Search Results

Search found 1947 results on 78 pages for 'science'.

Page 69/78 | < Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • Exclude list of specific files in wget

    - by nanker
    I am trying to download a lot of pages from a website on dial-up and it can be brutally slow. I have almost got the perfect wget command, but because I'm downloading pages from the same site wget wastes times downloading the same standard images for each page. If I know the name of the default page images, is there any way to have wget ignore and thus avoid downloading those for each and every page? Here is an example of one of the wget commands that my shell script generates into another shell script to download all of the pages: mkdir candy-canes-on-the-flannel-board-in-preschool cd candy-canes-on-the-flannel-board-in-preschool wget -p -nd -A jpg,html -k http://www.teachpreschool.org/2011/12/candy-canes-on-the-flannel-board-in-preschool/ wget -c --random-wait --timeout=30 --user-agent="Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.3) Gecko/2008092416 Firefox/3.0.3" http://www.teachpreschool.org/2011/12/candy-canes-on-the-flannel-board-in-preschool/ -O "candy-canes-on-the-flannel-board-in-preschool" rm Baby-and-Toddler.jpg Childrens-Books.jpg Creative-Art.jpg Felt-Fun.jpg Happy_Rainbow-e1338766526528.jpg index.html Language-and-Literacy.jpg Light-table-Button.jpg Math.jpg Outdoor-Play.jpg outer-jacket1-300x153.jpg preschoolspot-button-small.jpg robots.txt Science-and-Nature.jpg Signature-2.jpg Story-Telling.jpg Tags-on-Preschool.jpg Teaching-Two-and-Three-Year-olds.jpg cd ../ Now I realize the script is not likely as savvy as it could be but it is doing what I need at the moment except that you can see from the rm command that I would just like to prevent wget from downloading the files in the first place if possible. I almost forgot to mention, there are two wget commands and that is because the first one downloads the page as index.html and for some reason it does not open in my browser, however, when I open it and look at it in vim all of the page's content is there, so I am not sure why it does not open. But if I just issue the second wget command as it is then that page, same file really with an alternate name, opens up fine. Something that if I could fix would also help to streamline the process.

    Read the article

  • I cannot access Windows Update at all

    - by Cardinal fang
    I have been unable to access the Windows update site for a couple of weeks now. I just get a message saying "Internet Explorer cannot display the webpage" and saying I have connection problems. Same thing is replicated with any other Microsoft site I try to access. The Automatic Updates also do not work. I can access every other wesbite I've surfed to. I've tried Googling the problem and based on what other site have suggested I have cleared my cache and temp files. I've scanning my hard drive with my antivirus in case I have a virus (nada). I've tried turning off my firewall and anti-virus (I run Zone Alarm). I've downloaded SpyBot and scanned my drive with that in case something was missed by Zone Alarm (again nada). Based on suggestions from the smart cookies on the Bad Science forum, I've used nslookup to check my translation isn't wonky (got all the info they said I should get). I've also tried navigating there directly using the IP address I was given (nope). I normally access the internet through a 3 mobile broadband connection, but have also tried connecting using a mate's wi-fi connection in case it was something on my mobile modem interferring. I run Windows XP SP3 with Internet Explorer 7 and Zone Alarm Internet Security Suite as my anti-virus/ firewall. Any suggestions?

    Read the article

  • Best usage for a laptop being used as a desktop without removable batteries

    - by Senseful
    After reading the information on http://batteryuniversity.com, I realize that one of the best ways to permanently damage a lithium ion battery is to use the battery at a high temperature while it's fully charged. This is exactly what happens when you use the computer as if it were a desktop computer, since leaving it plugged in will keep the battery at 100% and using the computer will heat up the battery. This is why it's recommend to remove the battery from your laptop if you are using it is this scenario. My question is what would you do if the laptop doesn't have removable batteries (e.g. a MacBook Pro)? Should I use some kind of charge cycle such as: charge to 80%, unplug the power chord, use the laptop until it reaches 20%, then repeat the cycle by charging to 80% again? If so, which values should I use instead of 80% and 20%? (I think charging to 80% is better than 100% because of the damage that a hot battery at 100% can do, but I just made the figure 80% up, and I'm sure there's a better number to strive for which is backed by science.) I've read many of the articles on batteryuniversity.com, but couldn't find anything pertaining to this. Update: What about doing something like charge (or discharge) it to 50%, then plug it in and turn on settings which use the battery as much as possible (e.g. brightness all the way up, wi-fi on, etc.), in order to try to maintain the battery at 50% (i.e. the rate it is charging is the same as it is discharging). This will probably heat up the battery, but would make it so you don't need to constantly plug and unplug the laptop. The one bad thing is that you are taking up more charge cycles which would decrease the battery life, thus I'm not sure this is a good idea.

    Read the article

  • Salary Survey Entry Level network position [closed]

    - by will
    Hello, I started interning with a company about 5 months ago and for the past 7 months I have been a normal part time employee. This week I have a review, where I am hoping to get a raise. I started at $8 interning, and now I'm up to $13. What I am trying to figure out is how to survey what others are making in similar positions so I can take it to the review as a base number. here are my thoughts on my position right now. Review Thoughts My Qualifications: • Associates of applied Science - IT network Specialist • CompTIA A+ certification • CompTIA Server+ certification • CompTIA Network+ certification • Currently pursuing Cisco certifications • Junior status at Insert college Pursuing Bachelors in Information Technology with an emphasis in Networking. 3.4 GPA • 1 year of working at Insert Company. My contributions to Insert Company • Offering near fulltime through semester and fulltime through summer. • Ability to work after hours and on weekends • Developed and support helpdesk system • Set up and maintain Update server to keep desktop clients up to date • Deployed and maintain antivirus solution for end users • Assist with main projects such as SAN, Virtualization, and network survey. Any tips on determining an asking number would help. I was thinking $17-$18, am I way off here? • Migrating end user stations to Windows 7 (current project) • Developing imaging solution for Desktop PCs (current project)

    Read the article

  • My SSD stopped working as it ends up in blue death right after windows 7 launches, how can I reset it for new windows install?

    - by HattoriHanzo
    As I mentioned in the title my SSD suddenly started to fail as after launching Windows 7 it goes straight to completely idle and after a few minutes it goes to blue death and restarts. I have an another HD with a windows xp on it and it works fine and I can also see the SSD and can access everything on it. Windows 7 on the SSD does work in safe mode though yet I didn't manage to find out what causes the problem. Since I can sill access the files and save them to another HD I'm looking for the best way to wipe and reinstall Windows 7. I have yet failed to find an easy to follow (or even understand) guide, different sources on the internet recommend different ways of doing this. And some guides are just simply full of terms I have no clue about. It's an OCZ Vertex 2 120GB. I"d very much appreciate if someone could give me an advice on what I should do, preferably in a way so I could regain the best possible performance as well. it doesn't matter if I don't understand the science behind it as long as I can follow the steps. Thanks!

    Read the article

  • USB-to-Serial showing gibberish at 115200 Baud

    - by Mose
    I've got a serious problem which drives me crazy because I tried everything I could think of. First of all, I made a video: http://youtu.be/boghkuq7L_s but please read the following text for more information, not only view the video! When using a USB-to-Serial interface everything works as long as I don't go beyond 57600 Baud. At higher rates I only get giberish like this: év.­b0JNLYÆÿ¿iëd0U²(kßÞb! ú]/xscB!ï¯!BoXûÿ1ïâÖCÿ6ÌAnè*íÌC)º¿BíÞØ.C.@ÆÃwHJÂs "YE:ñ.èFðÌCÊ÷ÞÄ !x H w6@BtbHJ ̪ Ì6ì H¾a¿bH.">îvy®;f<ßBÌ p­L¨fæH­E ­þ¼MBÞI What makes the problem so strange is, I exchanged every component and the problem still presists. I tried differtent OSes (Ubuntu, WinXP, Win7, OSX 10.7) with 32 and 64 Bit. I tried USB-to-Serial interface from FTDI and Prolific. I tried reading the output from my Raspberry PI and from an Asterisk Appliance. I changed the cables and the wiring. Nothing helped. In the video I made a example with a old Notebook with native COM and put the USB-to-Serial to the same connection as "sniffer" (only Rx and GND connected) to make sure the output and everything is ok as one can see on the native port. The voltage is ok. Settings for both are 115200 Baud, 8 Bit with 1 Stop and no flow control. Native is ok. USB is messed up. I used the newest drivers and double checked all connections. I have no idea what is wrong here. As I couldn't find anyone describing problems like this I question my long experiance in computer science and think I'm doing some completly wrong... Please help :-/

    Read the article

  • Data loss by randomly unplugging the computer during runtime

    - by Kan
    I'm from Austria and we and the Germans have some sort of bad science-show which runs every day. What I call it would rougly translate to "half-knowledge" if you want so. By the way: It is called "Galileo". So they thought they'd make a computer myth busters video right now, and I couldn't believe what I saw and heard... The strangest thing to me was that they asked: "Does unplugging the computer damage your data?" Then they started up some machine with Vista on it, started copying some files and randomly unplugged the PC cable, the whole thing around 50 times. After their computer continued to start up normally, they just said "nothing can happen, your data or computer can't be damaged". They of course excluded unsaved data in running programs like text editors from this. I asked myself: What the hell are their "computer experts" saying? You can't tell by unplugging the cable 50 times if that can damage your computer. Can unplugging the cable during runtime cause data loss (as said by the moderator of the show)? (I destroyed my windows registry once during a reset)

