Search Results

Search found 5650 results on 226 pages for 'ref counted pointer'.

Page 68/226 | < Previous Page | 64 65 66 67 68 69 70 71 72 73 74 75  | Next Page >

  • Access array of c-structs using Python ctypes

    - by sadris
    I have a C-function that allocates memory at the address passed to and is accessed via Python. The pointer contents does contain an array of structs in the C code, but I am unable to get ctypes to access the array properly beyond the 0th element. How can I get the proper memory offset to be able to access the non-zero elements? Python's ctypes.memset is complaining about TypeErrors if I try to use their ctypes.memset function. typedef struct td_Group { unsigned int group_id; char groupname[256]; char date_created[32]; char date_modified[32]; unsigned int user_modified; unsigned int user_created; } Group; int getGroups(LIBmanager * handler, Group ** unallocatedPointer); ############# python code below: class Group(Structure): _fields_ = [("group_id", c_uint), ("groupname", c_char*256), ("date_created", c_char*32), ("date_modified", c_char*32), ("user_modified", c_uint), ("user_created", c_uint)] myGroups = c_void_p() count = libnativetest.getGroups( nativePointer, byref(myGroups) ) casted = cast( myGroups, POINTER(Group*count) ) for x in range(0,count): theGroup = cast( casted[x], POINTER(Group) ) # this only works for the first entry in the array: print "~~~~~~~~~~" + theGroup.contents.groupname Related: Access c_char_p_Array_256 in Python using ctypes

    Read the article

  • When to use reinterpret_cast?

    - by HeretoLearn
    I am little confused with the applicability of reinterpret_cast vs static_cast. From what I have read the general rules are to use static cast when the types can be interpreted at compile time hence the word static. This is the cast the C++ compiler uses internally for implicit casts also. reinterpret_cast are applicable in two scenarios, convert integer types to pointer types and vice versa or to convert one pointer type to another. The general idea I get is this is unportable and should be avoided. Where I am a little confused is one usage which I need, I am calling C++ from C and the C code needs to hold on to the C++ object so basically it holds a void*. What cast should be used to convert between the void * and the Class type? I have seen usage of both static_cast and reinterpret_cast? Though from what I have been reading it appears static is better as the cast can happen at compile time? Though it says to use reinterpret_cast to convert from one pointer type to another?

    Read the article

  • Background image css opera issue

    - by user356243
    Am having an issue in opera. I have a series on hyperlinnks in a ul li with backgorund images applied. The pointer cursor isnt displaying when I hover over the links. Is this a know bug, code below /cricket" title="Cricket" id="cricket-link" style="background-image:url(/wp-content/themes/blank2L/images/sidebar-cricket-bg.jpg);" onmouseover="$().hoverSidebarImage('/wp-content/themes/blank2L/images/sidebar-cricket-bghover.jpg', 'cricket'); return false;" onmouseout="$().originalSidebarImage('/wp-content/themes/blank2L/images/sidebar-cricket-bg.jpg', 'cricket'); return false;"Cricket #sidebar ul { margin: 0; padding: 0 0 27px 16px; display: block; float: left; width: 180px; } #sidebar ul li { background-image: url(images/left-nav-bg.jpg); background-repeat: no-repeat; margin: 0; margin-bottom: 10px; padding: 0; display: block; float: left; width: 180px; height: 40px; list-style-type: none; cursor:pointer !important; } #sidebar ul li a { background-repeat: no-repeat; background-position: 2px 2px; margin: 0; padding: 8px 8px 0 4px; display: block; float: left; width: 168px; height: 32px; color: #ffffff; font-family: Helvetica, Arial, sans-serif; font-size: 18px; font-weight: bold; text-align: right; cursor:pointer !important; }

    Read the article

  • Convert a binary tree to linked list, breadth first, constant storage/destructive

    - by Merlyn Morgan-Graham
    This is not homework, and I don't need to answer it, but now I have become obsessed :) The problem is: Design an algorithm to destructively flatten a binary tree to a linked list, breadth-first. Okay, easy enough. Just build a queue, and do what you have to. That was the warm-up. Now, implement it with constant storage (recursion, if you can figure out an answer using it, is logarithmic storage, not constant). I found a solution to this problem on the Internet about a year back, but now I've forgotten it, and I want to know :) The trick, as far as I remember, involved using the tree to implement the queue, taking advantage of the destructive nature of the algorithm. When you are linking the list, you are also pushing an item into the queue. Each time I try to solve this, I lose nodes (such as each time I link the next node/add to the queue), I require extra storage, or I can't figure out the convoluted method I need to get back to a node that has the pointer I need. Even the link to that original article/post would be useful to me :) Google is giving me no joy. Edit: Jérémie pointed out that there is a fairly simple (and well known answer) if you have a parent pointer. While I now think he is correct about the original solution containing a parent pointer, I really wanted to solve the problem without it :) The refined requirements use this definition for the node: struct tree_node { int value; tree_node* left; tree_node* right; };

    Read the article

  • Safe way for getting/finding a vertex in a graph with custom properties -> good programming practice

    - by Shadow
    Hi, I am writing a Graph-class using boost-graph-library. I use custom vertex and edge properties and a map to store/find the vertices/edges for a given property. I'm satisfied with how it works, so far. However, I have a small problem, where I'm not sure how to solve it "nicely". The class provides a method Vertex getVertex(Vertexproperties v_prop) and a method bool hasVertex(Vertexproperties v_prop) The question now is, would you judge this as good programming practice in C++? My opinion is, that I have first to check if something is available before I can get it. So, before getting a vertex with a desired property, one has to check if hasVertex() would return true for those properties. However, I would like to make getVertex() a bit more robust. ATM it will segfault when one would directly call getVertex() without prior checking if the graph has a corresponding vertex. A first idea was to return a NULL-pointer or a pointer that points past the last stored vertex. For the latter, I haven't found out how to do this. But even with this "robust" version, one would have to check for correctness after getting a vertex or one would also run into a SegFault when dereferencing that vertex-pointer for example. Therefore I am wondering if it is "ok" to let getVertex() SegFault if one does not check for availability beforehand?

    Read the article

  • C++ Bubble Sorting for Singly Linked List [closed]

    - by user1119900
    I have implemented a simple word frequency program in C++. Everything but the sorting is OK, but the sorting in the following script does not work. Any emergent help will be great.. #include <stdio.h> #include <string.h> #include <stdlib.h> #include <ctype.h> #include <iostream> #include <fstream> #include <cstdio> using namespace std; #include "ProcessLines.h" struct WordCounter { char *word; int word_count; struct WordCounter *pNext; // pointer to the next word counter in the list }; /* pointer to first word counter in the list */ struct WordCounter *pStart = NULL; /* pointer to a word counter */ struct WordCounter *pCounter = NULL; /* Print statistics and words */ void PrintWords() { ... pCounter = pStart; bubbleSort(pCounter); ... } //end-PrintWords void bubbleSort(struct WordCounter *ptr) { WordCounter *temp = ptr; WordCounter *curr; for (bool didSwap = true; didSwap;) { didSwap = false; for (curr = ptr; curr->pNext != NULL; curr = curr->pNext) { if (curr->word > curr->pNext->word) { temp->word = curr->word; curr->word = curr->pNext->word; curr->pNext->word = temp->word; didSwap = true; } } } }

    Read the article

  • learning C++ from java, trying to make a linked list.

    - by kyeana
    I just started learning c++ (coming from java) and am having some serious problems with doing anything :P Currently, i am attempting to make a linked list, but must be doing something stupid cause i keep getting "void value not ignored as it ought to be" compile errors (i have it marked where it is throwing it bellow). If anyone could help me with what im doing wrong, i would be very grateful :) Also, I am not used to having the choice of passing by reference, address, or value, and memory management in general (currently i have all my nodes and the data declared on the heap). If anyone has any general advice for me, i also wouldn't complain :P Key code from LinkedListNode.cpp LinkedListNode::LinkedListNode() { //set next and prev to null pData=0; //data needs to be a pointer so we can set it to null for //for the tail and head. pNext=0; pPrev=0; } /* * Sets the 'next' pointer to the memory address of the inputed reference. */ void LinkedListNode::SetNext(LinkedListNode& _next) { pNext=&_next; } /* * Sets the 'prev' pointer to the memory address of the inputed reference. */ void LinkedListNode::SetPrev(LinkedListNode& _prev) { pPrev=&_prev; } //rest of class Key code from LinkedList.cpp #include "LinkedList.h" LinkedList::LinkedList() { // Set head and tail of linked list. pHead = new LinkedListNode(); pTail = new LinkedListNode(); /* * THIS IS WHERE THE ERRORS ARE. */ *pHead->SetNext(*pTail); *pTail->SetPrev(*pHead); } //rest of class

    Read the article

  • cin.getline() equivalent when getting a char from a function.

    - by Aaron
    From what I understand cin.getLine gets the first char(which I think it a pointer) and then gets that the length. I have used it when cin for a char. I have a function that is returning a pointer to the first char in an array. Is there an equivalent to get the rest of the array into a char that I can use the entire array. I explained below what I am trying to do. The function works fine, but if it would help I could post the function. cmd_str[0]=infile();// get the pointer from a function cout<<"pp1>"; cout<< "test1"<<endl; // cin.getline(cmd_str,500);something like this with the array from the function cout<<cmd_str<<endl; this would print out the entire array cout<<"test2"<<endl; length=0; length= shell(cmd_str);// so I could pass it to this function

    Read the article

  • error: 'void Base::output()' is protected within this context

    - by Bill
    I'm confused about the errors generated by the following code. In Derived::doStuff, I can access Base::output directly by calling it. Why can't I create a pointer to output() in the same context that I can call output()? (I thought protected / private governed whether you could use a name in a specific context, but apparently that is incomplete?) Is my fix of writing callback(this, &Derived::output); instead of callback(this, Base::output) the correct solution? #include <iostream> using std::cout; using std::endl; template <typename T, typename U> void callback(T obj, U func) { ((obj)->*(func))(); } class Base { protected: void output() { cout << "Base::output" << endl; } }; class Derived : public Base { public: void doStuff() { // call it directly: output(); Base::output(); // create a pointer to it: // void (Base::*basePointer)() = &Base::output; // error: 'void Base::output()' is protected within this context void (Derived::*derivedPointer)() = &Derived::output; // call a function passing the pointer: // callback(this, &Base::output); // error: 'void Base::output()' is protected within this context callback(this, &Derived::output); } }; int main() { Derived d; d.doStuff(); }

    Read the article

  • Difference between the address space of parent process and its child process in Linux?

    - by abbas1707
    Hi, I am confused about it. I have read that when a child is created by a parent process, child gets a copy of its parent's address space. What it means here by copy? If i use code below, then it prints same addresses of variable 'a' which is on heap in all cases. i.e in case of child and parent. So what is happening here? #include <sys/types.h> #include <stdio.h> #include <unistd.h> #include <stdlib.h> int main () { pid_t pid; int *a = (int *)malloc(4); printf ("heap pointer %p\n", a); pid = fork(); if (pid < 0) { fprintf (stderr, "Fork Failed"); exit(-1); } else if (pid == 0) { printf ("Child\n"); printf ("in child heap pointer %p\n", a); } else { wait (NULL); printf ("Child Complete\n"); printf ("in parent heap pointer %p\n", a); exit(0); } }

    Read the article

  • How to implement a Linked List in Java?

    - by nbarraille
    Hello! I am trying to implement a simple HashTable in Java that uses a Linked List for collision resolution, which is pretty easy to do in C, but I don't know how to do it in Java, as you can't use pointers... First, I know that those structures are already implemented in Java, I'm not planning on using it, just training here... So I created an element, which is a string and a pointer to the next Element: public class Element{ private String s; private Element next; public Element(String s){ this.s = s; this.next = null; } public void setNext(Element e){ this.next = e; } public String getString(){ return this.s; } public Element getNext(){ return this.next; } @Override public String toString() { return "[" + s + "] => "; } } Of course, my HashTable has an array of Element to stock the data: public class CustomHashTable { private Element[] data; Here is my problem: For example I want to implement a method that adds an element AT THE END of the linked List (I know it would have been simpler and more efficient to insert the element at the beginning of the list, but again, this is only for training purposes). How do I do that without pointer? Here is my code (which could work if e was a pointer...): public void add(String s){ int index = hash(s) % data.length; System.out.println("Adding at index: " + index); Element e = this.data[index]; while(e != null){ e = e.getNext(); } e = new Element(s); } Thanks!

    Read the article

  • possible solutions of the warning

    - by lego69
    Hello, I have a very large code, that's why I can't post here all my code, can somebody explain what might be a problem if I have an error incompatible pointer type and give me several ways to solve it, thanks in advance just small clarification: I'm workin with pointers to functions ptrLine createBasicLine(){ DECLARE_RESULT_ALLOCATE_AND_CHECK(ptrLine, Line); result->callsHistory = listCreate(copyCall,destroyCall); <-here result->messagesHistory = listCreate(copyMessage,destroyMessage); <-and here result->linesFeature = NULL; result->strNumber = NULL; result->lastBill = 0; result->lineType = MTM_REGULAR_LINE; result->nCallTime = 0; result->nMessages = 0; result->rateForCalls = 0; result->rateForMessage = 0; return result; } copyCall,destroyCall - pointers to functions /** * Allocates a new List. The list starts empty. * * @param copyElement * Function pointer to be used for copying elements into the list or when * copying the list. * @param freeElement * Function pointer to be used for removing elements from the list * @return * NULL - if one of the parameters is NULL or allocations failed. * A new List in case of success. */ List listCreate(CopyListElement copyElement, FreeListElement freeElement); definitions of the functions ptrCall (*createCall)() = createNumberContainer; void (*destroyCall)(ptrCall) = destroyNumberContainer; ptrCall (*copyCall)(ptrCall) = copyNumberContainer;

    Read the article

  • The SVG text node disappear after change its text content

    - by sureone
    svg: <text xml:space="preserve" y="228" x="349.98" text-anchor="middle" stroke-width="0" stroke-linejoin="null" stroke-linecap="null" stroke-dasharray="null" stroke="#000000" fill="#000000" style="cursor: move; pointer-events: inherit;" font-size="24" font-family="serif" id="cur_b">cur_b</text> <text xml:space="preserve" y="222" x="103.98" text-anchor="middle" stroke-width="0" stroke-linejoin="null" stroke-linecap="null" stroke-dasharray="null" stroke="#000000" fill="#000000" style="cursor: move; pointer-events: inherit;" font-size="24" font-family="serif" id="cur_a">cur_a</text> <text xml:space="preserve" y="229" x="590.0211" text-anchor="middle" stroke-width="0" stroke-linejoin="null" stroke-linecap="null" stroke-dasharray="null" stroke="#000000" fill="#000000" style="cursor: move; pointer-events: inherit;" font-size="24" font-family="serif" id="cur_c">cur_c</text> NSString* theJS = @ "var theNode0 = document.getElementById('cur_a'); theNode0.textContent='200A'; theNode0.setAttribute('fill','#FF0000'); var theNode1 = document.getElementById('cur_c'); theNode1.textContent='200A'; theNode1.setAttribute('fill','#00FF00');" [self.webView stringByEvaluatingJavaScriptFromString:theJS]; The SVG text node value is changed but disappeared after about one second.

    Read the article

  • Proper way to reassign pointers in c++

    - by user272689
    I want to make sure i have these basic ideas correct before moving on (I am coming from a Java/Python background). I have been searching the net, but haven't found a concrete answer to this question yet. When you reassign a pointer to a new object, do you have to call delete on the old object first to avoid a memory leak? My intuition is telling me yes, but i want a concrete answer before moving on. For example, let say you had a class that stored a pointer to a string class MyClass { private: std::string *str; public: MyClass (const std::string &_str) { str=new std::string(_str); } void ChangeString(const std::string &_str) { // I am wondering if this is correct? delete str; str = new std::string(_str) /* * or could you simply do it like: * str = _str; */ } .... In the ChangeString method, which would be correct? I think i am getting hung up on if you dont use the new keyword for the second way, it will still compile and run like you expected. Does this just overwrite the data that this pointer points to? Or does it do something else? Any advice would be greatly appricated :D

    Read the article

  • static_cast from Derived* to void* to Base*

    - by Roberto
    I would like to cast a pointer to a member of a derived class to void* and from there to a pointer of the base class, like in the example below: #include <iostream> class Base { public: void function1(){std::cout<<"1"<<std::endl;} virtual void function2()=0; }; class Derived : public Base { public: virtual void function2(){std::cout<<"2"<<std::endl;} }; int main() { Derived d; void ptr* = static_cast<void*>(&d); Base* baseptr=static_cast<Base*>(ptr); baseptr->function1(); baseptr->function2(); } This compiles and gives the desired result (prints 1 and 2 respectively), but is it guaranteed to work? The description of static_cast I found here: http://en.cppreference.com/w/cpp/language/static_cast only mentions conversion to void* and back to a pointer to the same class (point 10).

    Read the article

  • du excluding hard links possible?

    - by balor123
    I'm trying to determine how big a cloned Git repository is from a local file system. It creates hard links for some but not all files. How can I determine the disk usage of it? The best I can come up with is "du -a" right now with the original and again with the clone to determine the difference, since each hard linked file will be counted only once. Ideally, I would just run du on the clone and count each hard linked file zero times.

    Read the article

  • When does ISC dhcpd expire leases

    - by Joachim Breitner
    When exactly does ISC dhcpd forget a lease that is not explicitly freed by the client? Context: I am running an installation with many small pools (3 address) and it does not seem to cope well when all three leases are taken. Nevertheless I see entries in dhcpd.leases-file whose end date has passed. Also, these entries are counted towards the number of used leases for the adaptive lease time feature. Shouldn’t these be considered unused?

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • Spring JMS MQJE001: Completion Code '2', Reason '2042'.

    - by john
    My setup is Spring 3 JMS, MVC + Websphere MQ + Websphere 7 <!-- this is the Message Driven POJO (MDP) --> <bean id="messageListener" class="com.SomeListener" /> <!-- and this is the message listener container --> <bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer"> <property name="connectionFactory" ref="xxxCF" /> <property name="destination" ref="someQueue" /> <property name="messageListener" ref="messageListener" /> </bean> When I start up the server, the listener seems to start correctly since it receives the messages that are on the queue as I put them. However, once I run any simple controller/action that doesn't even have anything to do with JMS it gives me the message below over and over... DefaultMessag W org.springframework.jms.listener.DefaultMessageListenerContainer handleListenerSetupFailure Setup of JMS message listener invoker failed for destination 'queue:///ABCDEF.EFF.OUT?persistence=-1' - trying to recover. Cause: MQJMS2008: failed to open MQ queue ''.; nested exception is com.ibm.mq.MQException: MQJE001: Completion Code '2', Reason '2042'. DefaultMessag I org.springframework.jms.listener.DefaultMessageListenerContainer refreshConnectionUntilSuccessful Successfully refreshed JMS Connection ConnectionEve W J2CA0206W: A connection error occurred. To help determine the problem, enable the Diagnose Connection Usage option on the Connection Factory or Data Source. ConnectionEve A J2CA0056I: The Connection Manager received a fatal connection error from the Resource Adapter for resource JMS$XXXQCF$JMSManagedConnection@2. The exception is: javax.jms.JMSException: MQJMS2008: failed to open MQ queue ''. ConnectionEve W J2CA0206W: A connection error occurred. To help determine the problem, enable the Diagnose Connection Usage option on the Connection Factory or Data Source. ConnectionEve A J2CA0056I: The Connection Manager received a fatal connection error from the Resource Adapter for resource jms/XXXQCF. The exception is: javax.jms.JMSException: MQJMS2008: failed to open MQ queue ''. The original listener seems to be still running correctly...but I think the controller is somehow triggering off another connection? Does anyone know what I should check for or what might cause this issue? thanks

    Read the article

  • How can I eager-load a child collection mapped to a non-primary key in NHibernate 2.1.2?

    - by David Rubin
    Hi, I have two objects with a many-to-many relationship between them, as follows: public class LeftHandSide { public LeftHandSide() { Name = String.Empty; Rights = new HashSet<RightHandSide>(); } public int Id { get; set; } public string Name { get; set; } public ICollection<RightHandSide> Rights { get; set; } } public class RightHandSide { public RightHandSide() { OtherProp = String.Empty; Lefts = new HashSet<LeftHandSide>(); } public int Id { get; set; } public string OtherProp { get; set; } public ICollection<LeftHandSide> Lefts { get; set; } } and I'm using a legacy database, so my mappings look like: Notice that LeftHandSide and RightHandSide are associated by a different column than RightHandSide's primary key. <class name="LeftHandSide" table="[dbo].[lefts]" lazy="false"> <id name="Id" column="ID" unsaved-value="0"> <generator class="identity" /> </id> <property name="Name" not-null="true" /> <set name="Rights" table="[dbo].[lefts2rights]"> <key column="leftId" /> <!-- THIS IS THE IMPORTANT BIT: I MUST USE PROPERTY-REF --> <many-to-many class="RightHandSide" column="rightProp" property-ref="OtherProp" /> </set> </class> <class name="RightHandSide" table="[dbo].[rights]" lazy="false"> <id name="Id" column="id" unsaved-value="0"> <generator class="identity" /> </id> <property name="OtherProp" column="otherProp" /> <set name="Lefts" table="[dbo].[lefts2rights]"> <!-- THIS IS THE IMPORTANT BIT: I MUST USE PROPERTY-REF --> <key column="rightProp" property-ref="OtherProp" /> <many-to-many class="LeftHandSide" column="leftId" /> </set> </class> The problem comes when I go to do a query: LeftHandSide lhs = _session.CreateCriteria<LeftHandSide>() .Add(Expression.IdEq(13)) .UniqueResult<LeftHandSide>(); works just fine. But LeftHandSide lhs = _session.CreateCriteria<LeftHandSide>() .Add(Expression.IdEq(13)) .SetFetchMode("Rights", FetchMode.Join) .UniqueResult<LeftHandSide>(); throws an exception (see below). Interestingly, RightHandSide rhs = _session.CreateCriteria<RightHandSide>() .Add(Expression.IdEq(127)) .SetFetchMode("Lefts", FetchMode.Join) .UniqueResult<RightHandSide>(); seems to be perfectly fine as well. NHibernate.Exceptions.GenericADOException Message: Error performing LoadByUniqueKey[SQL: SQL not available] Source: NHibernate StackTrace: c:\opt\nhibernate\2.1.2\source\src\NHibernate\Type\EntityType.cs(563,0): at NHibernate.Type.EntityType.LoadByUniqueKey(String entityName, String uniqueKeyPropertyName, Object key, ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Type\EntityType.cs(428,0): at NHibernate.Type.EntityType.ResolveIdentifier(Object value, ISessionImplementor session, Object owner) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Type\EntityType.cs(300,0): at NHibernate.Type.EntityType.NullSafeGet(IDataReader rs, String[] names, ISessionImplementor session, Object owner) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Persister\Collection\AbstractCollectionPersister.cs(695,0): at NHibernate.Persister.Collection.AbstractCollectionPersister.ReadElement(IDataReader rs, Object owner, String[] aliases, ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Collection\Generic\PersistentGenericSet.cs(54,0): at NHibernate.Collection.Generic.PersistentGenericSet`1.ReadFrom(IDataReader rs, ICollectionPersister role, ICollectionAliases descriptor, Object owner) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(706,0): at NHibernate.Loader.Loader.ReadCollectionElement(Object optionalOwner, Object optionalKey, ICollectionPersister persister, ICollectionAliases descriptor, IDataReader rs, ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(385,0): at NHibernate.Loader.Loader.ReadCollectionElements(Object[] row, IDataReader resultSet, ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(326,0): at NHibernate.Loader.Loader.GetRowFromResultSet(IDataReader resultSet, ISessionImplementor session, QueryParameters queryParameters, LockMode[] lockModeArray, EntityKey optionalObjectKey, IList hydratedObjects, EntityKey[] keys, Boolean returnProxies) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(453,0): at NHibernate.Loader.Loader.DoQuery(ISessionImplementor session, QueryParameters queryParameters, Boolean returnProxies) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(236,0): at NHibernate.Loader.Loader.DoQueryAndInitializeNonLazyCollections(ISessionImplementor session, QueryParameters queryParameters, Boolean returnProxies) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(1649,0): at NHibernate.Loader.Loader.DoList(ISessionImplementor session, QueryParameters queryParameters) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(1568,0): at NHibernate.Loader.Loader.ListIgnoreQueryCache(ISessionImplementor session, QueryParameters queryParameters) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Loader.cs(1562,0): at NHibernate.Loader.Loader.List(ISessionImplementor session, QueryParameters queryParameters, ISet`1 querySpaces, IType[] resultTypes) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Loader\Criteria\CriteriaLoader.cs(73,0): at NHibernate.Loader.Criteria.CriteriaLoader.List(ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Impl\SessionImpl.cs(1936,0): at NHibernate.Impl.SessionImpl.List(CriteriaImpl criteria, IList results) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Impl\CriteriaImpl.cs(246,0): at NHibernate.Impl.CriteriaImpl.List(IList results) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Impl\CriteriaImpl.cs(237,0): at NHibernate.Impl.CriteriaImpl.List() c:\opt\nhibernate\2.1.2\source\src\NHibernate\Impl\CriteriaImpl.cs(398,0): at NHibernate.Impl.CriteriaImpl.UniqueResult() c:\opt\nhibernate\2.1.2\source\src\NHibernate\Impl\CriteriaImpl.cs(263,0): at NHibernate.Impl.CriteriaImpl.UniqueResult[T]() D:\proj\CMS3\branches\nh_auth\DomainModel2Tests\Authorization\TempTests.cs(46,0): at CMS.DomainModel.Authorization.TempTests.Test1() Inner Exception System.Collections.Generic.KeyNotFoundException Message: The given key was not present in the dictionary. Source: mscorlib StackTrace: at System.ThrowHelper.ThrowKeyNotFoundException() at System.Collections.Generic.Dictionary`2.get_Item(TKey key) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Persister\Entity\AbstractEntityPersister.cs(2047,0): at NHibernate.Persister.Entity.AbstractEntityPersister.GetAppropriateUniqueKeyLoader(String propertyName, IDictionary`2 enabledFilters) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Persister\Entity\AbstractEntityPersister.cs(2037,0): at NHibernate.Persister.Entity.AbstractEntityPersister.LoadByUniqueKey(String propertyName, Object uniqueKey, ISessionImplementor session) c:\opt\nhibernate\2.1.2\source\src\NHibernate\Type\EntityType.cs(552,0): at NHibernate.Type.EntityType.LoadByUniqueKey(String entityName, String uniqueKeyPropertyName, Object key, ISessionImplementor session) I'm using NHibernate 2.1.2 and I've been debugging into the NHibernate source, but I'm coming up empty. Any suggestions? Thanks so much!

    Read the article

  • Non-resizeable, bordered WPF Windows with WindowStyle=None

    - by danielmartinoli
    Basically, I need a window to look like the following image: http://screenshots.thex9.net/2010-05-31_2132.png (Is NOT resizeable, yet retains the glass border) I've managed to get it working with Windows Forms, but I need to be using WPF. To get it working in Windows Forms, I used the following code: protected override void WndProc(ref Message m) { if (m.Msg == 0x84 /* WM_NCHITTEST */) { m.Result = (IntPtr)1; return; } base.WndProc(ref m); } This does exactly what I want it to, but I can't find a WPF-equivalent. The closest I've managed to get with WPF caused the Window to ignore any mouse input. Any help would be hugely appreciated :)

    Read the article

  • Jetty 7 + MySQL Config [java.lang.ClassNotFoundException: org.mortbay.jetty.webapp.WebAppContext]

    - by Scott Chang
    I've been trying to get a c3p0 db connection pool configured for Jetty, but I keep getting a ClassNotFoundException: 2010-03-14 19:32:12.028:WARN::Failed startup of context WebAppContext@fccada@fccada/phpMyAdmin,file:/usr/local/jetty/webapps/phpMyAdmin/,file:/usr/local/jetty/webapps/phpMyAdmin/ java.lang.ClassNotFoundException: org.mortbay.jetty.webapp.WebAppContext at java.net.URLClassLoader$1.run(URLClassLoader.java:200) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:188) at java.lang.ClassLoader.loadClass(ClassLoader.java:307) at java.lang.ClassLoader.loadClass(ClassLoader.java:252) at org.eclipse.jetty.webapp.WebAppClassLoader.loadClass(WebAppClassLoader.java:313) at org.eclipse.jetty.webapp.WebAppClassLoader.loadClass(WebAppClassLoader.java:266) at org.eclipse.jetty.util.Loader.loadClass(Loader.java:90) at org.eclipse.jetty.xml.XmlConfiguration.nodeClass(XmlConfiguration.java:224) at org.eclipse.jetty.xml.XmlConfiguration.configure(XmlConfiguration.java:187) at org.eclipse.jetty.webapp.JettyWebXmlConfiguration.configure(JettyWebXmlConfiguration.java:77) at org.eclipse.jetty.webapp.WebAppContext.startContext(WebAppContext.java:975) at org.eclipse.jetty.server.handler.ContextHandler.doStart(ContextHandler.java:586) at org.eclipse.jetty.webapp.WebAppContext.doStart(WebAppContext.java:349) at org.eclipse.jetty.util.component.AbstractLifeCycle.start(AbstractLifeCycle.java:55) at org.eclipse.jetty.server.handler.HandlerCollection.doStart(HandlerCollection.java:165) at org.eclipse.jetty.server.handler.ContextHandlerCollection.doStart(ContextHandlerCollection.java:162) at org.eclipse.jetty.util.component.AbstractLifeCycle.start(AbstractLifeCycle.java:55) at org.eclipse.jetty.server.handler.HandlerCollection.doStart(HandlerCollection.java:165) at org.eclipse.jetty.util.component.AbstractLifeCycle.start(AbstractLifeCycle.java:55) at org.eclipse.jetty.server.handler.HandlerWrapper.doStart(HandlerWrapper.java:92) at org.eclipse.jetty.server.Server.doStart(Server.java:228) at org.eclipse.jetty.util.component.AbstractLifeCycle.start(AbstractLifeCycle.java:55) at org.eclipse.jetty.xml.XmlConfiguration$1.run(XmlConfiguration.java:990) at java.security.AccessController.doPrivileged(Native Method) at org.eclipse.jetty.xml.XmlConfiguration.main(XmlConfiguration.java:955) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.eclipse.jetty.start.Main.invokeMain(Main.java:394) at org.eclipse.jetty.start.Main.start(Main.java:546) at org.eclipse.jetty.start.Main.parseCommandLine(Main.java:208) at org.eclipse.jetty.start.Main.main(Main.java:75) I'm new to Jetty and I want to ultimately get phpMyAdmin and WordPress to run on it through Quercus and a JDBC connection. Here are my web.xml and jetty-web.xml files in my WEB-INF directory. jetty-web.xml: <?xml version="1.0"?> <!DOCTYPE Configure PUBLIC "-//Mort Bay Consulting//DTD Configure//EN" "http://jetty.mortbay.org/configure.dtd"> <Configure class="org.mortbay.jetty.webapp.WebAppContext"> <New id="mysql" class="org.mortbay.jetty.plus.naming.Resource"> <Arg>jdbc/mysql</Arg> <Arg> <New class="com.mchange.v2.c3p0.ComboPooledDataSource"> <Set name="Url">jdbc:mysql://localhost:3306/mysql</Set> <Set name="User">user</Set> <Set name="Password">pw</Set> </New> </Arg> </New> </Configure> web.xml: <?xml version="1.0"?> <!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd"> <web-app> <description>Caucho Technology's PHP Implementation</description> <resource-ref> <description>My DataSource Reference</description> <res-ref-name>jdbc/mysql</res-ref-name> <res-type>javax.sql.DataSource</res-type> <res-auth>Container</res-auth> </resource-ref> <servlet> <servlet-name>Quercus Servlet</servlet-name> <servlet-class>com.caucho.quercus.servlet.QuercusServlet</servlet-class> <!-- Specifies the encoding Quercus should use to read in PHP scripts. --> <init-param> <param-name>script-encoding</param-name> <param-value>UTF-8</param-value> </init-param> <!-- Tells Quercus to use the following JDBC database and to ignore the arguments of mysql_connect(). --> <init-param> <param-name>database</param-name> <param-value>jdbc/mysql</param-value> </init-param> <init-param> <param-name>ini-file</param-name> <param-value>WEB-INF/php.ini</param-value> </init-param> </servlet> <servlet-mapping> <servlet-name>Quercus Servlet</servlet-name> <url-pattern>*.php</url-pattern> </servlet-mapping> <welcome-file-list> <welcome-file>index.php</welcome-file> </welcome-file-list> </web-app> I'm guessing that I'm missing a few jars or something. Currently I have placed the following jars in my WEB-INF/lib directory: c3p0-0.9.1.2.jar commons-dbcp-1.4.jar commons-pool-1.5.4.jar mysql-connector-java-5.1.12-bin.jar I have also tried to put these jars in JETTY-HOME/lib/ext, but to no avail... Someone please tell me what is wrong with my configuration. I'm sick of digging through Jetty's crappy documentation.

    Read the article

  • Problem with deploying simple Spring MVC Portlet to Liferay 5.2.3

    - by Johannes Hipp
    Hello, I try to deploy a simple spring portlet in ext (I can't use Plugins SDK...) on Liferay 5.2.3 My portlet: ext-impl/src: package: com.ext.portlet.springmvc HelloWorldController.java [code] package com.ext.portlet.springmvc; import java.io.IOException; import javax.servlet.ServletException; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import org.springframework.web.servlet.ModelAndView; import org.springframework.web.servlet.mvc.Controller; public class HelloWorldController implements Controller { public ModelAndView handleRequest(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { String aMessage = "Hello World MVC!"; ModelAndView modelAndView = new ModelAndView("hello_world"); modelAndView.addObject("message", aMessage); return modelAndView; } } [/code] ext-lib: - jstr.jar - spring-webmvc.jar - spring-webmvc-portlet.jar - spring.jar - standard.jar ext-web/docroot/html/portlet/ext/springmvc/hello_world.jsp [code] <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %> <html> <body> <p>This is my message: ${message}</p> </body> </html> [/code] ext-web/docroot/html/portlet/ext/springmvc/index.jsp [code] <html> <body> <p>Hi</p> </body> </html> [/code] ext-web/docroot/WEB-INF/springmvc-servlet.xml [code] <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"> <bean name="/hello_world.html" class="com.ext.portlet.springmvc.HelloWorldController"/> <bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/> <property name="prefix" value="/jsp/"/> <property name="suffix" value=".jsp"/> </bean> </beans> [/code] ext-web/docroot/WEB-INF/portlet-ext.xml [code] <portlet> <portlet-name>springmvc</portlet-name> <portlet-class>org.springframework.web.portlet.DispatcherPortlet</portlet-class> <supports> <mime-type>text/html</mime-type> <portlet-mode>view</portlet-mode> </supports> <portlet-info> <title>Simple JSP Portlet</title> </portlet-info> <security-role-ref> <role-name>power-user</role-name> </security-role-ref> <security-role-ref> <role-name>user</role-name> </security-role-ref> </portlet> [/code] ext-web/docroot/WEB-INF/web.xml [code] <?xml version="1.0"?> <web-app xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" version="2.4"> <servlet> <servlet-name>springmvc</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>springmvc</servlet-name> <url-pattern>*.html</url-pattern> </servlet-mapping> <welcome-file-list> <welcome-file> jsp/index.jsp </welcome-file> </welcome-file-list> </web-app> [/code] Are there some mistakes? I get this error, when I try to deploy: [code] Website OC4J 10g (10.1.3) Default Web Site definiert ist. Error creating bean w ith name 'com.liferay.portal.kernel.captcha.CaptchaUtil' defined in class path r esource [META-INF/util-spring.xml]: Cannot create inner bean 'com.liferay.portal .captcha.CaptchaImpl#1424b7b' of type [com.liferay.portal.captcha.CaptchaImpl] w hile setting bean property 'captcha'; nested exception is org.springframework.be ans.factory.BeanCreationException: Error creating bean with name 'com.liferay.po rtal.captcha.CaptchaImpl#1424b7b' defined in class path resource [META-INF/util- spring.xml]: Instantiation of bean failed; nested exception is org.springframewo rk.beans.BeanInstantiationException: Could not instantiate bean class [com.lifer ay.portal.captcha.CaptchaImpl]: Constructor threw exception; nested exception is java.lang.NullPointerException [/code] Hope anybody can help me... Thank you very much. Best regards, Johannes

    Read the article

  • Getting a .Net remoting service accessible with IP v6 and IP v4

    - by jon.ediger
    My company has an existing .Net Remoting service that listens on a port, fronting interfaces used by external systems. This all works great with IP v4 based communications. However, this service now needs to support both IP v4 communications and IP v6 communications. I have found info that the system.runtime.remoting section of the app.config should include two channels as follows: <channel ref="tcp" name="tcp6" port="9000" bindTo="[::]" /> <channel ref="tcp" name="tcp4" port="9000" bindTo="0.0.0.0" /> I've tried this. For communications to this service and a direct response back, this works great. Some of the communications instead return a stream back, either for uploading or downloading large files. These calls fail with the an ArgumentException: IPv4 address 0.0.0.0 and IPv6 address ::0 are unspecified addresses that cannot be used as a target address. Parameter name: hostNameOrAddress How should these config values be modified so that the client will know how to communicate back to the .Net remoting service?

    Read the article

  • Dojo JsonRest store and dijit.Tree

    - by user1427712
    I'm having a some problem making JSonRest store and dijit.Tree with ForestModel. I've tried some combination of JsonRestStore and json data format following many tips on the web, with no success. At the end, taking example form here http://blog.respondify.se/2011/09/using-dijit-tree-with-the-new-dojo-object-store/ I've made up this simple page (I'm using dojotolkit 1.7.2) <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> <title>Tree Model Explorer</title> <script type="text/javascript"> djConfig = { parseOnLoad : true, isDebug : true, } </script> <script type="text/javascript" djConfig="parseOnLoad: true" src="lib/dojo/dojo.js"></script> <script type="text/javascript"> dojo.require("dojo.parser"); dojo.require("dijit.Tree"); dojo.require("dojo.store.JsonRest"); dojo.require("dojo.data.ObjectStore"); dojo.require("dijit.tree.ForestStoreModel"); dojo.addOnLoad(function() { var objectStore = new dojo.store.JsonRest({ target : "test.json", labelAttribute : "name", idAttribute: "id" }); var dataStore = new dojo.data.ObjectStore({ objectStore : objectStore }); var treeModel = new dijit.tree.ForestStoreModel({ store : dataStore, deferItemLoadingUntilExpand : true, rootLabel : "Subjects", query : { "id" : "*" }, childrenAttrs : [ "children" ] }); var tree = new dijit.Tree({ model : treeModel }, 'treeNode'); tree.startup(); }); </script> </head> <body> <div id="treeNode"></div> </body> </html> My rest service responds the following json { data: [ { "id": "PippoId", "name": "Pippo", "children": [] }, { "id": "PlutoId", "name": "Pluto", "children": [] }, { "id": "PaperinoId", "name": "Paperino", "children": [] } ]} I've tried also with the following response (actually my final intention n is to use lazy loading for the tree) { data: [ { "id": "PippoId", "name": "Pippo", "$ref": "author0", "children": true }, { "id": "PlutoId", "name": "Pluto", "$ref": "author1", "children": true }, { "id": "PaperinoId", "name": "Paperino", "$ref": "author2", "children": true } ]} Neither of the two works. I see no error message in firebug. I simply see the root "Subject" on the page. Thanks to anybody could help in some way.

    Read the article

< Previous Page | 64 65 66 67 68 69 70 71 72 73 74 75  | Next Page >