Search Results

Search found 4717 results on 189 pages for 'namespace'.

Page 69/189 | < Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • Make namespaces backwards compatible in PHP

    - by daeliur
    So I was reading about PHP namespaces, and I realized that in versions earlier than 5.3, if you write namespace MyNamespace you get a parse error. Is there any way to avoid this i.e. make namespaces backwards-compatible, so the code doesn't simply crash?

    Read the article

  • How to get proper text name of typeid()

    - by Vincenzo
    My code: namespace test { class MyTest { }; } MyTest a; cout << typeid(a).name(); This is what I see (i686-apple-darwin10-gcc-4.2.1 (GCC) 4.2.1 (Apple Inc. build 5659)): N4test6MyTestE Is there any platform-independent way to get something like test::MyTest instead of this string?

    Read the article

  • C++ not recognizing my class

    - by rlb.usa
    I keep getting class undefined error from Visual Studio with my C++ code. My file looks like this: namespace myProject; scope myProject{ class FreeFormWindowsWidgetWindow : public WindowsWidget{ // shell } } But when I put FreeFormWindowsWidgetWindow in the same file as my other classes, it sees it. It doesn't seem to see anything in this file. How can I fix it and keep FreeFormWidgetWindow in its own file?

    Read the article

  • Array help in C++

    - by user267237
    I am writing a program that is declaring an array of 100 integer numbers and filling the array with random numbers using rand(). All I have so far is: #include <iostream> using namespace std; int main() { int random_integer = rand();

    Read the article

  • Read All Files in Directory?

    - by cam
    How would I go about reading all files in a directory? In C# I would get a DirectoryInfo object, and get all files into a FileInfo[] object. Is there similar functionality in the STD namespace in C++?

    Read the article

  • DisplayMemberPath is not working in WPF

    - by WpfBee
    I want to display CustomerList\CustomerName property items to the listBox using ItemsSource DisplayMemberPath property only. But it is not working. I do not want to use DataContext or any other binding in my problem. Please help. My code is given below: MainWindow.xaml.cs namespace BindingAnItemControlToAList { /// <summary> /// Interaction logic for MainWindow.xaml /// </summary> public partial class MainWindow : Window { public MainWindow() { InitializeComponent(); } } public class Customer { public string Name {get;set;} public string LastName { get; set; } } public class CustomerList { public List<Customer> Customers { get; set; } public List<string> CustomerName { get; set; } public List<string> CustomerLastName { get; set; } public CustomerList() { Customers = new List<Customer>(); CustomerName = new List<string>(); CustomerLastName = new List<string>(); CustomerName.Add("Name1"); CustomerLastName.Add("LastName1"); CustomerName.Add("Name2"); CustomerLastName.Add("LastName2"); Customers.Add(new Customer() { Name = CustomerName[0], LastName = CustomerLastName[0] }); Customers.Add(new Customer() { Name = CustomerName[1], LastName = CustomerLastName[1] }); } } } **MainWindow.Xaml** <Window x:Class="BindingAnItemControlToAList.MainWindow" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="clr-namespace:BindingAnItemControlToAList" Title="MainWindow" Height="350" Width="525" Loaded="Window_Loaded" > <Window.Resources> <local:CustomerList x:Key="Cust"/> </Window.Resources> <Grid Name="Grid1"> <ListBox ItemsSource="{Binding Source={StaticResource Cust}}" DisplayMemberPath="CustomerName" Height="172" HorizontalAlignment="Left" Margin="27,23,0,0" Name="lstStates" VerticalAlignment="Top" Width="245" /> </Grid> </Window>

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Using jQuery and OData to Insert a Database Record

    - by Stephen Walther
    In my previous blog entry, I explored two ways of inserting a database record using jQuery. We added a new Movie to the Movie database table by using a generic handler and by using a WCF service. In this blog entry, I want to take a brief look at how you can insert a database record using OData. Introduction to OData The Open Data Protocol (OData) was developed by Microsoft to be an open standard for communicating data across the Internet. Because the protocol is compatible with standards such as REST and JSON, the protocol is particularly well suited for Ajax. OData has undergone several name changes. It was previously referred to as Astoria and ADO.NET Data Services. OData is used by Sharepoint Server 2010, Azure Storage Services, Excel 2010, SQL Server 2008, and project code name “Dallas.” Because OData is being adopted as the public interface of so many important Microsoft technologies, it is a good protocol to learn. You can learn more about OData by visiting the following websites: http://www.odata.org http://msdn.microsoft.com/en-us/data/bb931106.aspx When using the .NET framework, you can easily expose database data through the OData protocol by creating a WCF Data Service. In this blog entry, I will create a WCF Data Service that exposes the Movie database table. Create the Database and Data Model The MoviesDB database is a simple database that contains the following Movies table: You need to create a data model to represent the MoviesDB database. In this blog entry, I use the ADO.NET Entity Framework to create my data model. However, WCF Data Services and OData are not tied to any particular OR/M framework such as the ADO.NET Entity Framework. For details on creating the Entity Framework data model for the MoviesDB database, see the previous blog entry. Create a WCF Data Service You create a new WCF Service by selecting the menu option Project, Add New Item and selecting the WCF Data Service item template (see Figure 1). Name the new WCF Data Service MovieService.svc. Figure 1 – Adding a WCF Data Service Listing 1 contains the default code that you get when you create a new WCF Data Service. There are two things that you need to modify. Listing 1 – New WCF Data Service File using System; using System.Collections.Generic; using System.Data.Services; using System.Data.Services.Common; using System.Linq; using System.ServiceModel.Web; using System.Web; namespace WebApplication1 { public class MovieService : DataService< /* TODO: put your data source class name here */ > { // This method is called only once to initialize service-wide policies. public static void InitializeService(DataServiceConfiguration config) { // TODO: set rules to indicate which entity sets and service operations are visible, updatable, etc. // Examples: // config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead); // config.SetServiceOperationAccessRule("MyServiceOperation", ServiceOperationRights.All); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } } First, you need to replace the comment /* TODO: put your data source class name here */ with a class that represents the data that you want to expose from the service. In our case, we need to replace the comment with a reference to the MoviesDBEntities class generated by the Entity Framework. Next, you need to configure the security for the WCF Data Service. By default, you cannot query or modify the movie data. We need to update the Entity Set Access Rule to enable us to insert a new database record. The updated MovieService.svc is contained in Listing 2: Listing 2 – MovieService.svc using System.Data.Services; using System.Data.Services.Common; namespace WebApplication1 { public class MovieService : DataService<MoviesDBEntities> { public static void InitializeService(DataServiceConfiguration config) { config.SetEntitySetAccessRule("Movies", EntitySetRights.AllWrite); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } } That’s all we have to do. We can now insert a new Movie into the Movies database table by posting a new Movie to the following URL: /MovieService.svc/Movies The request must be a POST request. The Movie must be represented as JSON. Using jQuery with OData The HTML page in Listing 3 illustrates how you can use jQuery to insert a new Movie into the Movies database table using the OData protocol. Listing 3 – Default.htm <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>jQuery OData Insert</title> <script src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.js" type="text/javascript"></script> <script src="Scripts/json2.js" type="text/javascript"></script> </head> <body> <form> <label>Title:</label> <input id="title" /> <br /> <label>Director:</label> <input id="director" /> </form> <button id="btnAdd">Add Movie</button> <script type="text/javascript"> $("#btnAdd").click(function () { // Convert the form into an object var data = { Title: $("#title").val(), Director: $("#director").val() }; // JSONify the data var data = JSON.stringify(data); // Post it $.ajax({ type: "POST", contentType: "application/json; charset=utf-8", url: "MovieService.svc/Movies", data: data, dataType: "json", success: insertCallback }); }); function insertCallback(result) { // unwrap result var newMovie = result["d"]; // Show primary key alert("Movie added with primary key " + newMovie.Id); } </script> </body> </html> jQuery does not include a JSON serializer. Therefore, we need to include the JSON2 library to serialize the new Movie that we wish to create. The Movie is serialized by calling the JSON.stringify() method: var data = JSON.stringify(data); You can download the JSON2 library from the following website: http://www.json.org/js.html The jQuery ajax() method is called to insert the new Movie. Notice that both the contentType and dataType are set to use JSON. The jQuery ajax() method is used to perform a POST operation against the URL MovieService.svc/Movies. Because the POST payload contains a JSON representation of a new Movie, a new Movie is added to the database table of Movies. When the POST completes successfully, the insertCallback() method is called. The new Movie is passed to this method. The method simply displays the primary key of the new Movie: Summary The OData protocol (and its enabling technology named WCF Data Services) works very nicely with Ajax. By creating a WCF Data Service, you can quickly expose your database data to an Ajax application by taking advantage of open standards such as REST, JSON, and OData. In the next blog entry, I want to take a closer look at how the OData protocol supports different methods of querying data.