    Read the article

  • Winodws server 2003 Setup

    - by Barracksbuilder
    I work at a university maintaining the computer science department server. I am looking for a more economical way to stream line the set up of student accounts. CS students are granted a Username and password an IIS virtual directory, FTP virtual directory, and a mysql database. Server is running windows server 2003R2 (Possibly migrating to 2008R2) The server is running a domain though no students physically log a terminal into it (No computers are part of my domain.) Creating the account is a manual process. I did right a PHP script to query the Universities AD and copy the information and write it to my AD. I then have to create basically the users home directory. I tried having AD do it but since the user never physically logs in it never creates the directory. Permissions on this folder are set to User - full, Instructors (group) - full, Users (group) - read, IUSER - read. Inside of the users folder their is a "Private" folder with permissions User - full, instructors (group) - full. Next step is IIS I create a virtual directory in the default web site pointed to the users home directory so they have a website. Same goes for FTP virtual directory in the default ftp configuration to allow the users to upload files to their website. Mysql I have to create a user and password then create a mysql scheme (database) full access for the user and full access to the instructors account to be able to access the students database. All of this is done manually and takes me a week to do. The closest description is maybe a shared hosting environment. Is there a better way to do this? Scripting wise, or better structure setup?

    Read the article

  • I really need help resolving a Window Vista BSOD (Blue Screen Crash) on my desktop

    - by anonymous
    Hi, thanks for taking the time to read this. I'll get straight to the details. My desktop is on the fritz; it keeps going to blue screen with the stop message of 0x0000007E immediately after the loading bar of vista, right before transitioning to the account selection screen. My desktop runs on a dual-core 32-bit processor with windows Vista Home(?) installed. I have 3 GB of ram as two separate modules, a 1GB acer module and a 2GB geil module. I have an ati video card, unfortunately I cannot recall the exact name but the chipset is ATI and the manufacturer is Sapphire and the card is on the lower end. My hard drive is 320GB (i think) partitioned into two. The C:\ partition is red lined, while the D:\ partition is still pretty empty. As per the advice of my friend, i tried restarting the system with the graphics card removed. Upon failure, i repeated the process removing one RAM module one at a time, but the system still failed to load. Vista would attempt to repair the system and it would initially report that the system was fixed, but vista really failed to fix the problem. After removing the memory modules, vista started to report it's inability to fix the problem. I tried running on safe mode and the driver listing would always stop at crcdisk.sys. I ran memory diagnostics using the windows memory diagnostic tool found in the screen after vista's failed attempt to fix the problem with no luck. the problem details are as such: Problem Event Name : StartupRepairV2 Problem Signature 01: AutoFailover 02: (vista's version number?) 03: 6 04: 720907 05: 0x7e 06: 0x7e 07: 0 08: 2 09: WrpRepair 10: 0 OS Version: 6.0.6000.2.0.0.256.1 Locale ID 1033 any correct advice would be appreciated as i really need my pc to work so i can work on my projects. kinda sad, but i'm college of computer science and i have no idea what to do :P

    Read the article

  • Problems with real-valued input deep belief networks (of RBMs)

    - by Junier
    I am trying to recreate the results reported in Reducing the dimensionality of data with neural networks of autoencoding the olivetti face dataset with an adapted version of the MNIST digits matlab code, but am having some difficulty. It seems that no matter how much tweaking I do on the number of epochs, rates, or momentum the stacked RBMs are entering the fine-tuning stage with a large amount of error and consequently fail to improve much at the fine-tuning stage. I am also experiencing a similar problem on another real-valued dataset. For the first layer I am using a RBM with a smaller learning rate (as described in the paper) and with negdata = poshidstates*vishid' + repmat(visbiases,numcases,1); I'm fairly confident I am following the instructions found in the supporting material but I cannot achieve the correct errors. Is there something I am missing? See the code I'm using for real-valued visible unit RBMs below, and for the whole deep training. The rest of the code can be found here. rbmvislinear.m: epsilonw = 0.001; % Learning rate for weights epsilonvb = 0.001; % Learning rate for biases of visible units epsilonhb = 0.001; % Learning rate for biases of hidden units weightcost = 0.0002; initialmomentum = 0.5; finalmomentum = 0.9; [numcases numdims numbatches]=size(batchdata); if restart ==1, restart=0; epoch=1; % Initializing symmetric weights and biases. vishid = 0.1*randn(numdims, numhid); hidbiases = zeros(1,numhid); visbiases = zeros(1,numdims); poshidprobs = zeros(numcases,numhid); neghidprobs = zeros(numcases,numhid); posprods = zeros(numdims,numhid); negprods = zeros(numdims,numhid); vishidinc = zeros(numdims,numhid); hidbiasinc = zeros(1,numhid); visbiasinc = zeros(1,numdims); sigmainc = zeros(1,numhid); batchposhidprobs=zeros(numcases,numhid,numbatches); end for epoch = epoch:maxepoch, fprintf(1,'epoch %d\r',epoch); errsum=0; for batch = 1:numbatches, if (mod(batch,100)==0) fprintf(1,' %d ',batch); end %%%%%%%%% START POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% data = batchdata(:,:,batch); poshidprobs = 1./(1 + exp(-data*vishid - repmat(hidbiases,numcases,1))); batchposhidprobs(:,:,batch)=poshidprobs; posprods = data' * poshidprobs; poshidact = sum(poshidprobs); posvisact = sum(data); %%%%%%%%% END OF POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% poshidstates = poshidprobs > rand(numcases,numhid); %%%%%%%%% START NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% negdata = poshidstates*vishid' + repmat(visbiases,numcases,1);% + randn(numcases,numdims) if not using mean neghidprobs = 1./(1 + exp(-negdata*vishid - repmat(hidbiases,numcases,1))); negprods = negdata'*neghidprobs; neghidact = sum(neghidprobs); negvisact = sum(negdata); %%%%%%%%% END OF NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% err= sum(sum( (data-negdata).^2 )); errsum = err + errsum; if epoch>5, momentum=finalmomentum; else momentum=initialmomentum; end; %%%%%%%%% UPDATE WEIGHTS AND BIASES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vishidinc = momentum*vishidinc + ... epsilonw*( (posprods-negprods)/numcases - weightcost*vishid); visbiasinc = momentum*visbiasinc + (epsilonvb/numcases)*(posvisact-negvisact); hidbiasinc = momentum*hidbiasinc + (epsilonhb/numcases)*(poshidact-neghidact); vishid = vishid + vishidinc; visbiases = visbiases + visbiasinc; hidbiases = hidbiases + hidbiasinc; %%%%%%%%%%%%%%%% END OF UPDATES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end fprintf(1, '\nepoch %4i error %f \n', epoch, errsum); end dofacedeepauto.m: clear all close all maxepoch=200; %In the Science paper we use maxepoch=50, but it works just fine. numhid=2000; numpen=1000; numpen2=500; numopen=30; fprintf(1,'Pretraining a deep autoencoder. \n'); fprintf(1,'The Science paper used 50 epochs. This uses %3i \n', maxepoch); load fdata %makeFaceData; [numcases numdims numbatches]=size(batchdata); fprintf(1,'Pretraining Layer 1 with RBM: %d-%d \n',numdims,numhid); restart=1; rbmvislinear; hidrecbiases=hidbiases; save mnistvh vishid hidrecbiases visbiases; maxepoch=50; fprintf(1,'\nPretraining Layer 2 with RBM: %d-%d \n',numhid,numpen); batchdata=batchposhidprobs; numhid=numpen; restart=1; rbm; hidpen=vishid; penrecbiases=hidbiases; hidgenbiases=visbiases; save mnisthp hidpen penrecbiases hidgenbiases; fprintf(1,'\nPretraining Layer 3 with RBM: %d-%d \n',numpen,numpen2); batchdata=batchposhidprobs; numhid=numpen2; restart=1; rbm; hidpen2=vishid; penrecbiases2=hidbiases; hidgenbiases2=visbiases; save mnisthp2 hidpen2 penrecbiases2 hidgenbiases2; fprintf(1,'\nPretraining Layer 4 with RBM: %d-%d \n',numpen2,numopen); batchdata=batchposhidprobs; numhid=numopen; restart=1; rbmhidlinear; hidtop=vishid; toprecbiases=hidbiases; topgenbiases=visbiases; save mnistpo hidtop toprecbiases topgenbiases; backpropface; Thanks for your time

    Read the article

  • Problems with real-valued deep belief networks (of RBMs)

