID 0a12:0001 Cambridge Silicon Radio, Ltd Bluetooth Dongle (HCI mode) Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 001 Device 005: ID 0489:e00f Foxconn / Hon Hai Bus 001 Device 004: ID 0c45:64b5 Microdia Bus 001 Device 003: ID 08ff:168f AuthenTec, Inc. Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub And dmesg | grep -i xhci (I may have unplugged the drive and plugged it back in again after booting): [ 1.659060] pci 0000:04:00.0: xHCI HW did not halt within 2000 usec status = 0x0 [ 11.484971] xhci_hcd 0000:04:00.0: PCI INT A -> GSI 18 (level, low) -> IRQ 18 [ 11.484997] xhci_hcd 0000:04:00.0: setting latency timer to 64 [ 11.485002] xhci_hcd 0000:04:00.0: xHCI Host Controller [ 11.485064] xhci_hcd 0000:04:00.0: new USB bus registered, assigned bus number 3 [ 11.636149] xhci_hcd 0000:04:00.0: irq 18, io mem 0xc5400000 [ 11.636241] xhci_hcd 0000:04:00.0: irq 43 for MSI/MSI-X [ 11.636246] xhci_hcd 0000:04:00.0: irq 44 for MSI/MSI-X [ 11.636251] xhci_hcd 0000:04:00.0: irq 45 for MSI/MSI-X [ 11.636256] xhci_hcd 0000:04:00.0: irq 46 for MSI/MSI-X [ 11.636261] xhci_hcd 0000:04:00.0: irq 47 for MSI/MSI-X [ 11.639654] xHCI xhci_add_endpoint called for root hub [ 11.639655] xHCI xhci_check_bandwidth called for root hub [ 11.956366] usb 3-1: new SuperSpeed USB device using xhci_hcd and address 2 [ 12.001073] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.007059] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.012932] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.018922] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.049139] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.056754] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.131607] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 12.179717] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.686876] xhci_hcd 0000:04:00.0: WARN: babble error on endpoint [ 12.687058] xhci_hcd 0000:04:00.0: WARN Set TR Deq Ptr cmd invalid because of stream ID configuration [ 12.687152] xhci_hcd 0000:04:00.0: ERROR Transfer event for disabled endpoint or incorrect stream ring [ 43.330737] usb 3-1: reset SuperSpeed USB device using xhci_hcd and address 2 [ 43.422579] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 43.422658] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669af00 [ 43.422665] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669af40 [ 43.422671] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669af80 [ 43.422677] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669afc0 [ 43.531159] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 125.160248] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 903.766466] usb 3-1: new SuperSpeed USB device using xhci_hcd and address 3 [ 903.807789] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.813530] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.819400] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.825104] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.855067] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.862314] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.862597] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 903.913211] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 904.424416] xhci_hcd 0000:04:00.0: WARN: babble error on endpoint [ 904.424599] xhci_hcd 0000:04:00.0: WARN Set TR Deq Ptr cmd invalid because of stream ID configuration [ 904.424700] xhci_hcd 0000:04:00.0: ERROR Transfer event for disabled endpoint or incorrect stream ring [ 935.139021] usb 3-1: reset SuperSpeed USB device using xhci_hcd and address 3 [ 935.226075] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 935.226140] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186b00 [ 935.226148] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186b40 [ 935.226153] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186b80 [ 935.226159] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186bc0 [ 935.343339] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst I thought it might be that the firmware wasn't compatible with linux or something, but when booting a live image of partedmagic, (2.6.38.4-pmagic), the drive was detected fine, I could mount it and got usb 3.0 speeds (at least they double the speeds I got from plugging same drive in usb 2 ports). dmesg in partedmagic did say something about no SuperSpeed endpoint which was an error I saw in a previous dmesg of ubuntu: Jun 27 15:49:02 (none) user.info kernel: [ 2.978743] xhci_hcd 0000:04:00.0: PCI INT A -> GSI 18 (level, low) -> IRQ 18 Jun 27 15:49:02 (none) user.debug kernel: [ 2.978771] xhci_hcd 0000:04:00.0: setting latency timer to 64 Jun 27 15:49:02 (none) user.info kernel: [ 2.978781] xhci_hcd 0000:04:00.0: xHCI Host Controller Jun 27 15:49:02 (none) user.info kernel: [ 2.978856] xhci_hcd 0000:04:00.0: new USB bus registered, assigned bus number 3 Jun 27 15:49:02 (none) user.info kernel: [ 3.089458] xhci_hcd 0000:04:00.0: irq 18, io mem 0xc5400000 Jun 27 15:49:02 (none) user.debug kernel: [ 3.089541] xhci_hcd 0000:04:00.0: irq 42 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089544] xhci_hcd 0000:04:00.0: irq 43 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089546] xhci_hcd 0000:04:00.0: irq 44 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089548] xhci_hcd 0000:04:00.0: irq 45 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089550] xhci_hcd 0000:04:00.0: irq 46 for MSI/MSI-X Jun 27 15:49:02 (none) user.warn kernel: [ 3.092857] usb usb3: No SuperSpeed endpoint companion for config 1 interface 0 altsetting 0 ep 129: using minimum values Jun 27 15:49:02 (none) user.info kernel: [ 3.092864] usb usb3: New USB device found, idVendor=1d6b, idProduct=0003 Jun 27 15:49:02 (none) user.info kernel: [ 3.092866] usb usb3: New USB device strings: Mfr=3, Product=2, SerialNumber=1 Jun 27 15:49:02 (none) user.info kernel: [ 3.092867] usb usb3: Product: xHCI Host Controller Jun 27 15:49:02 (none) user.info kernel: [ 3.092869] usb usb3: Manufacturer: Linux 2.6.38.4-pmagic xhci_hcd Jun 27 15:49:02 (none) user.info kernel: [ 3.092870] usb usb3: SerialNumber: 0000:04:00.0 Jun 27 15:49:02 (none) user.debug kernel: [ 3.092961] xHCI xhci_add_endpoint called for root hub Jun 27 15:49:02 (none) user.debug kernel: [ 3.092963] xHCI xhci_check_bandwidth called for root hub Well I have no idea what's going wrong, and I haven't had much luck from google and the forums so far. A number of unanswered threads with people with similar error messages and problems only. Hopefully someone here can help or point me in the right direction?!

