Search Results

Search found 21369 results on 855 pages for '128 bit'.

Page 68/855 | < Previous Page | 64 65 66 67 68 69 70 71 72 73 74 75  | Next Page >

  • Interface Builder error: IBXMLDecoder: The value for key is too large to fit into a 32 bit integer

    - by stdout
    I'm working with Robert Payne's fork of PSMTabBarControl that works with IB 3.2 (thanks BTW Robert!): http://codaset.com/robertjpayne/psmtabbarcontrol/. The demo application works fine on 64-bit systems, but when I try to open the XIB file in Interface Builder on a 32-bit system I get: IBXMLDecoder: The value (4654500848) for key (myTrackingRectTag) is too large to fit into a 32 bit integer Building the app as 32 bit works, but then running it gives: PSMTabBarControlDemo[9073:80f] * -[NSKeyedUnarchiver decodeInt32ForKey:]: value (4654500848) for key (myTrackingRectTag) too large to fit in 32-bit integer Not sure if this is a generic IB issue that can occur when moving between 64 and 32 bit systems, or if this is a more specific issue with this code. Has anyone else run into this?

    Read the article

  • Negative logical shift

    - by user320862
    In Java, why does -32 -1 = 1 ? It's not specific to just -32. It works for all negative numbers as long as they're not too big. I've found that x -1 = 1 x -2 = 3 x -3 = 7 x -4 = 15 given 0 x some large negative number Isn't -1 the same as << 1? But -32 << 1 = -64. I've read up on two's complements, but still don't understand the reasoning.

    Read the article

  • ARM assembly puzzle

    - by ivant
    First of all, I'm not sure if solution even exists. I spent more than a couple of hours trying to come up with one, so beware. The problem: r1 contains an arbitrary integer, flags are not set according to its value. Set r0 to 1 if r1 is 0x80000000, to 0 otherwise, using only two instructions. It's easy to do that in 3 instructions (there are many ways), however doing it in 2 seems very hard, and may very well be impossible.

    Read the article

  • Better name for CHAR_BIT?

    - by Potatoswatter
    I was just checking an answer and realized that CHAR_BIT isn't defined by headers as I'd expect, not even by #include <bitset>, on newer GCC. Do I really have to #include <climits> just to get the "functionality" of CHAR_BIT?

    Read the article

  • How to calculate 2^n-1 efficiently without overflow?

    - by Ludwig Weinzierl
    I want to calculate 2^n-1 for a 64bit integer value. What I currently do is this for(i=0; i<n; i++) r|=1<<i; and I wonder if there is more elegant way to do it. The line is in an inner loop, so I need it to be fast. I thought of r=(1ULL<<n)-1; but it doesn't work for n=64, because << is only defined for values of n up to 63.

    Read the article

  • Macros to set and clear bits

    - by volting
    Im trying to write a few simple macros to simplify the task of setting and clearing bits which should be a simple task however I cant seem to get them to work correctly. #define SET_BIT(p,n) ((p) |= (1 << (n))) #define CLR_BIT(p,n) ((p) &= (~(1) << (n)))

    Read the article

  • Setting last N bits in an array

    - by Martin
    I'm sure this is fairly simple, however I have a major mental block on it, so I need a little help here! I have an array of 5 integers, the array is already filled with some data. I want to set the last N bits of the array to be random noise. [int][int][int][int][int] set last 40 bits [unchanged][unchanged][unchanged][24 bits of old data followed 8 bits of randomness][all random] This is largely language agnostic, but I'm working in C# so bonus points for answers in C#

    Read the article

  • Why does the right-shift operator produce a zero instead of a one?

    - by mrt181
    Hi, i am teaching myself java and i work through the exercises in Thinking in Java. On page 116, exercise 11, you should right-shift an integer through all its binary positions and display each position with Integer.toBinaryString. public static void main(String[] args) { int i = 8; System.out.println(Integer.toBinaryString(i)); int maxIterations = Integer.toBinaryString(i).length(); int j; for (j = 1; j < maxIterations; j++) { i >>= 1; System.out.println(Integer.toBinaryString(i)); } In the solution guide the output looks like this: 1000 1100 1110 1111 When i run this code i get this: 1000 100 10 1 What is going on here. Are the digits cut off? I am using jdk1.6.0_20 64bit. The book uses jdk1.5 32bit.