    - by Junier
    I am trying to recreate the results reported in Reducing the dimensionality of data with neural networks of autoencoding the olivetti face dataset with an adapted version of the MNIST digits matlab code, but am having some difficulty. It seems that no matter how much tweaking I do on the number of epochs, rates, or momentum the stacked RBMs are entering the fine-tuning stage with a large amount of error and consequently fail to improve much at the fine-tuning stage. I am also experiencing a similar problem on another real-valued dataset. For the first layer I am using a RBM with a smaller learning rate (as described in the paper) and with negdata = poshidstates*vishid' + repmat(visbiases,numcases,1); I'm fairly confident I am following the instructions found in the supporting material but I cannot achieve the correct errors. Is there something I am missing? See the code I'm using for real-valued visible unit RBMs below, and for the whole deep training. The rest of the code can be found here. rbmvislinear.m: epsilonw = 0.001; % Learning rate for weights epsilonvb = 0.001; % Learning rate for biases of visible units epsilonhb = 0.001; % Learning rate for biases of hidden units weightcost = 0.0002; initialmomentum = 0.5; finalmomentum = 0.9; [numcases numdims numbatches]=size(batchdata); if restart ==1, restart=0; epoch=1; % Initializing symmetric weights and biases. vishid = 0.1*randn(numdims, numhid); hidbiases = zeros(1,numhid); visbiases = zeros(1,numdims); poshidprobs = zeros(numcases,numhid); neghidprobs = zeros(numcases,numhid); posprods = zeros(numdims,numhid); negprods = zeros(numdims,numhid); vishidinc = zeros(numdims,numhid); hidbiasinc = zeros(1,numhid); visbiasinc = zeros(1,numdims); sigmainc = zeros(1,numhid); batchposhidprobs=zeros(numcases,numhid,numbatches); end for epoch = epoch:maxepoch, fprintf(1,'epoch %d\r',epoch); errsum=0; for batch = 1:numbatches, if (mod(batch,100)==0) fprintf(1,' %d ',batch); end %%%%%%%%% START POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% data = batchdata(:,:,batch); poshidprobs = 1./(1 + exp(-data*vishid - repmat(hidbiases,numcases,1))); batchposhidprobs(:,:,batch)=poshidprobs; posprods = data' * poshidprobs; poshidact = sum(poshidprobs); posvisact = sum(data); %%%%%%%%% END OF POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% poshidstates = poshidprobs > rand(numcases,numhid); %%%%%%%%% START NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% negdata = poshidstates*vishid' + repmat(visbiases,numcases,1);% + randn(numcases,numdims) if not using mean neghidprobs = 1./(1 + exp(-negdata*vishid - repmat(hidbiases,numcases,1))); negprods = negdata'*neghidprobs; neghidact = sum(neghidprobs); negvisact = sum(negdata); %%%%%%%%% END OF NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% err= sum(sum( (data-negdata).^2 )); errsum = err + errsum; if epoch>5, momentum=finalmomentum; else momentum=initialmomentum; end; %%%%%%%%% UPDATE WEIGHTS AND BIASES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vishidinc = momentum*vishidinc + ... epsilonw*( (posprods-negprods)/numcases - weightcost*vishid); visbiasinc = momentum*visbiasinc + (epsilonvb/numcases)*(posvisact-negvisact); hidbiasinc = momentum*hidbiasinc + (epsilonhb/numcases)*(poshidact-neghidact); vishid = vishid + vishidinc; visbiases = visbiases + visbiasinc; hidbiases = hidbiases + hidbiasinc; %%%%%%%%%%%%%%%% END OF UPDATES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end fprintf(1, '\nepoch %4i error %f \n', epoch, errsum); end dofacedeepauto.m: clear all close all maxepoch=200; %In the Science paper we use maxepoch=50, but it works just fine. numhid=2000; numpen=1000; numpen2=500; numopen=30; fprintf(1,'Pretraining a deep autoencoder. \n'); fprintf(1,'The Science paper used 50 epochs. This uses %3i \n', maxepoch); load fdata %makeFaceData; [numcases numdims numbatches]=size(batchdata); fprintf(1,'Pretraining Layer 1 with RBM: %d-%d \n',numdims,numhid); restart=1; rbmvislinear; hidrecbiases=hidbiases; save mnistvh vishid hidrecbiases visbiases; maxepoch=50; fprintf(1,'\nPretraining Layer 2 with RBM: %d-%d \n',numhid,numpen); batchdata=batchposhidprobs; numhid=numpen; restart=1; rbm; hidpen=vishid; penrecbiases=hidbiases; hidgenbiases=visbiases; save mnisthp hidpen penrecbiases hidgenbiases; fprintf(1,'\nPretraining Layer 3 with RBM: %d-%d \n',numpen,numpen2); batchdata=batchposhidprobs; numhid=numpen2; restart=1; rbm; hidpen2=vishid; penrecbiases2=hidbiases; hidgenbiases2=visbiases; save mnisthp2 hidpen2 penrecbiases2 hidgenbiases2; fprintf(1,'\nPretraining Layer 4 with RBM: %d-%d \n',numpen2,numopen); batchdata=batchposhidprobs; numhid=numopen; restart=1; rbmhidlinear; hidtop=vishid; toprecbiases=hidbiases; topgenbiases=visbiases; save mnistpo hidtop toprecbiases topgenbiases; backpropface; Thanks for your time

    Read the article

  • Red Gate Coder interviews: Alex Davies

    - by Michael Williamson
    Alex Davies has been a software engineer at Red Gate since graduating from university, and is currently busy working on .NET Demon. We talked about tackling parallel programming with his actors framework, a scientific approach to debugging, and how JavaScript is going to affect the programming languages we use in years to come. So, if we start at the start, how did you get started in programming? When I was seven or eight, I was given a BBC Micro for Christmas. I had asked for a Game Boy, but my dad thought it would be better to give me a proper computer. For a year or so, I only played games on it, but then I found the user guide for writing programs in it. I gradually started doing more stuff on it and found it fun. I liked creating. As I went into senior school I continued to write stuff on there, trying to write games that weren’t very good. I got a real computer when I was fourteen and found ways to write BASIC on it. Visual Basic to start with, and then something more interesting than that. How did you learn to program? Was there someone helping you out? Absolutely not! I learnt out of a book, or by experimenting. I remember the first time I found a loop, I was like “Oh my God! I don’t have to write out the same line over and over and over again any more. It’s amazing!” When did you think this might be something that you actually wanted to do as a career? For a long time, I thought it wasn’t something that you would do as a career, because it was too much fun to be a career. I thought I’d do chemistry at university and some kind of career based on chemical engineering. And then I went to a careers fair at school when I was seventeen or eighteen, and it just didn’t interest me whatsoever. I thought “I could be a programmer, and there’s loads of money there, and I’m good at it, and it’s fun”, but also that I shouldn’t spoil my hobby. Now I don’t really program in my spare time any more, which is a bit of a shame, but I program all the rest of the time, so I can live with it. Do you think you learnt much about programming at university? Yes, definitely! I went into university knowing how to make computers do anything I wanted them to do. However, I didn’t have the language to talk about algorithms, so the algorithms course in my first year was massively important. Learning other language paradigms like functional programming was really good for breadth of understanding. Functional programming influences normal programming through design rather than actually using it all the time. I draw inspiration from it to write imperative programs which I think is actually becoming really fashionable now, but I’ve been doing it for ages. I did it first! There were also some courses on really odd programming languages, a bit of Prolog, a little bit of C. Having a little bit of each of those is something that I would have never done on my own, so it was important. And then there are knowledge-based courses which are about not programming itself but things that have been programmed like TCP. Those are really important for examples for how to approach things. Did you do any internships while you were at university? Yeah, I spent both of my summers at the same company. I thought I could code well before I went there. Looking back at the crap that I produced, it was only surpassed in its crappiness by all of the other code already in that company. I’m so much better at writing nice code now than I used to be back then. Was there just not a culture of looking after your code? There was, they just didn’t hire people for their abilities in that area. They hired people for raw IQ. The first indicator of it going wrong was that they didn’t have any computer scientists, which is a bit odd in a programming company. But even beyond that they didn’t have people who learnt architecture from anyone else. Most of them had started straight out of university, so never really had experience or mentors to learn from. There wasn’t the experience to draw from to teach each other. In the second half of my second internship, I was being given tasks like looking at new technologies and teaching people stuff. Interns shouldn’t be teaching people how to do their jobs! All interns are going to have little nuggets of things that you don’t know about, but they shouldn’t consistently be the ones who know the most. It’s not a good environment to learn. I was going to ask how you found working with people who were more experienced than you… When I reached Red Gate, I found some people who were more experienced programmers than me, and that was difficult. I’ve been coding since I was tiny. At university there were people who were cleverer than me, but there weren’t very many who were more experienced programmers than me. During my internship, I didn’t find anyone who I classed as being a noticeably more experienced programmer than me. So, it was a shock to the system to have valid criticisms rather than just formatting criticisms. However, Red Gate’s not so big on the actual code review, at least it wasn’t when I started. We did an entire product release and then somebody looked over all of the UI of that product which I’d written and say what they didn’t like. By that point, it was way too late and I’d disagree with them. Do you think the lack of code reviews was a bad thing? I think if there’s going to be any oversight of new people, then it should be continuous rather than chunky. For me I don’t mind too much, I could go out and get oversight if I wanted it, and in those situations I felt comfortable without it. If I was managing the new person, then maybe I’d be keener on oversight and then the right way to do it is continuously and in very, very small chunks. Have you had any significant projects you’ve worked on outside of a job? When I was a teenager I wrote all sorts of stuff. I used to write games, I derived how to do isomorphic projections myself once. I didn’t know what the word was so I couldn’t Google for it, so I worked it out myself. It was horrifically complicated. But it sort of tailed off when I started at university, and is now basically zero. If I do side-projects now, they tend to be work-related side projects like my actors framework, NAct, which I started in a down tools week. Could you explain a little more about NAct? It is a little C# framework for writing parallel code more easily. Parallel programming is difficult when you need to write to shared data. Sometimes parallel programming is easy because you don’t need to write to shared data. When you do need to access shared data, you could just have your threads pile in and do their work, but then you would screw up the data because the threads would trample on each other’s toes. You could lock, but locks are really dangerous if you’re using more than one of them. You get interactions like deadlocks, and that’s just nasty. Actors instead allows you to say this piece of data belongs to this thread of execution, and nobody else can read it. If you want to read it, then ask that thread of execution for a piece of it by sending a message, and it will send the data back by a message. And that avoids deadlocks as long as you follow some obvious rules about not making your actors sit around waiting for other actors to do something. There are lots of ways to write actors, NAct allows you to do it as if it was method calls on other objects, which means you get all the strong type-safety that C# programmers like. Do you think that this is suitable for the majority of parallel programming, or do you think it’s only suitable for specific cases? It’s suitable for most difficult parallel programming. If you’ve just got a hundred web requests which are all independent of each other, then I wouldn’t bother because it’s easier to just spin them up in separate threads and they can proceed independently of each other. But where you’ve got difficult parallel programming, where you’ve got multiple threads accessing multiple bits of data in multiple ways at different times, then actors is at least as good as all other ways, and is, I reckon, easier to think about. When you’re using actors, you presumably still have to write your code in a different way from you would otherwise using single-threaded code. You can’t use actors with any methods that have return types, because you’re not allowed to call into another actor and wait for it. If you want to get a piece of data out of another actor, then you’ve got to use tasks so that you can use “async” and “await” to await asynchronously for it. But other than that, you can still stick things in classes so it’s not too different really. Rather than having thousands of objects with mutable state, you can use component-orientated design, where there are only a few mutable classes which each have a small number of instances. Then there can be thousands of immutable objects. If you tend to do that anyway, then actors isn’t much of a jump. If I’ve already built my system without any parallelism, how hard is it to add actors to exploit all eight cores on my desktop? Usually pretty easy. If you can identify even one boundary where things look like messages and you have components where some objects live on one side and these other objects live on the other side, then you can have a granddaddy object on one side be an actor and it will parallelise as it goes across that boundary. Not too difficult. If we do get 1000-core desktop PCs, do you think actors will scale up? It’s hard. There are always in the order of twenty to fifty actors in my whole program because I tend to write each component as actors, and I tend to have one instance of each component. So this won’t scale to a thousand cores. What you can do is write data structures out of actors. I use dictionaries all over the place, and if you need a dictionary that is going to be accessed concurrently, then you could build one of those out of actors in no time. You can use queuing to marshal requests between different slices of the dictionary which are living on different threads. So it’s like a distributed hash table but all of the chunks of it are on the same machine. That means that each of these thousand processors has cached one small piece of the dictionary. I reckon it wouldn’t be too big a leap to start doing proper parallelism. Do you think it helps if actors get baked into the language, similarly to Erlang? Erlang is excellent in that it has thread-local garbage collection. C# doesn’t, so there’s a limit to how well C# actors can possibly scale because there’s a single garbage collected heap shared between all of them. When you do a global garbage collection, you’ve got to stop all of the actors, which is seriously expensive, whereas in Erlang garbage collections happen per-actor, so they’re insanely cheap. However, Erlang deviated from all the sensible language design that people have used recently and has just come up with crazy stuff. You can definitely retrofit thread-local garbage collection to .NET, and then it’s quite well-suited to support actors, even if it’s not baked into the language. Speaking of language design, do you have a favourite programming language? I’ll choose a language which I’ve never written before. I like the idea of Scala. It sounds like C#, only with some of the niggles gone. I enjoy writing static types. It means you don’t have to writing tests so much. When you say it doesn’t have some of the niggles? C# doesn’t allow the use of a property as a method group. It doesn’t have Scala case classes, or sum types, where you can do a switch statement and the compiler checks that you’ve checked all the cases, which is really useful in functional-style programming. Pattern-matching, in other words. That’s actually the major niggle. C# is pretty good, and I’m quite happy with C#. And what about going even further with the type system to remove the need for tests to something like Haskell? Or is that a step too far? I’m quite a pragmatist, I don’t think I could deal with trying to write big systems in languages with too few other users, especially when learning how to structure things. I just don’t know anyone who can teach me, and the Internet won’t teach me. That’s the main reason I wouldn’t use it. If I turned up at a company that writes big systems in Haskell, I would have no objection to that, but I wouldn’t instigate it. What about things in C#? For instance, there’s contracts in C#, so you can try to statically verify a bit more about your code. Do you think that’s useful, or just not worthwhile? I’ve not really tried it. My hunch is that it needs to be built into the language and be quite mathematical for it to work in real life, and that doesn’t seem to have ended up true for C# contracts. I don’t think anyone who’s tried them thinks they’re any good. I might be wrong. On a slightly different note, how do you like to debug code? I think I’m quite an odd debugger. I use guesswork extremely rarely, especially if something seems quite difficult to debug. I’ve been bitten spending hours and hours on guesswork and not being scientific about debugging in the past, so now I’m scientific to a fault. What I want is to see the bug happening in the debugger, to step through the bug happening. To watch the program going from a valid state to an invalid state. When there’s a bug and I can’t work out why it’s happening, I try to find some piece of evidence which places the bug in one section of the code. From that experiment, I binary chop on the possible causes of the bug. I suppose that means binary chopping on places in the code, or binary chopping on a stage through a processing cycle. Basically, I’m very stupid about how I debug. I won’t make any guesses, I won’t use any intuition, I will only identify the experiment that’s going to binary chop most effectively and repeat rather than trying to guess anything. I suppose it’s quite top-down. Is most of the time then spent in the debugger? Absolutely, if at all possible I will never debug using print statements or logs. I don’t really hold much stock in outputting logs. If there’s any bug which can be reproduced locally, I’d rather do it in the debugger than outputting logs. And with SmartAssembly error reporting, there’s not a lot that can’t be either observed in an error report and just fixed, or reproduced locally. And in those other situations, maybe I’ll use logs. But I hate using logs. You stare at the log, trying to guess what’s going on, and that’s exactly what I don’t like doing. You have to just look at it and see does this look right or wrong. We’ve covered how you get to grip with bugs. How do you get to grips with an entire codebase? I watch it in the debugger. I find little bugs and then try to fix them, and mostly do it by watching them in the debugger and gradually getting an understanding of how the code works using my process of binary chopping. I have to do a lot of reading and watching code to choose where my slicing-in-half experiment is going to be. The last time I did it was SmartAssembly. The old code was a complete mess, but at least it did things top to bottom. There wasn’t too much of some of the big abstractions where flow of control goes all over the place, into a base class and back again. Code’s really hard to understand when that happens. So I like to choose a little bug and try to fix it, and choose a bigger bug and try to fix it. Definitely learn by doing. I want to always have an aim so that I get a little achievement after every few hours of debugging. Once I’ve learnt the codebase I might be able to fix all the bugs in an hour, but I’d rather be using them as an aim while I’m learning the codebase. If I was a maintainer of a codebase, what should I do to make it as easy as possible for you to understand? Keep distinct concepts in different places. And name your stuff so that it’s obvious which concepts live there. You shouldn’t have some variable that gets set miles up the top of somewhere, and then is read miles down to choose some later behaviour. I’m talking from a very much SmartAssembly point of view because the old SmartAssembly codebase had tons and tons of these things, where it would read some property of the code and then deal with it later. Just thousands of variables in scope. Loads of things to think about. If you can keep concepts separate, then it aids me in my process of fixing bugs one at a time, because each bug is going to more or less be understandable in the one place where it is. And what about tests? Do you think they help at all? I’ve never had the opportunity to learn a codebase which has had tests, I don’t know what it’s like! What about when you’re actually developing? How useful do you find tests in finding bugs or regressions? Finding regressions, absolutely. Running bits of code that would be quite hard to run otherwise, definitely. It doesn’t happen very often that a test finds a bug in the first place. I don’t really buy nebulous promises like tests being a good way to think about the spec of the code. My thinking goes something like “This code works at the moment, great, ship it! Ah, there’s a way that this code doesn’t work. Okay, write a test, demonstrate that it doesn’t work, fix it, use the test to demonstrate that it’s now fixed, and keep the test for future regressions.” The most valuable tests are for bugs that have actually happened at some point, because bugs that have actually happened at some point, despite the fact that you think you’ve fixed them, are way more likely to appear again than new bugs are. Does that mean that when you write your code the first time, there are no tests? Often. The chance of there being a bug in a new feature is relatively unaffected by whether I’ve written a test for that new feature because I’m not good enough at writing tests to think of bugs that I would have written into the code. So not writing regression tests for all of your code hasn’t affected you too badly? There are different kinds of features. Some of them just always work, and are just not flaky, they just continue working whatever you throw at them. Maybe because the type-checker is particularly effective around them. Writing tests for those features which just tend to always work is a waste of time. And because it’s a waste of time I’ll tend to wait until a feature has demonstrated its flakiness by having bugs in it before I start trying to test it. You can get a feel for whether it’s going to be flaky code as you’re writing it. I try to write it to make it not flaky, but there are some things that are just inherently flaky. And very occasionally, I’ll think “this is going to be flaky” as I’m writing, and then maybe do a test, but not most of the time. How do you think your programming style has changed over time? I’ve got clearer about what the right way of doing things is. I used to flip-flop a lot between different ideas. Five years ago I came up with some really good ideas and some really terrible ideas. All of them seemed great when I thought of them, but they were quite diverse ideas, whereas now I have a smaller set of reliable ideas that are actually good for structuring code. So my code is probably more similar to itself than it used to be back in the day, when I was trying stuff out. I’ve got more disciplined about encapsulation, I think. There are operational things like I use actors more now than I used to, and that forces me to use immutability more than I used to. The first code that I wrote in Red Gate was the memory profiler UI, and that was an actor, I just didn’t know the name of it at the time. I don’t really use object-orientation. By object-orientation, I mean having n objects of the same type which are mutable. I want a constant number of objects that are mutable, and they should be different types. I stick stuff in dictionaries and then have one thing that owns the dictionary and puts stuff in and out of it. That’s definitely a pattern that I’ve seen recently. I think maybe I’m doing functional programming. Possibly. It’s plausible. If you had to summarise the essence of programming in a pithy sentence, how would you do it? Programming is the form of art that, without losing any of the beauty of architecture or fine art, allows you to produce things that people love and you make money from. So you think it’s an art rather than a science? It’s a little bit of engineering, a smidgeon of maths, but it’s not science. Like architecture, programming is on that boundary between art and engineering. If you want to do it really nicely, it’s mostly art. You can get away with doing architecture and programming entirely by having a good engineering mind, but you’re not going to produce anything nice. You’re not going to have joy doing it if you’re an engineering mind. Architects who are just engineering minds are not going to enjoy their job. I suppose engineering is the foundation on which you build the art. Exactly. How do you think programming is going to change over the next ten years? There will be an unfortunate shift towards dynamically-typed languages, because of JavaScript. JavaScript has an unfair advantage. JavaScript’s unfair advantage will cause more people to be exposed to dynamically-typed languages, which means other dynamically-typed languages crop up and the best features go into dynamically-typed languages. Then people conflate the good features with the fact that it’s dynamically-typed, and more investment goes into dynamically-typed languages. They end up better, so people use them. What about the idea of compiling other languages, possibly statically-typed, to JavaScript? It’s a reasonable idea. I would like to do it, but I don’t think enough people in the world are going to do it to make it pick up. The hordes of beginners are the lifeblood of a language community. They are what makes there be good tools and what makes there be vibrant community websites. And any particular thing which is the same as JavaScript only with extra stuff added to it, although it might be technically great, is not going to have the hordes of beginners. JavaScript is always to be quickest and easiest way for a beginner to start programming in the browser. And dynamically-typed languages are great for beginners. Compilers are pretty scary and beginners don’t write big code. And having your errors come up in the same place, whether they’re statically checkable errors or not, is quite nice for a beginner. If someone asked me to teach them some programming, I’d teach them JavaScript. If dynamically-typed languages are great for beginners, when do you think the benefits of static typing start to kick in? The value of having a statically typed program is in the tools that rely on the static types to produce a smooth IDE experience rather than actually telling me my compile errors. And only once you’re experienced enough a programmer that having a really smooth IDE experience makes a blind bit of difference, does static typing make a blind bit of difference. So it’s not really about size of codebase. If I go and write up a tiny program, I’m still going to get value out of writing it in C# using ReSharper because I’m experienced with C# and ReSharper enough to be able to write code five times faster if I have that help. Any other visions of the future? Nobody’s going to use actors. Because everyone’s going to be running on single-core VMs connected over network-ready protocols like JSON over HTTP. So, parallelism within one operating system is going to die. But until then, you should use actors. More Red Gater Coder interviews