    Read the article

  • Get to Know a Candidate (9 of 25): Gary Johnson&ndash;Libertarian Party

    - by Brian Lanham
    DISCLAIMER: This is not a post about “Romney” or “Obama”. This is not a post for whom I am voting. Information sourced for Wikipedia. Johnson served as the 29th Governor of New Mexico from 1995 to 2003, as a member of the Republican Party, and is known for his low-tax libertarian views and his strong emphasis on personal health and fitness. While a student at the University of New Mexico in 1974, Johnson sustained himself financially by working as a door-to-door handyman. In 1976 he founded Big J Enterprises, which grew from this one-person venture to become one of New Mexico's largest construction companies. He entered politics for the first time by running for Governor of New Mexico in 1994 on a fiscally conservative, low-tax, anti-crime platform. Johnson won the Republican Party of New Mexico's gubernatorial nomination, and defeated incumbent Democratic governor Bruce King by 50% to 40%. He cut the 10% annual growth in the budget: in part, due to his use of the gubernatorial veto 200 times during his first six months in office, which gained him the nickname "Governor Veto". Johnson sought re-election in 1998, winning by 55% to 45%. In his second term, he concentrated on the issue of school voucher reforms, as well as campaigning for marijuana decriminalization and opposition to the War on Drugs. During his tenure as governor, Johnson adhered to a stringent anti-tax and anti-bureaucracy policy driven by a cost–benefit analysis rationale, setting state and national records for his use of veto powers: more than the other 49 contemporary governors put together. Term-limited, Johnson could not run for re-election at the end of his second term. As a fitness enthusiast, Johnson has taken part in several Ironman Triathlons, and he climbed Mount Everest in May 2003. After leaving office, Johnson founded the non-profit Our America Initiative in 2009, a political advocacy committee seeking to promote policies such as free enterprise, foreign non-interventionism, limited government and privatization. The Libertarian Party is the third largest political party in the United States. It is also identified by many as the fastest growing political party in the United States. The political platform of the Libertarian Party reflects the ideas of libertarianism, favoring minimally regulated markets, a less powerful state, strong civil liberties (including support for Same-sex marriage and other LGBT rights), cannabis legalization and regulation, separation of church and state, open immigration, non-interventionism and neutrality in diplomatic relations (i.e., avoiding foreign military or economic entanglements with other nations), freedom of trade and travel to all foreign countries, and a more responsive and direct democracy. Members of the Libertarian Party have also supported the repeal of NAFTA, CAFTA, and similar trade agreements, as well as the United States' exit from the United Nations, WTO, and NATO. Although there is not an officially labeled political position of the party, it is considered by many to be more right-wing than the Democratic Party but more left-wing than the Republican Party when comparing the parties' positions to each other, placing it at or above the center. In the 30 states where voters can register by party, there are over 282,000 voters registered as Libertarians. Hundreds of Libertarian candidates have been elected or appointed to public office, and thousands have run for office under the Libertarian banner. The Libertarian Party has many firsts in its credit, such as being the first party to get an electoral vote for a woman in a United States presidential election. Learn more about Gary Johnson and Libertarian Party on Wikipedia.