    Read the article

  • Enterprise Library Logging / Exception handling and Postsharp

    - by subodhnpushpak
    One of my colleagues came-up with a unique situation where it was required to create log files based on the input file which is uploaded. For example if A.xml is uploaded, the corresponding log file should be A_log.txt. I am a strong believer that Logging / EH / caching are cross-cutting architecture aspects and should be least invasive to the business-logic written in enterprise application. I have been using Enterprise Library for logging / EH (i use to work with Avanade, so i have affection towards the library!! :D ). I have been also using excellent library called PostSharp for cross cutting aspect. Here i present a solution with and without PostSharp all in a unit test. Please see full source code at end of the this blog post. But first, we need to tweak the enterprise library so that the log files are created at runtime based on input given. Below is Custom trace listner which writes log into a given file extracted out of Logentry extendedProperties property. using Microsoft.Practices.EnterpriseLibrary.Common.Configuration; using Microsoft.Practices.EnterpriseLibrary.Logging.Configuration; using Microsoft.Practices.EnterpriseLibrary.Logging.TraceListeners; using Microsoft.Practices.EnterpriseLibrary.Logging; using System.IO; using System.Text; using System; using System.Diagnostics;   namespace Subodh.Framework.Logging { [ConfigurationElementType(typeof(CustomTraceListenerData))] public class LogToFileTraceListener : CustomTraceListener {   private static object syncRoot = new object();   public override void TraceData(TraceEventCache eventCache, string source, TraceEventType eventType, int id, object data) {   if ((data is LogEntry) & this.Formatter != null) { WriteOutToLog(this.Formatter.Format((LogEntry)data), (LogEntry)data); } else { WriteOutToLog(data.ToString(), (LogEntry)data); } }   public override void Write(string message) { Debug.Print(message.ToString()); }   public override void WriteLine(string message) { Debug.Print(message.ToString()); }   private void WriteOutToLog(string BodyText, LogEntry logentry) { try { //Get the filelocation from the extended properties if (logentry.ExtendedProperties.ContainsKey("filelocation")) { string fullPath = Path.GetFullPath(logentry.ExtendedProperties["filelocation"].ToString());   //Create the directory where the log file is written to if it does not exist. DirectoryInfo directoryInfo = new DirectoryInfo(Path.GetDirectoryName(fullPath));   if (directoryInfo.Exists == false) { directoryInfo.Create(); }   //Lock the file to prevent another process from using this file //as data is being written to it.   lock (syncRoot) { using (FileStream fs = new FileStream(fullPath, FileMode.Append, FileAccess.Write, FileShare.Write, 4096, true)) { using (StreamWriter sw = new StreamWriter(fs, Encoding.UTF8)) { Log(BodyText, sw); sw.Close(); } fs.Close(); } } } } catch (Exception ex) { throw new LoggingException(ex.Message, ex); } }   /// <summary> /// Write message to named file /// </summary> public static void Log(string logMessage, TextWriter w) { w.WriteLine("{0}", logMessage); } } }   The above can be “plugged into” the code using below configuration <loggingConfiguration name="Logging Application Block" tracingEnabled="true" defaultCategory="Trace" logWarningsWhenNoCategoriesMatch="true"> <listeners> <add listenerDataType="Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.CustomTraceListenerData, Microsoft.Practices.EnterpriseLibrary.Logging, Version=4.1.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" traceOutputOptions="None" filter="All" type="Subodh.Framework.Logging.LogToFileTraceListener, Subodh.Framework.Logging, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" name="Subodh Custom Trace Listener" initializeData="" formatter="Text Formatter" /> </listeners> Similarly we can use PostSharp to expose the above as cross cutting aspects as below using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Reflection; using PostSharp.Laos; using System.Diagnostics; using GC.FrameworkServices.ExceptionHandler; using Subodh.Framework.Logging;   namespace Subodh.Framework.ExceptionHandling { [Serializable] public sealed class LogExceptionAttribute : OnExceptionAspect { private string prefix; private MethodFormatStrings formatStrings;   // This field is not serialized. It is used only at compile time. [NonSerialized] private readonly Type exceptionType; private string fileName;   /// <summary> /// Declares a <see cref="XTraceExceptionAttribute"/> custom attribute /// that logs every exception flowing out of the methods to which /// the custom attribute is applied. /// </summary> public LogExceptionAttribute() { }   /// <summary> /// Declares a <see cref="XTraceExceptionAttribute"/> custom attribute /// that logs every exception derived from a given <see cref="Type"/> /// flowing out of the methods to which /// the custom attribute is applied. /// </summary> /// <param name="exceptionType"></param> public LogExceptionAttribute( Type exceptionType ) { this.exceptionType = exceptionType; }   public LogExceptionAttribute(Type exceptionType, string fileName) { this.exceptionType = exceptionType; this.fileName = fileName; }   /// <summary> /// Gets or sets the prefix string, printed before every trace message. /// </summary> /// <value> /// For instance <c>[Exception]</c>. /// </value> public string Prefix { get { return this.prefix; } set { this.prefix = value; } }   /// <summary> /// Initializes the current object. Called at compile time by PostSharp. /// </summary> /// <param name="method">Method to which the current instance is /// associated.</param> public override void CompileTimeInitialize( MethodBase method ) { // We just initialize our fields. They will be serialized at compile-time // and deserialized at runtime. this.formatStrings = Formatter.GetMethodFormatStrings( method ); this.prefix = Formatter.NormalizePrefix( this.prefix ); }   public override Type GetExceptionType( MethodBase method ) { return this.exceptionType; }   /// <summary> /// Method executed when an exception occurs in the methods to which the current /// custom attribute has been applied. We just write a record to the tracing /// subsystem. /// </summary> /// <param name="context">Event arguments specifying which method /// is being called and with which parameters.</param> public override void OnException( MethodExecutionEventArgs context ) { string message = String.Format("{0}Exception {1} {{{2}}} in {{{3}}}. \r\n\r\nStack Trace {4}", this.prefix, context.Exception.GetType().Name, context.Exception.Message, this.formatStrings.Format(context.Instance, context.Method, context.GetReadOnlyArgumentArray()), context.Exception.StackTrace); if(!string.IsNullOrEmpty(fileName)) { ApplicationLogger.LogException(message, fileName); } else { ApplicationLogger.LogException(message, Source.UtilityService); } } } } To use the above below is the unit test [TestMethod] [ExpectedException(typeof(NotImplementedException))] public void TestMethod1() { MethodThrowingExceptionForLog(); try { MethodThrowingExceptionForLogWithPostSharp(); } catch (NotImplementedException ex) { throw ex; } }   private void MethodThrowingExceptionForLog() { try { throw new NotImplementedException(); } catch (NotImplementedException ex) { // create file and then write log ApplicationLogger.TraceMessage("this is a trace message which will be logged in Test1MyFile", @"D:\EL\Test1Myfile.txt"); ApplicationLogger.TraceMessage("this is a trace message which will be logged in YetAnotherTest1Myfile", @"D:\EL\YetAnotherTest1Myfile.txt"); } }   // Automatically log details using attributes // Log exception using attributes .... A La WCF [FaultContract(typeof(FaultMessage))] style] [Log(@"D:\EL\Test1MyfileLogPostsharp.txt")] [LogException(typeof(NotImplementedException), @"D:\EL\Test1MyfileExceptionPostsharp.txt")] private void MethodThrowingExceptionForLogWithPostSharp() { throw new NotImplementedException(); } The good thing about the approach is that all the logging and EH is done at centralized location controlled by PostSharp. Of Course, if some other library has to be used instead of EL, it can easily be plugged in. Also, the coder ARE ONLY involved in writing business code in methods, which makes code cleaner. Here is the full source code. The third party assemblies provided are from EL and PostSharp and i presume you will find these useful. Do let me know your thoughts / ideas on the same. Technorati Tags: PostSharp,Enterprize library,C#,Logging,Exception handling