    Read the article

  • SQLAuthority News – Interview with SQL Server MVP Madhivanan – A Real Problem Solver

    - by pinaldave
    Madhivanan (SQL Server MVP) is a real community hero. He is known for his two skills – 1) Help Community and 2) Help Community. I have met him many times and every time I feel if anybody in online world needs help Madhinvanan does his best to reach them out and solve problem. His name is not new if you are ready this blog or have ever asked a question in any online SQL forum. He is always there to help. When Madhivanan has time he even helps people on this blog as well. He spends his valuable time to help community only. He recently crossed over 1000 helpful comments on this blog. On that occasion, I have interviewed him to find out if he has any life outside SQL. Q 1. Tell us something about your self. I am Madhivanan ,an MSc computer Science graduate from Chennai, India and working as a Lead Analyst-Project at Ellaar Infotek Solutions Private Limited. I am basically a developer started with Visual Basic 6.0, SQL Server 2000 and Crystal Report 8. As years go on I started working more on writing queries in SQL Server in most of the projects developed in my company. I have some good level of knowledge in ORACLE, MySQL and PostgreSQL as well. Now I am leading a project develeoped in Windows Azure. Q 2. What motivates you to help people on community and forums. When I got some errors during the application development in my early days of my career, I got good solutions from online forums and weblogs. So I decided to help others if possible. When I visit forums and help people if I know the answer to the questions. I am one of the leading posters at www.sqlteam.com and also a moderator at www.sql-server-performance.com. I also take part in Visual Basic and Crystal Reports forums. I have been SQL Server MVP since 2007. Q 3. Your personal life is not much known. Tell us something about your personal life. I am happily married person. My wife is a B.Pharm graduate. I have a son who is now 18 months old. Q 4. Where can we read further for your community activity. I have a blog at http://beyondrelational.com/blogs/madhivanan where you can find most of my T-sql stuffs Q 5. When not working with SQL what do you do? When not working with SQL, I spend time playing with my son, reading some magazines and watching TV. Madhivanan for your work and help to community, a true salute to you. Hats off my friend. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: MVP, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Performance and Optimization Isn’t Evil

    - by Reed
    Donald Knuth is a fairly amazing guy.  I consider him one of the most influential contributors to computer science of all time.  Unfortunately, most of the time I hear his name, I cringe.  This is because it’s typically somebody quoting a small portion of one of his famous statements on optimization: “premature optimization is the root of all evil.” I mention that this is only a portion of the entire quote, and, as such, I feel that Knuth is being quoted out of context.  Optimization is important.  It is a critical part of every software development effort, and should never be ignored.  A developer who ignores optimization is not a professional.  Every developer should understand optimization – know what to optimize, when to optimize it, and how to think about code in a way that is intelligent and productive from day one. I want to start by discussing my own, personal motivation here.  I recently wrote about a performance issue I ran across, and was slammed by multiple comments and emails that effectively boiled down to: “You’re an idiot.  Premature optimization is the root of all evil.  This doesn’t matter.”  It didn’t matter that I discovered this while measuring in a profiler, and that it was a portion of my code base that can take “many hours to complete.”  Even so, multiple people instantly jump to “it’s premature – it doesn’t matter.” This is a common thread I see.  For example, StackOverflow has many pages of posts with answers that boil down to (mis)quoting Knuth.  In fact, just about any question relating to a performance related issue gets this quote thrown at it immediately – whether it deserves it or not.  That being said, I did receive some positive comments and emails as well.  Many people want to understand how to optimize their code, approaches to take, tools and techniques they can use, and any other advice they can discover. First, lets get back to Knuth – I mentioned before that Knuth is being quoted out of context.  Lets start by looking at the entire quote from his 1974 paper Structured Programming with go to Statements: “We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%. A good programmer will not be lulled into complacency by such reasoning, he will be wise to look carefully at the critical code; but only after that code has been identified.” Ironically, if you read Knuth’s original paper, this statement was made in the middle of a discussion of how Knuth himself had changed how he approaches optimization.  It was never a statement saying “don’t optimize”, but rather, “optimizing intelligently provides huge advantages.”  His approach had three benefits: “a) it doesn’t take long” … “b) the payoff is real”, c) you can “be less efficient in the other parts of my programs, which therefore are more readable and more easily written and debugged.” Looking at Knuth’s premise here, and reading that section of his paper, really leads to a few observations: Optimization is important  “he will be wise to look carefully at the critical code” Normally, 3% of your code – three lines out of every 100 you write, are “critical code” and will require some optimization: “we should not pass up our opportunities in that critical 3%” Optimization, if done well, should not be time consuming: “it doesn’t take long” Optimization, if done correctly, provides real benefits: “the payoff is real” None of this is new information.  People who care about optimization have been discussing this for years – for example, Rico Mariani’s Designing For Performance (a fantastic article) discusses many of the same issues very intelligently. That being said, many developers seem unable or unwilling to consider optimization.  Many others don’t seem to know where to start.  As such, I’m going to spend some time writing about optimization – what is it, how should we think about it, and what can we do to improve our own code.

    Read the article

  • Talking JavaOne with Rock Star Simon Ritter

    - by Janice J. Heiss
    Oracle’s Java Technology Evangelist Simon Ritter is well known at JavaOne for his quirky and fun-loving sessions, which, this year include: CON4644 -- “JavaFX Extreme GUI Makeover” (with Angela Caicedo on how to improve UIs in JavaFX) CON5352 -- “Building JavaFX Interfaces for the Real World” (Kinect gesture tracking and mind reading) CON5348 -- “Do You Like Coffee with Your Dessert?” (Some cool demos of Java of the Raspberry Pi) CON6375 -- “Custom JavaFX Charts: (How to extend JavaFX Chart controls with some interesting things) I recently asked Ritter about the significance of the Raspberry Pi, the topic of one of his sessions that consists of a credit card-sized single-board computer developed in the UK with the intention of stimulating the teaching of basic computer science in schools. “I don't think there's one definitive thing that makes the RP significant,” observed Ritter, “but a combination of things that really makes it stand out. First, it's the cost: $35 for what is effectively a completely usable computer. OK, so you have to add a power supply, SD card for storage and maybe a screen, keyboard and mouse, but this is still way cheaper than a typical PC. The choice of an ARM processor is also significant, as it avoids problems like cooling (no heat sink or fan) and can use a USB power brick.  Combine these two things with the immense groundswell of community support and it provides a fantastic platform for teaching young and old alike about computing, which is the real goal of the project.”He informed me that he’ll be at the Raspberry Pi meetup on Saturday (not part of JavaOne). Check out the details here.JavaFX InterfacesWhen I asked about how JavaFX can interface with the real world, he said that there are many ways. “JavaFX provides you with a simple set of programming interfaces that can create complex, cool and compelling user interfaces,” explained Ritter. “Because it's just Java code you can combine JavaFX with any other Java library to provide data to display and control the interface. What I've done for my session is look at some of the possible ways of doing this using some of the amazing hardware that's available today at very low cost. The Kinect sensor has added a new dimension to gaming in terms of interaction; there's a Java API to access this so you can easily collect skeleton tracking data from it. Some clever people have also written libraries that can track gestures like swipes, circles, pushes, and so on. We use these to control parts of the UI. I've also experimented with a Neurosky EEG sensor that can in some ways ‘read your mind’ (well, at least measure some of the brain functions like attention and meditation).  I've written a Java library for this that I include as a way of controlling the UI. We're not quite at the stage of just thinking a command though!” Here Comes Java EmbeddedAnd what, from Ritter’s perspective, is the most exciting thing happening in the world of Java today? “I think it's seeing just how Java continues to become more and more pervasive,” he said. “One of the areas that is growing rapidly is embedded systems.  We've talked about the ‘Internet of things’ for many years; now it's finally becoming a reality. With the ability of more and more devices to include processing, storage and networking we need an easy way to write code for them that's reliable, has high performance, and is secure. Java fits all these requirements. With Java Embedded being a conference within a conference, I'm very excited about the possibilities of Java in this space.”Check out Ritter’s sessions or say hi if you run into him. Originally published on blogs.oracle.com/javaone.

    Read the article

  • Talking JavaOne with Rock Star Simon Ritter

    - by Janice J. Heiss
    Oracle’s Java Technology Evangelist Simon Ritter is well known at JavaOne for his quirky and fun-loving sessions, which, this year include: CON4644 -- “JavaFX Extreme GUI Makeover” (with Angela Caicedo on how to improve UIs in JavaFX) CON5352 -- “Building JavaFX Interfaces for the Real World” (Kinect gesture tracking and mind reading) CON5348 -- “Do You Like Coffee with Your Dessert?” (Some cool demos of Java of the Raspberry Pi) CON6375 -- “Custom JavaFX Charts: (How to extend JavaFX Chart controls with some interesting things) I recently asked Ritter about the significance of the Raspberry Pi, the topic of one of his sessions that consists of a credit card-sized single-board computer developed in the UK with the intention of stimulating the teaching of basic computer science in schools. “I don't think there's one definitive thing that makes the RP significant,” observed Ritter, “but a combination of things that really makes it stand out. First, it's the cost: $35 for what is effectively a completely usable computer. OK, so you have to add a power supply, SD card for storage and maybe a screen, keyboard and mouse, but this is still way cheaper than a typical PC. The choice of an ARM processor is also significant, as it avoids problems like cooling (no heat sink or fan) and can use a USB power brick.  Combine these two things with the immense groundswell of community support and it provides a fantastic platform for teaching young and old alike about computing, which is the real goal of the project.”He informed me that he’ll be at the Raspberry Pi meetup on Saturday (not part of JavaOne). Check out the details here.JavaFX InterfacesWhen I asked about how JavaFX can interface with the real world, he said that there are many ways. “JavaFX provides you with a simple set of programming interfaces that can create complex, cool and compelling user interfaces,” explained Ritter. “Because it's just Java code you can combine JavaFX with any other Java library to provide data to display and control the interface. What I've done for my session is look at some of the possible ways of doing this using some of the amazing hardware that's available today at very low cost. The Kinect sensor has added a new dimension to gaming in terms of interaction; there's a Java API to access this so you can easily collect skeleton tracking data from it. Some clever people have also written libraries that can track gestures like swipes, circles, pushes, and so on. We use these to control parts of the UI. I've also experimented with a Neurosky EEG sensor that can in some ways ‘read your mind’ (well, at least measure some of the brain functions like attention and meditation).  I've written a Java library for this that I include as a way of controlling the UI. We're not quite at the stage of just thinking a command though!” Here Comes Java EmbeddedAnd what, from Ritter’s perspective, is the most exciting thing happening in the world of Java today? “I think it's seeing just how Java continues to become more and more pervasive,” he said. “One of the areas that is growing rapidly is embedded systems.  We've talked about the ‘Internet of things’ for many years; now it's finally becoming a reality. With the ability of more and more devices to include processing, storage and networking we need an easy way to write code for them that's reliable, has high performance, and is secure. Java fits all these requirements. With Java Embedded being a conference within a conference, I'm very excited about the possibilities of Java in this space.”Check out Ritter’s sessions or say hi if you run into him.

    Read the article

  • Backing up my Windows Home Server to the Cloud&hellip;

    - by eddraper
    Ok, here’s my scenario: Windows Home Server with a little over 3TB of storage.  This includes many years of our home network’s PC backups, music, videos, etcetera. I’d like to get a backup off-site, and the existing APIs and apps such as CloudBerry Labs WHS Backup service are making it easy.  Now, all it’s down to is vendor and the cost of the actual storage.   So,  I thought I’d take a lazy Saturday morning and do some research on this and get the ball rolling.  What I discovered stunned me…   First off, the pricing for just about everything was loaded with complexity.  I learned that it wasn’t just about storage… it was about network usage, requests, sites, replication, and on and on. I really don’t see this as rocket science.  I have a disk image.  I want to put it in the cloud.  I’m not going to be be using it but once daily for incremental backups.  Sounds like a common scenario.  Yes, if “things get real” and my server goes down, I will need to bring down a lot of data and utilize a fair amount of vendor infrastructure.  However, this may never happen.  Offsite storage is an insurance policy.   The complexity of the cost structures, perhaps by design, create an environment where it’s incredibly hard to model bottom line costs and compare vendor all-up pricing.  As it is a “lazy Saturday morning,” I’m not in the mood for such antics and I decide to shirk the endeavor entirely.  Thus, I decided to simply fire up calc.exe and do some a simple arithmetic model based on price per GB.  I shuddered at the results.  Certainly something was wrong… did I misplace a decimal point?  Then I discovered CloudBerry’s own calculator.   Nope, I hadn’t misplaced those decimals after all.  Check it out (pricing based on 3174 GB):   Amazon S3 $398.00 per month $4761 per year Azure $396.75 per month $4761 per year Google $380.88 per month $4570.56 per year   Conclusion: Rampant crack smoking at vendors.  Seriously.  Out. Of. Their. Minds. Now, to Amazon’s credit, vision, and outright common sense, they had one offering which directly addresses my scenario:   Amazon Glacier $31.74 per month $380.88 per year   hmmm… It’s on the table.  Let’s see what it would cost to just buy some drives, an enclosure and cart them over to a friend’s house.   2 x 2TB Drives from NewEgg.com $199.99   Enclosure $39.99     $239.98   Carting data to back and forth to friend’s within walking distance pain   Leave drive unplugged at friend’s $0 for electricity   Possible data loss No way I can come and go every day.     I think I’ll think on this a bit more…

    Read the article

  • Dude, what’s up with POP Forums vNext?

    - by Jeff
    Yeah, it has been awhile. I posted v9.2 back in January, about five months ago. That’s a real change from the release pace I had there for awhile. Let me explain what’s going on. First off, in the interim, I re-launched CoasterBuzz, which required a lot of my attention for about two of those months. That’s a good thing though, because that site is just about the best test bed I could ask for. The other thing is that I committed to make the next version use ASP.NET MVC 4, which is now at the RC stage. I didn’t think much about when they’d hit their RTW point, but RC is good enough for me. To that end, there is enough change in the next version that I recently decided to make it a major version upgrade, and finish up the loose ends and science projects to make it whole. Here’s what’s in store… Mobile views: I sat on this or a long time. Originally, I was going to use jQuery Mobile, and waited and waited for a new release, but in the end, decided against using it. Sometimes buttons would unexplainably not work, I felt like I was fighting it at times, and the CSS just felt too heavy. I rolled my own mobile sugar at a fraction of the size, and I think you’ll find it easy to modify. And it’s Metro-y, of course! Re-do of background services: A number of things run in the background, and I did quite a bit of “reimagining” of that code. It’s the weirdness of running services in a Web site context, because so many folks can’t run a bona fide service on their host’s box. The biggest change here is that these service no longer start up by default. You’ll need to call a new method from global.asax called PopForumsActivation.StartServices(). This is also a precursor to running the app in a Web farm (new data layer and caching is the second part of that). I learned about this the hard way when I had three apps using the forum library code but only one was actually the forum. The services were all running three times as often with race conditions and hits on the same data. That was particularly bad for e-mail. CSS clean up: It’s still not ideal, but it’s getting better. That’s one of those things that comes with integrating to a real site… you discover all of the dumb things you did. The mobile CSS is particularly easier to live with. Bug fixes: There are a whole lot of them. Most were minor, but it’s feeling pretty solid now. So that’s where I am. I’m going to call it v10.0, and I’m going to really put forth some effort toward finishing the mobile experience and getting through the remaining bugs. The roadmap beyond that will likely not be feature oriented, but rather work on some other things, like making it run in Azure, perhaps using SQL CE, a better install experience, etc. As usual, I’ll post the latest here. Stay tuned!

    Read the article

  • Many Stack Overflow users' pages have no Google PageRank and they are not indexed, why?

    - by Marco Demaio
    If you go to my user page on Stack Overflow and you check it with the Google Toolbar, you can see it has no PageRank at all (this does happen for almost any user page, even people with much higher reputation, the only exceptions seem to be the users in page 1, and some other users they have PR). My user page's Page Rank is not only zero, but not calculated at all. When PR is 0 or less than 1, but calculated the Google bar shows white, but when the PR is not even calculated like in my user page the Google bar shows in grey. I further more discovered that my user page is NOT EVEN INDEXED on Google, simple test is searching on Google for the exact page url: "http://stackoverflow.com/users/260080/marco-demaio" and you will see no result. The question is how can this be??? This is really weird to me because of the following reason: If you search on Google for "Marco Demaio" on Stack Overflow only (you can do this by searching "site:stackoverflow.com Marco Demaio") the search result shows hundreds of 'asking/answering questions' pages where I was 'tagged'!!! Let's check one of these: the 1st one that appears now (shows one of the question I asked). We can be sure this page is indexed in Google because comes out in a search. Moreover, its PR is calculated. It's probably nearly zero. Still, some PR flows there, the PR bar is not grey, but white: The page shown above has got links to my own user page. I checked the source code of the page shown above and the links are not hidden or set with a rel="nofollow", moreover I can't see any meta character excluding the links on the page from being followed. So what's happening? Why Google does not see my user page at all. Did Stack Overflow do something to achieve this? If yes what did they do? Any explanation really appreciates (as always). P.S. obviously I checked also the code of my user page, but I could not find meta tags excluding Google search for the page. P.S. 2 in a desperate adventure I also checked Stack Overflow's robots.txt but it does not seem to exclude user pages. UPDATE 1 following up on some answers, I did some more research. Excluding for a while the PR problem (since PR is not science), and looking only at the user page on Stack Overflow NOT BEING INDEXED problem: pages do not seem to be indexed by Google because of the user reputation, this user for instance has got NOW 200 points less reputation than me and his page is indexed (while mine not). It does not seem even to be connected with months you have been on Stack Overflow, this user (almost my same reputation) has been there for 3 months only and his page is indexed (while mine not and I have been a user for 7 months). It's bizarre! UPDATE February/2011 As of today, the page got indexed by Google at least when you search for "site:stackoverflow.com Marco Demaio" it's the 1st page. The amazing thing is that it has still got NO PageRank at all: Google toolbar states loud and clear "No PageRank information available". It's odd!

    Read the article

  • The Hunger Games for Aspiring IT Professionals

    - by Dain C. Hansen
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} It seems that no one can escape the buzz around Hunger Games. And who could? Stephen King said it best in his review when he referred to the Collins’ novel as “a violent, jarring speed-rap of a novel that generates nearly constant suspense and may also generate a fair amount of controversy”. So what’s the tie in for IT? Let’s leave the dystopia of District 12 and come back to today’s reality. This is the world of radical IT paradigm shifts that haven’t been seen since Java was introduced in 1995. Everything you learned in school is probably outdated as of Friday. And everything you learned on Friday will probably change when you get to work on Monday. Nevertheless, we’re eager, we’re aspiring, we’re hungry to learn. While the challenges upon us may not rival the venomous bees (or ‘tracker jackers’) seen in this blockbuster, there are certainly obstacles to be found. In preparation, I leave you two pieces of advice - aside from avoiding werewolves… Learn the Cloud If you had asked me what to learn in 1995, I would have said, “Go learn Java”. But now my advice is “Go learn Java and then learn Cloud”. Cloud computing and Java go hand in hand. This is especially true for Oracle’s own Public Cloud which uses Java (via WebLogic 12c) as well as Oracle Database at its core foundation. Understanding the connotations of elasticity, scale, virtualization, and multi-tenancy, (to name just a few) requires a strong foundation in computer science and especially Java to get it right. Without Java, the Cloud is nothing more than a brittle application meagerly deployed on the internet. Get Social and Actively Participate And at all levels. Socializing your ideas internally is dreadfully important. And this means socializing and communicating your good ideas to lines of business, to architects, business analysts, developers, DBAs and Operations. But don’t forget to go external. Stay current by being on the lookout for blogs, tweets, webcasts, papers, podcasts and videos for your technology area. Be not just a subscriber but a participant in these channels as well. Attend industry and vendor sponsored events to learn from the experts – and seek out opportunities to stay connected with those that are smarter than you. You’ll gain more understanding if you participate actively. At the same time you’ll make friends (and allies) and you’ll be glad you did. Tell help you get social and actively participate [while learning the Cloud] here are a couple of pointers for you: See our website on Cloud and Fusion Middleware Subscribe to our regular Fusion Middleware Newsletter Follow us on Twitter and Facebook Find us at one of our key events Meanwhile, happy IT hunger games!

    Read the article

  • Adobe Photoshop CS5 vs Photoshop CS5 extended

    - by Edward
    Adobe Photoshop has been an industry standard for most web designers & photographers worldwide. Photoshop CS5 has made photography editing much more refined and the composition process has become much easier than ever before.  To study the advantage of Photoshop CS5 extended over Photoshop CS5 we have written this comparison article, with both a Designer’s & Photographer’s perspective. Hopefully it shall help you in your buying/upgrade decision. Photoshop CS5 Photoshop CS5 has refining feature with powerful photography tools. It made editing process easy as fewer steps are involved to remove noise, add grain, create vignettes, correct lens distortions, sharpen, and create HDR images. It has quick image correction and color and tone control for professional purpose. Intelligent image editing and enhancement , extraordinary advanced compositing has made it a better tool than earlier versions for photographers. It allows users to accelerate workflow with fast performance on 64-bit Windows® and Mac hardware systems and smoother interactions due to more GPU-accelerated features. It also boasts of a state-of-the-art processing with Adobe Photoshop Camera Raw 6 and helps to maximize creative impact. It provides for tremendous precision and freedom. It allows user to easily select intricate image elements, such as hair and create realistic painting effects. It also allows to remove any image element and see the space fill in almost magically. It has easy access to core editing and streamlined work flow and flexible work ambience. It has creative tools and contents. Photoshop CS5 Extended Photoshop CS5 extended is quite innovative and has incorporated 3D elements to 2D artwork directly within digital imaging application, which enables user to do an easy on-ramp to 3D image creation. It also provides for 3D editing. It has intelligent image editing and enhancement. It offers advance composing and has extraordinary painting and drawing toolset. It provides for video and animation designing. It helps to work with specialized images for architecture, manufacturing, engineering, science, and medicine. Where CS5 extended scores over CS5 CS5 extended has many features, which were not included in CS5. These features make it score more over CS5. These features are: Technology for creating 3D extrusion 3D material library and picker Field depth for 3D 3D merging and scene composition improvements 3D workflow improvement Customization of 3D features Image based light source Shadow catcher for shadow creation Enhanced ray tracer Context sensitive widgets, which allows easy control of objects, lights and cameras. Overlays for materials and mesh boundaries Photoshop CS5 extended is far better than CS5 as it incorporates all the features of CS5 and have more advanced features. It allows 3D creation and editing and has other advanced tools to make it better. Redefining the Image-Editing Experience  : A Photographer’s point of View Photoshop CS5 delivers amazing features and creative options so even new users can perform advanced image manipulations and compositions. Breath taking image intelligence behind Content-Aware Fill magically removes any image detail or object, examines the surroundings and seamlessly fills in the space left behind. Lighting, tone and noise of the surrounding area can be matched. New Refine Edge makes nearly-impossible image selections possible. Masking was never easier, the toughest types of edges, such as hair and foliage seem easier to fix. To sum up following are few advantages of CS5 extended over previous versions 64-bit processing Content Aware Fill Refine Edge, “makes nearly-impossible image selections impossible” HDR Pro, including ghost artifact removal and HDR toning, which gives the look of HDR with a single exposure New brush options Improved image management with enhanced Adobe Bridge Lens corrections Improved black-and-white conversions Puppet Warp: Precisely reposition or warp any image element Adobe Camera Raw 6 Upgrade Buy Online Pricing and Availability Adobe Photoshop CS5 and CS5 Extended are available through Adobe Authorized Resellers & the Adobe Store. Estimated street price for Adobe Photoshop CS5 is US$699 and US$999 for Photoshop CS5 Extended. Upgrade pricing and volume licensing are also available. Related posts:10 Free Alternatives for Adobe Photoshop Software Web based Alternatives to Photoshop 15 Useful Adobe Illustrator Tutorials For Designers

    Read the article

  • Java Spotlight Episode 103: 2012 Duke Choice Award Winners

    - by Roger Brinkley
    Our annual interview with the 2012 Duke Choice Award Winners recorded live at the JavaOne 2012. Right-click or Control-click to download this MP3 file. You can also subscribe to the Java Spotlight Podcast Feed to get the latest podcast automatically. If you use iTunes you can open iTunes and subscribe with this link:  Java Spotlight Podcast in iTunes. Show Notes Events Oct 13, Devoxx 4 Kids Nederlands Oct 15-17, JAX London Oct 20, Devoxx 4 Kids Français Oct 22-23, Freescale Technology Forum - Japan, Tokyo Oct 30-Nov 1, Arm TechCon, Santa Clara Oct 31, JFall, Netherlands Nov 2-3, JMagreb, Morocco Nov 13-17, Devoxx, Belgium Feature Interview Duke Choice Award Winners 2012 - Show Presentation London Java CommunityThe second user group receiving a Duke’s Choice Award this year, the London Java Community (LJC) and its users have been active in the OpenJDK, the Java Community Process (JCP) and other efforts within the global Java community. Student Nokia Developer GroupThis year’s student winner, Ram Kashyap, is the founder and president of the Nokia Student Network, and was profiled in the “The New Java Developers” feature in the March/April 2012 issue of Java Magazine. Since then, Ram has maintained a hectic pace, graduating from the People’s Education Society Institute of Technology in Bangalore, India, while working on a Java mobile startup and training students on Java ME. Jelastic, Inc.Moving existing Java applications to the cloud can be a daunting task, but startup Jelastic, Inc. offers the first all-Java platform-as-a-service (PaaS) that enables existing Java applications to be deployed in the cloud without code changes or lock-in. NATOThe first-ever Community Choice Award goes to the MASE Integrated Console Environment (MICE) in use at NATO. Built in Java on the NetBeans platform, MICE provides a high-performance visualization environment for conducting air defense and battle-space operations. DuchessRather than focus on a specific geographic area like most Java User Groups (JUGs), Duchess fosters the participation of women in the Java community worldwide. The group has more than 500 members in 60 countries, and provides a platform through which women can connect with each other and get involved in all aspects of the Java community. AgroSense ProjectImproving farming methods to feed a hungry world is the goal of AgroSense, an open source farm information management system built in Java and the NetBeans platform. AgroSense enables farmers, agribusinesses, suppliers and others to develop modular applications that will easily exchange information through a common underlying NetBeans framework. Apache Software Foundation Hadoop ProjectThe Apache Software Foundation’s Hadoop project, written in Java, provides a framework for distributed processing of big data sets across clusters of computers, ranging from a few servers to thousands of machines. This harnessing of large data pools allows organizations to better understand and improve their business. Parleys.comE-learning specialist Parleys.com, based in Brussels, Belgium, uses Java technologies to bring online classes and full IT conferences to desktops, laptops, tablets and mobile devices. Parleys.com has hosted more than 1,700 conferences—including Devoxx and JavaOne—for more than 800,000 unique visitors. Winners not presenting at JavaOne 2012 Duke Choice Awards BOF Liquid RoboticsRobotics – Liquid Robotics is an ocean data services provider whose Wave Glider technology collects information from the world’s oceans for application in government, science and commercial applications. The organization features the “father of Java” James Gosling as its chief software architect.United Nations High Commissioner for RefugeesThe United Nations High Commissioner for Refugees (UNHCR) is on the front lines of crises around the world, from civil wars to natural disasters. To help facilitate its mission of humanitarian relief, the UNHCR has developed a light-client Java application on the NetBeans platform. The Level One registration tool enables the UNHCR to collect information on the number of refugees and their water, food, housing, health, and other needs in the field, and combines that with geocoding information from various sources. This enables the UNHCR to deliver the appropriate kind and amount of assistance where it is needed.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • SEO: many stackoverflow users' pages have got no Google PR and they are not indexed, why?

    - by Marco Demaio
    If you go to my user page on Stack Overflow and you check it with the Gogle bar you can see has got no PR at all (this does happen for almost any user page, even people with much higher reputation, the only exceptions seem to be the users in page 1, and some other users they have PR). My user page's Page Rank is not only zero, but not calculated at all. When PR is 0 or less than 1, but calculated the Google bar shows white, but when the PR is not even calculated like in my user page the Google bar shows in grey. I further more discovered that my user page is NOT EVEN INDEXED on Google, simple test is searching on Google for the exact page url: "http://stackoverflow.com/users/260080/marco-demaio" and you will see no result. The question is how can this be??? This is really weird to me because of the following reason: If you search on Google for "Marco Demaio" on stackoverflow site only (you can do this by searching "site:stackoverflow.com Marco Demaio") the search result shows hundreds of 'asking/answering questions' pages where I was 'tagged'!!! Let's check one of these: the 1st one that appears now (shows one of the question I asked). We can be sure this page is indexed in Google because comes out in a search moreover its PR is calculated, it's probably nearly zero, but still some PR flows there, the PR bar is not grey, but white: The page shown above has got links to my own user page. I checked the source code of the page shown above and the links are not hidden or set with a rel="nofollow", moreover I can't see any meta character excluding the links on the page from being followed. So what's happening? Why Google does not see my user page at all. Did stackoverflow do something to achieve this? If yes what did they do? Any explantion really appreciates (as always). P.S. obviously I checked also the code of my user page, but I could not find meta tags excluding Google search for the page. P.S. 2 in a desperate adventure I also checked StackOverflow robots but it does not seem to exclude user pages. UPDATE 1 following up on some answers, I did some more research. Excluding for a while the PR problem (since PR is not science), and looking only at the user page on StackOverflow NOT BEING INDEXED problem: pages do not seem to be indexed by Google because of the user reputation, this user for instance has got NOW 200 points less reputation than me and his page is indexed (while mine not). It does not seem even to be connected with months you have been on Stackoverflow, this user (almost my same reputation) has been there for 3 months only and his page is indexed (while mine not and I have been a user for 7 months). It's bizzarre! UPDATE February/2011 As of today the page got indexed by Google at least when you search for "site:stackoverflow.com Marco Demaio" it's the 1st page. The amazing thing is that it has still got NO PageRank at all: Google toolbar states loud and clear "No PageRank information available". It's odd!

    Read the article

  • Algorithm to Find the Aggregate Mass of "Granola Bar"-Like Structures?

    - by Stuart Robbins
    I'm a planetary science researcher and one project I'm working on is N-body simulations of Saturn's rings. The goal of this particular study is to watch as particles clump together under their own self-gravity and measure the aggregate mass of the clumps versus the mean velocity of all particles in the cell. We're trying to figure out if this can explain some observations made by the Cassini spacecraft during the Saturnian summer solstice when large structures were seen casting shadows on the nearly edge-on rings. Below is a screenshot of what any given timestep looks like. (Each particle is 2 m in diameter and the simulation cell itself is around 700 m across.) The code I'm using already spits out the mean velocity at every timestep. What I need to do is figure out a way to determine the mass of particles in the clumps and NOT the stray particles between them. I know every particle's position, mass, size, etc., but I don't know easily that, say, particles 30,000-40,000 along with 102,000-105,000 make up one strand that to the human eye is obvious. So, the algorithm I need to write would need to be a code with as few user-entered parameters as possible (for replicability and objectivity) that would go through all the particle positions, figure out what particles belong to clumps, and then calculate the mass. It would be great if it could do it for "each" clump/strand as opposed to everything over the cell, but I don't think I actually need it to separate them out. The only thing I was thinking of was doing some sort of N2 distance calculation where I'd calculate the distance between every particle and if, say, the closest 100 particles were within a certain distance, then that particle would be considered part of a cluster. But that seems pretty sloppy and I was hoping that you CS folks and programmers might know of a more elegant solution? Edited with My Solution: What I did was to take a sort of nearest-neighbor / cluster approach and do the quick-n-dirty N2 implementation first. So, take every particle, calculate distance to all other particles, and the threshold for in a cluster or not was whether there were N particles within d distance (two parameters that have to be set a priori, unfortunately, but as was said by some responses/comments, I wasn't going to get away with not having some of those). I then sped it up by not sorting distances but simply doing an order N search and increment a counter for the particles within d, and that sped stuff up by a factor of 6. Then I added a "stupid programmer's tree" (because I know next to nothing about tree codes). I divide up the simulation cell into a set number of grids (best results when grid size ˜7 d) where the main grid lines up with the cell, one grid is offset by half in x and y, and the other two are offset by 1/4 in ±x and ±y. The code then divides particles into the grids, then each particle N only has to have distances calculated to the other particles in that cell. Theoretically, if this were a real tree, I should get order N*log(N) as opposed to N2 speeds. I got somewhere between the two, where for a 50,000-particle sub-set I got a 17x increase in speed, and for a 150,000-particle cell, I got a 38x increase in speed. 12 seconds for the first, 53 seconds for the second, 460 seconds for a 500,000-particle cell. Those are comparable speeds to how long the code takes to run the simulation 1 timestep forward, so that's reasonable at this point. Oh -- and it's fully threaded, so it'll take as many processors as I can throw at it.

    Read the article

< Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >