Search Results

Search found 8286 results on 332 pages for 'defined'.

Page 69/332 | < Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • Trouble using 'eval' to define a toplevel function when called from within an object.

    - by mschaef
    I've written (in JavaScript) an interactive read-eval-print-loop that is encapsulated within an object. However, I recently noticed that toplevel function definitions specified to the interpreter do not appear to be 'remembered' by the interpreter. After some diagnostic work, I've reduced the core problem to this: var evaler = { eval: function (str) { return eval(str); }, }; eval("function t1() { return 1; }"); // GOOD evaler.eval("function t2() { return 2; }"); // FAIL After running this script, I have a definition for t1, and no defintion for t2. The act of calling eval from within evaler is sufficiently different from the toplevel call that the global definition does not get recorded. What does happen is that the call to evaler.eval returns a function object, so I'm presuming that t2 is being defined and stored in some other set of bindings that I don't have access to. (It's not defined as a member in evaler.) Is there any easy fix for this? I've tried all sorts of fixes, and haven't stumbled upon one that works. (Most of what I've done has centered around putting the call to eval in an anonymous function, and altering the way that's called, chainging __parent__, etc.) Any thoughts on how to fix this?

    Read the article

  • Is it a good practice for a .js file to rely on variables declared in the including html

    - by Bozho
    In short: <script type="text/javascript"> var root = '${config.root}'; var userLanguage = '${config.language}'; var userTimezone = '${config.timezone}'; </script> <script type="text/javascript" src="js/scripts.js"></script> And then, in scripts.js, rely on these variables: if (userLanguage == 'en') { .. } The ${..} is simply a placeholder for a value in the script that generates the page. It can be php, jsp, asp, whatever. The point is - it is dynamic, and hence it can't be part of the .js file (which is static). So, is it OK for the static javascript file to rely on these externally defined configuration variables? (they are mainly configuration, of course). Or is it preferred to make the .js file be served dynamically as well (i.e. make it a .php / .jsp, with the proper Content-Type), and have these values defined in there.

    Read the article

  • Laravel4: Checking many-to-many relationship attribute even when it does not exist

    - by Simo A.
    This is my first time with Laravel and also Stackoverflow... I am developing a simple course management system. The main objects are User and Course, with a many-to-many relationship between them. The pivot table has an additional attribute, participant_role, which defines whether the user is a student or an instructor within that particular course. class Course extends Eloquent { public function users() { return $this->belongsToMany('User')->withPivot('participant_role')->withTimestamps(); } } However, there is an additional role, system admin, which can be defined on the User object. And this brings me mucho headache. In my blade view I have the following: @if ($course->pivot->participant_role == 'instructor') { // do something here... } This works fine when the user has been assigned to that particular $course and there is an entry for this user-course combination in the pivot table. However, the problem is the system administrator, who also should be able to access course details. The if-clause above gives Trying to get property of non-object error, apparently because there is no entry in the pivot table for system administrator (as the role is defined within the User object). I could probably solve the problem by using some off-the-shelf bundle for handling role-based permissions. Or I could (but don't want to) do something like this with two internal if-clauses: if (!empty($course->pivot)) { if ($course->pivot->participant_role == 'instructor') { // do something... } } Other options (suggested in partially similar entries in Stackoverflow) would include 1) reading all the pivot table entries to an array, and use in_array to check if a role exists, or even 2) SQL left join to do this on database level. However, ultimately I am looking for a compact one-line solution? Can I do anything similar to this, which unfortunately does not seem to work? if (! empty ($course->pivot->participant_role == 'instructor') ) { // do something... } The shorter the answer, the better :-). Thanks a lot!

    Read the article

  • .NET remoting: System references wrong .NET dll, but how to cure ?

    - by Quandary
    Question: I defined an interface like below. The problem now is, that when I add the dll (API.dll) as reference in an asp.net project, it references a wrong API.dll, though I referenced the correct dll. In turn, it doesn't find GetLDAPlookup, but there is another method that is not in defined here, but in an older version of API.dll... I rebuilt the dll I referenced, so it is definitely the latest version that I added as reference. Do I have to add another GUID, or something ? Imports System.Runtime.InteropServices Namespace RemoteObject ''' <summary> ''' Defines server interface which will be deployed on every client ''' </summary> ''' <GuidAttribute("921DE547-32FA-40BB-961A-EA390B7AE27D")> _ Public Interface IServerMethods ''' <summary> ''' Function to call the server from the client ''' </summary> ''' <param name="strMessage">Some text</param> ''' Sub ServerPrint(ByVal strMessage As String) ''' <summary> ''' Function to call the server from the client ''' </summary> ''' <param name="strMessage">Some text</param> ''' <returns>Some interesting text</returns> ''' Function GetLDAPlookup(ByVal strMessage As String) As System.Data.DataSet End Interface End Namespace

    Read the article

  • HTML form never calls Javascript

    - by user1205577
    I have a set of radio buttons defined in HTML like so: <input type="radio" name="group" id="rad1" value="rad1" onClick="doStuff(this.id)">Option 1<br> <input type="radio" name="group" id="rad2" value="rad2" onClick="doStuff(this.id)">Option 2<br> Just before the </body> tag, I have the following JavaScript behavior defined: <script type="text/javascript"> /*<![CDATA[*/ function doStuff(var id){ alert("Doing stuff!"); } /*]]>*/ </script> When I run the program, the page loads as expected in my browser window and the radio buttons allow me to click them. The doStuff() function, however, is never called (I validated this using breakpoints as well). I also tried the following just to see if inline made the difference, but it seems the JavaScript is never called at all: <script type="text/javascript"> /*<![CDATA[*/ alert("JavaScript called!"); main(); function main(){ var group = document.getElementsByName('group'); for(var i=0; i<group.length; i++){ group[i].onclick = function(){ doStuff(this.id); }; } } /*]]>*/ </script> My question is, is there something special I need to do using HTML and JavaScript in this context? My question is not whether I should be using inline function calls or whether this is your favorite way to write code.

    Read the article

  • Use `require()` with `node --eval`

    - by rentzsch
    When utilizing node.js's newish support for --eval, I get an error (ReferenceError: require is not defined) when I attempt to use require(). Here's an example of the failure: $ node --eval 'require("http");' undefined:1 ^ ReferenceError: require is not defined at eval at <anonymous> (node.js:762:36) at eval (native) at node.js:762:36 $ Here's a working example of using require() typed into the REPL: $ node > require("http"); { STATUS_CODES: { '100': 'Continue' , '101': 'Switching Protocols' , '102': 'Processing' , '200': 'OK' , '201': 'Created' , '202': 'Accepted' , '203': 'Non-Authoritative Information' , '204': 'No Content' , '205': 'Reset Content' , '206': 'Partial Content' , '207': 'Multi-Status' , '300': 'Multiple Choices' , '301': 'Moved Permanently' , '302': 'Moved Temporarily' , '303': 'See Other' , '304': 'Not Modified' , '305': 'Use Proxy' , '307': 'Temporary Redirect' , '400': 'Bad Request' , '401': 'Unauthorized' , '402': 'Payment Required' , '403': 'Forbidden' , '404': 'Not Found' , '405': 'Method Not Allowed' , '406': 'Not Acceptable' , '407': 'Proxy Authentication Required' , '408': 'Request Time-out' , '409': 'Conflict' , '410': 'Gone' , '411': 'Length Required' , '412': 'Precondition Failed' , '413': 'Request Entity Too Large' , '414': 'Request-URI Too Large' , '415': 'Unsupported Media Type' , '416': 'Requested Range Not Satisfiable' , '417': 'Expectation Failed' , '418': 'I\'m a teapot' , '422': 'Unprocessable Entity' , '423': 'Locked' , '424': 'Failed Dependency' , '425': 'Unordered Collection' , '426': 'Upgrade Required' , '500': 'Internal Server Error' , '501': 'Not Implemented' , '502': 'Bad Gateway' , '503': 'Service Unavailable' , '504': 'Gateway Time-out' , '505': 'HTTP Version not supported' , '506': 'Variant Also Negotiates' , '507': 'Insufficient Storage' , '509': 'Bandwidth Limit Exceeded' , '510': 'Not Extended' } , IncomingMessage: { [Function: IncomingMessage] super_: [Function: EventEmitter] } , OutgoingMessage: { [Function: OutgoingMessage] super_: [Function: EventEmitter] } , ServerResponse: { [Function: ServerResponse] super_: [Circular] } , ClientRequest: { [Function: ClientRequest] super_: [Circular] } , Server: { [Function: Server] super_: { [Function: Server] super_: [Function: EventEmitter] } } , createServer: [Function] , Client: { [Function: Client] super_: { [Function: Stream] super_: [Function: EventEmitter] } } , createClient: [Function] , cat: [Function] } > Is there a way to use require() with node's --eval? I'm on node 0.2.6 on Mac OS X 10.6.5.

    Read the article

  • Best practice when removing entity regarding mappedBy collections?

    - by Daniel Bleisteiner
    I'm still kind of undecided which is the best practice to handle em.remove(entity) with this entity being in several collections mapped using mappedBy in JPA. Consider an entity like a Property that references three other entities: a Descriptor, a BusinessObject and a Level entity. The mapping is defined using @ManyToOne in the Property entity and using @OneToMany(mappedBy...) in the other three objects. That inverse mapping is defined because there are some situations where I need to access those collections. Whenever I remove a Property using em.remove(prop) this element is not automatically removed from managed entities of the other three types. If I don't care about that and the following page load (webapp) doesn't reload those entities the Property is still found and some decisions might be taken that are no longer true. The inverse mappings may become quite large and though I don't want to use something like descriptor.getProperties().remove(prop) because it will load all those properties that might have been lazy loaded until then. So my currently preferred way is to refresh the entity if it is managed: if (em.contains(descriptor)) em.refresh(descriptor) - which unloads a possibly loaded collection and triggers a reload upon the next access. Is there another feasible way to handle all those mappedBy collections of already loaded entites?

    Read the article

  • HABTM selection seemingly ignores joinTable

    - by TheCapn
    I'm attempting to do a HABTM relationship between a Users table and Groups table. The problem is, that I when I issue this call: $this->User->Group->find('list'); The query that is issued is: SELECT [Group].[id] AS [Group__id], [Group].[name] AS [Group__name] FROM [groups] AS [Group] WHERE 1 = 1 I can only assume at this point that I have defined my relationship wrong as I would expect behavior to use the groups_users table that is defined on the database as per convention. My relationships: class User extends AppModel { var $name = 'User'; //...snip... var $hasAndBelongsToMany = array( 'Group' => array( 'className' => 'Group', 'foreignKey' => 'user_id', 'associationForeignKey' => 'group_id', 'joinTable' => 'groups_users', 'unique' => true, ) ); //...snip... } class Group extends AppModel { var $name = 'Group'; var $hasAndBelongsToMany = array ( 'User' => array( 'className' => 'User', 'foreignKey' => 'group_id', 'associationForeignKey' => 'user_id', 'joinTable' => 'groups_users', 'unique' => true, )); } Is my understanding of HABTM wrong? How would I implement this Many to Many relationship where I can use CakePHP to query the groups_users table such that a list of groups the currently authenticated user is associated with is returned?

    Read the article

  • Rails: Duplicate functionality across controllers? A humble plea.

    - by Alex
    So I'm working with authlogic, and I'm trying to duplicate the login functionality to the welcome page, so that you can log in by restful url or by just going to the main page. No, I don't know if we'll keep that feature, but I want to test it out anyway. Here's the error message: RuntimeError in Welcome#index Called id for nil, which would mistakenly be 4 -- if you really wanted the id of nil, use object_id The code is below. Basically, what's happening is the index view (the first code snippet) is sending the information from the form to the create method of user_sessions controller. At this point, in theory, it create should just pick up, but it doesn't. PLEASE help. Please. I've been doing this for about 8 hours. I checked Google. I checked IRC. I checked every book I could find. You don't even have to answer, I can to the grunt work if you just point me in the right direction. <% form_for @user_session, :url => user_sessions_path do |f| %> <%= f.text_field :email %><br /> <%= f.password_field :password %> <%= submit_tag 'Login' %> <% end %> class ApplicationController < ActionController::Base helper :all # include all helpers, all the time protect_from_forgery # See ActionController::RequestForgeryProtection for details # Scrub sensitive parameters from your log # filter_parameter_logging :password helper_method :current_user_session, :current_user before_filter :new_session_object protected def new_session_object unless current_user @user_session = UserSession.new(params[:user_session]) end end private def current_user_session return @current_user_session if defined?(@current_user_session) @current_user_session = UserSession.find end def current_user return @current_user if defined?(@current_user) @current_user = current_user_session && current_user_session.record end end

    Read the article

  • C# and ASP.NET MVC: Using #if directive in a view

    - by Mega Matt
    Hi all, I've got a conditional compilation symbol I'm using called "RELEASE", that I indicated in my project's properties in Visual Studio. I want some particular CSS to be applied to elements when the RELEASE symbol is defined, and I was trying to do that from the view, but it doesn't seem to be working. My view code looks like this (shortened a bit for demo purposes): <% #if (RELEASE) %> <div class="releaseBanner">Banner text here</div> <% #else %> <div class="debugBanner">Banner text here</div> <% #endif %> With this code, and with the RELEASE symbol set, the 'else' code is running and I'm getting a div with the debugBanner class. So it doesn't seem to think that RELEASE is defined. It's worth noting that my actual C# code in .cs files is recognizing RELEASE and runs the correct code. It's only the view that is giving me the problem. Does anyone have any insight into this? Any help would be appreciated. Thanks.

    Read the article

  • calling a trim method in actionscript 2.0

    - by user151013
    Hi I Got a notnull function for a text field as below private function valStringNotNull( val:String ) :Boolean { if ( String(val).length <= 0 ) { _errorCode = "StringNull"; return false; } _errorCode = "NoError"; return true; } and this function is being called here var pCnt:Number = 0; _validateParams[pCnt++] = { type: "notNull", input: win.firstNameInput , isSendData:true, dataName:"firstName"}; _validateParams[pCnt++] = { type: "notNull", input: win.lastNameInput, isSendData:true, dataName:"lastName"}; _validateParams[pCnt++] = { type: "noValidation", input: roleCombo, isSendData:true, dataName:"role" }; Selection.setFocus(win.firstNameInput); and for the not null I defined this way private function validateCases ( param:Object ) :Boolean { _errorObj = param.input || param.input1; switch( param.type ) { case "notNull": return valStringNotNull( param.input.text ); break; } } but as you see as I defined the length should be greater than zero its taking even a space as an input and displaying blank white space in my text field so I got a trim function as below public function ltrim(input:String):String { var size:Number = input.length; for(var i:Number = 0; i < size; i++) { if(input.charCodeAt(i) > 32) { return input.substring(i); } } return ""; } and I need to call this trim function before my not null function so that it trims off all the leftside white space but as I am very new to flash can some one help me how to keep this trim function before the notnull function.Can some one please help me with this please

    Read the article

  • JAXB Unable To Handle Attribute with Colon (:) in name?

    - by Intellectual Tortoise
    I am attempting to use JAXB to unmarshall an XML files whose schema is defined by a DTD (ugh!). The external provider of the DTD has specified one of the element attributes as xml:lang: <!ATTLIST langSet id ID #IMPLIED xml:lang CDATA #REQUIRED > This comes into the xjc-generated class (standard generation; no *.xjb magic) as: @XmlAttribute(name = "xml:lang", required = true) @XmlJavaTypeAdapter(NormalizedStringAdapter.class) protected String xmlLang; However, when unmarshalling valid XML files with JAXB, the xmlLang attribute is always null. When I edited the XML file, replacing xml:lang with lang and changed the @XmlAttribute to match, unmarshalling was successful (i.e. attributes were non-null). I did find this http://old.nabble.com/unmarshalling-ignores-element-attribute-%27xml%27-td22558466.html. But, the resolution there was to convert to XML Schema, etc. My strong preference is to go straight from an un-altered DTD (since it is externally provided and defined by an ISO standard). Is this a JAXB bug? Am I missing something about "namespaces" in attribute names? FWIW, java -version = "build 1.6.0_20-b02" and xjc -version = "xjc version "JAXB 2.1.10 in JDK 6""

    Read the article

  • Silverlight ~ MVVM ~ Dynamic setting of Style property based on model value

    - by eponymous23
    I have a class called Question that represents a question and it's answer. I have an application that renders an ObservableCollection of Question objects. Each Question is rendered as a StackPanel that contains a TextBlock for the question verbiage, and a TextBox for the user to enter in an answer. The questions are rendered using an ItemsControl, and I have initially set the Style of the Questions's StackPanel using a StaticResource key called 'IncorrectQuestion' (defined in UserControl.Resources section of the page). In the UserControl.Resources section, I've also defined a key calld 'CorrectQuestion' which I need to somehow apply to the Question's StackPanel when the user correctly answers the question. My problem is I'm not sure how to dynamically change the Style of the StackPanel, specifically within the constraints of a ViewModel class (i.e. I don't want to put any style selection code in the View's code-behind). My Question class has an IsCorrect property which is accurately being set when the correction is answered. I'd like to somehow reflect the IsCorrect value in the form of a Style selection. How do I do that?

    Read the article

  • How to set the ActiveMQ redeliveryPolicy on a queue?

    - by edbras
    How do I set the redeliveryPolicy in ActiveMQ on a Queue? 1) In the doc, see: activeMQ Redelivery, the explain that you should set it on the ConnectionFactory or Connection. But I want to use different value's for different Queue's. 2) Apart from that, I don't seem to get it work. Setting it on the connection factory in Spring (I am using activemq 5.4.2. with Spring 3.0) like this don't seem to have any effect: <amq:connectionFactory id="amqConnectionFactory" brokerURL="${jms.factory.url}" > <amq:properties> <amq:redeliveryPolicy maximumRedeliveries="6" initialRedeliveryDelay="15000" useExponentialBackOff="true" backOffMultiplier="5"/> </amq:properties> </amq:connectionFactory> I also tried to set it as property on the defined Queue, but that also seem to be ignored as the redelivery occurs sooner that the defined values: <amq:queue id="jmsQueueDeclarationSnd" physicalName="${jms.queue.declaration.snd}" > <amq:properties> <amq:redeliveryPolicy maximumRedeliveries="6" initialRedeliveryDelay="15000" useExponentialBackOff="true" backOffMultiplier="5"/> </amq:properties> </amq:queue> Thanks

    Read the article

  • C++ const qualifier

    - by avd
    I have a Point2D class as follows: class Point2D{ int x; int y; public: Point2D(int inX, int inY){ x = inX; y = inY; }; int getX(){return x;}; int getY(){return y;}; }; Now I have defined a class Line as: class Line { Point2D p1,p2; public: LineVector(const Point2D &p1,const Point2D &p2):p1(p1),p2(p2) { int x1,y1,x2,y2; x1=p1.getX();y1=p1.getY();x2=p2.getX();y2=p2.getY(); } }; Now the compiler gives the error in the last line( where getX() etc are called): error: passing `const Point2D' as `this' argument of `int Point2D::getX()' discards qualifiers If I remove the const keyword at both places, then it compiles successfully. What is the error? Is it because getX() etc are defined inline? Is there any way to recify this retaining them inline?

    Read the article

  • printSoln module problem

    - by dingo_d
    Hi I found in book:Numerical Methods in engineering with Python the module run_kut5, but for that module I need module printSoln, all provided in the book. Now I cp the code, made necessary line adjustments and so. The code looks like: # -*- coding: cp1250 -*- ## module printSoln ''' printSoln(X,Y,freq). Prints X and Y returned from the differential equation solvers using printput frequency ’freq’. freq = n prints every nth step. freq = 0 prints initial and final values only. ''' def printSoln(X,Y,freq): def printHead(n): print "\n x ", for i in range (n): print " y[",i,"] ", print def printLine(x,y,n): print "%13.4e"% x,f for i in range (n): print "%13.4e"% y[i], print m = len(Y) try: n = len(Y[0]) except TypeError: n = 1 if freq == 0: freq = m printHead(n) for i in range(0,m,freq): printLine(X[i],Y[i],n) if i != m - 1: printLine(X[m - 1],Y[m - 1],n) Now, when I run the program it says: line 24, in <module> m = len(Y) NameError: name 'Y' is not defined But I cp'd from the book :\ So now when I call the run_kut module I get the same error, no Y defined in printSoln... I'm trying to figure this out but I suck :( Help, please...

    Read the article

  • UITableView which has sections as alphabets and various rows within each section

    - by lifemoves
    Hello I have a database in which I am inserting data by parsing an XML document. Populating the data using Navigation bar control view. I have various NSObjects defined in a class and have populated the data using NSMutableArray. Using UITableview I have populated the data. My question is : I have populated the data with the sections defined in it as alphabets so I have total of 26 sections. Each section has data in form of name. Now when I use cellforrowatIndexpath it does not give me the correct index for row and section together. My code is : (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { static NSString *CellIdentifier = @"Cell"; UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier]; if (cell == nil) { cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier] autorelease]; } /* Index names as in AB ....Z */ NSString *strIndexNames = [arrCharacters objectAtIndex:indexPath.section]; /* object sections has names in each section */ NSArray *arrIndexedCategories = [objSections objectForKey:strIndexNames]; NSString *strName = [arrIndexedCategories objectAtIndex:indexPath.row] ; cell.textLabel.text = strName; cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator; cell.textLabel.font = [UIFont systemFontOfSize:16]; return cell; } Any help whatsoever will be really helpful. S

    Read the article

  • CSS challenge: Two background images, centered column with fixed with, min-height 100%

    - by laurent
    In a nutshell I need a CSS solution for the following requirements: Layout: One centered column with fixed width and a minimum height of 100% Two vertically repeated background images behind the centered column, one aligned to the left, one aligned to the right Cross browser compatibility A little more details Today a new requirement for my current web site project came up: A background image with gradients on the left and right side. The challenge is now to specify two different background images while keeping the rest of the layout spec. Unfortunately the (simple) layout somehow doesn't go with the two backgrounds. My layout is basically one centered column with fixed width: #main_container { margin: 0 auto; min-height: 100%; width: 800px; } Furthermore it's necessary to stretch the column to a minimum height of 100%, since there are quite some pages with only little content. The following CSS styles take care of that: html { height: 100%; } body { margin: 0; height: 100%; padding: 0; } So far so good - until the two background image issue arrived... I tried the following solutions Two absolute positioned divs behind the main container One image defined with the body, one with the html CSS class One image defined with the body, the other one with a large div begind the main container With either one of them, the dynamic height solution was ruined. Either the main container didn't stretch to 100% when it was too small, or the background remained at 100% when the content was actually longer

    Read the article

  • SOA Suite Integration: Part 1: Building a Web Service

    - by Anthony Shorten
    Over the next few weeks I will be posting blog entries outlying the SOA Suite integration of the Oracle Utilities Application Framework. This will illustrate how easy it is to integrate by providing some samples. I will use a consistent set of features as examples. The examples will be simple and while will not illustrate ALL the possibilities it will illustrate the relative ease of integration. Think of them as a foundation. You can obviously build upon them. Now, to ease a few customers minds, this series will certainly feature the latest version of SOA Suite and the latest version of Oracle Utilities Application Framework but the principles will apply to past versions of both those products. So if you have Oracle SOA Suite 10g or are a customer of Oracle Utilities Application Framework V2.1 or above most of what I will show you will work with those versions. It is just easier in Oracle SOA Suite 11g and Oracle Utilities Application Framework V4.x. This first posting will not feature SOA Suite at all but concentrate on the capability for the Oracle Utilities Application Framework to create Web Services you can use for integration. The XML Application Integration (XAI) component of the Oracle Utilities Application Framework allows product objects to be exposed as XML based transactions or as Web Services (or both). XAI was written before Web Services became fashionable and has allowed customers of our products to provide a consistent interface into and out of our product line. XAI has been enhanced over the last few years to take advantages of the maturing landscape of Web Services in the market place to a point where it now easier to integrate to SOA infrastructure. There are a number of object types that can be exposed as Web Services: Maintenance Objects – These are the lowest level objects that can be exposed as Web Services. Customers of past versions of the product will be familiar with XAI services based upon Maintenance Objects as they used to be the only method of generating Web Services. These are still supported for background compatibility but are starting to become less popular as they were strict in their structure and were solely attribute based. To generate Maintenance Object based Web Services definition you need to use the XAI Schema Editor component. Business Objects – In Oracle Utilities Application Framework V2.1 we introduced the concept of Business Objects. These are site or industry specific objects that are based upon Maintenance Objects. These allow sites to respecify, in configuration, the structure and elements of a Maintenance Object and other Business Objects (they are true objects with support for inheritance, polymorphism, encapsulation etc.). These can be exposed as Web Services. Business Services – As with Business Objects, we introduced Business Services in Oracle Utilities Application Framework V2.1 which allowed applications services and query zones to be expressed as custom services. These can then be exposed as Web Services via the Business Service definition. Service Scripts - As with Business Objects and Business Services, we introduced Service Scripts in Oracle Utilities Application Framework V2.1. These allow services and/objects to be combined into complex objects or simply expose common routines as callable scripts. These can also be defined as Web Services. For the purpose of this series we will restrict ourselves to Business Objects. The techniques can apply to any of the objects discussed above. Now, lets get to the important bit of this blog post, the creation of a Web Service. To build a Business Object, you first logon to the product and navigate to the Administration Menu by selecting the Admin Menu from the Menu action on left top of the screen (next to Home). A popup menu will appear with the menu’s available. If you do not see the Admin menu then you do not have authority to use it. Here is an example: Navigate to the B menu and select the + symbol next to the Business Object menu item. This indicates that you want to ADD a new Business Object. This menu will appear if you are running Alphabetic mode in your installation (I almost forgot that point). You will be presented with the Business Object maintenance screen. You will fill out the following on the first tab (at a minimum): Business Object – The name of the Business Object. Typically you will make it descriptive and also prefix with CM to denote it as a customization (you can easily find it if you prefix it). As I running this on my personal copy of the product I will use my initials as the prefix and call the sample Web Service “AS-User”. Description – A short description of the object to tell others what it is used for. For my example, I will use “Anthony Shorten’s User Object”. Detailed Description – You can add a long description to help other developers understand your object. I am just going to specify “Anthony Shorten’s Test Object for SOA Suite Integration”. Maintenance Object – As this Business Service is going to be based upon a Maintenance Object I will specify the desired Maintenance Object. In this example, I have decided to use the Framework object USER. Now, I chose this for a number of reasons. It is meaningful, simple and is across all our product lines. I could choose ANY maintenance object I wished to expose (including any custom ones, if I had them). Parent Business Object – If I was not using a Maintenance Object but building a child Business Object against another Business Object, then I would specify the Parent Business Object here. I am not using Parent’s so I will leave this blank. You either use Parent Business Object or Maintenance Object not both. Application Service – Business Objects like other objects are subject to security. You can attach an Application Service to an object to specify which groups of users (remember services are attached to user groups not users) have appropriate access to the object. I will use a default service provided with the product, F1-DFLTS ,as this is just a demonstration so I do not have to be too sophisticated about security. Instance Control – This allows the object to create instances in its objects. You can specify a Business Object purely to hold rules. I am being simple here so I will set it to Allow New Instances to allow the Business Object to be used to create, read, update and delete user records. The rest of the tab I will leave empty as I want this to be a very simple object. Other options allow lots of flexibility. The contents should look like this: Before saving your work, you need to navigate to the Schema tab and specify the contents of your object. I will save some time. When you create an object the schema will only contain the basic root elements of the object (in fact only the schema tag is visible). When you go to the Schema Tab, on the dashboard you will see a BO Schema zone with a solitary button. This will allow you to Generate the Schema for you from our metadata. Click on the Generate button to generate a basic schema from the metadata. You will now see a Schema with the element tags and references to the metadata of the Maintenance object (in the mapField attribute). I could spend a while outlining all the ways you can change the schema with defaults, formatting, tagging etc but the online help has plenty of great examples to illustrate this. You can use the Schema Tips zone in the for more details of the available customizations. Note: The tags are generated from the language pack you have installed. The sample is English so the tags are in English (which is the base language of all installations). If you are using a language pack then the tags will be generated in the language of the user that generated the object. At this point you can save your Business Object by pressing the Save action. At this point you have a basic Business Object based on the USER maintenance object ready for use but it is not defined as a Web Service yet. To do this you need to define the newly created Business Object as an XAI Inbound Service. The easiest and quickest way is to select + off the XAI Inbound Service off the context menu on the Business Object maintenance screen. This will prepopulate the service definition with the following: Adapter – This will be set to Business Adaptor. This indicates that the service is either Business Object, Business Service or Service Script based. Schema Type – Whether the object is a Business Object, Business Service or Service Script. In this case it is a Business Object. Schema Name – The name of the object. In this case it is the Business Object AS-User. Active – Set to Yes. This means the service is available upon startup automatically. You can enable and disable services as needed. Transaction Type – A default transaction type as this is Business Object Service. More about this in later postings. In our case we use the default Read. This means that if we only specify data and not a transaction type then the product will assume you want to issue a read against the object. You need to fill in the following: XAI Inbound Service – The name of the Web Service. Usually people use the same name as the underlying object , in the case of this example, but this can match your sites interfacing standards. By the way you can define multiple XAI Inbound Services/Web Services against the same object if you want. Description and Detail Description – Documentation for your Web Service. I just supplied some basic documentation for this demonstration. You can now save the service definition. Note: There are lots of other options on this screen that allow for behavior of your service to be specified. I will leave them blank for now. When you save the service you are issued with two new pieces of information. XAI Inbound Service Id is a randomly generated identifier used internally by the XAI Servlet. WSDL URL is the WSDL standard URL used for integration. We will take advantage of that in later posts. An example of the definition is shown below: Now you have defined the service but it will only be available when the next server restart or when you flush the data cache. XAI Inbound Services are cached for performance so the cache needs to be told of this new service. To refresh the cache you can use the Admin –> X –> XAI Command menu item. From the command dropdown select Refresh Registry and press Send Command. You will see an XML of the command sent to the server (the presence of the XML means it is finished). If you have an error around the authorization, then check your default user and password settings on the XAI Options menu item. Be careful with flushing the cache as the cache is shared (unless of course you are the only Web Service user on the system – In that case it only affects you). The Web Service is NOW available to be used. To perform a simple test of your new Web Service, navigate to the Admin –> X –> XAI Submission menu item. You will see an open XML request tab. You need to type in the request XML you want to test in the Main tab. The first tag is the XAI Inbound Service Name and the elements are as per your schema (minus the schema tag itself as that is only used internally). My example is as follows (I want to return the details of user SYSUSER) – Remember to close tags. Hitting the Save button will issue the XML and return the response according to the Business Object schema. Now before you panic, you noticed that it did not ask for credentials. It propagates the online credentials to the service call on this function. You now have a Web Service you can use for integration. We will reuse this information in subsequent posts. The process I just described can be used for ANY object in the system you want to expose. This whole process at a minimum can take under a minute. Obviously I only showed the basics but you can at least get an appreciation of the ease of defining a Web Service (just by using a browser). The next posts now build upon this. Hope you enjoyed the post.

    Read the article

  • When is a SQL function not a function?

    - by Rob Farley
    Should SQL Server even have functions? (Oh yeah – this is a T-SQL Tuesday post, hosted this month by Brad Schulz) Functions serve an important part of programming, in almost any language. A function is a piece of code that is designed to return something, as opposed to a piece of code which isn’t designed to return anything (which is known as a procedure). SQL Server is no different. You can call stored procedures, even from within other stored procedures, and you can call functions and use these in other queries. Stored procedures might query something, and therefore ‘return data’, but a function in SQL is considered to have the type of the thing returned, and can be used accordingly in queries. Consider the internal GETDATE() function. SELECT GETDATE(), SomeDatetimeColumn FROM dbo.SomeTable; There’s no logical difference between the field that is being returned by the function and the field that’s being returned by the table column. Both are the datetime field – if you didn’t have inside knowledge, you wouldn’t necessarily be able to tell which was which. And so as developers, we find ourselves wanting to create functions that return all kinds of things – functions which look up values based on codes, functions which do string manipulation, and so on. But it’s rubbish. Ok, it’s not all rubbish, but it mostly is. And this isn’t even considering the SARGability impact. It’s far more significant than that. (When I say the SARGability aspect, I mean “because you’re unlikely to have an index on the result of some function that’s applied to a column, so try to invert the function and query the column in an unchanged manner”) I’m going to consider the three main types of user-defined functions in SQL Server: Scalar Inline Table-Valued Multi-statement Table-Valued I could also look at user-defined CLR functions, including aggregate functions, but not today. I figure that most people don’t tend to get around to doing CLR functions, and I’m going to focus on the T-SQL-based user-defined functions. Most people split these types of function up into two types. So do I. Except that most people pick them based on ‘scalar or table-valued’. I’d rather go with ‘inline or not’. If it’s not inline, it’s rubbish. It really is. Let’s start by considering the two kinds of table-valued function, and compare them. These functions are going to return the sales for a particular salesperson in a particular year, from the AdventureWorks database. CREATE FUNCTION dbo.FetchSales_inline(@salespersonid int, @orderyear int) RETURNS TABLE AS  RETURN (     SELECT e.LoginID as EmployeeLogin, o.OrderDate, o.SalesOrderID     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101') ) ; GO CREATE FUNCTION dbo.FetchSales_multi(@salespersonid int, @orderyear int) RETURNS @results TABLE (     EmployeeLogin nvarchar(512),     OrderDate datetime,     SalesOrderID int     ) AS BEGIN     INSERT @results (EmployeeLogin, OrderDate, SalesOrderID)     SELECT e.LoginID, o.OrderDate, o.SalesOrderID     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101')     ;     RETURN END ; GO You’ll notice that I’m being nice and responsible with the use of the DATEADD function, so that I have SARGability on the OrderDate filter. Regular readers will be hoping I’ll show what’s going on in the execution plans here. Here I’ve run two SELECT * queries with the “Show Actual Execution Plan” option turned on. Notice that the ‘Query cost’ of the multi-statement version is just 2% of the ‘Batch cost’. But also notice there’s trickery going on. And it’s nothing to do with that extra index that I have on the OrderDate column. Trickery. Look at it – clearly, the first plan is showing us what’s going on inside the function, but the second one isn’t. The second one is blindly running the function, and then scanning the results. There’s a Sequence operator which is calling the TVF operator, and then calling a Table Scan to get the results of that function for the SELECT operator. But surely it still has to do all the work that the first one is doing... To see what’s actually going on, let’s look at the Estimated plan. Now, we see the same plans (almost) that we saw in the Actuals, but we have an extra one – the one that was used for the TVF. Here’s where we see the inner workings of it. You’ll probably recognise the right-hand side of the TVF’s plan as looking very similar to the first plan – but it’s now being called by a stack of other operators, including an INSERT statement to be able to populate the table variable that the multi-statement TVF requires. And the cost of the TVF is 57% of the batch! But it gets worse. Let’s consider what happens if we don’t need all the columns. We’ll leave out the EmployeeLogin column. Here, we see that the inline function call has been simplified down. It doesn’t need the Employee table. The join is redundant and has been eliminated from the plan, making it even cheaper. But the multi-statement plan runs the whole thing as before, only removing the extra column when the Table Scan is performed. A multi-statement function is a lot more powerful than an inline one. An inline function can only be the result of a single sub-query. It’s essentially the same as a parameterised view, because views demonstrate this same behaviour of extracting the definition of the view and using it in the outer query. A multi-statement function is clearly more powerful because it can contain far more complex logic. But a multi-statement function isn’t really a function at all. It’s a stored procedure. It’s wrapped up like a function, but behaves like a stored procedure. It would be completely unreasonable to expect that a stored procedure could be simplified down to recognise that not all the columns might be needed, but yet this is part of the pain associated with this procedural function situation. The biggest clue that a multi-statement function is more like a stored procedure than a function is the “BEGIN” and “END” statements that surround the code. If you try to create a multi-statement function without these statements, you’ll get an error – they are very much required. When I used to present on this kind of thing, I even used to call it “The Dangers of BEGIN and END”, and yes, I’ve written about this type of thing before in a similarly-named post over at my old blog. Now how about scalar functions... Suppose we wanted a scalar function to return the count of these. CREATE FUNCTION dbo.FetchSales_scalar(@salespersonid int, @orderyear int) RETURNS int AS BEGIN     RETURN (         SELECT COUNT(*)         FROM Sales.SalesOrderHeader AS o         LEFT JOIN HumanResources.Employee AS e         ON e.EmployeeID = o.SalesPersonID         WHERE o.SalesPersonID = @salespersonid         AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')         AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101')     ); END ; GO Notice the evil words? They’re required. Try to remove them, you just get an error. That’s right – any scalar function is procedural, despite the fact that you wrap up a sub-query inside that RETURN statement. It’s as ugly as anything. Hopefully this will change in future versions. Let’s have a look at how this is reflected in an execution plan. Here’s a query, its Actual plan, and its Estimated plan: SELECT e.LoginID, y.year, dbo.FetchSales_scalar(p.SalesPersonID, y.year) AS NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID; We see here that the cost of the scalar function is about twice that of the outer query. Nicely, the query optimizer has worked out that it doesn’t need the Employee table, but that’s a bit of a red herring here. There’s actually something way more significant going on. If I look at the properties of that UDF operator, it tells me that the Estimated Subtree Cost is 0.337999. If I just run the query SELECT dbo.FetchSales_scalar(281,2003); we see that the UDF cost is still unchanged. You see, this 0.0337999 is the cost of running the scalar function ONCE. But when we ran that query with the CROSS JOIN in it, we returned quite a few rows. 68 in fact. Could’ve been a lot more, if we’d had more salespeople or more years. And so we come to the biggest problem. This procedure (I don’t want to call it a function) is getting called 68 times – each one between twice as expensive as the outer query. And because it’s calling it in a separate context, there is even more overhead that I haven’t considered here. The cheek of it, to say that the Compute Scalar operator here costs 0%! I know a number of IT projects that could’ve used that kind of costing method, but that’s another story that I’m not going to go into here. Let’s look at a better way. Suppose our scalar function had been implemented as an inline one. Then it could have been expanded out like a sub-query. It could’ve run something like this: SELECT e.LoginID, y.year, (SELECT COUNT(*)     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = p.SalesPersonID     AND o.OrderDate >= DATEADD(year,y.year-2000,'20000101')     AND o.OrderDate < DATEADD(year,y.year-2000+1,'20000101')     ) AS NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID; Don’t worry too much about the Scan of the SalesOrderHeader underneath a Nested Loop. If you remember from plenty of other posts on the matter, execution plans don’t push the data through. That Scan only runs once. The Index Spool sucks the data out of it and populates a structure that is used to feed the Stream Aggregate. The Index Spool operator gets called 68 times, but the Scan only once (the Number of Executions property demonstrates this). Here, the Query Optimizer has a full picture of what’s being asked, and can make the appropriate decision about how it accesses the data. It can simplify it down properly. To get this kind of behaviour from a function, we need it to be inline. But without inline scalar functions, we need to make our function be table-valued. Luckily, that’s ok. CREATE FUNCTION dbo.FetchSales_inline2(@salespersonid int, @orderyear int) RETURNS table AS RETURN (SELECT COUNT(*) as NumSales     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101') ); GO But we can’t use this as a scalar. Instead, we need to use it with the APPLY operator. SELECT e.LoginID, y.year, n.NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID OUTER APPLY dbo.FetchSales_inline2(p.SalesPersonID, y.year) AS n; And now, we get the plan that we want for this query. All we’ve done is tell the function that it’s returning a table instead of a single value, and removed the BEGIN and END statements. We’ve had to name the column being returned, but what we’ve gained is an actual inline simplifiable function. And if we wanted it to return multiple columns, it could do that too. I really consider this function to be superior to the scalar function in every way. It does need to be handled differently in the outer query, but in many ways it’s a more elegant method there too. The function calls can be put amongst the FROM clause, where they can then be used in the WHERE or GROUP BY clauses without fear of calling the function multiple times (another horrible side effect of functions). So please. If you see BEGIN and END in a function, remember it’s not really a function, it’s a procedure. And then fix it. @rob_farley

    Read the article

  • A Communication System for XAML Applications

    - by psheriff
    In any application, you want to keep the coupling between any two or more objects as loose as possible. Coupling happens when one class contains a property that is used in another class, or uses another class in one of its methods. If you have this situation, then this is called strong or tight coupling. One popular design pattern to help with keeping objects loosely coupled is called the Mediator design pattern. The basics of this pattern are very simple; avoid one object directly talking to another object, and instead use another class to mediate between the two. As with most of my blog posts, the purpose is to introduce you to a simple approach to using a message broker, not all of the fine details. IPDSAMessageBroker Interface As with most implementations of a design pattern, you typically start with an interface or an abstract base class. In this particular instance, an Interface will work just fine. The interface for our Message Broker class just contains a single method “SendMessage” and one event “MessageReceived”. public delegate void MessageReceivedEventHandler( object sender, PDSAMessageBrokerEventArgs e); public interface IPDSAMessageBroker{  void SendMessage(PDSAMessageBrokerMessage msg);   event MessageReceivedEventHandler MessageReceived;} PDSAMessageBrokerMessage Class As you can see in the interface, the SendMessage method requires a type of PDSAMessageBrokerMessage to be passed to it. This class simply has a MessageName which is a ‘string’ type and a MessageBody property which is of the type ‘object’ so you can pass whatever you want in the body. You might pass a string in the body, or a complete Customer object. The MessageName property will help the receiver of the message know what is in the MessageBody property. public class PDSAMessageBrokerMessage{  public PDSAMessageBrokerMessage()  {  }   public PDSAMessageBrokerMessage(string name, object body)  {    MessageName = name;    MessageBody = body;  }   public string MessageName { get; set; }   public object MessageBody { get; set; }} PDSAMessageBrokerEventArgs Class As our message broker class will be raising an event that others can respond to, it is a good idea to create your own event argument class. This class will inherit from the System.EventArgs class and add a couple of additional properties. The properties are the MessageName and Message. The MessageName property is simply a string value. The Message property is a type of a PDSAMessageBrokerMessage class. public class PDSAMessageBrokerEventArgs : EventArgs{  public PDSAMessageBrokerEventArgs()  {  }   public PDSAMessageBrokerEventArgs(string name,     PDSAMessageBrokerMessage msg)  {    MessageName = name;    Message = msg;  }   public string MessageName { get; set; }   public PDSAMessageBrokerMessage Message { get; set; }} PDSAMessageBroker Class Now that you have an interface class and a class to pass a message through an event, it is time to create your actual PDSAMessageBroker class. This class implements the SendMessage method and will also create the event handler for the delegate created in your Interface. public class PDSAMessageBroker : IPDSAMessageBroker{  public void SendMessage(PDSAMessageBrokerMessage msg)  {    PDSAMessageBrokerEventArgs args;     args = new PDSAMessageBrokerEventArgs(      msg.MessageName, msg);     RaiseMessageReceived(args);  }   public event MessageReceivedEventHandler MessageReceived;   protected void RaiseMessageReceived(    PDSAMessageBrokerEventArgs e)  {    if (null != MessageReceived)      MessageReceived(this, e);  }} The SendMessage method will take a PDSAMessageBrokerMessage object as an argument. It then creates an instance of a PDSAMessageBrokerEventArgs class, passing to the constructor two items: the MessageName from the PDSAMessageBrokerMessage object and also the object itself. It may seem a little redundant to pass in the message name when that same message name is part of the message, but it does make consuming the event and checking for the message name a little cleaner – as you will see in the next section. Create a Global Message Broker In your WPF application, create an instance of this message broker class in the App class located in the App.xaml file. Create a public property in the App class and create a new instance of that class in the OnStartUp event procedure as shown in the following code: public partial class App : Application{  public PDSAMessageBroker MessageBroker { get; set; }   protected override void OnStartup(StartupEventArgs e)  {    base.OnStartup(e);     MessageBroker = new PDSAMessageBroker();  }} Sending and Receiving Messages Let’s assume you have a user control that you load into a control on your main window and you want to send a message from that user control to the main window. You might have the main window display a message box, or put a string into a status bar as shown in Figure 1. Figure 1: The main window can receive and send messages The first thing you do in the main window is to hook up an event procedure to the MessageReceived event of the global message broker. This is done in the constructor of the main window: public MainWindow(){  InitializeComponent();   (Application.Current as App).MessageBroker.     MessageReceived += new MessageReceivedEventHandler(       MessageBroker_MessageReceived);} One piece of code you might not be familiar with is accessing a property defined in the App class of your XAML application. Within the App.Xaml file is a class named App that inherits from the Application object. You access the global instance of this App class by using Application.Current. You cast Application.Current to ‘App’ prior to accessing any of the public properties or methods you defined in the App class. Thus, the code (Application.Current as App).MessageBroker, allows you to get at the MessageBroker property defined in the App class. In the MessageReceived event procedure in the main window (shown below) you can now check to see if the MessageName property of the PDSAMessageBrokerEventArgs is equal to “StatusBar” and if it is, then display the message body into the status bar text block control. void MessageBroker_MessageReceived(object sender,   PDSAMessageBrokerEventArgs e){  switch (e.MessageName)  {    case "StatusBar":      tbStatus.Text = e.Message.MessageBody.ToString();      break;  }} In the Page 1 user control’s Loaded event procedure you will send the message “StatusBar” through the global message broker to any listener using the following code: private void UserControl_Loaded(object sender,  RoutedEventArgs e){  // Send Status Message  (Application.Current as App).MessageBroker.    SendMessage(new PDSAMessageBrokerMessage("StatusBar",      "This is Page 1"));} Since the main window is listening for the message ‘StatusBar’, it will display the value “This is Page 1” in the status bar at the bottom of the main window. Sending a Message to a User Control The previous example sent a message from the user control to the main window. You can also send messages from the main window to any listener as well. Remember that the global message broker is really just a broadcaster to anyone who has hooked into the MessageReceived event. In the constructor of the user control named ucPage1 you can hook into the global message broker’s MessageReceived event. You can then listen for any messages that are sent to this control by using a similar switch-case structure like that in the main window. public ucPage1(){  InitializeComponent();   // Hook to the Global Message Broker  (Application.Current as App).MessageBroker.    MessageReceived += new MessageReceivedEventHandler(      MessageBroker_MessageReceived);} void MessageBroker_MessageReceived(object sender,  PDSAMessageBrokerEventArgs e){  // Look for messages intended for Page 1  switch (e.MessageName)  {    case "ForPage1":      MessageBox.Show(e.Message.MessageBody.ToString());      break;  }} Once the ucPage1 user control has been loaded into the main window you can then send a message using the following code: private void btnSendToPage1_Click(object sender,  RoutedEventArgs e){  PDSAMessageBrokerMessage arg =     new PDSAMessageBrokerMessage();   arg.MessageName = "ForPage1";  arg.MessageBody = "Message For Page 1";   // Send a message to Page 1  (Application.Current as App).MessageBroker.SendMessage(arg);} Since the MessageName matches what is in the ucPage1 MessageReceived event procedure, ucPage1 can do anything in response to that event. It is important to note that when the message gets sent it is sent to all MessageReceived event procedures, not just the one that is looking for a message called “ForPage1”. If the user control ucPage1 is not loaded and this message is broadcast, but no other code is listening for it, then it is simply ignored. Remove Event Handler In each class where you add an event handler to the MessageReceived event you need to make sure to remove those event handlers when you are done. Failure to do so can cause a strong reference to the class and thus not allow that object to be garbage collected. In each of your user control’s make sure in the Unloaded event to remove the event handler. private void UserControl_Unloaded(object sender, RoutedEventArgs e){  if (_MessageBroker != null)    _MessageBroker.MessageReceived -=         _MessageBroker_MessageReceived;} Problems with Message Brokering As with most “global” classes or classes that hook up events to other classes, garbage collection is something you need to consider. Just the simple act of hooking up an event procedure to a global event handler creates a reference between your user control and the message broker in the App class. This means that even when your user control is removed from your UI, the class will still be in memory because of the reference to the message broker. This can cause messages to still being handled even though the UI is not being displayed. It is up to you to make sure you remove those event handlers as discussed in the previous section. If you don’t, then the garbage collector cannot release those objects. Instead of using events to send messages from one object to another you might consider registering your objects with a central message broker. This message broker now becomes a collection class into which you pass an object and what messages that object wishes to receive. You do end up with the same problem however. You have to un-register your objects; otherwise they still stay in memory. To alleviate this problem you can look into using the WeakReference class as a method to store your objects so they can be garbage collected if need be. Discussing Weak References is beyond the scope of this post, but you can look this up on the web. Summary In this blog post you learned how to create a simple message broker system that will allow you to send messages from one object to another without having to reference objects directly. This does reduce the coupling between objects in your application. You do need to remember to get rid of any event handlers prior to your objects going out of scope or you run the risk of having memory leaks and events being called even though you can no longer access the object that is responding to that event. NOTE: You can download the sample code for this article by visiting my website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then select “A Communication System for XAML Applications” from the drop down list.

    Read the article

  • Why should main() be short?

    - by Stargazer712
    I've been programming for over 9 years, and according to the advice of my first programming teacher, I always keep my main() function extremely short. At first I had no idea why. I just obeyed without understanding, much to the delight of my professors. After gaining experience, I realized that if I designed my code correctly, having a short main() function just sortof happened. Writing modularized code and following the single responsibility principle allowed my code to be designed in "bunches", and main() served as nothing more than a catalyst to get the program running. Fast forward to a few weeks ago, I was looking at Python's souce code, and I found the main() function: /* Minimal main program -- everything is loaded from the library */ ... int main(int argc, char **argv) { ... return Py_Main(argc, argv); } Yay Python. Short main() function == Good code. Programming teachers were right. Wanting to look deeper, I took a look at Py_Main. In its entirety, it is defined as follows: /* Main program */ int Py_Main(int argc, char **argv) { int c; int sts; char *command = NULL; char *filename = NULL; char *module = NULL; FILE *fp = stdin; char *p; int unbuffered = 0; int skipfirstline = 0; int stdin_is_interactive = 0; int help = 0; int version = 0; int saw_unbuffered_flag = 0; PyCompilerFlags cf; cf.cf_flags = 0; orig_argc = argc; /* For Py_GetArgcArgv() */ orig_argv = argv; #ifdef RISCOS Py_RISCOSWimpFlag = 0; #endif PySys_ResetWarnOptions(); while ((c = _PyOS_GetOpt(argc, argv, PROGRAM_OPTS)) != EOF) { if (c == 'c') { /* -c is the last option; following arguments that look like options are left for the command to interpret. */ command = (char *)malloc(strlen(_PyOS_optarg) + 2); if (command == NULL) Py_FatalError( "not enough memory to copy -c argument"); strcpy(command, _PyOS_optarg); strcat(command, "\n"); break; } if (c == 'm') { /* -m is the last option; following arguments that look like options are left for the module to interpret. */ module = (char *)malloc(strlen(_PyOS_optarg) + 2); if (module == NULL) Py_FatalError( "not enough memory to copy -m argument"); strcpy(module, _PyOS_optarg); break; } switch (c) { case 'b': Py_BytesWarningFlag++; break; case 'd': Py_DebugFlag++; break; case '3': Py_Py3kWarningFlag++; if (!Py_DivisionWarningFlag) Py_DivisionWarningFlag = 1; break; case 'Q': if (strcmp(_PyOS_optarg, "old") == 0) { Py_DivisionWarningFlag = 0; break; } if (strcmp(_PyOS_optarg, "warn") == 0) { Py_DivisionWarningFlag = 1; break; } if (strcmp(_PyOS_optarg, "warnall") == 0) { Py_DivisionWarningFlag = 2; break; } if (strcmp(_PyOS_optarg, "new") == 0) { /* This only affects __main__ */ cf.cf_flags |= CO_FUTURE_DIVISION; /* And this tells the eval loop to treat BINARY_DIVIDE as BINARY_TRUE_DIVIDE */ _Py_QnewFlag = 1; break; } fprintf(stderr, "-Q option should be `-Qold', " "`-Qwarn', `-Qwarnall', or `-Qnew' only\n"); return usage(2, argv[0]); /* NOTREACHED */ case 'i': Py_InspectFlag++; Py_InteractiveFlag++; break; /* case 'J': reserved for Jython */ case 'O': Py_OptimizeFlag++; break; case 'B': Py_DontWriteBytecodeFlag++; break; case 's': Py_NoUserSiteDirectory++; break; case 'S': Py_NoSiteFlag++; break; case 'E': Py_IgnoreEnvironmentFlag++; break; case 't': Py_TabcheckFlag++; break; case 'u': unbuffered++; saw_unbuffered_flag = 1; break; case 'v': Py_VerboseFlag++; break; #ifdef RISCOS case 'w': Py_RISCOSWimpFlag = 1; break; #endif case 'x': skipfirstline = 1; break; /* case 'X': reserved for implementation-specific arguments */ case 'U': Py_UnicodeFlag++; break; case 'h': case '?': help++; break; case 'V': version++; break; case 'W': PySys_AddWarnOption(_PyOS_optarg); break; /* This space reserved for other options */ default: return usage(2, argv[0]); /*NOTREACHED*/ } } if (help) return usage(0, argv[0]); if (version) { fprintf(stderr, "Python %s\n", PY_VERSION); return 0; } if (Py_Py3kWarningFlag && !Py_TabcheckFlag) /* -3 implies -t (but not -tt) */ Py_TabcheckFlag = 1; if (!Py_InspectFlag && (p = Py_GETENV("PYTHONINSPECT")) && *p != '\0') Py_InspectFlag = 1; if (!saw_unbuffered_flag && (p = Py_GETENV("PYTHONUNBUFFERED")) && *p != '\0') unbuffered = 1; if (!Py_NoUserSiteDirectory && (p = Py_GETENV("PYTHONNOUSERSITE")) && *p != '\0') Py_NoUserSiteDirectory = 1; if ((p = Py_GETENV("PYTHONWARNINGS")) && *p != '\0') { char *buf, *warning; buf = (char *)malloc(strlen(p) + 1); if (buf == NULL) Py_FatalError( "not enough memory to copy PYTHONWARNINGS"); strcpy(buf, p); for (warning = strtok(buf, ","); warning != NULL; warning = strtok(NULL, ",")) PySys_AddWarnOption(warning); free(buf); } if (command == NULL && module == NULL && _PyOS_optind < argc && strcmp(argv[_PyOS_optind], "-") != 0) { #ifdef __VMS filename = decc$translate_vms(argv[_PyOS_optind]); if (filename == (char *)0 || filename == (char *)-1) filename = argv[_PyOS_optind]; #else filename = argv[_PyOS_optind]; #endif } stdin_is_interactive = Py_FdIsInteractive(stdin, (char *)0); if (unbuffered) { #if defined(MS_WINDOWS) || defined(__CYGWIN__) _setmode(fileno(stdin), O_BINARY); _setmode(fileno(stdout), O_BINARY); #endif #ifdef HAVE_SETVBUF setvbuf(stdin, (char *)NULL, _IONBF, BUFSIZ); setvbuf(stdout, (char *)NULL, _IONBF, BUFSIZ); setvbuf(stderr, (char *)NULL, _IONBF, BUFSIZ); #else /* !HAVE_SETVBUF */ setbuf(stdin, (char *)NULL); setbuf(stdout, (char *)NULL); setbuf(stderr, (char *)NULL); #endif /* !HAVE_SETVBUF */ } else if (Py_InteractiveFlag) { #ifdef MS_WINDOWS /* Doesn't have to have line-buffered -- use unbuffered */ /* Any set[v]buf(stdin, ...) screws up Tkinter :-( */ setvbuf(stdout, (char *)NULL, _IONBF, BUFSIZ); #else /* !MS_WINDOWS */ #ifdef HAVE_SETVBUF setvbuf(stdin, (char *)NULL, _IOLBF, BUFSIZ); setvbuf(stdout, (char *)NULL, _IOLBF, BUFSIZ); #endif /* HAVE_SETVBUF */ #endif /* !MS_WINDOWS */ /* Leave stderr alone - it should be unbuffered anyway. */ } #ifdef __VMS else { setvbuf (stdout, (char *)NULL, _IOLBF, BUFSIZ); } #endif /* __VMS */ #ifdef __APPLE__ /* On MacOS X, when the Python interpreter is embedded in an application bundle, it gets executed by a bootstrapping script that does os.execve() with an argv[0] that's different from the actual Python executable. This is needed to keep the Finder happy, or rather, to work around Apple's overly strict requirements of the process name. However, we still need a usable sys.executable, so the actual executable path is passed in an environment variable. See Lib/plat-mac/bundlebuiler.py for details about the bootstrap script. */ if ((p = Py_GETENV("PYTHONEXECUTABLE")) && *p != '\0') Py_SetProgramName(p); else Py_SetProgramName(argv[0]); #else Py_SetProgramName(argv[0]); #endif Py_Initialize(); if (Py_VerboseFlag || (command == NULL && filename == NULL && module == NULL && stdin_is_interactive)) { fprintf(stderr, "Python %s on %s\n", Py_GetVersion(), Py_GetPlatform()); if (!Py_NoSiteFlag) fprintf(stderr, "%s\n", COPYRIGHT); } if (command != NULL) { /* Backup _PyOS_optind and force sys.argv[0] = '-c' */ _PyOS_optind--; argv[_PyOS_optind] = "-c"; } if (module != NULL) { /* Backup _PyOS_optind and force sys.argv[0] = '-c' so that PySys_SetArgv correctly sets sys.path[0] to '' rather than looking for a file called "-m". See tracker issue #8202 for details. */ _PyOS_optind--; argv[_PyOS_optind] = "-c"; } PySys_SetArgv(argc-_PyOS_optind, argv+_PyOS_optind); if ((Py_InspectFlag || (command == NULL && filename == NULL && module == NULL)) && isatty(fileno(stdin))) { PyObject *v; v = PyImport_ImportModule("readline"); if (v == NULL) PyErr_Clear(); else Py_DECREF(v); } if (command) { sts = PyRun_SimpleStringFlags(command, &cf) != 0; free(command); } else if (module) { sts = RunModule(module, 1); free(module); } else { if (filename == NULL && stdin_is_interactive) { Py_InspectFlag = 0; /* do exit on SystemExit */ RunStartupFile(&cf); } /* XXX */ sts = -1; /* keep track of whether we've already run __main__ */ if (filename != NULL) { sts = RunMainFromImporter(filename); } if (sts==-1 && filename!=NULL) { if ((fp = fopen(filename, "r")) == NULL) { fprintf(stderr, "%s: can't open file '%s': [Errno %d] %s\n", argv[0], filename, errno, strerror(errno)); return 2; } else if (skipfirstline) { int ch; /* Push back first newline so line numbers remain the same */ while ((ch = getc(fp)) != EOF) { if (ch == '\n') { (void)ungetc(ch, fp); break; } } } { /* XXX: does this work on Win/Win64? (see posix_fstat) */ struct stat sb; if (fstat(fileno(fp), &sb) == 0 && S_ISDIR(sb.st_mode)) { fprintf(stderr, "%s: '%s' is a directory, cannot continue\n", argv[0], filename); fclose(fp); return 1; } } } if (sts==-1) { /* call pending calls like signal handlers (SIGINT) */ if (Py_MakePendingCalls() == -1) { PyErr_Print(); sts = 1; } else { sts = PyRun_AnyFileExFlags( fp, filename == NULL ? "<stdin>" : filename, filename != NULL, &cf) != 0; } } } /* Check this environment variable at the end, to give programs the * opportunity to set it from Python. */ if (!Py_InspectFlag && (p = Py_GETENV("PYTHONINSPECT")) && *p != '\0') { Py_InspectFlag = 1; } if (Py_InspectFlag && stdin_is_interactive && (filename != NULL || command != NULL || module != NULL)) { Py_InspectFlag = 0; /* XXX */ sts = PyRun_AnyFileFlags(stdin, "<stdin>", &cf) != 0; } Py_Finalize(); #ifdef RISCOS if (Py_RISCOSWimpFlag) fprintf(stderr, "\x0cq\x0c"); /* make frontend quit */ #endif #ifdef __INSURE__ /* Insure++ is a memory analysis tool that aids in discovering * memory leaks and other memory problems. On Python exit, the * interned string dictionary is flagged as being in use at exit * (which it is). Under normal circumstances, this is fine because * the memory will be automatically reclaimed by the system. Under * memory debugging, it's a huge source of useless noise, so we * trade off slower shutdown for less distraction in the memory * reports. -baw */ _Py_ReleaseInternedStrings(); #endif /* __INSURE__ */ return sts; } Good God Almighty...it is big enough to sink the Titanic. It seems as though Python did the "Intro to Programming 101" trick and just moved all of main()'s code to a different function called it something very similar to "main". Here's my question: Is this code terribly written, or are there other reasons reasons to have a short main function? As it stands right now, I see absolutely no difference between doing this and just moving the code in Py_Main() back into main(). Am I wrong in thinking this?

    Read the article

  • Why should main() be short?

    - by Stargazer712
    I've been programming for over 9 years, and according to the advice of my first programming teacher, I always keep my main() function extremely short. At first I had no idea why. I just obeyed without understanding, much to the delight of my professors. After gaining experience, I realized that if I designed my code correctly, having a short main() function just sortof happened. Writing modularized code and following the single responsibility principle allowed my code to be designed in "bunches", and main() served as nothing more than a catalyst to get the program running. Fast forward to a few weeks ago, I was looking at Python's souce code, and I found the main() function: /* Minimal main program -- everything is loaded from the library */ ... int main(int argc, char **argv) { ... return Py_Main(argc, argv); } Yay python. Short main() function == Good code. Programming teachers were right. Wanting to look deeper, I took a look at Py_Main. In its entirety, it is defined as follows: /* Main program */ int Py_Main(int argc, char **argv) { int c; int sts; char *command = NULL; char *filename = NULL; char *module = NULL; FILE *fp = stdin; char *p; int unbuffered = 0; int skipfirstline = 0; int stdin_is_interactive = 0; int help = 0; int version = 0; int saw_unbuffered_flag = 0; PyCompilerFlags cf; cf.cf_flags = 0; orig_argc = argc; /* For Py_GetArgcArgv() */ orig_argv = argv; #ifdef RISCOS Py_RISCOSWimpFlag = 0; #endif PySys_ResetWarnOptions(); while ((c = _PyOS_GetOpt(argc, argv, PROGRAM_OPTS)) != EOF) { if (c == 'c') { /* -c is the last option; following arguments that look like options are left for the command to interpret. */ command = (char *)malloc(strlen(_PyOS_optarg) + 2); if (command == NULL) Py_FatalError( "not enough memory to copy -c argument"); strcpy(command, _PyOS_optarg); strcat(command, "\n"); break; } if (c == 'm') { /* -m is the last option; following arguments that look like options are left for the module to interpret. */ module = (char *)malloc(strlen(_PyOS_optarg) + 2); if (module == NULL) Py_FatalError( "not enough memory to copy -m argument"); strcpy(module, _PyOS_optarg); break; } switch (c) { case 'b': Py_BytesWarningFlag++; break; case 'd': Py_DebugFlag++; break; case '3': Py_Py3kWarningFlag++; if (!Py_DivisionWarningFlag) Py_DivisionWarningFlag = 1; break; case 'Q': if (strcmp(_PyOS_optarg, "old") == 0) { Py_DivisionWarningFlag = 0; break; } if (strcmp(_PyOS_optarg, "warn") == 0) { Py_DivisionWarningFlag = 1; break; } if (strcmp(_PyOS_optarg, "warnall") == 0) { Py_DivisionWarningFlag = 2; break; } if (strcmp(_PyOS_optarg, "new") == 0) { /* This only affects __main__ */ cf.cf_flags |= CO_FUTURE_DIVISION; /* And this tells the eval loop to treat BINARY_DIVIDE as BINARY_TRUE_DIVIDE */ _Py_QnewFlag = 1; break; } fprintf(stderr, "-Q option should be `-Qold', " "`-Qwarn', `-Qwarnall', or `-Qnew' only\n"); return usage(2, argv[0]); /* NOTREACHED */ case 'i': Py_InspectFlag++; Py_InteractiveFlag++; break; /* case 'J': reserved for Jython */ case 'O': Py_OptimizeFlag++; break; case 'B': Py_DontWriteBytecodeFlag++; break; case 's': Py_NoUserSiteDirectory++; break; case 'S': Py_NoSiteFlag++; break; case 'E': Py_IgnoreEnvironmentFlag++; break; case 't': Py_TabcheckFlag++; break; case 'u': unbuffered++; saw_unbuffered_flag = 1; break; case 'v': Py_VerboseFlag++; break; #ifdef RISCOS case 'w': Py_RISCOSWimpFlag = 1; break; #endif case 'x': skipfirstline = 1; break; /* case 'X': reserved for implementation-specific arguments */ case 'U': Py_UnicodeFlag++; break; case 'h': case '?': help++; break; case 'V': version++; break; case 'W': PySys_AddWarnOption(_PyOS_optarg); break; /* This space reserved for other options */ default: return usage(2, argv[0]); /*NOTREACHED*/ } } if (help) return usage(0, argv[0]); if (version) { fprintf(stderr, "Python %s\n", PY_VERSION); return 0; } if (Py_Py3kWarningFlag && !Py_TabcheckFlag) /* -3 implies -t (but not -tt) */ Py_TabcheckFlag = 1; if (!Py_InspectFlag && (p = Py_GETENV("PYTHONINSPECT")) && *p != '\0') Py_InspectFlag = 1; if (!saw_unbuffered_flag && (p = Py_GETENV("PYTHONUNBUFFERED")) && *p != '\0') unbuffered = 1; if (!Py_NoUserSiteDirectory && (p = Py_GETENV("PYTHONNOUSERSITE")) && *p != '\0') Py_NoUserSiteDirectory = 1; if ((p = Py_GETENV("PYTHONWARNINGS")) && *p != '\0') { char *buf, *warning; buf = (char *)malloc(strlen(p) + 1); if (buf == NULL) Py_FatalError( "not enough memory to copy PYTHONWARNINGS"); strcpy(buf, p); for (warning = strtok(buf, ","); warning != NULL; warning = strtok(NULL, ",")) PySys_AddWarnOption(warning); free(buf); } if (command == NULL && module == NULL && _PyOS_optind < argc && strcmp(argv[_PyOS_optind], "-") != 0) { #ifdef __VMS filename = decc$translate_vms(argv[_PyOS_optind]); if (filename == (char *)0 || filename == (char *)-1) filename = argv[_PyOS_optind]; #else filename = argv[_PyOS_optind]; #endif } stdin_is_interactive = Py_FdIsInteractive(stdin, (char *)0); if (unbuffered) { #if defined(MS_WINDOWS) || defined(__CYGWIN__) _setmode(fileno(stdin), O_BINARY); _setmode(fileno(stdout), O_BINARY); #endif #ifdef HAVE_SETVBUF setvbuf(stdin, (char *)NULL, _IONBF, BUFSIZ); setvbuf(stdout, (char *)NULL, _IONBF, BUFSIZ); setvbuf(stderr, (char *)NULL, _IONBF, BUFSIZ); #else /* !HAVE_SETVBUF */ setbuf(stdin, (char *)NULL); setbuf(stdout, (char *)NULL); setbuf(stderr, (char *)NULL); #endif /* !HAVE_SETVBUF */ } else if (Py_InteractiveFlag) { #ifdef MS_WINDOWS /* Doesn't have to have line-buffered -- use unbuffered */ /* Any set[v]buf(stdin, ...) screws up Tkinter :-( */ setvbuf(stdout, (char *)NULL, _IONBF, BUFSIZ); #else /* !MS_WINDOWS */ #ifdef HAVE_SETVBUF setvbuf(stdin, (char *)NULL, _IOLBF, BUFSIZ); setvbuf(stdout, (char *)NULL, _IOLBF, BUFSIZ); #endif /* HAVE_SETVBUF */ #endif /* !MS_WINDOWS */ /* Leave stderr alone - it should be unbuffered anyway. */ } #ifdef __VMS else { setvbuf (stdout, (char *)NULL, _IOLBF, BUFSIZ); } #endif /* __VMS */ #ifdef __APPLE__ /* On MacOS X, when the Python interpreter is embedded in an application bundle, it gets executed by a bootstrapping script that does os.execve() with an argv[0] that's different from the actual Python executable. This is needed to keep the Finder happy, or rather, to work around Apple's overly strict requirements of the process name. However, we still need a usable sys.executable, so the actual executable path is passed in an environment variable. See Lib/plat-mac/bundlebuiler.py for details about the bootstrap script. */ if ((p = Py_GETENV("PYTHONEXECUTABLE")) && *p != '\0') Py_SetProgramName(p); else Py_SetProgramName(argv[0]); #else Py_SetProgramName(argv[0]); #endif Py_Initialize(); if (Py_VerboseFlag || (command == NULL && filename == NULL && module == NULL && stdin_is_interactive)) { fprintf(stderr, "Python %s on %s\n", Py_GetVersion(), Py_GetPlatform()); if (!Py_NoSiteFlag) fprintf(stderr, "%s\n", COPYRIGHT); } if (command != NULL) { /* Backup _PyOS_optind and force sys.argv[0] = '-c' */ _PyOS_optind--; argv[_PyOS_optind] = "-c"; } if (module != NULL) { /* Backup _PyOS_optind and force sys.argv[0] = '-c' so that PySys_SetArgv correctly sets sys.path[0] to '' rather than looking for a file called "-m". See tracker issue #8202 for details. */ _PyOS_optind--; argv[_PyOS_optind] = "-c"; } PySys_SetArgv(argc-_PyOS_optind, argv+_PyOS_optind); if ((Py_InspectFlag || (command == NULL && filename == NULL && module == NULL)) && isatty(fileno(stdin))) { PyObject *v; v = PyImport_ImportModule("readline"); if (v == NULL) PyErr_Clear(); else Py_DECREF(v); } if (command) { sts = PyRun_SimpleStringFlags(command, &cf) != 0; free(command); } else if (module) { sts = RunModule(module, 1); free(module); } else { if (filename == NULL && stdin_is_interactive) { Py_InspectFlag = 0; /* do exit on SystemExit */ RunStartupFile(&cf); } /* XXX */ sts = -1; /* keep track of whether we've already run __main__ */ if (filename != NULL) { sts = RunMainFromImporter(filename); } if (sts==-1 && filename!=NULL) { if ((fp = fopen(filename, "r")) == NULL) { fprintf(stderr, "%s: can't open file '%s': [Errno %d] %s\n", argv[0], filename, errno, strerror(errno)); return 2; } else if (skipfirstline) { int ch; /* Push back first newline so line numbers remain the same */ while ((ch = getc(fp)) != EOF) { if (ch == '\n') { (void)ungetc(ch, fp); break; } } } { /* XXX: does this work on Win/Win64? (see posix_fstat) */ struct stat sb; if (fstat(fileno(fp), &sb) == 0 && S_ISDIR(sb.st_mode)) { fprintf(stderr, "%s: '%s' is a directory, cannot continue\n", argv[0], filename); fclose(fp); return 1; } } } if (sts==-1) { /* call pending calls like signal handlers (SIGINT) */ if (Py_MakePendingCalls() == -1) { PyErr_Print(); sts = 1; } else { sts = PyRun_AnyFileExFlags( fp, filename == NULL ? "<stdin>" : filename, filename != NULL, &cf) != 0; } } } /* Check this environment variable at the end, to give programs the * opportunity to set it from Python. */ if (!Py_InspectFlag && (p = Py_GETENV("PYTHONINSPECT")) && *p != '\0') { Py_InspectFlag = 1; } if (Py_InspectFlag && stdin_is_interactive && (filename != NULL || command != NULL || module != NULL)) { Py_InspectFlag = 0; /* XXX */ sts = PyRun_AnyFileFlags(stdin, "<stdin>", &cf) != 0; } Py_Finalize(); #ifdef RISCOS if (Py_RISCOSWimpFlag) fprintf(stderr, "\x0cq\x0c"); /* make frontend quit */ #endif #ifdef __INSURE__ /* Insure++ is a memory analysis tool that aids in discovering * memory leaks and other memory problems. On Python exit, the * interned string dictionary is flagged as being in use at exit * (which it is). Under normal circumstances, this is fine because * the memory will be automatically reclaimed by the system. Under * memory debugging, it's a huge source of useless noise, so we * trade off slower shutdown for less distraction in the memory * reports. -baw */ _Py_ReleaseInternedStrings(); #endif /* __INSURE__ */ return sts; } Good God Almighty...it is big enough to sink the Titanic. It seems as though Python did the "Intro to Programming 101" trick and just moved all of main()'s code to a different function called it something very similar to "main". Here's my question: Is this code terribly written, or are there other reasons to have a short main function? As it stands right now, I see absolutely no difference between doing this and just moving the code in Py_Main() back into main(). Am I wrong in thinking this?

    Read the article

  • Connecting SceneBuilder edited FXML to Java code

    - by daniel
    Recently I had to answer several questions regarding how to connect an UI built with the JavaFX SceneBuilder 1.0 Developer Preview to Java Code. So I figured out that a short overview might be helpful. But first, let me state the obvious. What is FXML? To make it short, FXML is an XML based declaration format for JavaFX. JavaFX provides an FXML loader which will parse FXML files and from that construct a graph of Java object. It may sound complex when stated like that but it is actually quite simple. Here is an example of FXML file, which instantiate a StackPane and puts a Button inside it: -- <?xml version="1.0" encoding="UTF-8"?> <?import java.lang.*?> <?import java.util.*?> <?import javafx.scene.control.*?> <?import javafx.scene.layout.*?> <?import javafx.scene.paint.*?> <StackPane prefHeight="150.0" prefWidth="200.0" xmlns:fx="http://javafx.com/fxml"> <children> <Button mnemonicParsing="false" text="Button" /> </children> </StackPane> ... and here is the code I would have had to write if I had chosen to do the same thing programatically: import javafx.scene.control.*; import javafx.scene.layout.*; ... final Button button = new Button("Button"); button.setMnemonicParsing(false); final StackPane stackPane = new StackPane(); stackPane.setPrefWidth(200.0); stackPane.setPrefHeight(150.0); stacPane.getChildren().add(button); As you can see - FXML is rather simple to understand - as it is quite close to the JavaFX API. So OK FXML is simple, but why would I use it?Well, there are several answers to that - but my own favorite is: because you can make it with SceneBuilder. What is SceneBuilder? In short SceneBuilder is a layout tool that will let you graphically build JavaFX user interfaces by dragging and dropping JavaFX components from a library, and save it as an FXML file. SceneBuilder can also be used to load and modify JavaFX scenegraphs declared in FXML. Here is how I made the small FXML file above: Start the JavaFX SceneBuilder 1.0 Developer Preview In the Library on the left hand side, click on 'StackPane' and drag it on the content view (the white rectangle) In the Library, select a Button and drag it onto the StackPane on the content view. In the Hierarchy Panel on the left hand side - select the StackPane component, then invoke 'Edit > Trim To Selected' from the menubar That's it - you can now save, and you will obtain the small FXML file shown above. Of course this is only a trivial sample, made for the sake of the example - and SceneBuilder will let you create much more complex UIs. So, I have now an FXML file. But what do I do with it? How do I include it in my program? How do I write my main class? Loading an FXML file with JavaFX Well, that's the easy part - because the piece of code you need to write never changes. You can download and look at the SceneBuilder samples if you need to get convinced, but here is the short version: Create a Java class (let's call it 'Main.java') which extends javafx.application.Application In the same directory copy/save the FXML file you just created using SceneBuilder. Let's name it "simple.fxml" Now here is the Java code for the Main class, which simply loads the FXML file and puts it as root in a stage's scene. /* * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved. */ package simple; import java.util.logging.Level; import java.util.logging.Logger; import javafx.application.Application; import javafx.fxml.FXMLLoader; import javafx.scene.Scene; import javafx.scene.layout.StackPane; import javafx.stage.Stage; public class Main extends Application { /** * @param args the command line arguments */ public static void main(String[] args) { Application.launch(Main.class, (java.lang.String[])null); } @Override public void start(Stage primaryStage) { try { StackPane page = (StackPane) FXMLLoader.load(Main.class.getResource("simple.fxml")); Scene scene = new Scene(page); primaryStage.setScene(scene); primaryStage.setTitle("FXML is Simple"); primaryStage.show(); } catch (Exception ex) { Logger.getLogger(Main.class.getName()).log(Level.SEVERE, null, ex); } } } Great! Now I only have to use my favorite IDE to compile the class and run it. But... wait... what does it do? Well nothing. It just displays a button in the middle of a window. There's no logic attached to it. So how do we do that? How can I connect this button to my application logic? Here is how: Connection to code First let's define our application logic. Since this post is only intended to give a very brief overview - let's keep things simple. Let's say that the only thing I want to do is print a message on System.out when the user clicks on my button. To do that, I'll need to register an action handler with my button. And to do that, I'll need to somehow get a handle on my button. I'll need some kind of controller logic that will get my button and add my action handler to it. So how do I get a handle to my button and pass it to my controller? Once again - this is easy: I just need to write a controller class for my FXML. With each FXML file, it is possible to associate a controller class defined for that FXML. That controller class will make the link between the UI (the objects defined in the FXML) and the application logic. To each object defined in FXML we can associate an fx:id. The value of the id must be unique within the scope of the FXML, and is the name of an instance variable inside the controller class, in which the object will be injected. Since I want to have access to my button, I will need to add an fx:id to my button in FXML, and declare an @FXML variable in my controller class with the same name. In other words - I will need to add fx:id="myButton" to my button in FXML: -- <Button fx:id="myButton" mnemonicParsing="false" text="Button" /> and declare @FXML private Button myButton in my controller class @FXML private Button myButton; // value will be injected by the FXMLLoader Let's see how to do this. Add an fx:id to the Button object Load "simple.fxml" in SceneBuilder - if not already done In the hierarchy panel (bottom left), or directly on the content view, select the Button object. Open the Properties sections of the inspector (right panel) for the button object At the top of the section, you will see a text field labelled fx:id. Enter myButton in that field and validate. Associate a controller class with the FXML file Still in SceneBuilder, select the top root object (in our case, that's the StackPane), and open the Code section of the inspector (right hand side) At the top of the section you should see a text field labelled Controller Class. In the field, type simple.SimpleController. This is the name of the class we're going to create manually. If you save at this point, the FXML will look like this: -- <?xml version="1.0" encoding="UTF-8"?> <?import java.lang.*?> <?import java.util.*?> <?import javafx.scene.control.*?> <?import javafx.scene.layout.*?> <?import javafx.scene.paint.*?> <StackPane prefHeight="150.0" prefWidth="200.0" xmlns:fx="http://javafx.com/fxml" fx:controller="simple.SimpleController"> <children> <Button fx:id="myButton" mnemonicParsing="false" text="Button" /> </children> </StackPane> As you can see, the name of the controller class has been added to the root object: fx:controller="simple.SimpleController" Coding the controller class In your favorite IDE, create an empty SimpleController.java class. Now what does a controller class looks like? What should we put inside? Well - SceneBuilder will help you there: it will show you an example of controller skeleton tailored for your FXML. In the menu bar, invoke View > Show Sample Controller Skeleton. A popup appears, displaying a suggestion for the controller skeleton: copy the code displayed there, and paste it into your SimpleController.java: /** * Sample Skeleton for "simple.fxml" Controller Class * Use copy/paste to copy paste this code into your favorite IDE **/ package simple; import java.net.URL; import java.util.ResourceBundle; import javafx.fxml.FXML; import javafx.fxml.Initializable; import javafx.scene.control.Button; public class SimpleController implements Initializable { @FXML // fx:id="myButton" private Button myButton; // Value injected by FXMLLoader @Override // This method is called by the FXMLLoader when initialization is complete public void initialize(URL fxmlFileLocation, ResourceBundle resources) { assert myButton != null : "fx:id=\"myButton\" was not injected: check your FXML file 'simple.fxml'."; // initialize your logic here: all @FXML variables will have been injected } } Note that the code displayed by SceneBuilder is there only for educational purpose: SceneBuilder does not create and does not modify Java files. This is simply a hint of what you can use, given the fx:id present in your FXML file. You are free to copy all or part of the displayed code and paste it into your own Java class. Now at this point, there only remains to add our logic to the controller class. Quite easy: in the initialize method, I will register an action handler with my button: () { @Override public void handle(ActionEvent event) { System.out.println("That was easy, wasn't it?"); } }); ... -- ... // initialize your logic here: all @FXML variables will have been injected myButton.setOnAction(new EventHandler<ActionEvent>() { @Override public void handle(ActionEvent event) { System.out.println("That was easy, wasn't it?"); } }); ... That's it - if you now compile everything in your IDE, and run your application, clicking on the button should print a message on the console! Summary What happens is that in Main.java, the FXMLLoader will load simple.fxml from the jar/classpath, as specified by 'FXMLLoader.load(Main.class.getResource("simple.fxml"))'. When loading simple.fxml, the loader will find the name of the controller class, as specified by 'fx:controller="simple.SimpleController"' in the FXML. Upon finding the name of the controller class, the loader will create an instance of that class, in which it will try to inject all the objects that have an fx:id in the FXML. Thus, after having created '<Button fx:id="myButton" ... />', the FXMLLoader will inject the button instance into the '@FXML private Button myButton;' instance variable found on the controller instance. This is because The instance variable has an @FXML annotation, The name of the variable exactly matches the value of the fx:id Finally, when the whole FXML has been loaded, the FXMLLoader will call the controller's initialize method, and our code that registers an action handler with the button will be executed. For a complete example, take a look at the HelloWorld SceneBuilder sample. Also make sure to follow the SceneBuilder Get Started guide, which will guide you through a much more complete example. Of course, there are more elegant ways to set up an Event Handler using FXML and SceneBuilder. There are also many different ways to work with the FXMLLoader. But since it's starting to be very late here, I think it will have to wait for another post. I hope you have enjoyed the tour! --daniel

    Read the article

  • Postgresql has broken apt-get on Ubuntu

    - by Raphie Palefsky-Smith
    On ubuntu 12.04, whenever I try to install a package using apt-get I'm greeted by: The following packages have unmet dependencies: postgresql-9.1 : Depends: postgresql-client-9.1 but it is not going to be instal led E: Unmet dependencies. Try 'apt-get -f install' with no packages (or specify a so lution). apt-get install postgresql-client-9.1 generates: The following packages have unmet dependencies: postgresql-client-9.1 : Breaks: postgresql-9.1 (< 9.1.6-0ubuntu12.04.1) but 9.1.3-2 is to be installed apt-get -f install and apt-get remove postgresql-9.1 both give: Removing postgresql-9.1 ... * Stopping PostgreSQL 9.1 database server * Error: /var/lib/postgresql/9.1/main is not accessible or does not exist ...fail! invoke-rc.d: initscript postgresql, action "stop" failed. dpkg: error processing postgresql-9.1 (--remove): subprocess installed pre-removal script returned error exit status 1 Errors were encountered while processing: postgresql-9.1 E: Sub-process /usr/bin/dpkg returned an error code (1) So, apt-get is crippled, and I can't find a way out. Is there any way to resolve this without a re-install? EDIT: apt-cache show postgresql-9.1 returns: Package: postgresql-9.1 Priority: optional Section: database Installed-Size: 11164 Maintainer: Ubuntu Developers <[email protected]> Original-Maintainer: Martin Pitt <[email protected]> Architecture: amd64 Version: 9.1.6-0ubuntu12.04.1 Replaces: postgresql-contrib-9.1 (<< 9.1~beta1-3~), postgresql-plpython-9.1 (<< 9.1.6-0ubuntu12.04.1) Depends: libc6 (>= 2.15), libcomerr2 (>= 1.01), libgssapi-krb5-2 (>= 1.8+dfsg), libkrb5-3 (>= 1.6.dfsg.2), libldap-2.4-2 (>= 2.4.7), libpam0g (>= 0.99.7.1), libpq5 (>= 9.1~), libssl1.0.0 (>= 1.0.0), libxml2 (>= 2.7.4), postgresql-client-9.1, postgresql-common (>= 115~), tzdata, ssl-cert, locales Suggests: oidentd | ident-server, locales-all Conflicts: postgresql (<< 7.5) Breaks: postgresql-plpython-9.1 (<< 9.1.6-0ubuntu12.04.1) Filename: pool/main/p/postgresql-9.1/postgresql-9.1_9.1.6-0ubuntu12.04.1_amd64.deb Size: 4298270 MD5sum: 9ee2ab5f25f949121f736ad80d735d57 SHA1: 5eac1cca8d00c4aec4fb55c46fc2a013bc401642 SHA256: 4e6c24c251a01f1b6a340c96d24fdbb92b5e2f8a2f4a8b6b08a0df0fe4cf62ab Description-en: object-relational SQL database, version 9.1 server PostgreSQL is a fully featured object-relational database management system. It supports a large part of the SQL standard and is designed to be extensible by users in many aspects. Some of the features are: ACID transactions, foreign keys, views, sequences, subqueries, triggers, user-defined types and functions, outer joins, multiversion concurrency control. Graphical user interfaces and bindings for many programming languages are available as well. . This package provides the database server for PostgreSQL 9.1. Servers for other major release versions can be installed simultaneously and are coordinated by the postgresql-common package. A package providing ident-server is needed if you want to authenticate remote connections with identd. Homepage: http://www.postgresql.org/ Description-md5: c487fe4e86f0eac09ed9847282436059 Bugs: https://bugs.launchpad.net/ubuntu/+filebug Origin: Ubuntu Supported: 5y Task: postgresql-server Package: postgresql-9.1 Priority: optional Section: database Installed-Size: 11164 Maintainer: Ubuntu Developers <[email protected]> Original-Maintainer: Martin Pitt <[email protected]> Architecture: amd64 Version: 9.1.5-0ubuntu12.04 Replaces: postgresql-contrib-9.1 (<< 9.1~beta1-3~), postgresql-plpython-9.1 (<< 9.1.5-0ubuntu12.04) Depends: libc6 (>= 2.15), libcomerr2 (>= 1.01), libgssapi-krb5-2 (>= 1.8+dfsg), libkrb5-3 (>= 1.6.dfsg.2), libldap-2.4-2 (>= 2.4.7), libpam0g (>= 0.99.7.1), libpq5 (>= 9.1~), libssl1.0.0 (>= 1.0.0), libxml2 (>= 2.7.4), postgresql-client-9.1, postgresql-common (>= 115~), tzdata, ssl-cert, locales Suggests: oidentd | ident-server, locales-all Conflicts: postgresql (<< 7.5) Breaks: postgresql-plpython-9.1 (<< 9.1.5-0ubuntu12.04) Filename: pool/main/p/postgresql-9.1/postgresql-9.1_9.1.5-0ubuntu12.04_amd64.deb Size: 4298028 MD5sum: 3797b030ca8558a67b58e62cc0a22646 SHA1: ad340a9693341621b82b7f91725fda781781c0fb SHA256: 99aa892971976b85bcf6fb2e1bb8bf3e3fb860190679a225e7ceeb8f33f0e84b Description-en: object-relational SQL database, version 9.1 server PostgreSQL is a fully featured object-relational database management system. It supports a large part of the SQL standard and is designed to be extensible by users in many aspects. Some of the features are: ACID transactions, foreign keys, views, sequences, subqueries, triggers, user-defined types and functions, outer joins, multiversion concurrency control. Graphical user interfaces and bindings for many programming languages are available as well. . This package provides the database server for PostgreSQL 9.1. Servers for other major release versions can be installed simultaneously and are coordinated by the postgresql-common package. A package providing ident-server is needed if you want to authenticate remote connections with identd. Homepage: http://www.postgresql.org/ Description-md5: c487fe4e86f0eac09ed9847282436059 Bugs: https://bugs.launchpad.net/ubuntu/+filebug Origin: Ubuntu Supported: 5y Task: postgresql-server Package: postgresql-9.1 Priority: optional Section: database Installed-Size: 11220 Maintainer: Martin Pitt <[email protected]> Original-Maintainer: Martin Pitt <[email protected]> Architecture: amd64 Version: 9.1.3-2 Replaces: postgresql-contrib-9.1 (<< 9.1~beta1-3~), postgresql-plpython-9.1 (<< 9.1.3-2) Depends: libc6 (>= 2.15), libcomerr2 (>= 1.01), libgssapi-krb5-2 (>= 1.8+dfsg), libkrb5-3 (>= 1.6.dfsg.2), libldap-2.4-2 (>= 2.4.7), libpam0g (>= 0.99.7.1), libpq5 (>= 9.1~), libssl1.0.0 (>= 1.0.0), libxml2 (>= 2.7.4), postgresql-client-9.1, postgresql-common (>= 115~), tzdata, ssl-cert, locales Suggests: oidentd | ident-server, locales-all Conflicts: postgresql (<< 7.5) Breaks: postgresql-plpython-9.1 (<< 9.1.3-2) Filename: pool/main/p/postgresql-9.1/postgresql-9.1_9.1.3-2_amd64.deb Size: 4284744 MD5sum: bad9aac349051fe86fd1c1f628797122 SHA1: a3f5d6583cc6e2372a077d7c2fc7adfcfa0d504d SHA256: e885c32950f09db7498c90e12c4d1df0525038d6feb2f83e2e50f563fdde404a Description-en: object-relational SQL database, version 9.1 server PostgreSQL is a fully featured object-relational database management system. It supports a large part of the SQL standard and is designed to be extensible by users in many aspects. Some of the features are: ACID transactions, foreign keys, views, sequences, subqueries, triggers, user-defined types and functions, outer joins, multiversion concurrency control. Graphical user interfaces and bindings for many programming languages are available as well. . This package provides the database server for PostgreSQL 9.1. Servers for other major release versions can be installed simultaneously and are coordinated by the postgresql-common package. A package providing ident-server is needed if you want to authenticate remote connections with identd. Homepage: http://www.postgresql.org/ Description-md5: c487fe4e86f0eac09ed9847282436059 Bugs: https://bugs.launchpad.net/ubuntu/+filebug Origin: Ubuntu Supported: 5y Task: postgresql-server

    Read the article

< Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >