Search Results

Search found 10161 results on 407 pages for 'task flow'.

Page 66/407 | < Previous Page | 62 63 64 65 66 67 68 69 70 71 72 73  | Next Page >

  • Which opcodes are faster at the CPU level?

    - by Geotarget
    In every programming language there are sets of opcodes that are recommended over others. I've tried to list them here, in order of speed. Bitwise Integer Addition / Subtraction Integer Multiplication / Division Comparison Control flow Float Addition / Subtraction Float Multiplication / Division Where you need high-performance code, C++ can be hand optimized in assembly, to use SIMD instructions or more efficient control flow, data types, etc. So I'm trying to understand if the data type (int32 / float32 / float64) or the operation used (*, +, &) affects performance at the CPU level. Is a single multiply slower on the CPU than an addition? In MCU theory you learn that speed of opcodes is determined by the number of CPU cycles it takes to execute. So does it mean that multiply takes 4 cycles and add takes 2? Exactly what are the speed characteristics of the basic math and control flow opcodes? If two opcodes take the same number of cycles to execute, then both can be used interchangeably without any performance gain / loss? Any other technical details you can share regarding x86 CPU performance is appreciated

    Read the article

  • Analytics - Where do my drop offs go?

    - by BadCash
    I have a website set up with Google Analytics (through the Wordpress plugin "Google Analytics for WordPress" by Joos de Valk). When I check out the visitors flow in Google Analytics, it shows something like this: (home) - 43% drop-offs /page-2/ - 10% drop-offs ... etc ... I have also set up events for external links. My main "goal" of the website is to drive traffic to my Android app on Google Play, so I have a couple of different links to that that are all set up as events. Everything seems to be working, my events show up when I go to Content - Events in Google Analytics. However, it seems to me that some percentage of the users that are reported as "drop-offs" in fact have clicked on one of the external links. But there's no info about the reason of those drop-offs in the Visitors flow-chart. I can of course check out each specific event category, event action and set "other" to Content/Page, which (I guess) shows the number of visitors who triggered a specific event on a specific page. It just seems like such a complicated way of going about this! So, is there a way to get a more detailed picture, including events, in the Visitors flow chart? Something like: (home) - 43% drop-offs Event Action: "Google Play"=50%, "Youtube"=10%, (not set)=40%

    Read the article

  • Towards Ultra-Reusability for ADF - Adaptive Bindings

    - by Duncan Mills
    The task flow mechanism embodies one of the key value propositions of the ADF Framework, it's primary contribution being the componentization of your applications and implicitly the introduction of a re-use culture, particularly in large applications. However, what if we could do more? How could we make task flows even more re-usable than they are today? Well one great technique is to take advantage of a feature that is already present in the framework, a feature which I will call, for want of a better name, "adaptive bindings". What's an adaptive binding? well consider a simple use case.  I have several screens within my application which display tabular data which are all essentially identical, the only difference is that they happen to be based on different data collections (View Objects, Bean collections, whatever) , and have a different set of columns. Apart from that, however, they happen to be identical; same toolbar, same key functions and so on. So wouldn't it be nice if I could have a single parametrized task flow to represent that type of UI and reuse it? Hold on you say, great idea, however, to do that we'd run into problems. Each different collection that I want to display needs different entries in the pageDef file and: I want to continue to use the ADF Bindings mechanism rather than dropping back to passing the whole collection into the taskflow   If I do use bindings, there is no way I want to have to declare iterators and tree bindings for every possible collection that I might want the flow to handle  Ah, joy! I reply, no need to panic, you can just use adaptive bindings. Defining an Adaptive Binding  It's easiest to explain with a simple before and after use case.  Here's a basic pageDef definition for our familiar Departments table.  <executables> <iterator Binds="DepartmentsView1" DataControl="HRAppModuleDataControl" RangeSize="25"             id="DepartmentsView1Iterator"/> </executables> <bindings> <tree IterBinding="DepartmentsView1Iterator" id="DepartmentsView1">   <nodeDefinition DefName="oracle.demo.model.vo.DepartmentsView" Name="DepartmentsView10">     <AttrNames>       <Item Value="DepartmentId"/>         <Item Value="DepartmentName"/>         <Item Value="ManagerId"/>         <Item Value="LocationId"/>       </AttrNames>     </nodeDefinition> </tree> </bindings>  Here's the adaptive version: <executables> <iterator Binds="${pageFlowScope.voName}" DataControl="HRAppModuleDataControl" RangeSize="25"             id="TableSourceIterator"/> </executables> <bindings> <tree IterBinding="TableSourceIterator" id="GenericView"> <nodeDefinition Name="GenericViewNode"/> </tree> </bindings>  You'll notice three changes here.   Most importantly, you'll see that the hard-coded View Object name  that formally populated the iterator Binds attribute is gone and has been replaced by an expression (${pageFlowScope.voName}). This of course, is key, you can see that we can pass a parameter to the task flow, telling it exactly what VO to instantiate to populate this table! I've changed the IDs of the iterator and the tree binding, simply to reflect that they are now re-usable The tree binding itself has simplified and the node definition is now empty.  Now what this effectively means is that the #{node} map exposed through the tree binding will expose every attribute of the underlying iterator's collection - neat! (kudos to Eugene Fedorenko at this point who reminded me that this was even possible in his excellent "deep dive" session at OpenWorld  this year) Using the adaptive binding in the UI Now we have a parametrized  binding we have to make changes in the UI as well, first of all to reflect the new ID that we've assigned to the binding (of course) but also to change the column list from being a fixed known list to being a generic metadata driven set: <af:table value="#{bindings.GenericView.collectionModel}" rows="#{bindings.GenericView.rangeSize}"         fetchSize="#{bindings.GenericView.rangeSize}"           emptyText="#{bindings.GenericView.viewable ? 'No data to display.' : 'Access Denied.'}"           var="row" rowBandingInterval="0"           selectedRowKeys="#{bindings.GenericView.collectionModel.selectedRow}"           selectionListener="#{bindings.GenericView.collectionModel.makeCurrent}"           rowSelection="single" id="t1"> <af:forEach items="#{bindings.GenericView.attributeDefs}" var="def">   <af:column headerText="#{bindings.GenericView.labels[def.name]}" sortable="true"            sortProperty="#{def.name}" id="c1">     <af:outputText value="#{row[def.name]}" id="ot1"/>     </af:column>   </af:forEach> </af:table> Of course you are not constrained to a simple read only table here.  It's a normal tree binding and iterator that you are using behind the scenes so you can do all the usual things, but you can see the value of using ADFBC as the back end model as you have the rich pantheon of UI hints to use to derive things like labels (and validators and converters...)  One Final Twist  To finish on a high note I wanted to point out that you can take this even further and achieve the ultra-reusability I promised. Here's the new version of the pageDef iterator, see if you can notice the subtle change? <iterator Binds="{pageFlowScope.voName}"  DataControl="${pageFlowScope.dataControlName}" RangeSize="25"           id="TableSourceIterator"/>  Yes, as well as parametrizing the collection (VO) name, we can also parametrize the name of the data control. So your task flow can graduate from being re-usable within an application to being truly generic. So if you have some really common patterns within your app you can wrap them up and reuse then across multiple developments without having to dictate data control names, or connection names. This also demonstrates the importance of interacting with data only via the binding layer APIs. If you keep any code in the task flow generic in that way you can deal with data from multiple types of data controls, not just one flavour. Enjoy!

    Read the article

  • C#/.NET Little Wonders: The Timeout static class

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. When I started the “Little Wonders” series, I really wanted to pay homage to parts of the .NET Framework that are often small but can help in big ways.  The item I have to discuss today really is a very small item in the .NET BCL, but once again I feel it can help make the intention of code much clearer and thus is worthy of note. The Problem - Magic numbers aren’t very readable or maintainable In my first Little Wonders Post (Five Little Wonders That Make Code Better) I mention the TimeSpan factory methods which, I feel, really help the readability of constructed TimeSpan instances. Just to quickly recap that discussion, ask yourself what the TimeSpan specified in each case below is 1: // Five minutes? Five Seconds? 2: var fiveWhat1 = new TimeSpan(0, 0, 5); 3: var fiveWhat2 = new TimeSpan(0, 0, 5, 0); 4: var fiveWhat3 = new TimeSpan(0, 0, 5, 0, 0); You’d think they’d all be the same unit of time, right?  After all, most overloads tend to tack additional arguments on the end.  But this is not the case with TimeSpan, where the constructor forms are:     TimeSpan(int hours, int minutes, int seconds);     TimeSpan(int days, int hours, int minutes, int seconds);     TimeSpan(int days, int hours, int minutes, int seconds, int milliseconds); Notice how in the 4 and 5 parameter version we suddenly have the parameter days slipping in front of hours?  This can make reading constructors like those above much harder.  Fortunately, there are TimeSpan factory methods to help make your intention crystal clear: 1: // Ah! Much clearer! 2: var fiveSeconds = TimeSpan.FromSeconds(5); These are great because they remove all ambiguity from the reader!  So in short, magic numbers in constructors and methods can be ambiguous, and anything we can do to clean up the intention of the developer will make the code much easier to read and maintain. Timeout – Readable identifiers for infinite timeout values In a similar way to TimeSpan, let’s consider specifying timeouts for some of .NET’s (or our own) many methods that allow you to specify timeout periods. For example, in the TPL Task class, there is a family of Wait() methods that can take TimeSpan or int for timeouts.  Typically, if you want to specify an infinite timeout, you’d just call the version that doesn’t take a timeout parameter at all: 1: myTask.Wait(); // infinite wait But there are versions that take the int or TimeSpan for timeout as well: 1: // Wait for 100 ms 2: myTask.Wait(100); 3:  4: // Wait for 5 seconds 5: myTask.Wait(TimeSpan.FromSeconds(5); Now, if we want to specify an infinite timeout to wait on the Task, we could pass –1 (or a TimeSpan set to –1 ms), which what the .NET BCL methods with timeouts use to represent an infinite timeout: 1: // Also infinite timeouts, but harder to read/maintain 2: myTask.Wait(-1); 3: myTask.Wait(TimeSpan.FromMilliseconds(-1)); However, these are not as readable or maintainable.  If you were writing this code, you might make the mistake of thinking 0 or int.MaxValue was an infinite timeout, and you’d be incorrect.  Also, reading the code above it isn’t as clear that –1 is infinite unless you happen to know that is the specified behavior. To make the code like this easier to read and maintain, there is a static class called Timeout in the System.Threading namespace which contains definition for infinite timeouts specified as both int and TimeSpan forms: Timeout.Infinite An integer constant with a value of –1 Timeout.InfiniteTimeSpan A static readonly TimeSpan which represents –1 ms (only available in .NET 4.5+) This makes our calls to Task.Wait() (or any other calls with timeouts) much more clear: 1: // intention to wait indefinitely is quite clear now 2: myTask.Wait(Timeout.Infinite); 3: myTask.Wait(Timeout.InfiniteTimeSpan); But wait, you may say, why would we care at all?  Why not use the version of Wait() that takes no arguments?  Good question!  When you’re directly calling the method with an infinite timeout that’s what you’d most likely do, but what if you are just passing along a timeout specified by a caller from higher up?  Or perhaps storing a timeout value from a configuration file, and want to default it to infinite? For example, perhaps you are designing a communications module and want to be able to shutdown gracefully, but if you can’t gracefully finish in a specified amount of time you want to force the connection closed.  You could create a Shutdown() method in your class, and take a TimeSpan or an int for the amount of time to wait for a clean shutdown – perhaps waiting for client to acknowledge – before terminating the connection.  So, assume we had a pub/sub system with a class to broadcast messages: 1: // Some class to broadcast messages to connected clients 2: public class Broadcaster 3: { 4: // ... 5:  6: // Shutdown connection to clients, wait for ack back from clients 7: // until all acks received or timeout, whichever happens first 8: public void Shutdown(int timeout) 9: { 10: // Kick off a task here to send shutdown request to clients and wait 11: // for the task to finish below for the specified time... 12:  13: if (!shutdownTask.Wait(timeout)) 14: { 15: // If Wait() returns false, we timed out and task 16: // did not join in time. 17: } 18: } 19: } We could even add an overload to allow us to use TimeSpan instead of int, to give our callers the flexibility to specify timeouts either way: 1: // overload to allow them to specify Timeout in TimeSpan, would 2: // just call the int version passing in the TotalMilliseconds... 3: public void Shutdown(TimeSpan timeout) 4: { 5: Shutdown(timeout.TotalMilliseconds); 6: } Notice in case of this class, we don’t assume the caller wants infinite timeouts, we choose to rely on them to tell us how long to wait.  So now, if they choose an infinite timeout, they could use the –1, which is more cryptic, or use Timeout class to make the intention clear: 1: // shutdown the broadcaster, waiting until all clients ack back 2: // without timing out. 3: myBroadcaster.Shutdown(Timeout.Infinite); We could even add a default argument using the int parameter version so that specifying no arguments to Shutdown() assumes an infinite timeout: 1: // Modified original Shutdown() method to add a default of 2: // Timeout.Infinite, works because Timeout.Infinite is a compile 3: // time constant. 4: public void Shutdown(int timeout = Timeout.Infinite) 5: { 6: // same code as before 7: } Note that you can’t default the ShutDown(TimeSpan) overload with Timeout.InfiniteTimeSpan since it is not a compile-time constant.  The only acceptable default for a TimeSpan parameter would be default(TimeSpan) which is zero milliseconds, which specified no wait, not infinite wait. Summary While Timeout.Infinite and Timeout.InfiniteTimeSpan are not earth-shattering classes in terms of functionality, they do give you very handy and readable constant values that you can use in your programs to help increase readability and maintainability when specifying infinite timeouts for various timeouts in the BCL and your own applications. Technorati Tags: C#,CSharp,.NET,Little Wonders,Timeout,Task