    Read the article

  • Is SugarCRM really adequate for custom development (or adequate at all)? [closed]

    - by dukeofgaming
    Have you used SugarCRM for custom development successfully?, if so, have you done it programmatically or through the Module Builder? Were you successful? If not, why? I used SugarCRM for a project about two years ago, I ran into errors from the very installation, having to hack the actual installation file to deploy the software in the server and other erros that I can't recall now. Two years after, I'm picking it up for a project once again. I'm feeling like I should have developed the whole thing from scratch myself. Some examples: I couldn't install it in the server (again). I had to install it locally, then copy the files and database over to the server and manually edit the config file. Constantly getting deployment errors from the module builder. One reason is SugarCRM keeps creating a record in the upgrade_history table for a file that does not exist, I keep deleting such record and it keeps coming back corrupt. I get other deployment errors, but have not figured them out. then I have to rollback all files and database to try again. I deleted a custom module with relationships, the relationships stayed in the other modules and cannot be deleted anymore, PHP warnings all over the place. Quick create for custom modules does not appear, hack needed. Its whole cache directory is a joke, permanent data/files are stored there. The module builder interface disappears required fields. Edit the wrong thing, module builder won't deploy again, then pray Quick Repair and/or Rebuild Relationships do the trick. My impression of SugarCRM now is that, regardless of its pretty exterior and apparent functionality, it is a very low quality piece of software. This even scared me more: http://amplicate.com/hate/sugarcrm; a quote: I wis this info had been available when I tried to implement it 2 years ago... I searched high and low and the only info I found was positive. Yes, it's a piece of crap. The community edition was full of bugs... nothing worked. Essentially I got fired for implementing it. I'm glad though, because now I work for myself, am much happier and make more money... so, I should really thank SugarCRM for sucking so much I guess! I figured that perhaps some of you have had similar experiences, and have either sticked with SugarCRM or moved on to another solution. I'm very interested in knowing what your resolutions were -or your current situations are- to make up my own mind, since the project I'm working on is long term and I'm feeling SugarCRM will be more an obstacle than an aid. After further failed attempts to continue using this software I continued to stumble upon dead-ends when using the module editor, I could only recover from this errors by using version control. We are now moving on to a custom implementation using Symfony; perhaps if we were using it with its out-of-the-box modules we would have sticked with it.

    Read the article

  • Launch 7:Windows Phone 7 Style Live Tiles On Android Mobiles

    - by Gopinath
    Android is a great mobile OS but one thought that lingers in the mind of few Android owners is: Am I using a cheap iPhone? This is valid thought for many low end Android users as their phones runs sluggish and the user interface of Android looks like an imitation of iOS. When it comes to Windows Phone 7 users, even though their operating system features are not as great as iPhone/Android but it has its unique user interface; Windows Phone 7 user interface is a very intuitive and fresh, it’s constantly updating Live Tiles show all the required information on the home screen. Android has best mobile operating system features except UI and Windows Phone 7 has excellent user interface. How about porting Windows Phone 7 Tiles interface on an Android? That should be great. Launch 7 app brings the best of Windows Phone 7 look and feel to Android OS. Once the Launcher 7 app is installed and activated, it brings Live Tiles or constantly updating controls that show information on Android home screen. Apart from simple and smooth tiles, there are handful of customization options provided. Users can change colour of the tiles, add new tiles, enable/disable transitions. The reviews on Android Market are on the positive side with 4.4 stars by 10,000 + reviewers. Here are few user reviews 1. Does what it says. only issue for me is that the app drawer doesn’t rotate. And I would like the UI to rotate when my KB is opened. HTC desire z – Jonathan 2. Works great on atrix.Kudos to developers. Awesome. Though needs: Better notification bar More stock images of tiles Better fitting of widgets on tiles – Manny 3. Looks really good like it much more than I thought I would runs real smooth running royal ginger 2.1 – Jay 4. Omg amazing i am definetly keeping it as my default best of android and windows – Devon 5. Man! An update every week! Very very responsive developer! – Andrew You can read more reviews on Android Market here.  There is no doubt that this application is receiving rave reviews. After scanning a while through the reviews, few complaints throw light on the negative side: Battery drains a bit faster & Low end mobile run a bit sluggish. The application is available in two versions – an ad supported free version and $1.41 ad free version. Download Launcher 7 from Android Market This article titled,Launch 7:Windows Phone 7 Style Live Tiles On Android Mobiles, was originally published at Tech Dreams. Grab our rss feed or fan us on Facebook to get updates from us.

    Read the article

  • What DX level does my graphics card support? Does it go to 11?

    - by Daniel Moth
    Recently I run into a situation that I have run into quite a few times. Someone encounters a machine and the question arises: "Is there a DirectX 11 card in this machine?". Typically the reason you are interested in that is because cards with DirectX 11 drivers fully support DirectCompute (and by extension C++ AMP) for GPGPU programming. The driver specifically is WDDM (1.1 on Windows 7 and Windows 8 introduces WDDM 1.2 with cool new capabilities). There are many ways for figuring out if you have a DirectX11 card, so here are the approaches that you can use, with a bonus right at the end of the post. Run DxDiag WindowsKey + R, type DxDiag and hit Enter. That is the DirectX diagnostic tool, which unfortunately, only tells you on the "System" tab what is the highest version of DirectX installed on your machine. So if it reports DirectX 11, that doesn't mean you have a DX11 driver! The "Display" tab has a promising "DDI version" label, but unfortunately that doesn't seem to be accurate on the machines I've tested it with (or I may be misinterpreting its use). Either way, this tool is not the one you want for this purpose, although it is good for telling you the WDDM version among other things. Use the Microsoft hardware page There is a Microsoft Windows 7 compatibility center, that lists all hardware (tip: use the advanced search) and you could try and locate your device there… good luck. Use Wikipedia or the hardware vendor's website Use the Wikipedia page for the vendor cards, for both nvidia and amd. Often this information will also be in the specifications for the cards on the IHV site, but is is nice that wikipedia has a single page per vendor that you can search etc. There is a column in the tables for API support where you can see the DirectX version. Check if it is one of these recommended DX11 cards You may not have a DirectX 11 card and are interested in purchasing one. While I am in no position to make recommendations, I will list here some cards from two big IHVs that we know are DirectX 11 capable. Some AMD (aka ATI) cards Low end, inexpensive DX11 hardware: Radeon 5450, 5550, 6450, 6570 Mid range (decent perf, single precision): Radeon 5750, 5770, 6770, 6790 High end (capable of double precision): Radeon 5850, 5870, 6950, 6970 Single precision APUs: AMD E-Series APUs AMD A-Series APUs Some NVIDIA cards Low end, inexpensive DX11 hardware: GeForce GT430, GT 440, GT520, GTS 450 Quadro 400, 600 Mid-range (decent perf, single precision): GeForce GTX 460, GTX 550 Ti, GTX 560, GTX 560 Ti Quadro 2000 High end (capable of double precision): GeForce GTX 480, GTX 570, GTX 580, GTX 590, GTX 595 Quadro 4000, 5000, 6000 Tesla C2050, C2070, C2075 Get the DirectX SDK and run DirectX Caps Viewer Download and install the June 2010 DirectX SDK. As part of that you now have the DirectX Capabilities Viewer utility (find it in your start menu by searching for "DirectX Caps Viewer", the filename is DXCapsViewer.exe). It will list all your devices (emulated, and real hardware ones) under the first node. Expand the hardware entries and then expand again the Direct3D 11 folder. If you see D3D_FEATURE_LEVEL_11_ under that, then your card supports feature level 11 which means it supports DirectCompute and C++ AMP. In the following screenshot of one of my old laptops, the card only goes to feature level 10. Run a utility from the web that just tells you! Of course, writing some C++ AMP code that enumerates accelerators and lists the ones that are capable is trivial. However that requires that you have redistributed the runtime, so a more broadly applicable approach is to use the DX APIs directly to enumerate the DX11 capable cards. That is exactly what the development lead for C++ AMP has done and he describes and shares that utility at this post. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

< Previous Page | 62 63 64 65 66 67 68 69 70 71 72 73  | Next Page >