    Read the article

  • Validation in Silverlight

    - by Timmy Kokke
    Getting started with the basics Validation in Silverlight can get very complex pretty easy. The DataGrid control is the only control that does data validation automatically, but often you want to validate your own entry form. Values a user may enter in this form can be restricted by the customer and have to fit an exact fit to a list of requirements or you just want to prevent problems when saving the data to the database. Showing a message to the user when a value is entered is pretty straight forward as I’ll show you in the following example.     This (default) Silverlight textbox is data-bound to a simple data class. It has to be bound in “Two-way” mode to be sure the source value is updated when the target value changes. The INotifyPropertyChanged interface must be implemented by the data class to get the notification system to work. When the property changes a simple check is performed and when it doesn’t match some criteria an ValidationException is thrown. The ValidatesOnExceptions binding attribute is set to True to tell the textbox it should handle the thrown ValidationException. Let’s have a look at some code now. The xaml should contain something like below. The most important part is inside the binding. In this case the Text property is bound to the “Name” property in TwoWay mode. It is also told to validate on exceptions. This property is false by default.   <StackPanel Orientation="Horizontal"> <TextBox Width="150" x:Name="Name" Text="{Binding Path=Name, Mode=TwoWay, ValidatesOnExceptions=True}"/> <TextBlock Text="Name"/> </StackPanel>   The data class in this first example is a very simplified person class with only one property: string Name. The INotifyPropertyChanged interface is implemented and the PropertyChanged event is fired when the Name property changes. When the property changes a check is performed to see if the new string is null or empty. If this is the case a ValidationException is thrown explaining that the entered value is invalid.   public class PersonData:INotifyPropertyChanged { private string _name; public string Name { get { return _name; } set { if (_name != value) { if(string.IsNullOrEmpty(value)) throw new ValidationException("Name is required"); _name = value; if (PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs("Name")); } } } public event PropertyChangedEventHandler PropertyChanged=delegate { }; } The last thing that has to be done is letting binding an instance of the PersonData class to the DataContext of the control. This is done in the code behind file. public partial class Demo1 : UserControl { public Demo1() { InitializeComponent(); this.DataContext = new PersonData() {Name = "Johnny Walker"}; } }   Error Summary In many cases you would have more than one entry control. A summary of errors would be nice in such case. With a few changes to the xaml an error summary, like below, can be added.           First, add a namespace to the xaml so the control can be used. Add the following line to the header of the .xaml file. xmlns:Controls="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data.Input"   Next, add the control to the layout. To get the result as in the image showed earlier, add the control right above the StackPanel from the first example. It’s got a small margin to separate it from the textbox a little.   <Controls:ValidationSummary Margin="8"/>   The ValidationSummary control has to be notified that an ValidationException occurred. This can be done with a small change to the xaml too. Add the NotifyOnValidationError to the binding expression. By default this value is set to false, so nothing would be notified. Set the property to true to get it to work.   <TextBox Width="150" x:Name="Name" Text="{Binding Name, Mode=TwoWay, ValidatesOnExceptions=True, NotifyOnValidationError=True}"/>   Data annotation Validating data in the setter is one option, but not my personal favorite. It’s the easiest way if you have a single required value you want to check, but often you want to validate more. Besides, I don’t consider it best practice to write logic in setters. The way used by frameworks like WCF Ria Services is the use of attributes on the properties. Instead of throwing exceptions you have to call the static method ValidateProperty on the Validator class. This call stays always the same for a particular property, not even when you change the attributes on the property. To mark a property “Required” you can use the RequiredAttribute. This is what the Name property is going to look like:   [Required] public string Name { get { return _name; } set { if (_name != value) { Validator.ValidateProperty(value, new ValidationContext(this, null, null){ MemberName = "Name" }); _name = value; if (PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs("Name")); } } }   The ValidateProperty method takes the new value for the property and an instance of ValidationContext. The properties passed to the constructor of the ValidationContextclass are very straight forward. This part is the same every time. The only thing that changes is the MemberName property of the ValidationContext. Property has to hold the name of the property you want to validate. It’s the same value you provide the PropertyChangedEventArgs with. The System.ComponentModel.DataAnnotation contains eight different validation attributes including a base class to create your own. They are: RequiredAttribute Specifies that a value must be provided. RangeAttribute The provide value must fall in the specified range. RegularExpressionAttribute Validates is the value matches the regular expression. StringLengthAttribute Checks if the number of characters in a string falls between a minimum and maximum amount. CustomValidationAttribute Use a custom method to validate the value. DataTypeAttribute Specify a data type using an enum or a custom data type. EnumDataTypeAttribute Makes sure the value is found in a enum. ValidationAttribute A base class for custom validation attributes All of these will ensure that an validation exception is thrown, except the DataTypeAttribute. This attribute is used to provide some additional information about the property. You can use this information in your own code.   [Required] [Range(0,125,ErrorMessage = "Value is not a valid age")] public int Age {   It’s no problem to stack different validation attributes together. For example, when an Age is required and must fall in the range from 0 to 125:   [Required, StringLength(255,MinimumLength = 3)] public string Name {   Or in one row like this, for a required Name with at least 3 characters and a maximum of 255:   Delayed validation Having properties marked as required can be very useful. The only downside to the technique described earlier is that you have to change the value in order to get it validated. What if you start out with empty an empty entry form? All fields are empty and thus won’t be validated. With this small trick you can validate at the moment the user click the submit button.   <TextBox Width="150" x:Name="NameField" Text="{Binding Name, Mode=TwoWay, ValidatesOnExceptions=True, NotifyOnValidationError=True, UpdateSourceTrigger=Explicit}"/>   By default, when a TwoWay bound control looses focus the value is updated. When you added validation like I’ve shown you earlier, the value is validated. To overcome this, you have to tell the binding update explicitly by setting the UpdateSourceTrigger binding property to Explicit:   private void SubmitButtonClick(object sender, RoutedEventArgs e) { NameField.GetBindingExpression(TextBox.TextProperty).UpdateSource(); }   This way, the binding is in two direction but the source is only updated, thus validated, when you tell it to. In the code behind you have to call the UpdateSource method on the binding expression, which you can get from the TextBox.   Conclusion Data validation is something you’ll probably want on almost every entry form. I always thought it was hard to do, but it wasn’t. If you can throw an exception you can do validation. If you want to know anything more in depth about something I talked about in this article let me know. I might write an entire post to that.

    Read the article

  • Using Teleriks new LINQ implementation to create OData feeds

    This week Telerik released a new LINQ implementation that is simple to use and produces domain models very fast. Built on top of the enterprise grade OpenAccess ORM, you can connect to any database that OpenAccess can connect to such as: SQL Server, MySQL, Oracle, SQL Azure, VistaDB, etc. While this is a separate LINQ implementation from traditional OpenAccess Entites, you can use the visual designer without ever interacting with OpenAccess, however, you can always hook into the advanced ORM features like caching, fetch plan optimization, etc, if needed. Just to show off how easy our LINQ implementation is to use, I will walk you through building an OData feed using Data Services Update for .NET Framework 3.5 SP1. (Memo to Microsoft: P-L-E-A-S-E hire someone from Apple to name your products.) How easy is it? If you have a fast machine, are skilled with the mouse, and type fast, you can do this in about 60 seconds via three easy steps. (I promise in about 2-3 weeks that you can do this in less then 30 seconds. Stay tuned for that.)  Step 1 (15-20 seconds): Building your Domain Model In your web project in Visual Studio, right click on the project and select Add|New Item and select Telerik OpenAccess Domain Model as your item template. Give the file a meaningful name as well. Select your database type (SQL Server, SQL Azure, Oracle, MySQL, VistaDB, etc) and build the connection string. If you already have a Visual Studio connection string already saved, this step is trivial.  Then select your tables, enter a name for your model and click Finish. In this case I connected to Northwind and selected only Customers, Orders, and Order Details.  I named my model NorthwindEntities and will use that in my DataService. Step 2 (20-25 seconds): Adding and Configuring your Data Service In your web project in Visual Studio, right click on the project and select Add|New Item and select ADO .NET Data Service as your item template and name your service. In the code behind for your Data Service you have to make three small changes. Add the name of your Telerik Domain Model (entered in Step 1) as the DataService name (shown on line 6 below as NorthwindEntities) and uncomment line 11 and add a * to show all entities. Optionally if you want to take advantage of the DataService 3.5 updates, add line 13 (and change IDataServiceConfiguration to DataServiceConfiguration in line 9.) 1: using System.Data.Services; 2: using System.Data.Services.Common; 3:   4: namespace Telerik.RLINQ.Astoria.Web 5: { 6: public class NorthwindService : DataService<NorthwindEntities> 7: { 8: //change the IDataServiceConfigurationto DataServiceConfiguration 9: public static void InitializeService(DataServiceConfiguration config) 10: { 11: config.SetEntitySetAccessRule("*", EntitySetRights.All); 12: //take advantage of the "Astoria3.5 Update" features 13: config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; 14: } 15: } 16: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Step 3 (~30 seconds): Adding the DataServiceKeys You now have to tell your data service what are the primary keys of each entity. To do this you have to create a new code file and create a few partial classes. If you type fast, use copy and paste from your first entity,  and use a refactoring productivity tool, you can add these 6-8 lines of code or so in about 30 seconds. This is the most tedious step, but dont worry, Ive bribed some of the developers and our next update will eliminate this step completely. Just create a partial class for each entity you have mapped and add the attribute [DataServiceKey] on top of it along with the keys field name. If you have any complex properties, you will need to make them a primitive type, as I do in line 15. Create this as a separate file, dont manipulate the generated data access classes in case you want to regenerate them again later (even thought that would be much faster.) 1: using System.Data.Services.Common; 2:   3: namespace Telerik.RLINQ.Astoria.Web 4: { 5: [DataServiceKey("CustomerID")] 6: public partial class Customer 7: { 8: } 9:   10: [DataServiceKey("OrderID")] 11: public partial class Order 12: { 13: } 14:   15: [DataServiceKey(new string[] { "OrderID", "ProductID" })] 16: public partial class OrderDetail 17: { 18: } 19:   20: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Done! Time to run the service. Now, lets run the service! Select the svc file and right click and say View in Browser. You will see your OData service and can interact with it in the browser. Now that you have an OData service set up, you can consume it in one of the many ways that OData is consumed: using LINQ, the Silverlight OData client, Excel PowerPivot, or PhP, etc. Happy Data Servicing! Technorati Tags: Telerik,Astoria,Data Services Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • MVC 3 AdditionalMetadata Attribute with ViewBag to Render Dynamic UI

    - by Steve Michelotti
    A few months ago I blogged about using Model metadata to render a dynamic UI in MVC 2. The scenario in the post was that we might have a view model where the questions are conditionally displayed and therefore a dynamic UI is needed. To recap the previous post, the solution was to use a custom attribute called [QuestionId] in conjunction with an “ApplicableQuestions” collection to identify whether each question should be displayed. This allowed me to have a view model that looked like this: 1: [UIHint("ScalarQuestion")] 2: [DisplayName("First Name")] 3: [QuestionId("NB0021")] 4: public string FirstName { get; set; } 5: 6: [UIHint("ScalarQuestion")] 7: [DisplayName("Last Name")] 8: [QuestionId("NB0022")] 9: public string LastName { get; set; } 10: 11: [UIHint("ScalarQuestion")] 12: [QuestionId("NB0023")] 13: public int Age { get; set; } 14: 15: public IEnumerable<string> ApplicableQuestions { get; set; } At the same time, I was able to avoid repetitive IF statements for every single question in my view: 1: <%: Html.EditorFor(m => m.FirstName, new { applicableQuestions = Model.ApplicableQuestions })%> 2: <%: Html.EditorFor(m => m.LastName, new { applicableQuestions = Model.ApplicableQuestions })%> 3: <%: Html.EditorFor(m => m.Age, new { applicableQuestions = Model.ApplicableQuestions })%> by creating an Editor Template called “ScalarQuestion” that encapsulated the IF statement: 1: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %> 2: <%@ Import Namespace="DynamicQuestions.Models" %> 3: <%@ Import Namespace="System.Linq" %> 4: <% 5: var applicableQuestions = this.ViewData["applicableQuestions"] as IEnumerable<string>; 6: var questionAttr = this.ViewData.ModelMetadata.ContainerType.GetProperty(this.ViewData.ModelMetadata.PropertyName).GetCustomAttributes(typeof(QuestionIdAttribute), true) as QuestionIdAttribute[]; 7: string questionId = null; 8: if (questionAttr.Length > 0) 9: { 10: questionId = questionAttr[0].Id; 11: } 12: if (questionId != null && applicableQuestions.Contains(questionId)) { %> 13: <div> 14: <%: Html.Label("") %> 15: <%: Html.TextBox("", this.Model)%> 16: </div> 17: <% } %> You might want to go back and read the full post in order to get the full context. MVC 3 offers a couple of new features that make this scenario more elegant to implement. The first step is to use the new [AdditionalMetadata] attribute which, so far, appears to be an under appreciated new feature of MVC 3. With this attribute, I don’t need my custom [QuestionId] attribute anymore - now I can just write my view model like this: 1: [UIHint("ScalarQuestion")] 2: [DisplayName("First Name")] 3: [AdditionalMetadata("QuestionId", "NB0021")] 4: public string FirstName { get; set; } 5:   6: [UIHint("ScalarQuestion")] 7: [DisplayName("Last Name")] 8: [AdditionalMetadata("QuestionId", "NB0022")] 9: public string LastName { get; set; } 10:   11: [UIHint("ScalarQuestion")] 12: [AdditionalMetadata("QuestionId", "NB0023")] 13: public int Age { get; set; } Thus far, the documentation seems to be pretty sparse on the AdditionalMetadata attribute. It’s buried in the Other New Features section of the MVC 3 home page and, after showing the attribute on a view model property, it just says, “This metadata is made available to any display or editor template when a product view model is rendered. It is up to you to interpret the metadata information.” But what exactly does it look like for me to “interpret the metadata information”? Well, it turns out it makes the view much easier to work with. Here is the re-implemented ScalarQuestion template updated for MVC 3 and Razor: 1: @{ 2: object questionId; 3: ViewData.ModelMetadata.AdditionalValues.TryGetValue("QuestionId", out questionId); 4: if (ViewBag.applicableQuestions.Contains((string)questionId)) { 5: <div> 6: @Html.LabelFor(m => m) 7: @Html.TextBoxFor(m => m) 8: </div> 9: } 10: } So we’ve gone from 17 lines of code (in the MVC 2 version) to about 7-8 lines of code here. The first thing to notice is that in MVC 3 we now have a property called “AdditionalValues” that hangs off of the ModelMetadata property. This is automatically populated by any [AdditionalMetadata] attributes on the property. There is no more need for me to explicitly write Reflection code to GetCustomAttributes() and then check to see if those attributes were present. I can just call TryGetValue() on the dictionary to see if they were present. Secondly, the “applicableQuestions” anonymous type that I passed in from the calling view – in MVC 3 I now have a dynamic ViewBag property where I can just “dot into” the applicableQuestions with a nicer syntax than dictionary square bracket syntax. And there’s no problems calling the Contains() method on this dynamic object because at runtime the DLR has resolved that it is a generic List<string>. At this point you might be saying that, yes the view got much nicer than the MVC 2 version, but my view model got slightly worse.  In the previous version I had a nice [QuestionId] attribute but now, with the [AdditionalMetadata] attribute, I have to type the string “QuestionId” for every single property and hope that I don’t make a typo. Well, the good news is that it’s easy to create your own attributes that can participate in the metadata’s additional values. The key is that the attribute must implement that IMetadataAware interface and populate the AdditionalValues dictionary in the OnMetadataCreated() method: 1: public class QuestionIdAttribute : Attribute, IMetadataAware 2: { 3: public string Id { get; set; } 4:   5: public QuestionIdAttribute(string id) 6: { 7: this.Id = id; 8: } 9:   10: public void OnMetadataCreated(ModelMetadata metadata) 11: { 12: metadata.AdditionalValues["QuestionId"] = this.Id; 13: } 14: } This now allows me to encapuslate my “QuestionId” string in just one place and get back to my original attribute which can be used like this: [QuestionId(“NB0021”)]. The [AdditionalMetadata] attribute is a powerful and under-appreciated new feature of MVC 3. Combined with the dynamic ViewBag property, you can do some really interesting things with your applications with less code and ceremony.