    Read the article

  • JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue

    - by John-Brown.Evans
    JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue .jblist{list-style-type:disc;margin:0;padding:0;padding-left:0pt;margin-left:36pt} ol{margin:0;padding:0} .c12_5{vertical-align:top;width:468pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c8_5{vertical-align:top;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 0pt 5pt} .c10_5{vertical-align:top;width:207pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c14_5{vertical-align:top;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c21_5{background-color:#ffffff} .c18_5{color:#1155cc;text-decoration:underline} .c16_5{color:#666666;font-size:12pt} .c5_5{background-color:#f3f3f3;font-weight:bold} .c19_5{color:inherit;text-decoration:inherit} .c3_5{height:11pt;text-align:center} .c11_5{font-weight:bold} .c20_5{background-color:#00ff00} .c6_5{font-style:italic} .c4_5{height:11pt} .c17_5{background-color:#ffff00} .c0_5{direction:ltr} .c7_5{font-family:"Courier New"} .c2_5{border-collapse:collapse} .c1_5{line-height:1.0} .c13_5{background-color:#f3f3f3} .c15_5{height:0pt} .c9_5{text-align:center} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal} Welcome to another post in the series of blogs which demonstrates how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue Today we will create a BPEL process which will read (dequeue) the message from the JMS queue, which we enqueued in the last example. The JMS adapter will dequeue the full XML payload from the queue. 1. Recap and Prerequisites In the previous examples, we created a JMS Queue, a Connection Factory and a Connection Pool in the WebLogic Server Console. Then we designed and deployed a BPEL composite, which took a simple XML payload and enqueued it to the JMS queue. In this example, we will read that same message from the queue, using a JMS adapter and a BPEL process. As many of the configuration steps required to read from that queue were done in the previous samples, this one will concentrate on the new steps. A summary of the required objects is listed below. To find out how to create them please see the previous samples. They also include instructions on how to verify the objects are set up correctly. WebLogic Server Objects Object Name Type JNDI Name TestConnectionFactory Connection Factory jms/TestConnectionFactory TestJMSQueue JMS Queue jms/TestJMSQueue eis/wls/TestQueue Connection Pool eis/wls/TestQueue Schema XSD File The following XSD file is used for the message format. It was created in the previous example and will be copied to the new process. stringPayload.xsd <?xml version="1.0" encoding="windows-1252" ?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"                 xmlns="http://www.example.org"                 targetNamespace="http://www.example.org"                 elementFormDefault="qualified">   <xsd:element name="exampleElement" type="xsd:string">   </xsd:element> </xsd:schema> JMS Message After executing the previous samples, the following XML message should be in the JMS queue located at jms/TestJMSQueue: <?xml version="1.0" encoding="UTF-8" ?><exampleElement xmlns="http://www.example.org">Test Message</exampleElement> JDeveloper Connection You will need a valid Application Server Connection in JDeveloper pointing to the SOA server which the process will be deployed to. 2. Create a BPEL Composite with a JMS Adapter Partner Link In the previous example, we created a composite in JDeveloper called JmsAdapterWriteSchema. In this one, we will create a new composite called JmsAdapterReadSchema. There are probably many ways of incorporating a JMS adapter into a SOA composite for incoming messages. One way is design the process in such a way that the adapter polls for new messages and when it dequeues one, initiates a SOA or BPEL instance. This is possibly the most common use case. Other use cases include mid-flow adapters, which are activated from within the BPEL process. In this example we will use a polling adapter, because it is the most simple to set up and demonstrate. But it has one disadvantage as a demonstrative model. When a polling adapter is active, it will dequeue all messages as soon as they reach the queue. This makes it difficult to monitor messages we are writing to the queue, because they will disappear from the queue as soon as they have been enqueued. To work around this, we will shut down the composite after deploying it and restart it as required. (Another solution for this would be to pause the consumption for the queue and resume consumption again if needed. This can be done in the WLS console JMS-Modules -> queue -> Control -> Consumption -> Pause/Resume.) We will model the composite as a one-way incoming process. Usually, a BPEL process will do something useful with the message after receiving it, such as passing it to a database or file adapter, a human workflow or external web service. But we only want to demonstrate how to dequeue a JMS message using BPEL and a JMS adapter, so we won’t complicate the design with further activities. However, we do want to be able to verify that we have read the message correctly, so the BPEL process will include a small piece of embedded java code, which will print the message to standard output, so we can view it in the SOA server’s log file. Alternatively, you can view the instance in the Enterprise Manager and verify the message. The following steps are all executed in JDeveloper. Create the project in the same JDeveloper application used for the previous examples or create a new one. Create a SOA Project Create a new project and choose SOA Tier > SOA Project as its type. Name it JmsAdapterReadSchema. When prompted for the composite type, choose Empty Composite. Create a JMS Adapter Partner Link In the composite editor, drag a JMS adapter over from the Component Palette to the left-hand swim lane, under Exposed Services. This will start the JMS Adapter Configuration Wizard. Use the following entries: Service Name: JmsAdapterRead Oracle Enterprise Messaging Service (OEMS): Oracle WebLogic JMS AppServer Connection: Use an application server connection pointing to the WebLogic server on which the JMS queue and connection factory mentioned under Prerequisites above are located. Adapter Interface > Interface: Define from operation and schema (specified later) Operation Type: Consume Message Operation Name: Consume_message Consume Operation Parameters Destination Name: Press the Browse button, select Destination Type: Queues, then press Search. Wait for the list to populate, then select the entry for TestJMSQueue , which is the queue created in a previous example. JNDI Name: The JNDI name to use for the JMS connection. As in the previous example, this is probably the most common source of error. This is the JNDI name of the JMS adapter’s connection pool created in the WebLogic Server and which points to the connection factory. JDeveloper does not verify the value entered here. If you enter a wrong value, the JMS adapter won’t find the queue and you will get an error message at runtime, which is very difficult to trace. In our example, this is the value eis/wls/TestQueue . (See the earlier step on how to create a JMS Adapter Connection Pool in WebLogic Server for details.) Messages/Message SchemaURL: We will use the XSD file created during the previous example, in the JmsAdapterWriteSchema project to define the format for the incoming message payload and, at the same time, demonstrate how to import an existing XSD file into a JDeveloper project. Press the magnifying glass icon to search for schema files. In the Type Chooser, press the Import Schema File button. Select the magnifying glass next to URL to search for schema files. Navigate to the location of the JmsAdapterWriteSchema project > xsd and select the stringPayload.xsd file. Check the “Copy to Project” checkbox, press OK and confirm the following Localize Files popup. Now that the XSD file has been copied to the local project, it can be selected from the project’s schema files. Expand Project Schema Files > stringPayload.xsd and select exampleElement: string . Press Next and Finish, which will complete the JMS Adapter configuration.Save the project. Create a BPEL Component Drag a BPEL Process from the Component Palette (Service Components) to the Components section of the composite designer. Name it JmsAdapterReadSchema and select Template: Define Service Later and press OK. Wire the JMS Adapter to the BPEL Component Now wire the JMS adapter to the BPEL process, by dragging the arrow from the adapter to the BPEL process. A Transaction Properties popup will be displayed. Set the delivery mode to async.persist. This completes the steps at the composite level. 3 . Complete the BPEL Process Design Invoke the BPEL Flow via the JMS Adapter Open the BPEL component by double-clicking it in the design view of the composite.xml, or open it from the project navigator by selecting the JmsAdapterReadSchema.bpel file. This will display the BPEL process in the design view. You should see the JmsAdapterRead partner link in the left-hand swim lane. Drag a Receive activity onto the BPEL flow diagram, then drag a wire (left-hand yellow arrow) from it to the JMS adapter. This will open the Receive activity editor. Auto-generate the variable by pressing the green “+” button and check the “Create Instance” checkbox. This will result in a BPEL instance being created when a new JMS message is received. At this point it would actually be OK to compile and deploy the composite and it would pick up any messages from the JMS queue. In fact, you can do that to test it, if you like. But it is very rudimentary and would not be doing anything useful with the message. Also, you could only verify the actual message payload by looking at the instance’s flow in the Enterprise Manager. There are various other possibilities; we could pass the message to another web service, write it to a file using a file adapter or to a database via a database adapter etc. But these will all introduce unnecessary complications to our sample. So, to keep it simple, we will add a small piece of Java code to the BPEL process which will write the payload to standard output. This will be written to the server’s log file, which will be easy to monitor. Add a Java Embedding Activity First get the full name of the process’s input variable, as this will be needed for the Java code. Go to the Structure pane and expand Variables > Process > Variables. Then expand the input variable, for example, "Receive1_Consume_Message_InputVariable > body > ns2:exampleElement”, and note variable’s name and path, if they are different from this one. Drag a Java Embedding activity from the Component Palette (Oracle Extensions) to the BPEL flow, after the Receive activity, then open it to edit. Delete the example code and replace it with the following, replacing the variable parts with those in your sample, if necessary.: System.out.println("JmsAdapterReadSchema process picked up a message"); oracle.xml.parser.v2.XMLElement inputPayload =    (oracle.xml.parser.v2.XMLElement)getVariableData(                           "Receive1_Consume_Message_InputVariable",                           "body",                           "/ns2:exampleElement");   String inputString = inputPayload.getFirstChild().getNodeValue(); System.out.println("Input String is " + inputPayload.getFirstChild().getNodeValue()); Tip. If you are not sure of the exact syntax of the input variable, create an Assign activity in the BPEL process and copy the variable to another, temporary one. Then check the syntax created by the BPEL designer. This completes the BPEL process design in JDeveloper. Save, compile and deploy the process to the SOA server. 3. Test the Composite Shut Down the JmsAdapterReadSchema Composite After deploying the JmsAdapterReadSchema composite to the SOA server it is automatically activated. If there are already any messages in the queue, the adapter will begin polling them. To ease the testing process, we will deactivate the process first Log in to the Enterprise Manager (Fusion Middleware Control) and navigate to SOA > soa-infra (soa_server1) > default (or wherever you deployed your composite to) and click on JmsAdapterReadSchema [1.0] . Press the Shut Down button to disable the composite and confirm the following popup. Monitor Messages in the JMS Queue In a separate browser window, log in to the WebLogic Server Console and navigate to Services > Messaging > JMS Modules > TestJMSModule > TestJMSQueue > Monitoring. This is the location of the JMS queue we created in an earlier sample (see the prerequisites section of this sample). Check whether there are any messages already in the queue. If so, you can dequeue them using the QueueReceive Java program created in an earlier sample. This will ensure that the queue is empty and doesn’t contain any messages in the wrong format, which would cause the JmsAdapterReadSchema to fail. Send a Test Message In the Enterprise Manager, navigate to the JmsAdapterWriteSchema created earlier, press Test and send a test message, for example “Message from JmsAdapterWriteSchema”. Confirm that the message was written correctly to the queue by verifying it via the queue monitor in the WLS Console. Monitor the SOA Server’s Output A program deployed on the SOA server will write its standard output to the terminal window in which the server was started, unless this has been redirected to somewhere else, for example to a file. If it has not been redirected, go to the terminal session in which the server was started, otherwise open and monitor the file to which it was redirected. Re-Enable the JmsAdapterReadSchema Composite In the Enterprise Manager, navigate to the JmsAdapterReadSchema composite again and press Start Up to re-enable it. This should cause the JMS adapter to dequeue the test message and the following output should be written to the server’s standard output: JmsAdapterReadSchema process picked up a message. Input String is Message from JmsAdapterWriteSchema Note that you can also monitor the payload received by the process, by navigating to the the JmsAdapterReadSchema’s Instances tab in the Enterprise Manager. Then select the latest instance and view the flow of the BPEL component. The Receive activity will contain and display the dequeued message too. 4 . Troubleshooting This sample demonstrates how to dequeue an XML JMS message using a BPEL process and no additional functionality. For example, it doesn’t contain any error handling. Therefore, any errors in the payload will result in exceptions being written to the log file or standard output. If you get any errors related to the payload, such as Message handle error ... ORABPEL-09500 ... XPath expression failed to execute. An error occurs while processing the XPath expression; the expression is /ns2:exampleElement. ... etc. check that the variable used in the Java embedding part of the process was entered correctly. Possibly follow the tip mentioned in previous section. If this doesn’t help, you can delete the Java embedding part and simply verify the message via the flow diagram in the Enterprise Manager. Or use a different method, such as writing it to a file via a file adapter. This concludes this example. In the next post, we will begin with an AQ JMS example, which uses JMS to write to an Advanced Queue stored in the database. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • Portable class libraries and fetching JSON

    - by Jeff
    After much delay, we finally have the Windows Phone 8 SDK to go along with the Windows 8 Store SDK, or whatever ridiculous name they’re giving it these days. (Seriously… that no one could come up with a suitable replacement for “metro” is disappointing in an otherwise exciting set of product launches.) One of the neat-o things is the potential for code reuse, particularly across Windows 8 and Windows Phone 8 apps. This is accomplished in part with portable class libraries, which allow you to share code between different types of projects. With some other techniques and quasi-hacks, you can share some amount of code, and I saw it mentioned in one of the Build videos that they’re seeing as much as 70% code reuse. Not bad. However, I’ve already hit a super annoying snag. It appears that the HttpClient class, with its idiot-proof async goodness, is not included in the Windows Phone 8 class libraries. Shock, gasp, horror, disappointment, etc. The delay in releasing it already caused dismay among developers, and I’m sure this won’t help. So I started refactoring some code I already had for a Windows 8 Store app (ugh) to accommodate the use of HttpWebRequest instead. I haven’t tried it in a Windows Phone 8 project beyond compiling, but it appears to work. I used this StackOverflow answer as a starting point since it’s been a long time since I used HttpWebRequest, and keep in mind that it has no exception handling. It needs refinement. The goal here is to new up the client, and call a method that returns some deserialized JSON objects from the Intertubes. Adding facilities for headers or cookies is probably a good next step. You need to use NuGet for a Json.NET reference. So here’s the start: using System.Net; using System.Threading.Tasks; using Newtonsoft.Json; using System.IO; namespace MahProject {     public class ServiceClient<T> where T : class     {         public ServiceClient(string url)         {             _url = url;         }         private readonly string _url;         public async Task<T> GetResult()         {             var response = await MakeAsyncRequest(_url);             var result = JsonConvert.DeserializeObject<T>(response);             return result;         }         public static Task<string> MakeAsyncRequest(string url)         {             var request = (HttpWebRequest)WebRequest.Create(url);             request.ContentType = "application/json";             Task<WebResponse> task = Task.Factory.FromAsync(                 request.BeginGetResponse,                 asyncResult => request.EndGetResponse(asyncResult),                 null);             return task.ContinueWith(t => ReadStreamFromResponse(t.Result));         }         private static string ReadStreamFromResponse(WebResponse response)         {             using (var responseStream = response.GetResponseStream())                 using (var reader = new StreamReader(responseStream))                 {                     var content = reader.ReadToEnd();                     return content;                 }         }     } } Calling it in some kind of repository class may look like this, if you wanted to return an array of Park objects (Park model class omitted because it doesn’t matter): public class ParkRepo {     public async Task<Park[]> GetAllParks()     {         var client = new ServiceClient<Park[]>(http://superfoo/endpoint);         return await client.GetResult();     } } And then from inside your WP8 or W8S app (see what I did there?), when you load state or do some kind of UI event handler (making sure the method uses the async keyword): var parkRepo = new ParkRepo(); var results = await parkRepo.GetAllParks(); // bind results to some UI or observable collection or something Hopefully this saves you a little time.

    Read the article

  • making query from different related tables using codeigniter

    - by fatemeh karam
    I'm using codeigniter as i mentioned this is a part of my view code foreach($projects_query as $row)// $row indicates the projects { ?> <tr><td><h3><button type="submit" class="button red-gradient glossy" name = "project_click" > <?php echo $row->txtTaskName; ?></button></h3></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <?php foreach($tasks_query as $row2) { // if( $row->txtTaskName == "TestProject") if($row->intTaskID == $row2->intInside)// intInside indicades that the current task($row2) is the subset of which task (system , subsystem or project) { if($row2->intSummary == 0)//if the task(the system) is an executable task & doesn't have any subtask: { $query_team_user_id = $this->admin_in_out_model->get_user_team_task_query($row2->intTaskID);//runs the function and generates a query from tbl_userteamtask where intTaskID equals to the selected row's intTaskID foreach($query_team_user_id as $row_teamid) { $query_teamname = $this->admin_in_out_model->get_team_name($row_teamid->intTeamID); $query_fn_ln = $this->admin_in_out_model->get_fn_ln_from_userid($row_teamid->intUserID); foreach($query_teamname as $row_teamname) {?> <tr><td></td><td></td><td><h4> <?php echo $row2->txtTaskName;?></h4></td> <td><b><font color='#F33558'><?php echo $row_teamname->txtTeamName;?></font></b></td> <?php } foreach($query_fn_ln as $row_f_l_name) {?> <td> <?php echo $row_f_l_name->txtFirstname." ".$row_f_l_name->txtLastname;?></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td> <?php }?> </tr> <?php } } else{ ?> <tr><td></td><td></td><td><h4> <?php echo $row2->txtTaskName;?></h4></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><?php } foreach($tasks_query as $row_subsystems) { if($row_subsystems->intInside == $row2->intTaskID )//if the task is the subtask of a system(it means the task is a subsystem) { if($row_subsystems->intSummary == 0)//if the task is an executable task & doesn't have any subtask: { $query_team_user_id = $this->admin_in_out_model->get_user_team_task_query($row_subsystems->intTaskID); foreach($query_team_user_id as $row_teamid) {?> <tr><?php $query_teamname = $this->admin_in_out_model->get_team_name($row_teamid->intTeamID); $query_fn_ln = $this->admin_in_out_model->get_fn_ln_from_userid($row_teamid->intUserID); foreach($query_teamname as $row_teamname) {?> <td></td><td></td><td><h5><?php echo $row_subsystems->txtTaskName?></h5><br/></td> <td><b><font color='#F33558'><?php echo $row_teamname->txtTeamName;?></font></b></td><?php } foreach($query_fn_ln as $row_f_l_name) {?> <td><?php echo $row_f_l_name->txtFirstname." ".$row_f_l_name->txtLastname;?></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><?php }?> </tr><?php } } else{ ?><tr><td></td><td></td><td><h5><?php echo $row_subsystems->txtTaskName?></h5></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><?php } foreach($tasks_query as $row_tasks) { if($row_tasks->intInside == $row_subsystems->intTaskID )//if the task is the subtask of a subsystem { if($row_tasks->intSummary == 0)//if the task is an executable task & doesn't have any subtask: { $query_team_user_id = $this->admin_in_out_model->get_user_team_task_query($row_tasks->intTaskID); foreach($query_team_user_id as $row_teamid) {?> <tr><?php $query_teamname = $this->admin_in_out_model->get_team_name($row_teamid->intTeamID); $query_fn_ln = $this->admin_in_out_model->get_fn_ln_from_userid($row_teamid->intUserID); foreach($query_teamname as $row_teamname) {?> <td></td><td></td><td><b><?php echo $row_tasks->txtTaskName;?></b></td> <td><b><font color='#F33558'><?php echo $row_teamname->txtTeamName;?></font></b></td><?php } foreach($query_fn_ln as $row_f_l_name) {?> <td><?php echo $row_f_l_name->txtFirstname." ".$row_f_l_name->txtLastname;?></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><?php }?> </tr><?php } } } } } } } } }?> and in controller i have $projects_query = $this->admin_in_out_model->get_projects(); $tasks_query = $this->admin_in_out_model->get_systems(); $userteamtask = $this->admin_in_out_model->get_user_team_task(); $data['tasks_query'] = $tasks_query; $data['projects_query'] = $projects_query; $this->load->view('project_view',$data); but as you see I'm calling my model functions within the view how can i do something else to do this i mean not calling my model function in my view I have to add that, my model function have parameters these are the model functions: function get_projects() { $this -> db -> select('*'); $this -> db -> from('tbl_task'); $this -> db -> where('intInside','0'); $query = $this->db->get(); return $query->result(); } function get_systems() { $this -> db -> select('*'); $this -> db -> from('tbl_task '); $this -> db -> where('intInside <> ','0'); $query = $this->db->get(); return $query->result(); } function get_user_team_task_query($task_id)//gets information from tbl_userteamtask where the field intTaskID is equal to $task_id { $this -> db -> select('*'); $this -> db -> from('tbl_userteamtask'); $this -> db -> where('intTaskID',$task_id); $query_teamid = $this->db->get(); return $query_teamid->result(); } function get_user_team_task()//gets information from tbl_userteamtask where the field intTaskID is equal to $task_id { $this -> db -> select('*'); $this -> db -> from('tbl_userteamtask'); // $this -> db -> where('intTaskID',$task_id); $query_teamid = $this->db->get(); return $query_teamid->result(); } function get_team_name($query_teamid) { $this -> db -> select('*'); $this -> db -> from('tbl_team'); $this -> db -> where('intTeamID',$query_teamid); $query_teamname = $this->db->get(); return $query_teamname->result(); } function get_user_name($query_userid) { $this -> db -> select('*'); $this -> db -> from('tbl_user'); $this -> db -> where('intUserID',$query_userid); $query_username = $this->db->get(); return $query_username->result(); } function get_fn_ln_from_userid($selected_id) { $this -> db -> select('tbl_user.intUserID, tbl_user.intPersonID,tbl_person.intPersonID,tbl_person.txtFirstname, tbl_person.txtLastname'); $this -> db -> from('tbl_user , tbl_person'); $where = "tbl_user.intPersonID = tbl_person.intPersonID "; $this -> db -> where($where); $this -> db -> where('tbl_user.intUserID', $selected_id); $query = $this -> db -> get();//makes query from DB return $query->result(); } do I have to use subquery ? is this true? i mean can i do this? foreach( $data as $key => $each ) { $data[$key]['team_id'] = $this->get_user_team_task_query( $each['intTaskID'] ); foreach($data[$key]['team_id'] as $key_teamname => $each) { $data[$key_teamname]['team_name'] = $this->get_team_name( $each['intTeamID'] ); } } the model code: foreach( $data as $key => $each ) { $data[$key]['intTaskID'] = $each['intTaskID']; $data[$key]['team_id'] = $this->get_user_team_task_query( $each['intTaskID'] ); foreach($data[$key]['team_id'] as $key => $each) { $data[$key]['team_name'] = $this->get_team_name( $each['intTeamID'] ); #fetching of the teamname and saving in the array $data[$key]['user_name'] = $this->get_fn_ln_from_userid( $each['intUserID'] ); foreach($data[$key]['user_name'] as $key => $each) { $data[$key]['first_name'] = $each['txtFirstname'] ; $data[$key]['last_name'] = $each['txtLastname'] ; } $data[$key]['first_name'] = $data[$key]['first_name']; $data[$key]['last_name'] = $data[$key]['last_name']; } }

    Read the article

  • Did I lose my RAID again?

    - by BarsMonster
    Hi! A little history: 2 years ago I was really excited to find out that mdadm is so powerful that it even can reshape arrays, so you can start with a smaller array and then grow it as you need. I've bought 3x1Tb drives and made a RAID-5. It was fine for a year. Then I bought 2x more, and tried to reshape to RAID-6 out of 5 drives, and due to some mess with superblock versions, lost all content. Had to rebuild it from scratch, but 2Tb of data were gone. Yesterday I bought 2 more drives, and this time I had everything: properly built array, UPS. I've disabled write intent map, added 2 new drives as spares and run a command to grow array to 7-disks. It started working, but speed was ridiculously slow, ~100kb/sec. After processing first 37Mb at such an amazing speed, one of old HDDs fails. I properly shutdown the PC and disconnected the failed drive. After bootup it appeared that it recreated the intent map as it was still in mdadm config, so I removed it from config and rebooted again. Now all I see is that all mdadm processes deadlock, and don't do anything. PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1937 root 20 0 12992 608 444 D 0 0.1 0:00.00 mdadm 2283 root 20 0 12992 852 704 D 0 0.1 0:00.01 mdadm 2287 root 20 0 0 0 0 D 0 0.0 0:00.01 md0_reshape 2288 root 18 -2 12992 820 676 D 0 0.1 0:00.01 mdadm And all I see in mdstat is: $ cat /proc/mdstat Personalities : [linear] [multipath] [raid0] [raid1] [raid6] [raid5] [raid4] [raid10] md0 : active raid6 sdb1[1] sdg1[4] sdf1[7] sde1[6] sdd1[0] sdc1[5] 2929683456 blocks super 1.2 level 6, 1024k chunk, algorithm 2 [7/6] [UU_UUUU] [>....................] reshape = 0.0% (37888/976561152) finish=567604147.2min speed=0K/sec I've already tried mdadm 2.6.7, 3.1.4 and 3.2 - nothing helps. Did I lose my data again? Any suggestions on how can I make this work? OS is Ubuntu Server 10.04.2. PS. Needless to say, the data is inaccessible - I cannot mount /dev/md0 to save the most valuable data. You can see my disappointment - the very specific thing I was excited about failed twice taking 5Tb of my data with it. Update: It appears there is some nice info in kern.log: 21:38:48 ...: [ 166.522055] raid5: reshape will continue 21:38:48 ...: [ 166.522085] raid5: device sdb1 operational as raid disk 1 21:38:48 ...: [ 166.522091] raid5: device sdg1 operational as raid disk 4 21:38:48 ...: [ 166.522097] raid5: device sdf1 operational as raid disk 5 21:38:48 ...: [ 166.522102] raid5: device sde1 operational as raid disk 6 21:38:48 ...: [ 166.522107] raid5: device sdd1 operational as raid disk 0 21:38:48 ...: [ 166.522111] raid5: device sdc1 operational as raid disk 3 21:38:48 ...: [ 166.523942] raid5: allocated 7438kB for md0 21:38:48 ...: [ 166.524041] 1: w=1 pa=2 pr=5 m=2 a=2 r=7 op1=0 op2=0 21:38:48 ...: [ 166.524050] 4: w=2 pa=2 pr=5 m=2 a=2 r=7 op1=0 op2=0 21:38:48 ...: [ 166.524056] 5: w=3 pa=2 pr=5 m=2 a=2 r=7 op1=0 op2=0 21:38:48 ...: [ 166.524062] 6: w=4 pa=2 pr=5 m=2 a=2 r=7 op1=0 op2=0 21:38:48 ...: [ 166.524068] 0: w=5 pa=2 pr=5 m=2 a=2 r=7 op1=0 op2=0 21:38:48 ...: [ 166.524073] 3: w=6 pa=2 pr=5 m=2 a=2 r=7 op1=0 op2=0 21:38:48 ...: [ 166.524079] raid5: raid level 6 set md0 active with 6 out of 7 devices, algorithm 2 21:38:48 ...: [ 166.524519] RAID5 conf printout: 21:38:48 ...: [ 166.524523] --- rd:7 wd:6 21:38:48 ...: [ 166.524528] disk 0, o:1, dev:sdd1 21:38:48 ...: [ 166.524532] disk 1, o:1, dev:sdb1 21:38:48 ...: [ 166.524537] disk 3, o:1, dev:sdc1 21:38:48 ...: [ 166.524541] disk 4, o:1, dev:sdg1 21:38:48 ...: [ 166.524545] disk 5, o:1, dev:sdf1 21:38:48 ...: [ 166.524550] disk 6, o:1, dev:sde1 21:38:48 ...: [ 166.524553] ...ok start reshape thread 21:38:48 ...: [ 166.524727] md0: detected capacity change from 0 to 2999995858944 21:38:48 ...: [ 166.524735] md: reshape of RAID array md0 21:38:48 ...: [ 166.524740] md: minimum _guaranteed_ speed: 1000 KB/sec/disk. 21:38:48 ...: [ 166.524745] md: using maximum available idle IO bandwidth (but not more than 200000 KB/sec) for reshape. 21:38:48 ...: [ 166.524756] md: using 128k window, over a total of 976561152 blocks. 21:39:05 ...: [ 166.525013] md0: 21:42:04 ...: [ 362.520063] INFO: task mdadm:1937 blocked for more than 120 seconds. 21:42:04 ...: [ 362.520068] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. 21:42:04 ...: [ 362.520073] mdadm D 00000000ffffffff 0 1937 1 0x00000000 21:42:04 ...: [ 362.520083] ffff88002ef4f5d8 0000000000000082 0000000000015bc0 0000000000015bc0 21:42:04 ...: [ 362.520092] ffff88002eb5b198 ffff88002ef4ffd8 0000000000015bc0 ffff88002eb5ade0 21:42:04 ...: [ 362.520100] 0000000000015bc0 ffff88002ef4ffd8 0000000000015bc0 ffff88002eb5b198 21:42:04 ...: [ 362.520107] Call Trace: 21:42:04 ...: [ 362.520133] [<ffffffffa0224892>] get_active_stripe+0x312/0x3f0 [raid456] 21:42:04 ...: [ 362.520148] [<ffffffff81059ae0>] ? default_wake_function+0x0/0x20 21:42:04 ...: [ 362.520159] [<ffffffffa0228413>] make_request+0x243/0x4b0 [raid456] 21:42:04 ...: [ 362.520169] [<ffffffffa0221a90>] ? release_stripe+0x50/0x70 [raid456] 21:42:04 ...: [ 362.520179] [<ffffffff81084790>] ? autoremove_wake_function+0x0/0x40 21:42:04 ...: [ 362.520188] [<ffffffff81414df0>] md_make_request+0xc0/0x130 21:42:04 ...: [ 362.520194] [<ffffffff81414df0>] ? md_make_request+0xc0/0x130 21:42:04 ...: [ 362.520205] [<ffffffff8129f8c1>] generic_make_request+0x1b1/0x4f0 21:42:04 ...: [ 362.520214] [<ffffffff810f6515>] ? mempool_alloc_slab+0x15/0x20 21:42:04 ...: [ 362.520222] [<ffffffff8116c2ec>] ? alloc_buffer_head+0x1c/0x60 21:42:04 ...: [ 362.520230] [<ffffffff8129fc80>] submit_bio+0x80/0x110 21:42:04 ...: [ 362.520236] [<ffffffff8116c849>] submit_bh+0xf9/0x140 21:42:04 ...: [ 362.520244] [<ffffffff8116f124>] block_read_full_page+0x274/0x3b0 21:42:04 ...: [ 362.520251] [<ffffffff81172c90>] ? blkdev_get_block+0x0/0x70 21:42:04 ...: [ 362.520258] [<ffffffff8110d875>] ? __inc_zone_page_state+0x35/0x40 21:42:04 ...: [ 362.520265] [<ffffffff810f46d8>] ? add_to_page_cache_locked+0xe8/0x160 21:42:04 ...: [ 362.520272] [<ffffffff81173d78>] blkdev_readpage+0x18/0x20 21:42:04 ...: [ 362.520279] [<ffffffff810f484b>] __read_cache_page+0x7b/0xe0 21:42:04 ...: [ 362.520285] [<ffffffff81173d60>] ? blkdev_readpage+0x0/0x20 21:42:04 ...: [ 362.520290] [<ffffffff81173d60>] ? blkdev_readpage+0x0/0x20 21:42:04 ...: [ 362.520297] [<ffffffff810f57dc>] do_read_cache_page+0x3c/0x120 21:42:04 ...: [ 362.520304] [<ffffffff810f5909>] read_cache_page_async+0x19/0x20 21:42:04 ...: [ 362.520310] [<ffffffff810f591e>] read_cache_page+0xe/0x20 21:42:04 ...: [ 362.520317] [<ffffffff811a6cb0>] read_dev_sector+0x30/0xa0 21:42:04 ...: [ 362.520324] [<ffffffff811a7fcd>] amiga_partition+0x6d/0x460 21:42:04 ...: [ 362.520331] [<ffffffff811a7938>] check_partition+0x138/0x190 21:42:04 ...: [ 362.520338] [<ffffffff811a7a7a>] rescan_partitions+0xea/0x2f0 21:42:04 ...: [ 362.520344] [<ffffffff811744c7>] __blkdev_get+0x267/0x3d0 21:42:04 ...: [ 362.520350] [<ffffffff81174650>] ? blkdev_open+0x0/0xc0 21:42:04 ...: [ 362.520356] [<ffffffff81174640>] blkdev_get+0x10/0x20 21:42:04 ...: [ 362.520362] [<ffffffff811746c1>] blkdev_open+0x71/0xc0 21:42:04 ...: [ 362.520369] [<ffffffff811419f3>] __dentry_open+0x113/0x370 21:42:04 ...: [ 362.520377] [<ffffffff81253f8f>] ? security_inode_permission+0x1f/0x30 21:42:04 ...: [ 362.520385] [<ffffffff8114de3f>] ? inode_permission+0xaf/0xd0 21:42:04 ...: [ 362.520391] [<ffffffff81141d67>] nameidata_to_filp+0x57/0x70 21:42:04 ...: [ 362.520398] [<ffffffff8115207a>] do_filp_open+0x2da/0xba0 21:42:04 ...: [ 362.520406] [<ffffffff811134a8>] ? unmap_vmas+0x178/0x310 21:42:04 ...: [ 362.520414] [<ffffffff8115dbfa>] ? alloc_fd+0x10a/0x150 21:42:04 ...: [ 362.520421] [<ffffffff81141769>] do_sys_open+0x69/0x170 21:42:04 ...: [ 362.520428] [<ffffffff811418b0>] sys_open+0x20/0x30 21:42:04 ...: [ 362.520437] [<ffffffff810121b2>] system_call_fastpath+0x16/0x1b 21:42:04 ...: [ 362.520446] INFO: task mdadm:2283 blocked for more than 120 seconds. 21:42:04 ...: [ 362.520450] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. 21:42:04 ...: [ 362.520454] mdadm D 0000000000000000 0 2283 2212 0x00000000 21:42:04 ...: [ 362.520462] ffff88002cca7d98 0000000000000086 0000000000015bc0 0000000000015bc0 21:42:04 ...: [ 362.520470] ffff88002ededf78 ffff88002cca7fd8 0000000000015bc0 ffff88002ededbc0 21:42:04 ...: [ 362.520478] 0000000000015bc0 ffff88002cca7fd8 0000000000015bc0 ffff88002ededf78 21:42:04 ...: [ 362.520485] Call Trace: 21:42:04 ...: [ 362.520495] [<ffffffff81543a97>] __mutex_lock_slowpath+0xf7/0x180 21:42:04 ...: [ 362.520502] [<ffffffff8154397b>] mutex_lock+0x2b/0x50 21:42:04 ...: [ 362.520508] [<ffffffff8117404d>] __blkdev_put+0x3d/0x190 21:42:04 ...: [ 362.520514] [<ffffffff811741b0>] blkdev_put+0x10/0x20 21:42:04 ...: [ 362.520520] [<ffffffff811741f3>] blkdev_close+0x33/0x60 21:42:04 ...: [ 362.520527] [<ffffffff81145375>] __fput+0xf5/0x210 21:42:04 ...: [ 362.520534] [<ffffffff811454b5>] fput+0x25/0x30 21:42:04 ...: [ 362.520540] [<ffffffff811415ad>] filp_close+0x5d/0x90 21:42:04 ...: [ 362.520546] [<ffffffff81141697>] sys_close+0xb7/0x120 21:42:04 ...: [ 362.520553] [<ffffffff810121b2>] system_call_fastpath+0x16/0x1b 21:42:04 ...: [ 362.520559] INFO: task md0_reshape:2287 blocked for more than 120 seconds. 21:42:04 ...: [ 362.520563] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. 21:42:04 ...: [ 362.520567] md0_reshape D ffff88003aee96f0 0 2287 2 0x00000000 21:42:04 ...: [ 362.520575] ffff88003cf05a70 0000000000000046 0000000000015bc0 0000000000015bc0 21:42:04 ...: [ 362.520582] ffff88003aee9aa8 ffff88003cf05fd8 0000000000015bc0 ffff88003aee96f0 21:42:04 ...: [ 362.520590] 0000000000015bc0 ffff88003cf05fd8 0000000000015bc0 ffff88003aee9aa8 21:42:04 ...: [ 362.520597] Call Trace: 21:42:04 ...: [ 362.520608] [<ffffffffa0224892>] get_active_stripe+0x312/0x3f0 [raid456] 21:42:04 ...: [ 362.520616] [<ffffffff81059ae0>] ? default_wake_function+0x0/0x20 21:42:04 ...: [ 362.520626] [<ffffffffa0226f80>] reshape_request+0x4c0/0x9a0 [raid456] 21:42:04 ...: [ 362.520634] [<ffffffff81084790>] ? autoremove_wake_function+0x0/0x40 21:42:04 ...: [ 362.520644] [<ffffffffa022777a>] sync_request+0x31a/0x3a0 [raid456] 21:42:04 ...: [ 362.520651] [<ffffffff81052713>] ? __wake_up+0x53/0x70 21:42:04 ...: [ 362.520658] [<ffffffff814156b1>] md_do_sync+0x621/0xbb0 21:42:04 ...: [ 362.520668] [<ffffffff810387b9>] ? default_spin_lock_flags+0x9/0x10 21:42:04 ...: [ 362.520675] [<ffffffff8141640c>] md_thread+0x5c/0x130 21:42:04 ...: [ 362.520681] [<ffffffff81084790>] ? autoremove_wake_function+0x0/0x40 21:42:04 ...: [ 362.520688] [<ffffffff814163b0>] ? md_thread+0x0/0x130 21:42:04 ...: [ 362.520694] [<ffffffff81084416>] kthread+0x96/0xa0 21:42:04 ...: [ 362.520701] [<ffffffff810131ea>] child_rip+0xa/0x20 21:42:04 ...: [ 362.520707] [<ffffffff81084380>] ? kthread+0x0/0xa0 21:42:04 ...: [ 362.520713] [<ffffffff810131e0>] ? child_rip+0x0/0x20 21:42:04 ...: [ 362.520718] INFO: task mdadm:2288 blocked for more than 120 seconds. 21:42:04 ...: [ 362.520721] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. 21:42:04 ...: [ 362.520725] mdadm D 0000000000000000 0 2288 1 0x00000000 21:42:04 ...: [ 362.520733] ffff88002cca9c18 0000000000000086 0000000000015bc0 0000000000015bc0 21:42:04 ...: [ 362.520741] ffff88003aee83b8 ffff88002cca9fd8 0000000000015bc0 ffff88003aee8000 21:42:04 ...: [ 362.520748] 0000000000015bc0 ffff88002cca9fd8 0000000000015bc0 ffff88003aee83b8 21:42:04 ...: [ 362.520755] Call Trace: 21:42:04 ...: [ 362.520763] [<ffffffff81543a97>] __mutex_lock_slowpath+0xf7/0x180 21:42:04 ...: [ 362.520771] [<ffffffff812a6d50>] ? exact_match+0x0/0x10 21:42:04 ...: [ 362.520777] [<ffffffff8154397b>] mutex_lock+0x2b/0x50 21:42:04 ...: [ 362.520783] [<ffffffff811742c8>] __blkdev_get+0x68/0x3d0 21:42:04 ...: [ 362.520790] [<ffffffff81174650>] ? blkdev_open+0x0/0xc0 21:42:04 ...: [ 362.520795] [<ffffffff81174640>] blkdev_get+0x10/0x20 21:42:04 ...: [ 362.520801] [<ffffffff811746c1>] blkdev_open+0x71/0xc0 21:42:04 ...: [ 362.520808] [<ffffffff811419f3>] __dentry_open+0x113/0x370 21:42:04 ...: [ 362.520815] [<ffffffff81253f8f>] ? security_inode_permission+0x1f/0x30 21:42:04 ...: [ 362.520821] [<ffffffff8114de3f>] ? inode_permission+0xaf/0xd0 21:42:04 ...: [ 362.520828] [<ffffffff81141d67>] nameidata_to_filp+0x57/0x70 21:42:04 ...: [ 362.520834] [<ffffffff8115207a>] do_filp_open+0x2da/0xba0 21:42:04 ...: [ 362.520841] [<ffffffff810ff0e1>] ? lru_cache_add_lru+0x21/0x40 21:42:04 ...: [ 362.520848] [<ffffffff8111109c>] ? do_anonymous_page+0x11c/0x330 21:42:04 ...: [ 362.520855] [<ffffffff81115d5f>] ? handle_mm_fault+0x31f/0x3c0 21:42:04 ...: [ 362.520862] [<ffffffff8115dbfa>] ? alloc_fd+0x10a/0x150 21:42:04 ...: [ 362.520868] [<ffffffff81141769>] do_sys_open+0x69/0x170 21:42:04 ...: [ 362.520874] [<ffffffff811418b0>] sys_open+0x20/0x30 21:42:04 ...: [ 362.520882] [<ffffffff810121b2>] system_call_fastpath+0x16/0x1b 21:44:04 ...: [ 482.520065] INFO: task mdadm:1937 blocked for more than 120 seconds. 21:44:04 ...: [ 482.520071] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. 21:44:04 ...: [ 482.520077] mdadm D 00000000ffffffff 0 1937 1 0x00000000 21:44:04 ...: [ 482.520087] ffff88002ef4f5d8 0000000000000082 0000000000015bc0 0000000000015bc0 21:44:04 ...: [ 482.520096] ffff88002eb5b198 ffff88002ef4ffd8 0000000000015bc0 ffff88002eb5ade0 21:44:04 ...: [ 482.520104] 0000000000015bc0 ffff88002ef4ffd8 0000000000015bc0 ffff88002eb5b198 21:44:04 ...: [ 482.520112] Call Trace: 21:44:04 ...: [ 482.520139] [<ffffffffa0224892>] get_active_stripe+0x312/0x3f0 [raid456] 21:44:04 ...: [ 482.520154] [<ffffffff81059ae0>] ? default_wake_function+0x0/0x20 21:44:04 ...: [ 482.520165] [<ffffffffa0228413>] make_request+0x243/0x4b0 [raid456] 21:44:04 ...: [ 482.520175] [<ffffffffa0221a90>] ? release_stripe+0x50/0x70 [raid456] 21:44:04 ...: [ 482.520185] [<ffffffff81084790>] ? autoremove_wake_function+0x0/0x40 21:44:04 ...: [ 482.520194] [<ffffffff81414df0>] md_make_request+0xc0/0x130 21:44:04 ...: [ 482.520201] [<ffffffff81414df0>] ? md_make_request+0xc0/0x130 21:44:04 ...: [ 482.520212] [<ffffffff8129f8c1>] generic_make_request+0x1b1/0x4f0 21:44:04 ...: [ 482.520221] [<ffffffff810f6515>] ? mempool_alloc_slab+0x15/0x20 21:44:04 ...: [ 482.520229] [<ffffffff8116c2ec>] ? alloc_buffer_head+0x1c/0x60 21:44:04 ...: [ 482.520237] [<ffffffff8129fc80>] submit_bio+0x80/0x110 21:44:04 ...: [ 482.520244] [<ffffffff8116c849>] submit_bh+0xf9/0x140 21:44:04 ...: [ 482.520252] [<ffffffff8116f124>] block_read_full_page+0x274/0x3b0 21:44:04 ...: [ 482.520258] [<ffffffff81172c90>] ? blkdev_get_block+0x0/0x70 21:44:04 ...: [ 482.520266] [<ffffffff8110d875>] ? __inc_zone_page_state+0x35/0x40 21:44:04 ...: [ 482.520273] [<ffffffff810f46d8>] ? add_to_page_cache_locked+0xe8/0x160 21:44:04 ...: [ 482.520280] [<ffffffff81173d78>] blkdev_readpage+0x18/0x20 21:44:04 ...: [ 482.520286] [<ffffffff810f484b>] __read_cache_page+0x7b/0xe0 21:44:04 ...: [ 482.520293] [<ffffffff81173d60>] ? blkdev_readpage+0x0/0x20 21:44:04 ...: [ 482.520299] [<ffffffff81173d60>] ? blkdev_readpage+0x0/0x20 21:44:04 ...: [ 482.520306] [<ffffffff810f57dc>] do_read_cache_page+0x3c/0x120 21:44:04 ...: [ 482.520313] [<ffffffff810f5909>] read_cache_page_async+0x19/0x20 21:44:04 ...: [ 482.520319] [<ffffffff810f591e>] read_cache_page+0xe/0x20 21:44:04 ...: [ 482.520327] [<ffffffff811a6cb0>] read_dev_sector+0x30/0xa0 21:44:04 ...: [ 482.520334] [<ffffffff811a7fcd>] amiga_partition+0x6d/0x460 21:44:04 ...: [ 482.520341] [<ffffffff811a7938>] check_partition+0x138/0x190 21:44:04 ...: [ 482.520348] [<ffffffff811a7a7a>] rescan_partitions+0xea/0x2f0 21:44:04 ...: [ 482.520355] [<ffffffff811744c7>] __blkdev_get+0x267/0x3d0 21:44:04 ...: [ 482.520361] [<ffffffff81174650>] ? blkdev_open+0x0/0xc0 21:44:04 ...: [ 482.520367] [<ffffffff81174640>] blkdev_get+0x10/0x20 21:44:04 ...: [ 482.520373] [<ffffffff811746c1>] blkdev_open+0x71/0xc0 21:44:04 ...: [ 482.520380] [<ffffffff811419f3>] __dentry_open+0x113/0x370 21:44:04 ...: [ 482.520388] [<ffffffff81253f8f>] ? security_inode_permission+0x1f/0x30 21:44:04 ...: [ 482.520396] [<ffffffff8114de3f>] ? inode_permission+0xaf/0xd0 21:44:04 ...: [ 482.520403] [<ffffffff81141d67>] nameidata_to_filp+0x57/0x70 21:44:04 ...: [ 482.520410] [<ffffffff8115207a>] do_filp_open+0x2da/0xba0 21:44:04 ...: [ 482.520417] [<ffffffff811134a8>] ? unmap_vmas+0x178/0x310 21:44:04 ...: [ 482.520426] [<ffffffff8115dbfa>] ? alloc_fd+0x10a/0x150 21:44:04 ...: [ 482.520432] [<ffffffff81141769>] do_sys_open+0x69/0x170 21:44:04 ...: [ 482.520438] [<ffffffff811418b0>] sys_open+0x20/0x30 21:44:04 ...: [ 482.520447] [<ffffffff810121b2>] system_call_fastpath+0x16/0x1b 21:44:04 ...: [ 482.520458] INFO: task mdadm:2283 blocked for more than 120 seconds. 21:44:04 ...: [ 482.520462] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. 21:44:04 ...: [ 482.520467] mdadm D 0000000000000000 0 2283 2212 0x00000000 21:44:04 ...: [ 482.520475] ffff88002cca7d98 0000000000000086 0000000000015bc0 0000000000015bc0 21:44:04 ...: [ 482.520483] ffff88002ededf78 ffff88002cca7fd8 0000000000015bc0 ffff88002ededbc0 21:44:04 ...: [ 482.520490] 0000000000015bc0 ffff88002cca7fd8 0000000000015bc0 ffff88002ededf78 21:44:04 ...: [ 482.520498] Call Trace: 21:44:04 ...: [ 482.520508] [<ffffffff81543a97>] __mutex_lock_slowpath+0xf7/0x180 21:44:04 ...: [ 482.520515] [<ffffffff8154397b>] mutex_lock+0x2b/0x50 21:44:04 ...: [ 482.520521] [<ffffffff8117404d>] __blkdev_put+0x3d/0x190 21:44:04 ...: [ 482.520527] [<ffffffff811741b0>] blkdev_put+0x10/0x20 21:44:04 ...: [ 482.520533] [<ffffffff811741f3>] blkdev_close+0x33/0x60 21:44:04 ...: [ 482.520541] [<ffffffff81145375>] __fput+0xf5/0x210 21:44:04 ...: [ 482.520547] [<ffffffff811454b5>] fput+0x25/0x30 21:44:04 ...: [ 482.520554] [<ffffffff811415ad>] filp_close+0x5d/0x90 21:44:04 ...: [ 482.520560] [<ffffffff81141697>] sys_close+0xb7/0x120 21:44:04 ...: [ 482.520568] [<ffffffff810121b2>] system_call_fastpath+0x16/0x1b 21:44:04 ...: [ 482.520574] INFO: task md0_reshape:2287 blocked for more than 120 seconds. 21:44:04 ...: [ 482.520578] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. 21:44:04 ...: [ 482.520582] md0_reshape D ffff88003aee96f0 0 2287 2 0x00000000 21:44:04 ...: [ 482.520590] ffff88003cf05a70 0000000000000046 0000000000015bc0 0000000000015bc0 21:44:04 ...: [ 482.520597] ffff88003aee9aa8 ffff88003cf05fd8 0000000000015bc0 ffff88003aee96f0 21:44:04 ...: [ 482.520605] 0000000000015bc0 ffff88003cf05fd8 0000000000015bc0 ffff88003aee9aa8 21:44:04 ...: [ 482.520612] Call Trace: 21:44:04 ...: [ 482.520623] [<ffffffffa0224892>] get_active_stripe+0x312/0x3f0 [raid456] 21:44:04 ...: [ 482.520633] [<ffffffff81059ae0>] ? default_wake_function+0x0/0x20 21:44:04 ...: [ 482.520643] [<ffffffffa0226f80>] reshape_request+0x4c0/0x9a0 [raid456] 21:44:04 ...: [ 482.520651] [<ffffffff81084790>] ? autoremove_wake_function+0x0/0x40 21:44:04 ...: [ 482.520661] [<ffffffffa022777a>] sync_request+0x31a/0x3a0 [raid456] 21:44:04 ...: [ 482.520668] [<ffffffff81052713>] ? __wake_up+0x53/0x70 21:44:04 ...: [ 482.520675] [<ffffffff814156b1>] md_do_sync+0x621/0xbb0 21:44:04 ...: [ 482.520685] [<ffffffff810387b9>] ? default_spin_lock_flags+0x9/0x10 21:44:04 ...: [ 482.520692] [<ffffffff8141640c>] md_thread+0x5c/0x130 21:44:04 ...: [ 482.520699] [<ffffffff81084790>] ? autoremove_wake_function+0x0/0x40 21:44:04 ...: [ 482.520705] [<ffffffff814163b0>] ? md_thread+0x0/0x130 21:44:04 ...: [ 482.520711] [<ffffffff81084416>] kthread+0x96/0xa0 21:44:04 ...: [ 482.520718] [<ffffffff810131ea>] child_rip+0xa/0x20 21:44:04 ...: [ 482.520725] [<ffffffff81084380>] ? kthread+0x0/0xa0 21:44:04 ...: [ 482.520730] [<ffffffff810131e0>] ? child_rip+0x0/0x20 21:44:04 ...: [ 482.520735] INFO: task mdadm:2288 blocked for more than 120 seconds. 21:44:04 ...: [ 482.520739] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. 21:44:04 ...: [ 482.520743] mdadm D 0000000000000000 0 2288 1 0x00000000 21:44:04 ...: [ 482.520751] ffff88002cca9c18 0000000000000086 0000000000015bc0 0000000000015bc0 21:44:04 ...: [ 482.520759] ffff88003aee83b8 ffff88002cca9fd8 0000000000015bc0 ffff88003aee8000 21:44:04 ...: [ 482.520767] 0000000000015bc0 ffff88002cca9fd8 0000000000015bc0 ffff88003aee83b8 21:44:04 ...: [ 482.520774] Call Trace: 21:44:04 ...: [ 482.520782] [<ffffffff81543a97>] __mutex_lock_slowpath+0xf7/0x180 21:44:04 ...: [ 482.520790] [<ffffffff812a6d50>] ? exact_match+0x0/0x10 21:44:04 ...: [ 482.520797] [<ffffffff8154397b>] mutex_lock+0x2b/0x50 21:44:04 ...: [ 482.520804] [<ffffffff811742c8>] __blkdev_get+0x68/0x3d0 21:44:04 ...: [ 482.520810] [<ffffffff81174650>] ? blkdev_open+0x0/0xc0 21:44:04 ...: [ 482.520816] [<ffffffff81174640>] blkdev_get+0x10/0x20 21:44:04 ...: [ 482.520822] [<ffffffff811746c1>] blkdev_open+0x71/0xc0 21:44:04 ...: [ 482.520829] [<ffffffff811419f3>] __dentry_open+0x113/0x370 21:44:04 ...: [ 482.520837] [<ffffffff81253f8f>] ? security_inode_permission+0x1f/0x30 21:44:04 ...: [ 482.520843] [<ffffffff8114de3f>] ? inode_permission+0xaf/0xd0 21:44:04 ...: [ 482.520850] [<ffffffff81141d67>] nameidata_to_filp+0x57/0x70 21:44:04 ...: [ 482.520857] [<ffffffff8115207a>] do_filp_open+0x2da/0xba0 21:44:04 ...: [ 482.520864] [<ffffffff810ff0e1>] ? lru_cache_add_lru+0x21/0x40 21:44:04 ...: [ 482.520871] [<ffffffff8111109c>] ? do_anonymous_page+0x11c/0x330 21:44:04 ...: [ 482.520878] [<ffffffff81115d5f>] ? handle_mm_fault+0x31f/0x3c0 21:44:04 ...: [ 482.520885] [<ffffffff8115dbfa>] ? alloc_fd+0x10a/0x150 21:44:04 ...: [ 482.520891] [<ffffffff81141769>] do_sys_open+0x69/0x170 21:44:04 ...: [ 482.520897] [<ffffffff811418b0>] sys_open+0x20/0x30 21:44:04 ...: [ 482.520905] [<ffffffff810121b2>] system_call_fastpath+0x16/0x1b 21:46:04 ...: [ 602.520053] INFO: task mdadm:1937 blocked for more than 120 seconds. 21:46:04 ...: [ 602.520059] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. 21:46:04 ...: [ 602.520065] mdadm D 00000000ffffffff 0 1937 1 0x00000000 21:46:04 ...: [ 602.520075] ffff88002ef4f5d8 0000000000000082 0000000000015bc0 0000000000015bc0 21:46:04 ...: [ 602.520084] ffff88002eb5b198 ffff88002ef4ffd8 0000000000015bc0 ffff88002eb5ade0 21:46:04 ...: [ 602.520091] 0000000000015bc0 ffff88002ef4ffd8 0000000000015bc0 ffff88002eb5b198 21:46:04 ...: [ 602.520099] Call Trace: 21:46:04 ...: [ 602.520127] [<ffffffffa0224892>] get_active_stripe+0x312/0x3f0 [raid456] 21:46:04 ...: [ 602.520142] [<ffffffff81059ae0>] ? default_wake_function+0x0/0x20 21:46:04 ...: [ 602.520153] [<ffffffffa0228413>] make_request+0x243/0x4b0 [raid456] 21:46:04 ...: [ 602.520162] [<ffffffffa0221a90>] ? release_stripe+0x50/0x70 [raid456] 21:46:04 ...: [ 602.520171] [<ffffffff81084790>] ? autoremove_wake_function+0x0/0x40 21:46:04 ...: [ 602.520180] [<ffffffff81414df0>] md_make_request+0xc0/0x130 21:46:04 ...: [ 602.520187] [<ffffffff81414df0>] ? md_make_request+0xc0/0x130 21:46:04 ...: [ 602.520197] [<ffffffff8129f8c1>] generic_make_request+0x1b1/0x4f0 21:46:04 ...: [ 602.520206] [<ffffffff810f6515>] ? mempool_alloc_slab+0x15/0x20 21:46:04 ...: [ 602.520215] [<ffffffff8116c2ec>] ? alloc_buffer_head+0x1c/0x60 21:46:04 ...: [ 602.520222] [<ffffffff8129fc80>] submit_bio+0x80/0x110 21:46:04 ...: [ 602.520229] [<ffffffff8116c849>] submit_bh+0xf9/0x140 21:46:04 ...: [ 602.520237] [<ffffffff8116f124>] block_read_full_page+0x274/0x3b0 21:46:04 ...: [ 602.520244] [<ffffffff81172c90>] ? blkdev_get_block+0x0/0x70 21:46:04 ...: [ 602.520252] [<ffffffff8110d875>] ? __inc_zone_page_state+0x35/0x40 21:46:04 ...: [ 602.520259] [<ffffffff810f46d8>] ? add_to_page_cache_locked+0xe8/0x160 21:46:04 ...: [ 602.520266] [<ffffffff81173d78>] blkdev_readpage+0x18/0x20 21:46:04 ...: [ 602.520273] [<ffffffff810f484b>] __read_cache_page+0x7b/0xe0 21:46:04 ...: [ 602.520279] [<ffffffff81173d60>] ? blkdev_readpage+0x0/0x20 21:46:04 ...: [ 602.520285] [<ffffffff81173d60>] ? blkdev_readpage+0x0/0x20 21:46:04 ...: [ 602.520292] [<ffffffff810f57dc>] do_read_cache_page+0x3c/0x120 21:46:04 ...: [ 602.520300] [<ffffffff810f5909>] read_cache_page_async+0x19/0x20 21:46:04 ...: [ 602.520306] [<ffffffff810f591e>] read_cache_page+0xe/0x20 21:46:04 ...: [ 602.520314] [<ffffffff811a6cb0>] read_dev_sector+0x30/0xa0 21:46:04 ...: [ 602.520321] [<ffffffff811a7fcd>] amiga_partition+0x6d/0x460 21:46:04 ...: [ 602.520328] [<ffffffff811a7938>] check_partition+0x138/0x190 21:46:04 ...: [ 602.520335] [<ffffffff811a7a7a>] rescan_partitions+0xea/0x2f0 21:46:04 ...: [ 602.520342] [<ffffffff811744c7>] __blkdev_get+0x267/0x3d0 21:46:04 ...: [ 602.520348] [<ffffffff81174650>] ? blkdev_open+0x0/0xc0 21:46:04 ...: [ 602.520354] [<ffffffff81174640>] blkdev_get+0x10/0x20 21:46:04 ...: [ 602.520359] [<ffffffff811746c1>] blkdev_open+0x71/0xc0 21:46:04 ...: [ 602.520367] [<ffffffff811419f3>] __dentry_open+0x113/0x370 21:46:04 ...: [ 602.520375] [<ffffffff81253f8f>] ? security_inode_permission+0x1f/0x30 21:46:04 ...: [ 602.520383] [<ffffffff8114de3f>] ? inode_permission+0xaf/0xd0 21:46:04 ...: [ 602.520390] [<ffffffff81141d67>] nameidata_to_filp+0x57/0x70 21:46:04 ...: [ 602.520397] [<ffffffff8115207a>] do_filp_open+0x2da/0xba0 21:46:04 ...: [ 602.520404] [<ffffffff811134a8>] ? unmap_vmas+0x178/0x310 21:46:04 ...: [ 602.520413] [<ffffffff8115dbfa>] ? alloc_fd+0x10a/0x150 21:46:04 ...: [ 602.520419] [<ffffffff81141769>] do_sys_open+0x69/0x170 21:46:04 ...: [ 602.520425] [<ffffffff811418b0>] sys_open+0x20/0x30 21:46:04 ...: [ 602.520434] [<ffffffff810121b2>] system_call_fastpath+0x16/0x1b 21:46:04 ...: [ 602.520443] INFO: task mdadm:2283 blocked for more than 120 seconds. 21:46:04 ...: [ 602.520447] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. 21:46:04 ...: [ 602.520451] mdadm D 0000000000000000 0 2283 2212 0x00000000 21:46:04 ...: [ 602.520460] ffff88002cca7d98 0000000000000086 0000000000015bc0 0000000000015bc0 21:46:04 ...: [ 602.520468] ffff88002ededf78 ffff88002cca7fd8 0000000000015bc0 ffff88002ededbc0 21:46:04 ...: [ 602.520475] 0000000000015bc0 ffff88002cca7fd8 0000000000015bc0 ffff88002ededf78 21:46:04 ...: [ 602.520483] Call Trace: 21:46:04 ...: [ 602.520492] [<ffffffff81543a97>] __mutex_lock_slowpath+0xf7/0x180 21:46:04 ...: [ 602.520500] [<ffffffff8154397b>] mutex_lock+0x2b/0x50 21:46:04 ...: [ 602.520506] [<ffffffff8117404d>] __blkdev_put+0x3d/0x190 21:46:04 ...: [ 602.520512] [<ffffffff811741b0>] blkdev_put+0x10/0x20 21:46:04 ...: [ 602.520518] [<ffffffff811741f3>] blkdev_close+0x33/0x60 21:46:04 ...: [ 602.520526] [<ffffffff81145375>] __fput+0xf5/0x210 21:46:04 ...: [ 602.520533] [<ffffffff811454b5>] fput+0x25/0x30 21:46:04 ...: [ 602.520539] [<ffffffff811415ad>] filp_close+0x5d/0x90 21:46:04 ...: [ 602.520545] [<ffffffff81141697>] sys_close+0xb7/0x120 21:46:04 ...: [ 602.520552] [<ffffffff810121b2>] system_call_fastpath+0x16/0x1b

    Read the article

  • Asynchrony in C# 5 (Part I)

    - by javarg
    I’ve been playing around with the new Async CTP preview available for download from Microsoft. It’s amazing how language trends are influencing the evolution of Microsoft’s developing platform. Much effort is being done at language level today than previous versions of .NET. In these post series I’ll review some major features contained in this release: Asynchronous functions TPL Dataflow Task based asynchronous Pattern Part I: Asynchronous Functions This is a mean of expressing asynchronous operations. This kind of functions must return void or Task/Task<> (functions returning void let us implement Fire & Forget asynchronous operations). The two new keywords introduced are async and await. async: marks a function as asynchronous, indicating that some part of its execution may take place some time later (after the method call has returned). Thus, all async functions must include some kind of asynchronous operations. This keyword on its own does not make a function asynchronous thought, its nature depends on its implementation. await: allows us to define operations inside a function that will be awaited for continuation (more on this later). Async function sample: Async/Await Sample async void ShowDateTimeAsync() {     while (true)     {         var client = new ServiceReference1.Service1Client();         var dt = await client.GetDateTimeTaskAsync();         Console.WriteLine("Current DateTime is: {0}", dt);         await TaskEx.Delay(1000);     } } The previous sample is a typical usage scenario for these new features. Suppose we query some external Web Service to get data (in this case the current DateTime) and we do so at regular intervals in order to refresh user’s UI. Note the async and await functions working together. The ShowDateTimeAsync method indicate its asynchronous nature to the caller using the keyword async (that it may complete after returning control to its caller). The await keyword indicates the flow control of the method will continue executing asynchronously after client.GetDateTimeTaskAsync returns. The latter is the most important thing to understand about the behavior of this method and how this actually works. The flow control of the method will be reconstructed after any asynchronous operation completes (specified with the keyword await). This reconstruction of flow control is the real magic behind the scene and it is done by C#/VB compilers. Note how we didn’t use any of the regular existing async patterns and we’ve defined the method very much like a synchronous one. Now, compare the following code snippet  in contrast to the previuous async/await: Traditional UI Async void ComplicatedShowDateTime() {     var client = new ServiceReference1.Service1Client();     client.GetDateTimeCompleted += (s, e) =>     {         Console.WriteLine("Current DateTime is: {0}", e.Result);         client.GetDateTimeAsync();     };     client.GetDateTimeAsync(); } The previous implementation is somehow similar to the first shown, but more complicated. Note how the while loop is implemented as a chained callback to the same method (client.GetDateTimeAsync) inside the event handler (please, do not do this in your own application, this is just an example).  How it works? Using an state workflow (or jump table actually), the compiler expands our code and create the necessary steps to execute it, resuming pending operations after any asynchronous one. The intention of the new Async/Await pattern is to let us think and code as we normally do when designing and algorithm. It also allows us to preserve the logical flow control of the program (without using any tricky coding patterns to accomplish this). The compiler will then create the necessary workflow to execute operations as the happen in time.

    Read the article

  • Subterranean IL: Exception handling 2

    - by Simon Cooper
    Control flow in and around exception handlers is tightly controlled, due to the various ways the handler blocks can be executed. To start off with, I'll describe what SEH does when an exception is thrown. Handling exceptions When an exception is thrown, the CLR stops program execution at the throw statement and searches up the call stack looking for an appropriate handler; catch clauses are analyzed, and filter blocks are executed (I'll be looking at filter blocks in a later post). Then, when an appropriate catch or filter handler is found, the stack is unwound to that handler, executing successive finally and fault handlers in their own stack contexts along the way, and program execution continues at the start of the catch handler. Because catch, fault, finally and filter blocks can be executed essentially out of the blue by the SEH mechanism, without any reference to preceding instructions, you can't use arbitary branches in and out of exception handler blocks. Instead, you need to use specific instructions for control flow out of handler blocks: leave, endfinally/endfault, and endfilter. Exception handler control flow try blocks You cannot branch into or out of a try block or its handler using normal control flow instructions. The only way of entering a try block is by either falling through from preceding instructions, or by branching to the first instruction in the block. Once you are inside a try block, you can only leave it by throwing an exception or using the leave <label> instruction to jump to somewhere outside the block and its handler. The leave instructions signals the CLR to execute any finally handlers around the block. Most importantly, you cannot fall out of the block, and you cannot use a ret to return from the containing method (unlike in C#); you have to use leave to branch to a ret elsewhere in the method. As a side effect, leave empties the stack. catch blocks The only way of entering a catch block is if it is run by the SEH. At the start of the block execution, the thrown exception will be the only thing on the stack. The only way of leaving a catch block is to use throw, rethrow, or leave, in a similar way to try blocks. However, one thing you can do is use a leave to branch back to an arbitary place in the handler's try block! In other words, you can do this: .try { // ... newobj instance void [mscorlib]System.Exception::.ctor() throw MidTry: // ... leave.s RestOfMethod } catch [mscorlib]System.Exception { // ... leave.s MidTry } RestOfMethod: // ... As far as I know, this mechanism is not exposed in C# or VB. finally/fault blocks The only way of entering a finally or fault block is via the SEH, either as the result of a leave instruction in the corresponding try block, or as part of handling an exception. The only way to leave a finally or fault block is to use endfinally or endfault (both compile to the same binary representation), which continues execution after the finally/fault block, or, if the block was executed as part of handling an exception, signals that the SEH can continue walking the stack. filter blocks I'll be covering filters in a separate blog posts. They're quite different to the others, and have their own special semantics. Phew! Complicated stuff, but it's important to know if you're writing or outputting exception handlers in IL. Dealing with the C# compiler is probably best saved for the next post.

    Read the article

  • ASP.NET Web API Exception Handling

    - by Fredrik N
    When I talk about exceptions in my product team I often talk about two kind of exceptions, business and critical exceptions. Business exceptions are exceptions thrown based on “business rules”, for example if you aren’t allowed to do a purchase. Business exceptions in most case aren’t important to log into a log file, they can directly be shown to the user. An example of a business exception could be "DeniedToPurchaseException”, or some validation exceptions such as “FirstNameIsMissingException” etc. Critical Exceptions are all other kind of exceptions such as the SQL server is down etc. Those kind of exception message need to be logged and should not reach the user, because they can contain information that can be harmful if it reach out to wrong kind of users. I often distinguish business exceptions from critical exceptions by creating a base class called BusinessException, then in my error handling code I catch on the type BusinessException and all other exceptions will be handled as critical exceptions. This blog post will be about different ways to handle exceptions and how Business and Critical Exceptions could be handled. Web API and Exceptions the basics When an exception is thrown in a ApiController a response message will be returned with a status code set to 500 and a response formatted by the formatters based on the “Accept” or “Content-Type” HTTP header, for example JSON or XML. Here is an example:   public IEnumerable<string> Get() { throw new ApplicationException("Error!!!!!"); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The response message will be: HTTP/1.1 500 Internal Server Error Content-Length: 860 Content-Type: application/json; charset=utf-8 { "ExceptionType":"System.ApplicationException","Message":"Error!!!!!","StackTrace":" at ..."} .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The stack trace will be returned to the client, this is because of making it easier to debug. Be careful so you don’t leak out some sensitive information to the client. So as long as you are developing your API, this is not harmful. In a production environment it can be better to log exceptions and return a user friendly exception instead of the original exception. There is a specific exception shipped with ASP.NET Web API that will not use the formatters based on the “Accept” or “Content-Type” HTTP header, it is the exception is the HttpResponseException class. Here is an example where the HttpReponseExcetpion is used: // GET api/values [ExceptionHandling] public IEnumerable<string> Get() { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError)); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The response will not contain any content, only header information and the status code based on the HttpStatusCode passed as an argument to the HttpResponseMessage. Because the HttpResponsException takes a HttpResponseMessage as an argument, we can give the response a content: public IEnumerable<string> Get() { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("My Error Message"), ReasonPhrase = "Critical Exception" }); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The code above will have the following response:   HTTP/1.1 500 Critical Exception Content-Length: 5 Content-Type: text/plain; charset=utf-8 My Error Message .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The Content property of the HttpResponseMessage doesn’t need to be just plain text, it can also be other formats, for example JSON, XML etc. By using the HttpResponseException we can for example catch an exception and throw a user friendly exception instead: public IEnumerable<string> Get() { try { DoSomething(); return new string[] { "value1", "value2" }; } catch (Exception e) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("An error occurred, please try again or contact the administrator."), ReasonPhrase = "Critical Exception" }); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Adding a try catch to every ApiController methods will only end in duplication of code, by using a custom ExceptionFilterAttribute or our own custom ApiController base class we can reduce code duplicationof code and also have a more general exception handler for our ApiControllers . By creating a custom ApiController’s and override the ExecuteAsync method, we can add a try catch around the base.ExecuteAsync method, but I prefer to skip the creation of a own custom ApiController, better to use a solution that require few files to be modified. The ExceptionFilterAttribute has a OnException method that we can override and add our exception handling. Here is an example: using System; using System.Diagnostics; using System.Net; using System.Net.Http; using System.Web.Http; using System.Web.Http.Filters; public class ExceptionHandlingAttribute : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { if (context.Exception is BusinessException) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(context.Exception.Message), ReasonPhrase = "Exception" }); } //Log Critical errors Debug.WriteLine(context.Exception); throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("An error occurred, please try again or contact the administrator."), ReasonPhrase = "Critical Exception" }); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: Something to have in mind is that the ExceptionFilterAttribute will be ignored if the ApiController action method throws a HttpResponseException. The code above will always make sure a HttpResponseExceptions will be returned, it will also make sure the critical exceptions will show a more user friendly message. The OnException method can also be used to log exceptions. By using a ExceptionFilterAttribute the Get() method in the previous example can now look like this: public IEnumerable<string> Get() { DoSomething(); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To use the an ExceptionFilterAttribute, we can for example add the ExceptionFilterAttribute to our ApiControllers methods or to the ApiController class definition, or register it globally for all ApiControllers. You can read more about is here. Note: If something goes wrong in the ExceptionFilterAttribute and an exception is thrown that is not of type HttpResponseException, a formatted exception will be thrown with stack trace etc to the client. How about using a custom IHttpActionInvoker? We can create our own IHTTPActionInvoker and add Exception handling to the invoker. The IHttpActionInvoker will be used to invoke the ApiController’s ExecuteAsync method. Here is an example where the default IHttpActionInvoker, ApiControllerActionInvoker, is used to add exception handling: public class MyApiControllerActionInvoker : ApiControllerActionInvoker { public override Task<HttpResponseMessage> InvokeActionAsync(HttpActionContext actionContext, System.Threading.CancellationToken cancellationToken) { var result = base.InvokeActionAsync(actionContext, cancellationToken); if (result.Exception != null && result.Exception.GetBaseException() != null) { var baseException = result.Exception.GetBaseException(); if (baseException is BusinessException) { return Task.Run<HttpResponseMessage>(() => new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(baseException.Message), ReasonPhrase = "Error" }); } else { //Log critical error Debug.WriteLine(baseException); return Task.Run<HttpResponseMessage>(() => new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(baseException.Message), ReasonPhrase = "Critical Error" }); } } return result; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You can register the IHttpActionInvoker with your own IoC to resolve the MyApiContollerActionInvoker, or add it in the Global.asax: GlobalConfiguration.Configuration.Services.Remove(typeof(IHttpActionInvoker), GlobalConfiguration.Configuration.Services.GetActionInvoker()); GlobalConfiguration.Configuration.Services.Add(typeof(IHttpActionInvoker), new MyApiControllerActionInvoker()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   How about using a Message Handler for Exception Handling? By creating a custom Message Handler, we can handle error after the ApiController and the ExceptionFilterAttribute is invoked and in that way create a global exception handler, BUT, the only thing we can take a look at is the HttpResponseMessage, we can’t add a try catch around the Message Handler’s SendAsync method. The last Message Handler that will be used in the Wep API pipe-line is the HttpControllerDispatcher and this Message Handler is added to the HttpServer in an early stage. The HttpControllerDispatcher will use the IHttpActionInvoker to invoke the ApiController method. The HttpControllerDipatcher has a try catch that will turn ALL exceptions into a HttpResponseMessage, so that is the reason why a try catch around the SendAsync in a custom Message Handler want help us. If we create our own Host for the Wep API we could create our own custom HttpControllerDispatcher and add or exception handler to that class, but that would be little tricky but is possible. We can in a Message Handler take a look at the HttpResponseMessage’s IsSuccessStatusCode property to see if the request has failed and if we throw the HttpResponseException in our ApiControllers, we could use the HttpResponseException and give it a Reason Phrase and use that to identify business exceptions or critical exceptions. I wouldn’t add an exception handler into a Message Handler, instead I should use the ExceptionFilterAttribute and register it globally for all ApiControllers. BUT, now to another interesting issue. What will happen if we have a Message Handler that throws an exception?  Those exceptions will not be catch and handled by the ExceptionFilterAttribute. I found a  bug in my previews blog post about “Log message Request and Response in ASP.NET WebAPI” in the MessageHandler I use to log incoming and outgoing messages. Here is the code from my blog before I fixed the bug:   public abstract class MessageHandler : DelegatingHandler { protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) { var corrId = string.Format("{0}{1}", DateTime.Now.Ticks, Thread.CurrentThread.ManagedThreadId); var requestInfo = string.Format("{0} {1}", request.Method, request.RequestUri); var requestMessage = await request.Content.ReadAsByteArrayAsync(); await IncommingMessageAsync(corrId, requestInfo, requestMessage); var response = await base.SendAsync(request, cancellationToken); var responseMessage = await response.Content.ReadAsByteArrayAsync(); await OutgoingMessageAsync(corrId, requestInfo, responseMessage); return response; } protected abstract Task IncommingMessageAsync(string correlationId, string requestInfo, byte[] message); protected abstract Task OutgoingMessageAsync(string correlationId, string requestInfo, byte[] message); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   If a ApiController throws a HttpResponseException, the Content property of the HttpResponseMessage from the SendAsync will be NULL. So a null reference exception is thrown within the MessageHandler. The yellow screen of death will be returned to the client, and the content is HTML and the Http status code is 500. The bug in the MessageHandler was solved by adding a check against the HttpResponseMessage’s IsSuccessStatusCode property: public abstract class MessageHandler : DelegatingHandler { protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) { var corrId = string.Format("{0}{1}", DateTime.Now.Ticks, Thread.CurrentThread.ManagedThreadId); var requestInfo = string.Format("{0} {1}", request.Method, request.RequestUri); var requestMessage = await request.Content.ReadAsByteArrayAsync(); await IncommingMessageAsync(corrId, requestInfo, requestMessage); var response = await base.SendAsync(request, cancellationToken); byte[] responseMessage; if (response.IsSuccessStatusCode) responseMessage = await response.Content.ReadAsByteArrayAsync(); else responseMessage = Encoding.UTF8.GetBytes(response.ReasonPhrase); await OutgoingMessageAsync(corrId, requestInfo, responseMessage); return response; } protected abstract Task IncommingMessageAsync(string correlationId, string requestInfo, byte[] message); protected abstract Task OutgoingMessageAsync(string correlationId, string requestInfo, byte[] message); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If we don’t handle the exceptions that can occur in a custom Message Handler, we can have a hard time to find the problem causing the exception. The savior in this case is the Global.asax’s Application_Error: protected void Application_Error() { var exception = Server.GetLastError(); Debug.WriteLine(exception); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I would recommend you to add the Application_Error to the Global.asax and log all exceptions to make sure all kind of exception is handled. Summary There are different ways we could add Exception Handling to the Wep API, we can use a custom ApiController, ExceptionFilterAttribute, IHttpActionInvoker or Message Handler. The ExceptionFilterAttribute would be a good place to add a global exception handling, require very few modification, just register it globally for all ApiControllers, even the IHttpActionInvoker can be used to minimize the modifications of files. Adding the Application_Error to the global.asax is a good way to catch all unhandled exception that can occur, for example exception thrown in a Message Handler.   If you want to know when I have posted a blog post, you can follow me on twitter @fredrikn

    Read the article

  • Defining the Features we would like to see

    - by Patrick Liekhus
    OK, now that we have a very rough idea of what we are building, let’s get a list of the top features that this application needs to allow us to do.  In this next list we are not prioritizing them yet, just getting on paper the high level backlog of items that this system must do. Add a new task to my work queue Change the status of the task Print a hard copy of the task list by day for my records Log a phone conversation A manager should be able to assign tasks to another user How do we login? Change the Covey roles per user Manage the statuses used Manage the Covey quadrants Can we make this available on the following user interfaces? Windows Desktop Web Browser Sliverlight (WPF) Excel Add-in Outlook Add-in Android Devices iPhone Devices Windows Mobile Devices Blackberry Devices While this looks like a simple spread sheet, it can get pretty complex and busy quickly.  Next time we will work on making this into a Product Backlog and prioritizing the features we would like to see.

    Read the article

  • Improve your Application Performance with .NET Framework 4.0

    Nice Article on CodeGuru. This processors we use today are quite different from those of just a few years ago, as most processors today provide multiple cores and/or multiple threads. With multiple cores and/or threads we need to change how we tackle problems in code. Yes we can still continue to write code to perform an action in a top down fashion to complete a task. This apprach will continue to work; however, you are not taking advantage of the extra processing power available. The best way to take advantage of the extra cores prior to .NET Framework 4.0 was to create threads and/or utilize the ThreadPool. For many developers utilizing Threads or the ThreadPool can be a little daunting. The .NET 4.0 Framework drastically simplified the process of utilizing the extra processing power through the Task Parallel Library (TPL). This article talks following topics “Data Parallelism”, “Parallel LINQ (PLINQ)” and “Task Parallelism”. span.fullpost {display:none;}

    Read the article

  • How To Get Email Notifications Whenever Someone Logs Into Your Computer

    - by Chris Hoffman
    Do you have a computer that you don’t want other people accessing – perhaps a server? You can have Windows email you whenever someone logs into your computer (assuming it’s connected to the Internet), giving you peace of mind. We’ll be using the Windows Task Scheduler for this – it can send emails in response to a variety of events. The Task Scheduler’s built-in email feature isn’t as flexible as we’d like, so we’ll be using another tool. HTG Explains: How Windows Uses The Task Scheduler for System Tasks HTG Explains: Why Do Hard Drives Show the Wrong Capacity in Windows? Java is Insecure and Awful, It’s Time to Disable It, and Here’s How

    Read the article

  • Improve your Application Performance with .NET Framework 4.0

    Nice Article on CodeGuru. This processors we use today are quite different from those of just a few years ago, as most processors today provide multiple cores and/or multiple threads. With multiple cores and/or threads we need to change how we tackle problems in code. Yes we can still continue to write code to perform an action in a top down fashion to complete a task. This apprach will continue to work; however, you are not taking advantage of the extra processing power available. The best way to take advantage of the extra cores prior to .NET Framework 4.0 was to create threads and/or utilize the ThreadPool. For many developers utilizing Threads or the ThreadPool can be a little daunting. The .NET 4.0 Framework drastically simplified the process of utilizing the extra processing power through the Task Parallel Library (TPL). This article talks following topics “Data Parallelism”, “Parallel LINQ (PLINQ)” and “Task Parallelism”. span.fullpost {display:none;}

    Read the article

  • Correct definition of the term "Yak Shaving"

    - by StevenWilkins
    The wiktionary has two different definitions: Any apparently useless activity which, by allowing you to overcome intermediate difficulties, allows you to solve a larger problem. The actually useless activity you do that appears important when you are consciously or unconsciously procrastinating about a larger problem. This post defines it as: yak shaving is what you are doing when you're doing some stupid, fiddly little task that bears no obvious relationship to what you're supposed to be working on, but yet a chain of twelve causal relations links what you're doing to the original meta-task. I personally prefer the final definition because it contains the word "fiddly" which I think perfectly describes a typical yak shaving task. What is the best definition you've come across or can provide?

    Read the article

  • ubuntu cobbler server - importing distros

    - by Stu2000
    I setup and fully configured ubuntu-12.04-server machine with cobbler/dhcp running in about 10 minutes (compared to taking over an hour on centos 5.8). I discovered the cobbler import which appears to be useful. Does this remove the need to use a cobbler distro add? whenever I run a cobbler report after a successful import of ubuntu desktop iso: sudo cobbler import --name=Ubuntu --path=/mnt --breed=debian task started: 2012-12-13_163245_import task started (id=Media import, time=Thu Dec 13 16:32:45 2012) Found a debian/ubuntu compatible signature: pool adding distros avoiding symlink loop avoiding symlink loop avoiding symlink loop associating repos associating kickstarts *** TASK COMPLETE *** I just get the following (nothing): distros: ========== profiles: ========== systems: ========== repos: ========== images: ========== mgmtclasses: ========== packages: ========== files: ========== I was rather hoping that I wouldn't have to do the traditional copying of all files in /mnt to a new /distro directory and then perform a cobbler distro add --initrd=/path/to/inird --kernel=/path/to/kernel Maybe I am mistaken about what the import actually does for me. If someone could elaborate on what the import is actually for please do.

    Read the article

  • Where do you put scenarios on a scrum board?

    - by user1043825
    So traditional scrum board looks something like this Backlog | Story notStarted inprogress Done story 1 Story1 tasks Story 2 Story2 tasks Story .. Story n Epic x Epic x+1 However in general a story has many scenarios and when working with BDD you want to write each scenario for a story as Given, when and then. Also the scenarios don't belong in the notstarted column, inprogess or Done as a scenario is not a task. So you realize that a scenario/s should have their own column between "story" and "notstarted", as a scenario can have many task to be considered done. If you are going to build your task from scenarios then why would you need the story on the scrum board in the first place, maybe they should be left in the backlog. Some people put scenarios on the back of each story. This is a on going debate in my team and I wanted to see if anyone has solved this differently. Cheers!

    Read the article

  • React to a modified directory

    - by Ghanshyam Rathod
    In linux everything is considered as file, Now if I want to find only folders/directories not the files then how can i do that? I am getting all the modified files with the following command. find /Users/ghanshyam -type f -mmin -5 -print My goal is to generate the log file with all the modified/access folders. Here two options are available. create a module and call every time when a folder is modified (this one is bit difficult because I need to check particular event) create a cron task that will run after every 5 minutes. cron task will execute shell script and generate the log entries with the modified folders. Do you have any other option to do this task ?

    Read the article

  • Tips to Increase PC Performance in Windows 7

    The Windows 7 Task Manager is a solid tool that gives you an overview of what is happening in terms of running processes on your computer. While the Task Manager may appear simple to the naked eye it can be used in several ways to help identify possible sources of problematic performance. This tutorial will offer some tips that you can employ with the Task Manager to help improve your PC s performance.... Rolling out Agile Development? Try now! Explore Agile on an integrated platform for Agile and traditional development

    Read the article

  • Check Out The New Search Helper For 'Adpatch' Utility

    - by LuciaC
    Have you seen the new Search Helper for problems and documentation relating to the 'adpatch' utility?   Check out the details in Doc ID 1502809.1. The Search Helper presents you with a wizard-like interface where you select the task you are attempting, the symptoms or errors you are hitting and arrives at a targeted list of solutions based on that information.  This is a simple and quick way of searching for any issues that you are having with adpatch. How to use this tool: 1. Select the intent or task that is failing. 2. A list of known symptoms (or facts) associated with the task will display under the section "In addition the following occurs". 3. As you select symptoms the solutions section will populate (and change as you select or deselect).

    Read the article

  • Processing a list of atomic operations, allowing for interruptions

    - by JDB
    I'm looking for a design pattern that addresses the following situation: There exists a list of tasks that must be processed. Tasks may be added at any time. Each task is wholly independent from all other tasks. The order in which tasks are processed has no effect on the overall system or on the tasks themselves. Every task must be processed once and only once. The "main" process which launches the task processors may start and stop without warning. When stopped, the "main" process loses all in-memory data. Obviously this is going to involve some state, but are there any design patterns which discuss where and how to maintain that state? Are there any relevant anti-patterns? Named patterns are especially helpful so that we can discuss this topic with other organizations without having to describe the entire problem domain.

    Read the article

  • Even distribution through a chain of resources

    - by ClosetGeek
    I'm working on an algorithm which routes tasks through a chain of distributed resources based on a hash (or random number). For example, say you have 10 gateways into a service which distribute tasks to 1000 handlers through 100 queues. 10,000 connected clients are expected to be connected to gateways at any given time (numbers are very general to keep it simple). Thats 10,000 clients 10 gateways (producers) 100 queues 1000 workers/handlers (consumers) The flow of each task is client-gateway-queue-worker Each client will have it's own hash/number which is used to route each task from the client to the same worker each time, with each task going through the same gateway and queue each time. Yet the algorithm handles distribution evenly, meaning each gateway, queue, and worker will have an even workload. My question is what exactly would this be called? Does such a thing already exist? This started off as a DHT, but I realized that DHTs can't do exactly what I need, so I started from scratch.

    Read the article

  • Program Structure Design Tools? (Top Down Design)

    - by Lee Olayvar
    I have been looking to expand my methodologies to better involve Unit testing, and i stumbled upon Behavioral Driven Design (Namely Cucumber, and a few others). I am quite intrigued by the concept as i have never been able to properly design top down, only because keeping track of the design gets lost without a decent way to record it. So on that note, in a mostly language agnostic way, are there any useful tools out there i am (probably) unaware of? Eg, i have often been tempted to try building flow charts for my programs, but i am not sure how much that will help, and it seems a bit confusing to me how i could make a complex enough flow chart to handle the logic of a full program, and all its features.. ie, it just seems like flow charts would be limiting in the design scheme.. or possibly grow to an unmaintainable scale. BDD methods are nice, but with a system that is so tied to structure, tying into the language and unit testing seems like a must (for it to be worth it) and it seems to be hard to find something to work well with both Python and Java (my two main languages). So anyway.. on that note, any comments are much appreciated. I have searched around on here and it seems like top down design is a well discussed topic, but i haven't seen too much reference to tools themselves, eg, flow chart programs, etc. I am on Linux, if it matters (in the case of programs).

    Read the article

  • The blocking nature of aggregates

    - by Rob Farley
    I wrote a post recently about how query tuning isn’t just about how quickly the query runs – that if you have something (such as SSIS) that is consuming your data (and probably introducing a bottleneck), then it might be more important to have a query which focuses on getting the first bit of data out. You can read that post here.  In particular, we looked at two operators that could be used to ensure that a query returns only Distinct rows. and The Sort operator pulls in all the data, sorts it (discarding duplicates), and then pushes out the remaining rows. The Hash Match operator performs a Hashing function on each row as it comes in, and then looks to see if it’s created a Hash it’s seen before. If not, it pushes the row out. The Sort method is quicker, but has to wait until it’s gathered all the data before it can do the sort, and therefore blocks the data flow. But that was my last post. This one’s a bit different. This post is going to look at how Aggregate functions work, which ties nicely into this month’s T-SQL Tuesday. I’ve frequently explained about the fact that DISTINCT and GROUP BY are essentially the same function, although DISTINCT is the poorer cousin because you have less control over it, and you can’t apply aggregate functions. Just like the operators used for Distinct, there are different flavours of Aggregate operators – coming in blocking and non-blocking varieties. The example I like to use to explain this is a pile of playing cards. If I’m handed a pile of cards and asked to count how many cards there are in each suit, it’s going to help if the cards are already ordered. Suppose I’m playing a game of Bridge, I can easily glance at my hand and count how many there are in each suit, because I keep the pile of cards in order. Moving from left to right, I could tell you I have four Hearts in my hand, even before I’ve got to the end. By telling you that I have four Hearts as soon as I know, I demonstrate the principle of a non-blocking operation. This is known as a Stream Aggregate operation. It requires input which is sorted by whichever columns the grouping is on, and it will release a row as soon as the group changes – when I encounter a Spade, I know I don’t have any more Hearts in my hand. Alternatively, if the pile of cards are not sorted, I won’t know how many Hearts I have until I’ve looked through all the cards. In fact, to count them, I basically need to put them into little piles, and when I’ve finished making all those piles, I can count how many there are in each. Because I don’t know any of the final numbers until I’ve seen all the cards, this is blocking. This performs the aggregate function using a Hash Match. Observant readers will remember this from my Distinct example. You might remember that my earlier Hash Match operation – used for Distinct Flow – wasn’t blocking. But this one is. They’re essentially doing a similar operation, applying a Hash function to some data and seeing if the set of values have been seen before, but before, it needs more information than the mere existence of a new set of values, it needs to consider how many of them there are. A lot is dependent here on whether the data coming out of the source is sorted or not, and this is largely determined by the indexes that are being used. If you look in the Properties of an Index Scan, you’ll be able to see whether the order of the data is required by the plan. A property called Ordered will demonstrate this. In this particular example, the second plan is significantly faster, but is dependent on having ordered data. In fact, if I force a Stream Aggregate on unordered data (which I’m doing by telling it to use a different index), a Sort operation is needed, which makes my plan a lot slower. This is all very straight-forward stuff, and information that most people are fully aware of. I’m sure you’ve all read my good friend Paul White (@sql_kiwi)’s post on how the Query Optimizer chooses which type of aggregate function to apply. But let’s take a look at SQL Server Integration Services. SSIS gives us a Aggregate transformation for use in Data Flow Tasks, but it’s described as Blocking. The definitive article on Performance Tuning SSIS uses Sort and Aggregate as examples of Blocking Transformations. I’ve just shown you that Aggregate operations used by the Query Optimizer are not always blocking, but that the SSIS Aggregate component is an example of a blocking transformation. But is it always the case? After all, there are plenty of SSIS Performance Tuning talks out there that describe the value of sorted data in Data Flow Tasks, describing the IsSorted property that can be set through the Advanced Editor of your Source component. And so I set about testing the Aggregate transformation in SSIS, to prove for sure whether providing Sorted data would let the Aggregate transform behave like a Stream Aggregate. (Of course, I knew the answer already, but it helps to be able to demonstrate these things). A query that will produce a million rows in order was in order. Let me rephrase. I used a query which produced the numbers from 1 to 1000000, in a single field, ordered. The IsSorted flag was set on the source output, with the only column as SortKey 1. Performing an Aggregate function over this (counting the number of rows per distinct number) should produce an additional column with 1 in it. If this were being done in T-SQL, the ordered data would allow a Stream Aggregate to be used. In fact, if the Query Optimizer saw that the field had a Unique Index on it, it would be able to skip the Aggregate function completely, and just insert the value 1. This is a shortcut I wouldn’t be expecting from SSIS, but certainly the Stream behaviour would be nice. Unfortunately, it’s not the case. As you can see from the screenshots above, the data is pouring into the Aggregate function, and not being released until all million rows have been seen. It’s not doing a Stream Aggregate at all. This is expected behaviour. (I put that in bold, because I want you to realise this.) An SSIS transformation is a piece of code that runs. It’s a physical operation. When you write T-SQL and ask for an aggregation to be done, it’s a logical operation. The physical operation is either a Stream Aggregate or a Hash Match. In SSIS, you’re telling the system that you want a generic Aggregation, that will have to work with whatever data is passed in. I’m not saying that it wouldn’t be possible to make a sometimes-blocking aggregation component in SSIS. A Custom Component could be created which could detect whether the SortKeys columns of the input matched the Grouping columns of the Aggregation, and either call the blocking code or the non-blocking code as appropriate. One day I’ll make one of those, and publish it on my blog. I’ve done it before with a Script Component, but as Script components are single-use, I was able to handle the data knowing everything about my data flow already. As per my previous post – there are a lot of aspects in which tuning SSIS and tuning execution plans use similar concepts. In both situations, it really helps to have a feel for what’s going on behind the scenes. Considering whether an operation is blocking or not is extremely relevant to performance, and that it’s not always obvious from the surface. In a future post, I’ll show the impact of blocking v non-blocking and synchronous v asynchronous components in SSIS, using some of LobsterPot’s Script Components and Custom Components as examples. When I get that sorted, I’ll make a Stream Aggregate component available for download.

    Read the article

< Previous Page | 62 63 64 65 66 67 68 69 70 71 72 73  | Next Page >