    Read the article

  • Proper way to handle issue when porting 32 to 64 bit. Conversion from DT1 to DT2 of greater size

    - by grobartn
    So I am trying to port 32 bit to 64 bit. I have turned on the VS2008 flag for detecting problems with 64 bit. I am trying following: char * pList = (char *)uiTmp); warning C4312: 'type cast' : conversion from 'unsigned int' to 'char *' of greater size Disregard the code itself. This is also true for any pointer, because 64 bit pointer is greater than 32 bit unsigned int or int for that purpose. Given that you have to cast smaller type to greater how would you go about doing it so it correctly on both 32/64 bit systems

    Read the article

  • Overwriting a range of bits in an integer in a generic way

    - by porgarmingduod
    Given two integers X and Y, I want to overwrite bits at position P to P+N. Example: int x = 0xAAAA; // 0b1010101010101010 int y = 0x0C30; // 0b0000110000110000 int result = 0xAC3A; // 0b1010110000111010 Does this procedure have a name? If I have masks, the operation is easy enough: int mask_x = 0xF00F; // 0b1111000000001111 int mask_y = 0x0FF0; // 0b0000111111110000 int result = (x & mask_x) | (y & mask_y); What I can't quite figure out is how to write it in a generic way, such as in the following generic C++ function: template<typename IntType> IntType OverwriteBits(IntType dst, IntType src, int pos, int len) { // If: // dst = 0xAAAA; // 0b1010101010101010 // src = 0x0C30; // 0b0000110000110000 // pos = 4 ^ // len = 8 ^------- // Then: // result = 0xAC3A; // 0b1010110000111010 } The problem is that I cannot figure out how to make the masks properly when all the variables, including the width of the integer, is variable. Does anyone know how to write the above function properly?

    Read the article

  • Is It Worth Using Bitwise Operators In Methods?

    - by user1626141
    I am very new to Java (and programming in general, my previous experience is with ActionScript 2.0 and some simple JavaScript), and I am working my way slowly and methodically through Java: A Beginner's Guide by Herbert Schildt. It is an incredible book. For one thing, I finally understand more-or-less what bitwise operators (which I first encountered in ActionScript 2.0) do, and that they are more efficient than other methods for certain sums. My question is, is it more efficient to use a method that uses, say, a shift right, to perform all your divisions/2 (or divisions/even) for you in a large program with many calculations (in this case, a sprawling RPG), or is it more efficient to simply use standard mathematical operations because the compiler will optimise it all for you? Or, am I asking the wrong question entirely?

    Read the article

  • How do I unpack bits from a structure's stream_data in c code?

    - by Chelp
    Ex. typedef struct { bool streamValid; dword dateTime; dword timeStamp; stream_data[800]; } RadioDataA; Ex. Where stream_data[800] contains: **Variable** **Length (in bits)** packetID 8 packetL 8 versionMajor 4 versionMinor 4 radioID 8 etc.. I need to write: void unpackData(radioDataA *streamData, MA_DataA *maData) { //unpack streamData (from above) & put some of the data into maData //How do I read in bits of data? I know it's by groups of 8 but I don't understand how. //MAData is also a struct. }

    Read the article

  • Getting the fractional part of a float without using modf()

    - by knight666
    Hi, I'm developing for a platform without a math library, so I need to build my own tools. My current way of getting the fraction is to convert the float to fixed point (multiply with (float)0xFFFF, cast to int), get only the lower part (mask with 0xFFFF) and convert it back to a float again. However, the imprecision is killing me. I'm using my Frac() and InvFrac() functions to draw an anti-aliased line. Using modf I get a perfectly smooth line. With my own method pixels start jumping around due to precision loss. This is my code: const float fp_amount = (float)(0xFFFF); const float fp_amount_inv = 1.f / fp_amount; inline float Frac(float a_X) { return ((int)(a_X * fp_amount) & 0xFFFF) * fp_amount_inv; } inline float Frac(float a_X) { return (0xFFFF - (int)(a_X * fp_amount) & 0xFFFF) * fp_amount_inv; } Thanks in advance!

    Read the article

  • AAC Sample Rate and Bit Rate for High Quality Audio?

    - by marco.ragogna
    What are the AAC Sample Rate and Bit Rate settings to set in order to encode an audio track with a quality comparable to MP3 320kbps? I need to backup a DVD movie, the default settings for AAC are Bitrate (KB/s) 128 Sample Rate (HZ) 44100 should I set Bitrate (KB/s) 320 Sample Rate (HZ) 48000 or the default are already good?

    Read the article

  • Oracle TimesTen In-Memory Database Performance on SPARC T4-2

    - by Brian
    The Oracle TimesTen In-Memory Database is optimized to run on Oracle's SPARC T4 processor platforms running Oracle Solaris 11 providing unsurpassed scalability, performance, upgradability, protection of investment and return on investment. The following demonstrate the value of combining Oracle TimesTen In-Memory Database with SPARC T4 servers and Oracle Solaris 11: On a Mobile Call Processing test, the 2-socket SPARC T4-2 server outperforms: Oracle's SPARC Enterprise M4000 server (4 x 2.66 GHz SPARC64 VII+) by 34%. Oracle's SPARC T3-4 (4 x 1.65 GHz SPARC T3) by 2.7x, or 5.4x per processor. Utilizing the TimesTen Performance Throughput Benchmark (TPTBM), the SPARC T4-2 server protects investments with: 2.1x the overall performance of a 4-socket SPARC Enterprise M4000 server in read-only mode and 1.5x the performance in update-only testing. This is 4.2x more performance per processor than the SPARC64 VII+ 2.66 GHz based system. 10x more performance per processor than the SPARC T2+ 1.4 GHz server. 1.6x better performance per processor than the SPARC T3 1.65 GHz based server. In replication testing, the two socket SPARC T4-2 server is over 3x faster than the performance of a four socket SPARC Enterprise T5440 server in both asynchronous replication environment and the highly available 2-Safe replication. This testing emphasizes parallel replication between systems. Performance Landscape Mobile Call Processing Test Performance System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 218,400 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 162,900 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 80,400 TimesTen Performance Throughput Benchmark (TPTBM) Read-Only System Processor Sockets/Cores/Threads Tps SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 7.9M SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 6.5M M4000 SPARC64 VII+, 2.66 GHz 4 16 32 3.1M T5440 SPARC T2+, 1.4 GHz 4 32 256 3.1M TimesTen Performance Throughput Benchmark (TPTBM) Update-Only System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 547,800 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 363,800 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 240,500 TimesTen Replication Tests System Processor Sockets/Cores/Threads Asynchronous 2-Safe SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 38,024 13,701 SPARC T5440 SPARC T2+, 1.4 GHz 4 32 256 11,621 4,615 Configuration Summary Hardware Configurations: SPARC T4-2 server 2 x SPARC T4 processors, 2.85 GHz 256 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 4 x 300 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head SPARC T3-4 server 4 x SPARC T3 processors, 1.6 GHz 512 GB memory 1 x 8 Gbs FC Qlogic HBA 8 x 146 GB internal disks 1 x Sun Fire X4275 server configured as COMSTAR head SPARC Enterprise M4000 server 4 x SPARC64 VII+ processors, 2.66 GHz 128 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 2 x 146 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head Software Configuration: Oracle Solaris 11 11/11 Oracle TimesTen 11.2.2.4 Benchmark Descriptions TimesTen Performance Throughput BenchMark (TPTBM) is shipped with TimesTen and measures the total throughput of the system. The workload can test read-only, update-only, delete and insert operations as required. Mobile Call Processing is a customer-based workload for processing calls made by mobile phone subscribers. The workload has a mixture of read-only, update, and insert-only transactions. The peak throughput performance is measured from multiple concurrent processes executing the transactions until a peak performance is reached via saturation of the available resources. Parallel Replication tests using both asynchronous and 2-Safe replication methods. For asynchronous replication, transactions are processed in batches to maximize the throughput capabilities of the replication server and network. In 2-Safe replication, also known as no data-loss or high availability, transactions are replicated between servers immediately emphasizing low latency. For both environments, performance is measured in the number of parallel replication servers and the maximum transactions-per-second for all concurrent processes. See Also SPARC T4-2 Server oracle.com OTN Oracle TimesTen In-Memory Database oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1 October 2012.

    Read the article

< Previous Page | 64 65 66 67 68 69 70 71 72 73 74 75  | Next Page >