    Read the article

  • LLBLGen Pro feature highlights: grouping model elements

    - by FransBouma
    (This post is part of a series of posts about features of the LLBLGen Pro system) When working with an entity model which has more than a few entities, it's often convenient to be able to group entities together if they belong to a semantic sub-model. For example, if your entity model has several entities which are about 'security', it would be practical to group them together under the 'security' moniker. This way, you could easily find them back, yet they can be left inside the complete entity model altogether so their relationships with entities outside the group are kept. In other situations your domain consists of semi-separate entity models which all target tables/views which are located in the same database. It then might be convenient to have a single project to manage the complete target database, yet have the entity models separate of each other and have them result in separate code bases. LLBLGen Pro can do both for you. This blog post will illustrate both situations. The feature is called group usage and is controllable through the project settings. This setting is supported on all supported O/R mapper frameworks. Situation one: grouping entities in a single model. This situation is common for entity models which are dense, so many relationships exist between all sub-models: you can't split them up easily into separate models (nor do you likely want to), however it's convenient to have them grouped together into groups inside the entity model at the project level. A typical example for this is the AdventureWorks example database for SQL Server. This database, which is a single catalog, has for each sub-group a schema, however most of these schemas are tightly connected with each other: adding all schemas together will give a model with entities which indirectly are related to all other entities. LLBLGen Pro's default setting for group usage is AsVisualGroupingMechanism which is what this situation is all about: we group the elements for visual purposes, it has no real meaning for the model nor the code generated. Let's reverse engineer AdventureWorks to an entity model. By default, LLBLGen Pro uses the target schema an element is in which is being reverse engineered, as the group it will be in. This is convenient if you already have categorized tables/views in schemas, like which is the case in AdventureWorks. Of course this can be switched off, or corrected on the fly. When reverse engineering, we'll walk through a wizard which will guide us with the selection of the elements which relational model data should be retrieved, which we can later on use to reverse engineer to an entity model. The first step after specifying which database server connect to is to select these elements. below we can see the AdventureWorks catalog as well as the different schemas it contains. We'll include all of them. After the wizard completes, we have all relational model data nicely in our catalog data, with schemas. So let's reverse engineer entities from the tables in these schemas. We select in the catalog explorer the schemas 'HumanResources', 'Person', 'Production', 'Purchasing' and 'Sales', then right-click one of them and from the context menu, we select Reverse engineer Tables to Entity Definitions.... This will bring up the dialog below. We check all checkboxes in one go by checking the checkbox at the top to mark them all to be added to the project. As you can see LLBLGen Pro has already filled in the group name based on the schema name, as this is the default and we didn't change the setting. If you want, you can select multiple rows at once and set the group name to something else using the controls on the dialog. We're fine with the group names chosen so we'll simply click Add to Project. This gives the following result:   (I collapsed the other groups to keep the picture small ;)). As you can see, the entities are now grouped. Just to see how dense this model is, I've expanded the relationships of Employee: As you can see, it has relationships with entities from three other groups than HumanResources. It's not doable to cut up this project into sub-models without duplicating the Employee entity in all those groups, so this model is better suited to be used as a single model resulting in a single code base, however it benefits greatly from having its entities grouped into separate groups at the project level, to make work done on the model easier. Now let's look at another situation, namely where we work with a single database while we want to have multiple models and for each model a separate code base. Situation two: grouping entities in separate models within the same project. To get rid of the entities to see the second situation in action, simply undo the reverse engineering action in the project. We still have the AdventureWorks relational model data in the catalog. To switch LLBLGen Pro to see each group in the project as a separate project, open the Project Settings, navigate to General and set Group usage to AsSeparateProjects. In the catalog explorer, select Person and Production, right-click them and select again Reverse engineer Tables to Entities.... Again check the checkbox at the top to mark all entities to be added and click Add to Project. We get two groups, as expected, however this time the groups are seen as separate projects. This means that the validation logic inside LLBLGen Pro will see it as an error if there's e.g. a relationship or an inheritance edge linking two groups together, as that would lead to a cyclic reference in the code bases. To see this variant of the grouping feature, seeing the groups as separate projects, in action, we'll generate code from the project with the two groups we just created: select from the main menu: Project -> Generate Source-code... (or press F7 ;)). In the dialog popping up, select the target .NET framework you want to use, the template preset, fill in a destination folder and click Start Generator (normal). This will start the code generator process. As expected the code generator has simply generated two code bases, one for Person and one for Production: The group name is used inside the namespace for the different elements. This allows you to add both code bases to a single solution and use them together in a different project without problems. Below is a snippet from the code file of a generated entity class. //... using System.Xml.Serialization; using AdventureWorks.Person; using AdventureWorks.Person.HelperClasses; using AdventureWorks.Person.FactoryClasses; using AdventureWorks.Person.RelationClasses; using SD.LLBLGen.Pro.ORMSupportClasses; namespace AdventureWorks.Person.EntityClasses { //... /// <summary>Entity class which represents the entity 'Address'.<br/><br/></summary> [Serializable] public partial class AddressEntity : CommonEntityBase //... The advantage of this is that you can have two code bases and work with them separately, yet have a single target database and maintain everything in a single location. If you decide to move to a single code base, you can do so with a change of one setting. It's also useful if you want to keep the groups as separate models (and code bases) yet want to add relationships to elements from another group using a copy of the entity: you can simply reverse engineer the target table to a new entity into a different group, effectively making a copy of the entity. As there's a single target database, changes made to that database are reflected in both models which makes maintenance easier than when you'd have a separate project for each group, with its own relational model data. Conclusion LLBLGen Pro offers a flexible way to work with entities in sub-models and control how the sub-models end up in the generated code.

    Read the article

  • Converting a generic list into JSON string and then handling it in java script

    - by Jalpesh P. Vadgama
    We all know that JSON (JavaScript Object Notification) is very useful in case of manipulating string on client side with java script and its performance is very good over browsers so let’s create a simple example where convert a Generic List then we will convert this list into JSON string and then we will call this web service from java script and will handle in java script. To do this we need a info class(Type) and for that class we are going to create generic list. Here is code for that I have created simple class with two properties UserId and UserName public class UserInfo { public int UserId { get; set; } public string UserName { get; set; } } Now Let’s create a web service and web method will create a class and then we will convert this with in JSON string with JavaScriptSerializer class. Here is web service class. using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Services; namespace Experiment.WebService { /// <summary> /// Summary description for WsApplicationUser /// </summary> [WebService(Namespace = "http://tempuri.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] [System.ComponentModel.ToolboxItem(false)] // To allow this Web Service to be called from script, using ASP.NET AJAX, uncomment the following line. [System.Web.Script.Services.ScriptService] public class WsApplicationUser : System.Web.Services.WebService { [WebMethod] public string GetUserList() { List<UserInfo> userList = new List<UserInfo>(); for (int i = 1; i <= 5; i++) { UserInfo userInfo = new UserInfo(); userInfo.UserId = i; userInfo.UserName = string.Format("{0}{1}", "J", i.ToString()); userList.Add(userInfo); } System.Web.Script.Serialization.JavaScriptSerializer jSearializer = new System.Web.Script.Serialization.JavaScriptSerializer(); return jSearializer.Serialize(userList); } } } Note: Here you must have this attribute here in web service class ‘[System.Web.Script.Services.ScriptService]’ as this attribute will enable web service to call from client side. Now we have created a web service class let’s create a java script function ‘GetUserList’ which will call web service from JavaScript like following function GetUserList() { Experiment.WebService.WsApplicationUser.GetUserList(ReuqestCompleteCallback, RequestFailedCallback); } After as you can see we have inserted two call back function ReuqestCompleteCallback and RequestFailedCallback which handle errors and result from web service. ReuqestCompleteCallback will handle result of web service and if and error comes then RequestFailedCallback will print the error. Following is code for both function. function ReuqestCompleteCallback(result) { result = eval(result); var divResult = document.getElementById("divUserList"); CreateUserListTable(result); } function RequestFailedCallback(error) { var stackTrace = error.get_stackTrace(); var message = error.get_message(); var statusCode = error.get_statusCode(); var exceptionType = error.get_exceptionType(); var timedout = error.get_timedOut(); // Display the error. var divResult = document.getElementById("divUserList"); divResult.innerHTML = "Stack Trace: " + stackTrace + "<br/>" + "Service Error: " + message + "<br/>" + "Status Code: " + statusCode + "<br/>" + "Exception Type: " + exceptionType + "<br/>" + "Timedout: " + timedout; } Here in above there is a function called you can see that we have use ‘eval’ function which parse string in enumerable form. Then we are calling a function call ‘CreateUserListTable’ which will create a table string and paste string in the a div. Here is code for that function. function CreateUserListTable(userList) { var tablestring = '<table ><tr><td>UsreID</td><td>UserName</td></tr>'; for (var i = 0, len = userList.length; i < len; ++i) { tablestring=tablestring + "<tr>"; tablestring=tablestring + "<td>" + userList[i].UserId + "</td>"; tablestring=tablestring + "<td>" + userList[i].UserName + "</td>"; tablestring=tablestring + "</tr>"; } tablestring = tablestring + "</table>"; var divResult = document.getElementById("divUserList"); divResult.innerHTML = tablestring; } Now let’s create div which will have all html that is generated from this function. Here is code of my web page. We also need to add a script reference to enable web service from client side. Here is all HTML code we have. <form id="form1" runat="server"> <asp:ScriptManager ID="myScirptManger" runat="Server"> <Services> <asp:ServiceReference Path="~/WebService/WsApplicationUser.asmx" /> </Services> </asp:ScriptManager> <div id="divUserList"> </div> </form> Now as we have not defined where we are going to call ‘GetUserList’ function so let’s call this function on windows onload event of javascript like following. window.onload=GetUserList(); That’s it. Now let’s run it on browser to see whether it’s work or not and here is the output in browser as expected. That’s it. This was very basic example but you can crate your own JavaScript enabled grid from this and you can see possibilities are unlimited here. Stay tuned for more.. Happy programming.. Technorati Tags: JSON,Javascript,ASP.NET,WebService

    Read the article

  • Segfault when iterating over a map<string, string> and drawing its contents using SDL_TTF

    - by Michael Stahre
    I'm not entirely sure this question belongs on gamedev.stackexchange, but I'm technically working on a game and working with SDL, so it might not be entirely offtopic. I've written a class called DebugText. The point of the class is to have a nice way of printing values of variables to the game screen. The idea is to call SetDebugText() with the variables in question every time they change or, as is currently the case, every time the game's Update() is called. The issue is that when iterating over the map that contains my variables and their latest updated values, I get segfaults. See the comments in DrawDebugText() below, it specifies where the error happens. I've tried splitting the calls to it-first and it-second into separate lines and found that the problem doesn't always happen when calling it-first. It alters between it-first and it-second. I can't find a pattern. It doesn't fail on every call to DrawDebugText() either. It might fail on the third time DrawDebugText() is called, or it might fail on the fourth. Class header: #ifndef CLIENT_DEBUGTEXT_H #define CLIENT_DEBUGTEXT_H #include <Map> #include <Math.h> #include <sstream> #include <SDL.h> #include <SDL_ttf.h> #include "vector2.h" using std::string; using std::stringstream; using std::map; using std::pair; using game::Vector2; namespace game { class DebugText { private: TTF_Font* debug_text_font; map<string, string>* debug_text_list; public: void SetDebugText(string var, bool value); void SetDebugText(string var, float value); void SetDebugText(string var, int value); void SetDebugText(string var, Vector2 value); void SetDebugText(string var, string value); int DrawDebugText(SDL_Surface*, SDL_Rect*); void InitDebugText(); void Clear(); }; } #endif Class source file: #include "debugtext.h" namespace game { // Copypasta function for handling the toString conversion template <class T> inline string to_string (const T& t) { stringstream ss (stringstream::in | stringstream::out); ss << t; return ss.str(); } // Initializes SDL_TTF and sets its font void DebugText::InitDebugText() { if(TTF_WasInit()) TTF_Quit(); TTF_Init(); debug_text_font = TTF_OpenFont("LiberationSans-Regular.ttf", 16); TTF_SetFontStyle(debug_text_font, TTF_STYLE_NORMAL); } // Iterates over the current debug_text_list and draws every element on the screen. // After drawing with SDL you need to get a rect specifying the area on the screen that was changed and tell SDL that this part of the screen needs to be updated. this is done in the game's Draw() function // This function sets rects_to_update to the new list of rects provided by all of the surfaces and returns the number of rects in the list. These two parameters are used in Draw() when calling on SDL_UpdateRects(), which takes an SDL_Rect* and a list length int DebugText::DrawDebugText(SDL_Surface* screen, SDL_Rect* rects_to_update) { if(debug_text_list == NULL) return 0; if(!TTF_WasInit()) InitDebugText(); rects_to_update = NULL; // Specifying the font color SDL_Color font_color = {0xff, 0x00, 0x00, 0x00}; // r, g, b, unused int row_count = 0; string line; // The iterator variable map<string, string>::iterator it; // Gets the iterator and iterates over it for(it = debug_text_list->begin(); it != debug_text_list->end(); it++) { // Takes the first value (the name of the variable) and the second value (the value of the parameter in string form) //---------THIS LINE GIVES ME SEGFAULTS----- line = it->first + ": " + it->second; //------------------------------------------ // Creates a surface with the text on it that in turn can be rendered to the screen itself later SDL_Surface* debug_surface = TTF_RenderText_Solid(debug_text_font, line.c_str(), font_color); if(debug_surface == NULL) { // A standard check for errors fprintf(stderr, "Error: %s", TTF_GetError()); return NULL; } else { // If SDL_TTF did its job right, then we now set a destination rect row_count++; SDL_Rect dstrect = {5, 5, 0, 0}; // x, y, w, h dstrect.x = 20; dstrect.y = 20*row_count; // Draws the surface with the text on it to the screen int res = SDL_BlitSurface(debug_surface,NULL,screen,&dstrect); if(res != 0) { //Just an error check fprintf(stderr, "Error: %s", SDL_GetError()); return NULL; } // Creates a new rect to specify the area that needs to be updated with SDL_Rect* new_rect_to_update = (SDL_Rect*) malloc(sizeof(SDL_Rect)); new_rect_to_update->h = debug_surface->h; new_rect_to_update->w = debug_surface->w; new_rect_to_update->x = dstrect.x; new_rect_to_update->y = dstrect.y; // Just freeing the surface since it isn't necessary anymore SDL_FreeSurface(debug_surface); // Creates a new list of rects with room for the new rect SDL_Rect* newtemp = (SDL_Rect*) malloc(row_count*sizeof(SDL_Rect)); // Copies the data from the old list of rects to the new one memcpy(newtemp, rects_to_update, (row_count-1)*sizeof(SDL_Rect)); // Adds the new rect to the new list newtemp[row_count-1] = *new_rect_to_update; // Frees the memory used by the old list free(rects_to_update); // And finally redirects the pointer to the old list to the new list rects_to_update = newtemp; newtemp = NULL; } } // When the entire map has been iterated over, return the number of lines that were drawn, ie. the number of rects in the returned rect list return row_count; } // The SetDebugText used by all the SetDebugText overloads // Takes two strings, inserts them into the map as a pair void DebugText::SetDebugText(string var, string value) { if (debug_text_list == NULL) { debug_text_list = new map<string, string>(); } debug_text_list->erase(var); debug_text_list->insert(pair<string, string>(var, value)); } // Writes the bool to a string and calls SetDebugText(string, string) void DebugText::SetDebugText(string var, bool value) { string result; if (value) result = "True"; else result = "False"; SetDebugText(var, result); } // Does the same thing, but uses to_string() to convert the float void DebugText::SetDebugText(string var, float value) { SetDebugText(var, to_string(value)); } // Same as above, but int void DebugText::SetDebugText(string var, int value) { SetDebugText(var, to_string(value)); } // Vector2 is a struct of my own making. It contains the two float vars x and y void DebugText::SetDebugText(string var, Vector2 value) { SetDebugText(var + ".x", to_string(value.x)); SetDebugText(var + ".y", to_string(value.y)); } // Empties the list. I don't actually use this in my code. Shame on me for writing something I don't use. void DebugText::Clear() { if(debug_text_list != NULL) debug_text_list->clear(); } }

    Read the article

  • XNA: Rotating Bones

    - by MLM
    XNA 4.0 I am trying to learn how to rotate bones on a very simple tank model I made in Cinema 4D. It is rigged by 3 bones, Root - Main - Turret - Barrel I have binded all of the objects to the bones so that all translations/rotations work as planned in C4D. I exported it as .fbx I based my test project after: http://create.msdn.com/en-US/education/catalog/sample/simple_animation I can build successfully with no errors but all the rotations I try to do to my bones have no effect. I can transform my Root successfully using below but the bone transforms have no effect: myModel.Root.Transform = world; Matrix turretRotation = Matrix.CreateRotationY(MathHelper.ToRadians(37)); Matrix barrelRotation = Matrix.CreateRotationX(barrelRotationValue); MainBone.Transform = MainTransform; TurretBone.Transform = turretRotation * TurretTransform; BarrelBone.Transform = barrelRotation * BarrelTransform; I am wondering if my model is just not right or something important I am missing in the code. Here is my Game1.cs using System; using System.Collections.Generic; using System.Linq; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Audio; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.GamerServices; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Input; using Microsoft.Xna.Framework.Media; namespace ModelTesting { /// <summary> /// This is the main type for your game /// </summary> public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; float aspectRatio; Tank myModel; public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; } /// <summary> /// Allows the game to perform any initialization it needs to before starting to run. /// This is where it can query for any required services and load any non-graphic /// related content. Calling base.Initialize will enumerate through any components /// and initialize them as well. /// </summary> protected override void Initialize() { // TODO: Add your initialization logic here myModel = new Tank(); base.Initialize(); } /// <summary> /// LoadContent will be called once per game and is the place to load /// all of your content. /// </summary> protected override void LoadContent() { // Create a new SpriteBatch, which can be used to draw textures. spriteBatch = new SpriteBatch(GraphicsDevice); // TODO: use this.Content to load your game content here myModel.Load(Content); aspectRatio = graphics.GraphicsDevice.Viewport.AspectRatio; } /// <summary> /// UnloadContent will be called once per game and is the place to unload /// all content. /// </summary> protected override void UnloadContent() { // TODO: Unload any non ContentManager content here } /// <summary> /// Allows the game to run logic such as updating the world, /// checking for collisions, gathering input, and playing audio. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Update(GameTime gameTime) { // Allows the game to exit if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed) this.Exit(); // TODO: Add your update logic here float time = (float)gameTime.TotalGameTime.TotalSeconds; // Move the pieces /* myModel.TurretRotation = (float)Math.Sin(time * 0.333f) * 1.25f; myModel.BarrelRotation = (float)Math.Sin(time * 0.25f) * 0.333f - 0.333f; */ base.Update(gameTime); } /// <summary> /// This is called when the game should draw itself. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); // Calculate the camera matrices. float time = (float)gameTime.TotalGameTime.TotalSeconds; Matrix rotation = Matrix.CreateRotationY(MathHelper.ToRadians(45)); Matrix view = Matrix.CreateLookAt(new Vector3(2000, 500, 0), new Vector3(0, 150, 0), Vector3.Up); Matrix projection = Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4, graphics.GraphicsDevice.Viewport.AspectRatio, 10, 10000); // TODO: Add your drawing code here myModel.Draw(rotation, view, projection); base.Draw(gameTime); } } } And here is my tank class: using System; using System.Collections.Generic; using System.Linq; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Audio; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.GamerServices; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Input; using Microsoft.Xna.Framework.Media; namespace ModelTesting { public class Tank { Model myModel; // Array holding all the bone transform matrices for the entire model. // We could just allocate this locally inside the Draw method, but it // is more efficient to reuse a single array, as this avoids creating // unnecessary garbage. public Matrix[] boneTransforms; // Shortcut references to the bones that we are going to animate. // We could just look these up inside the Draw method, but it is more // efficient to do the lookups while loading and cache the results. ModelBone MainBone; ModelBone TurretBone; ModelBone BarrelBone; // Store the original transform matrix for each animating bone. Matrix MainTransform; Matrix TurretTransform; Matrix BarrelTransform; // current animation positions float turretRotationValue; float barrelRotationValue; /// <summary> /// Gets or sets the turret rotation amount. /// </summary> public float TurretRotation { get { return turretRotationValue; } set { turretRotationValue = value; } } /// <summary> /// Gets or sets the barrel rotation amount. /// </summary> public float BarrelRotation { get { return barrelRotationValue; } set { barrelRotationValue = value; } } /// <summary> /// Load the model /// </summary> public void Load(ContentManager Content) { // TODO: use this.Content to load your game content here myModel = Content.Load<Model>("Models\\simple_tank02"); MainBone = myModel.Bones["Main"]; TurretBone = myModel.Bones["Turret"]; BarrelBone = myModel.Bones["Barrel"]; MainTransform = MainBone.Transform; TurretTransform = TurretBone.Transform; BarrelTransform = BarrelBone.Transform; // Allocate the transform matrix array. boneTransforms = new Matrix[myModel.Bones.Count]; } public void Draw(Matrix world, Matrix view, Matrix projection) { myModel.Root.Transform = world; Matrix turretRotation = Matrix.CreateRotationY(MathHelper.ToRadians(37)); Matrix barrelRotation = Matrix.CreateRotationX(barrelRotationValue); MainBone.Transform = MainTransform; TurretBone.Transform = turretRotation * TurretTransform; BarrelBone.Transform = barrelRotation * BarrelTransform; myModel.CopyAbsoluteBoneTransformsTo(boneTransforms); // Draw the model, a model can have multiple meshes, so loop foreach (ModelMesh mesh in myModel.Meshes) { // This is where the mesh orientation is set foreach (BasicEffect effect in mesh.Effects) { effect.World = boneTransforms[mesh.ParentBone.Index]; effect.View = view; effect.Projection = projection; effect.EnableDefaultLighting(); } // Draw the mesh, will use the effects set above mesh.Draw(); } } } }

    Read the article

  • Anatomy of a .NET Assembly - CLR metadata 1

    - by Simon Cooper
    Before we look at the bytes comprising the CLR-specific data inside an assembly, we first need to understand the logical format of the metadata (For this post I only be looking at simple pure-IL assemblies; mixed-mode assemblies & other things complicates things quite a bit). Metadata streams Most of the CLR-specific data inside an assembly is inside one of 5 streams, which are analogous to the sections in a PE file. The name of each section in a PE file starts with a ., and the name of each stream in the CLR metadata starts with a #. All but one of the streams are heaps, which store unstructured binary data. The predefined streams are: #~ Also called the metadata stream, this stream stores all the information on the types, methods, fields, properties and events in the assembly. Unlike the other streams, the metadata stream has predefined contents & structure. #Strings This heap is where all the namespace, type & member names are stored. It is referenced extensively from the #~ stream, as we'll be looking at later. #US Also known as the user string heap, this stream stores all the strings used in code directly. All the strings you embed in your source code end up in here. This stream is only referenced from method bodies. #GUID This heap exclusively stores GUIDs used throughout the assembly. #Blob This heap is for storing pure binary data - method signatures, generic instantiations, that sort of thing. Items inside the heaps (#Strings, #US, #GUID and #Blob) are indexed using a simple binary offset from the start of the heap. At that offset is a coded integer giving the length of that item, then the item's bytes immediately follow. The #GUID stream is slightly different, in that GUIDs are all 16 bytes long, so a length isn't required. Metadata tables The #~ stream contains all the assembly metadata. The metadata is organised into 45 tables, which are binary arrays of predefined structures containing information on various aspects of the metadata. Each entry in a table is called a row, and the rows are simply concatentated together in the file on disk. For example, each row in the TypeRef table contains: A reference to where the type is defined (most of the time, a row in the AssemblyRef table). An offset into the #Strings heap with the name of the type An offset into the #Strings heap with the namespace of the type. in that order. The important tables are (with their table number in hex): 0x2: TypeDef 0x4: FieldDef 0x6: MethodDef 0x14: EventDef 0x17: PropertyDef Contains basic information on all the types, fields, methods, events and properties defined in the assembly. 0x1: TypeRef The details of all the referenced types defined in other assemblies. 0xa: MemberRef The details of all the referenced members of types defined in other assemblies. 0x9: InterfaceImpl Links the types defined in the assembly with the interfaces that type implements. 0xc: CustomAttribute Contains information on all the attributes applied to elements in this assembly, from method parameters to the assembly itself. 0x18: MethodSemantics Links properties and events with the methods that comprise the get/set or add/remove methods of the property or method. 0x1b: TypeSpec 0x2b: MethodSpec These tables provide instantiations of generic types and methods for each usage within the assembly. There are several ways to reference a single row within a table. The simplest is to simply specify the 1-based row index (RID). The indexes are 1-based so a value of 0 can represent 'null'. In this case, which table the row index refers to is inferred from the context. If the table can't be determined from the context, then a particular row is specified using a token. This is a 4-byte value with the most significant byte specifying the table, and the other 3 specifying the 1-based RID within that table. This is generally how a metadata table row is referenced from the instruction stream in method bodies. The third way is to use a coded token, which we will look at in the next post. So, back to the bytes Now we've got a rough idea of how the metadata is logically arranged, we can now look at the bytes comprising the start of the CLR data within an assembly: The first 8 bytes of the .text section are used by the CLR loader stub. After that, the CLR-specific data starts with the CLI header. I've highlighted the important bytes in the diagram. In order, they are: The size of the header. As the header is a fixed size, this is always 0x48. The CLR major version. This is always 2, even for .NET 4 assemblies. The CLR minor version. This is always 5, even for .NET 4 assemblies, and seems to be ignored by the runtime. The RVA and size of the metadata header. In the diagram, the RVA 0x20e4 corresponds to the file offset 0x2e4 Various flags specifying if this assembly is pure-IL, whether it is strong name signed, and whether it should be run as 32-bit (this is how the CLR differentiates between x86 and AnyCPU assemblies). A token pointing to the entrypoint of the assembly. In this case, 06 (the last byte) refers to the MethodDef table, and 01 00 00 refers to to the first row in that table. (after a gap) RVA of the strong name signature hash, which comes straight after the CLI header. The RVA 0x2050 corresponds to file offset 0x250. The rest of the CLI header is mainly used in mixed-mode assemblies, and so is zeroed in this pure-IL assembly. After the CLI header comes the strong name hash, which is a SHA-1 hash of the assembly using the strong name key. After that comes the bodies of all the methods in the assembly concatentated together. Each method body starts off with a header, which I'll be looking at later. As you can see, this is a very small assembly with only 2 methods (an instance constructor and a Main method). After that, near the end of the .text section, comes the metadata, containing a metadata header and the 5 streams discussed above. We'll be looking at this in the next post. Conclusion The CLI header data doesn't have much to it, but we've covered some concepts that will be important in later posts - the logical structure of the CLR metadata and the overall layout of CLR data within the .text section. Next, I'll have a look at the contents of the #~ stream, and how the table data is arranged on disk.

    Read the article

  • How to use ULS in SharePoint 2010 for Custom Code Exception Logging?

    - by venkatx5
    What is ULS in SharePoint 2010? ULS stands for Unified Logging Service which captures and writes Exceptions/Logs in Log File(A Plain Text File with .log extension). SharePoint logs Each and every exceptions with ULS. SharePoint Administrators should know ULS and it's very useful when anything goes wrong. but when you ask any SharePoint 2007 Administrator to check log file then most of them will Kill you. Because read and understand the log file is not so easy. Imagine open a plain text file of 20 MB in NotePad and go thru line by line. Now Microsoft developed a tool "ULS Viewer" to view those Log files in easily readable format. This tools also helps to filter events based on exception priority. You can read on this blog to know in details about ULS Viewer . Where to get ULS Viewer? ULS Viewer is developed by Microsoft and available to download for free. URL : http://code.msdn.microsoft.com/ULSViewer/Release/ProjectReleases.aspx?ReleaseId=3308 Note: Eventhought this tool developed by Microsoft, it's not supported by Microsoft. Means you can't support for this tool from Microsoft and use it on your own Risk. By the way what's the risk in viewing Log Files?! How to use ULS in SharePoint 2010 Custom Code? ULS can be extended to use in user solutions to log exceptions. In Detail, Developer can use ULS to log his own application errors and exceptions on SharePoint Log files. So now all in Single Place (That's why it's called "Unified Logging"). Well in this article I am going to use Waldek's Code (Reference Link). However the article is core and am writing container for that (Basically how to implement the code in Detail). Let's see the steps. Open Visual Studio 2010 -> File -> New Project -> Visual C# -> Windows -> Class Library -> Name : ULSLogger (Make sure you've selected .net Framework 3.5)   In Solution Explorer Panel, Rename the Class1.cs to LoggingService.cs   Right Click on References -> Add Reference -> Under .Net tab select "Microsoft.SharePoint"   Right Click on the Project -> Properties. Select "Signing" Tab -> Check "Sign the Assembly".   In the below drop down select <New> and enter "ULSLogger", uncheck the "Protect my key with a Password" option.   Now copy the below code and paste. (Or Just refer.. :-) ) using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.SharePoint; using Microsoft.SharePoint.Administration; using System.Runtime.InteropServices; namespace ULSLogger { public class LoggingService : SPDiagnosticsServiceBase { public static string vsDiagnosticAreaName = "Venkats SharePoint Logging Service"; public static string CategoryName = "vsProject"; public static uint uintEventID = 700; // Event ID private static LoggingService _Current; public static LoggingService Current {  get   {    if (_Current == null)     {       _Current = new LoggingService();     }    return _Current;   } }private LoggingService() : base("Venkats SharePoint Logging Service", SPFarm.Local) {}protected override IEnumerable<SPDiagnosticsArea> ProvideAreas() { List<SPDiagnosticsArea> areas = new List<SPDiagnosticsArea>  {   new SPDiagnosticsArea(vsDiagnosticAreaName, new List<SPDiagnosticsCategory>    {     new SPDiagnosticsCategory(CategoryName, TraceSeverity.Medium, EventSeverity.Error)    })   }; return areas; }public static string LogErrorInULS(string errorMessage) { string strExecutionResult = "Message Not Logged in ULS. "; try  {   SPDiagnosticsCategory category = LoggingService.Current.Areas[vsDiagnosticAreaName].Categories[CategoryName];   LoggingService.Current.WriteTrace(uintEventID, category, TraceSeverity.Unexpected, errorMessage);   strExecutionResult = "Message Logged"; } catch (Exception ex) {  strExecutionResult += ex.Message; } return strExecutionResult; }public static string LogErrorInULS(string errorMessage, TraceSeverity tsSeverity) { string strExecutionResult = "Message Not Logged in ULS. "; try  {  SPDiagnosticsCategory category = LoggingService.Current.Areas[vsDiagnosticAreaName].Categories[CategoryName];  LoggingService.Current.WriteTrace(uintEventID, category, tsSeverity, errorMessage);  strExecutionResult = "Message Logged";  } catch (Exception ex)  {   strExecutionResult += ex.Message;   } return strExecutionResult;  } } }   Just build the solution and it's ready to use now. This ULS solution can be used in SharePoint Webparts or Console Application. Lets see how to use it in a Console Application. SharePoint Server 2010 must be installed in the same Server or the application must be hosted in SharPoint Server 2010 environment. The console application must be set to "x64" Platform target.   Create a New Console Application. (Visual Studio -> File -> New Project -> C# -> Windows -> Console Application) Right Click on References -> Add Reference -> Under .Net tab select "Microsoft.SharePoint" Open Program.cs add "using Microsoft.SharePoint.Administration;" Right Click on References -> Add Reference -> Under "Browse" tab select the "ULSLogger.dll" which we created first. (Path : ULSLogger\ULSLogger\bin\Debug\) Right Click on Project -> Properties -> Select "Build" Tab -> Under "Platform Target" option select "x64". Open the Program.cs and paste the below code. using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.SharePoint.Administration; using ULSLogger; namespace ULSLoggerClient {  class Program   {   static void Main(string[] args)     {     Console.WriteLine("ULS Logging Started.");     string strResult = LoggingService.LogErrorInULS("My Application is Working Fine.");      Console.WriteLine("ULS Logging Info. Result : " + strResult);     string strResult = LoggingService.LogErrorInULS("My Application got an Exception.", TraceSeverity.High);     Console.WriteLine("ULS Logging Waring Result : " + strResult);      Console.WriteLine("ULS Logging Completed.");      Console.ReadLine();     }   } } Just build the solution and execute. It'll log the message on the log file. Make sure you are using Farm Administrator User ID. You can play with Message and TraceSeverity as required. Now Open ULS Viewer -> File -> Open From -> ULS -> Select First Option to open the default ULS Log. It's Uls RealTime and will show all log entries in readable table format. Right Click on a row and select "Filter By This Item". Select "Event ID" and enter value "700" that we used in the application. Click Ok and now you'll see the Exceptions/Logs which logged by our application.   If you want to see High Priority Messages only then Click Icons except Red Cross Icon on the Toolbar. The tooltip will tell what's the icons used for.

    Read the article

  • Consuming the Amazon S3 service from a Win8 Metro Application

    - by cibrax
    As many of the existing Http APIs for Cloud Services, AWS also provides a set of different platform SDKs for hiding many of complexities present in the APIs. While there is a platform SDK for .NET, which is open source and available in C#, that SDK does not work in Win8 Metro Applications for the changes introduced in WinRT. WinRT offers a complete different set of APIs for doing I/O operations such as doing http calls or using cryptography for signing or encrypting data, two aspects that are absolutely necessary for consuming AWS. All the I/O APIs available as part of WinRT are asynchronous, and uses the TPL model for .NET applications (HTML and JavaScript Metro applications use a model based in promises, which is similar concept).  In the case of S3, the http Authorization header is used for two purposes, authenticating clients and make sure the messages were not altered while they were in transit. For doing that, it uses a signature or hash of the message content and some of the headers using a symmetric key (That's just one of the available mechanisms). Windows Azure for example also uses the same mechanism in many of its APIs. There are three challenges that any developer working for first time in Metro will have to face to consume S3, the new WinRT APIs, the asynchronous nature of them and the complexity introduced for generating the Authorization header. Having said that, I decided to write this post with some of the gotchas I found myself trying to consume this Amazon service. 1. Generating the signature for the Authorization header All the cryptography APIs in WinRT are available under Windows.Security.Cryptography namespace. Many of operations available in these APIs uses the concept of buffers (IBuffer) for representing a chunk of binary data. As you will see in the example below, these buffers are mainly generated with the use of static methods in a WinRT class CryptographicBuffer available as part of the namespace previously mentioned. private string DeriveAuthToken(string resource, string httpMethod, string timestamp) { var stringToSign = string.Format("{0}\n" + "\n" + "\n" + "\n" + "x-amz-date:{1}\n" + "/{2}/", httpMethod, timestamp, resource); var algorithm = MacAlgorithmProvider.OpenAlgorithm("HMAC_SHA1"); var keyMaterial = CryptographicBuffer.CreateFromByteArray(Encoding.UTF8.GetBytes(this.secret)); var hmacKey = algorithm.CreateKey(keyMaterial); var signature = CryptographicEngine.Sign( hmacKey, CryptographicBuffer.CreateFromByteArray(Encoding.UTF8.GetBytes(stringToSign)) ); return CryptographicBuffer.EncodeToBase64String(signature); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The algorithm that determines the information or content you need to use for generating the signature is very well described as part of the AWS documentation. In this case, this method is generating a signature required for creating a new bucket. A HmacSha1 hash is computed using a secret or symetric key provided by AWS in the management console. 2. Sending an Http Request to the S3 service WinRT also ships with the System.Net.Http.HttpClient that was first introduced some months ago with ASP.NET Web API. This client provides a rich interface on top the traditional WebHttpRequest class, and also solves some of limitations found in this last one. There are a few things that don't work with a raw WebHttpRequest such as setting the Host header, which is something absolutely required for consuming S3. Also, HttpClient is more friendly for doing unit tests, as it receives a HttpMessageHandler as part of the constructor that can fake to emulate a real http call. This is how the code for consuming the service with HttpClient looks like, public async Task<S3Response> CreateBucket(string name, string region = null, params string[] acl) { var timestamp = string.Format("{0:r}", DateTime.UtcNow); var auth = DeriveAuthToken(name, "PUT", timestamp); var request = new HttpRequestMessage(HttpMethod.Put, "http://s3.amazonaws.com/"); request.Headers.Host = string.Format("{0}.s3.amazonaws.com", name); request.Headers.TryAddWithoutValidation("Authorization", "AWS " + this.key + ":" + auth); request.Headers.Add("x-amz-date", timestamp); var client = new HttpClient(); var response = await client.SendAsync(request); return new S3Response { Succeed = response.StatusCode == HttpStatusCode.OK, Message = (response.Content != null) ? await response.Content.ReadAsStringAsync() : null }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You will notice a few additional things in this code. By default, HttpClient validates the values for some well-know headers, and Authorization is one of them. It won't allow you to set a value with ":" on it, which is something that S3 expects. However, that's not a problem at all, as you can skip the validation by using the TryAddWithoutValidation method. Also, the code is heavily relying on the new async and await keywords to transform all the asynchronous calls into synchronous ones. In case you would want to unit test this code and faking the call to the real S3 service, you should have to modify it to inject a custom HttpMessageHandler into the HttpClient. The following implementation illustrates this concept, In case you would want to unit test this code and faking the call to the real S3 service, you should have to modify it to inject a custom HttpMessageHandler into the HttpClient. The following implementation illustrates this concept, public class FakeHttpMessageHandler : HttpMessageHandler { HttpResponseMessage response; public FakeHttpMessageHandler(HttpResponseMessage response) { this.response = response; } protected override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, System.Threading.CancellationToken cancellationToken) { var tcs = new TaskCompletionSource<HttpResponseMessage>(); tcs.SetResult(response); return tcs.Task; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You can use this handler for injecting any response while you are unit testing the code.

    Read the article

< Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >