Search Results

Search found 11153 results on 447 pages for 'count zero'.

Page 71/447 | < Previous Page | 67 68 69 70 71 72 73 74 75 76 77 78  | Next Page >

  • Can I mix compile time string comparison with MPL templates?

    - by Negative Zero
    I got this compile time string comparison from another thread using constexpr and C++11 (http://stackoverflow.com/questions/5721813/compile-time-assert-for-string-equality). It works with constant strings like "OK" constexpr bool isequal(char const *one, char const *two) { return (*one && *two) ? (*one == *two && isequal(one + 1, two + 1)) : (!*one && !*two); } I am trying to use it in the following context: static_assert(isequal(boost::mpl::c_str<boost::mpl::string<'ak'>>::value, "ak"), "should not fail"); But it gives me an compilation error of static_assert expression is not an constant integral expression. Can I do this?

    Read the article

  • WPF multibound textblock not updating

    - by Superstringcheese
    I want to create a program which calculates how long it will take to repeat a process a certain number of times. I've scaled this down a lot for this example. So, I have some textboxes which are bound to properties in a class: Count: <TextBox x:Name="txtCount" Text="{Binding Count, Mode=TwoWay}" Width="50"/> Days: <TextBox x:Name="txtDays" Text="{Binding Days, Mode=TwoWay}" Width="50"/> and a textblock which is multibound like so: <TextBlock x:Name="tbkTotal"> <TextBlock.Text> <MultiBinding StringFormat="Days: {0}, Count: {1}"> <Binding Path="Days" /> /* This isn't updating */ <Binding Path="Count" /> </MultiBinding> </TextBlock.Text> </TextBlock> My DataContext is set in the Window1.xaml.cs file. public Window1() { InitializeComponent(); Sample sample = new Sample(); this.DataContext = sample; } I can update the multibound textblock with the Count property just fine, but the Days property always shows 0, even though the Days input accurately reflects changes. I believe that this is because my accessors are different for Days - namely, the Set method. This class is in a different file. public class Sample : INotifyPropertyChanged { private int _count; private TimeSpan _span; public int Count { get { return _count; } set { _count = value; NotifyPropertyChanged("Count"); /* Doesn't seem to be needed, actually */ } } public TimeSpan Span { get { return _span; } } /* The idea is to provide a property for Days, Hours, Minutes, etc. as conveniences to the inputter */ public double Days { get { return _span.Days; } set { TimeSpan ts = new TimeSpan(); double val = value > 0 ? value : 0; ts = TimeSpan.FromDays(val); _span.Add(ts); NotifyPropertyChanged("Span"); /* Here I can only get it to work if I notify that Span has changed - doesn't seem to be aware that the value behind Days has changed. */ } } private void NotifyPropertyChanged(string property) { if (null != this.PropertyChanged) { PropertyChanged(this, new PropertyChangedEventArgs(property)); } } public Sample() { _count = 0; _span = new TimeSpan(); } public event PropertyChangedEventHandler PropertyChanged; }

    Read the article

  • Web Services, Memory Leaks and CRM

    - by Neil
    Hi, I have a website that allows users to upload a csv file. This calls a service that reads the information from the csv, puts it into DynamicEntity objects and calls the CRM service to Create/Update entities in CRM. When this service creates/updates an entity this kicks off other plugins to apply certain business rules. These rules can also Create or Update entites in CRM. The issue here is that the handle count of the w3wp.exe process that the website is calling increases every time the an entity is created or updated and it never comes back down. I tried putting Garbage Collection code in the business rules and this reduces the handle count of the CRM w3wp process (run by the Network Service), but not the other w3wp process. Should I have Dispose methods on the Web Service that calls the CRM service? I hope that makes sense. I'm not overly familiar with memory management issues so any help is appreciated. Can anybody give me some tips on how to stop this from occurring? Thanks, Neil -- EDIT Okay well the handle count goes up when I call the Service.Create(DynamicEntity) method. I don't think placing any code here would be beneficial. When I exit the method/class/service that contains this call the handle count stays as it is. What I need to know is whether this is something I should be managing or is it something CRM takes care of (or doesn't take care of but I can't do anything about it) -- Another Edit Right this is how it works. 1) We have CRM and its related services 2) We have another service independent of CRM that uses the CRM services (number 1 above) to create entities based on csv info passed into it 3) We have a website that allows a user to upload a csv, and calls service no 2 above to Create/Update entities in CRM 4) We have plugins fired by CRM which use Service 1 above to create/update entities So the user uploads a csv to the website (3), this fires a service(2). When service 2 creates an entity using service 1, Service 4 fires. Service 4 calls also uses service 1 to Create entities, and when these services are called (using the Service.Create() method) the handle count of the process increases. When the method/class/services finish the handle count remains the same, and so when the whole process occurs again the handle count will increased again.

    Read the article

  • A few problems with Delphi involving Mail Merge, SQL + Databases.

    - by Daniel
    My first problem is with mail merge. I have created a a Data File and a table, yet I am not able to fill my table with information from my Data File. The << just seems to be inserted after wherever the cursor is on the page, which is not where the table is. All that is entered into the actual table is a '59'. Therefore I think I either need to to change the code or be able to move the cursor. Here is the code I am currently using: wrdDoc.Tables.Add(wrdSelection.Range, ADOTable1.FieldCount, 3); wrdDoc.Tables.Item(1).Columns.Item(1).SetWidth(51,wdAdjustNone); wrdDoc.Tables.Item(1).Columns.Item(2).SetWidth(20,wdAdjustNone); wrdDoc.Tables.Item(1).Columns.Item(3).SetWidth(100,wdAdjustNone); // Set the shading on the first row to light gray wrdDoc.Tables.Item(1).Rows.Item(1).Cells .Shading.BackgroundPatternColorIndex := wdGray25; // BOLD the first row wrdDoc.Tables.Item(1).Rows.Item(1).Range.Bold := True; // Center the text in Cell (1,1) wrdDoc.Tables.Item(1).Cell(1,1).Range.Paragraphs.Alignment := wdAlignParagraphCenter; // Fill each row of the table with data wrdDoc.Tables.Item(1).Cell(1, 1).Range.InsertAfter('Time'); wrdDoc.Tables.Item(1).Cell(1, 2).Range.InsertAfter(''); wrdDoc.Tables.Item(1).Cell(1, 3).Range.InsertAfter('Teacher'); For Count := 1 to (ADOTable1.FieldCount - 1) do begin wrdDoc.Tables.Item(1).Cell((Count + 1), 1).Range.InsertAfter(wrdSelection.Range,'Time' + IntToStr(Count)); wrdDoc.Tables.Item(1).Cell((Count + 1), 2).Range.InsertAfter(wrdSelection.Range,'THonorific' + IntToStr(Count)); wrdDoc.Tables.Item(1).Cell((Count + 1), 3).Range.InsertAfter(wrdSelection.Range,'TSurname' + IntToStr(Count)); end; My second problem is that I do not know what the correct SQL syntax is for editing the name of a column in the database (I am using Delphi 7 and Microsoft Jet Engine if that makes a difference). The third problem is that when I add a new column to my database manually (which I need to do) I get a 'violation' error in one of my units when I activate an ADOTable. This only happens on one unit and it happens when I add a column with any name anywhere in the table. I know that is vague but I can't seem to narrow down the problem any further than that. If you could help with me with any of those it would be great. Thanks.

    Read the article

  • Load local Html file doesn't refer the js file in UIWebView

    - by Hero Vs Zero
    I am working with UIWebView project and I want to load an HTML file from a project resource. It is working fine when I run from the URL, but when I view the HTML file locally, JS files are not loaded. Loading the local HTML local file doesn't refer to js files in UIWebView. Here's my code to load the HTML file project local resource and does't refer the js file: NSString *path = [[NSBundle mainBundle] pathForResource:@"textfile" ofType:@"txt"]; NSError *error = nil; NSString *string = [[NSString alloc] initWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error]; NSString *path1 = [[NSBundle mainBundle] bundlePath]; NSURL *baseURL = [NSURL fileURLWithPath:path1]; NSLog(@"%@ >>> %@",baseURL,path); [webview loadHTMLString:string baseURL:baseURL]; This code doesn't find JS files in UIWebView, even though it loads image files from the project resource successfully.

    Read the article

  • Running Javascript in PHP

    - by Zero
    I'm loading an external .php file using: <script type="text/javascript" src="myfile.js.php"></script> Within the external myfile.js.php file, I'm using: <?php header('content-type: text/javascript'); $message = "Test message"; ?> document.write('<?php echo $message; ?>'); Everything works fine until I change the name of myfile.js.php to just myfile.php Why does it stop working if I remove the .js part from the file name? I'm serving the file as text/javascript, plus shouldn't the .js part be ignored since .php is the actual file extension? Does anyone know why? Thanks!

    Read the article

  • Big O Complexity of a method

    - by timeNomad
    I have this method: public static int what(String str, char start, char end) { int count=0; for(int i=0;i<str.length(); i++) { if(str.charAt(i) == start) { for(int j=i+1;j<str.length(); j++) { if(str.charAt(j) == end) count++; } } } return count; } What I need to find is: 1) What is it doing? Answer: counting the total number of end occurrences after EACH (or is it? Not specified in the assignment, point 3 depends on this) start. 2) What is its complexity? Answer: the first loops iterates over the string completely, so it's at least O(n), the second loop executes only if start char is found and even then partially (index at which start was found + 1). Although, big O is all about worst case no? So in the worst case, start is the 1st char & the inner iteration iterates over the string n-1 times, the -1 is a constant so it's n. But, the inner loop won't be executed every outer iteration pass, statistically, but since big O is about worst case, is it correct to say the complexity of it is O(n^2)? Ignoring any constants and the fact that in 99.99% of times the inner loop won't execute every outer loop pass. 3) Rewrite it so that complexity is lower. What I'm not sure of is whether start occurs at most once or more, if once at most, then method can be rewritten using one loop (having a flag indicating whether start has been encountered and from there on incrementing count at each end occurrence), yielding a complexity of O(n). In case though, that start can appear multiple times, which most likely it is, because assignment is of a Java course and I don't think they would make such ambiguity. Solving, in this case, is not possible using one loop... WAIT! Yes it is..! Just have a variable, say, inc to be incremented each time start is encountered & used to increment count each time end is encountered after the 1st start was found: inc = 0, count = 0 if (current char == start) inc++ if (inc > 0 && current char == end) count += inc This would also yield a complexity of O(n)? Because there is only 1 loop. Yes I realize I wrote a lot hehe, but what I also realized is that I understand a lot better by forming my thoughts into words...

    Read the article

  • Access the camera of a Smartphone using libGDX

    - by PH-zero
    I searched the web, browsed through the libGDX wiki, but without success. My Question: Is there a way, to access the camera of smartphones, let the user take a photo, and then store the image in a Texture-instance? I could imagin something like this: @Override public void onCamTrigger(){ ApplicationType appType = Gdx.app.getType(); switch (appType) { case Android: case iOS: Texture someTexture = new Texture(Gdx.input.getCamera().getImage()); //do something with the Texture instance... someTexture.dispose(); break; default: break; } } Of course this is pure fiction! I know that there's a lot more to this like opening the camera, displaying it, then take a photo etc. . But is there a convenience method like this? If so, how does it work? On Android, i think i could implement it without using any convenience methods offered by libGDX, but i have no idea on how this works on iOS =/

    Read the article

  • Creating a folder inside Mac OS App

    - by Negative Zero
    I want a an app that is "self-contained" (I don't know if i use the right word. "putting the app into trash bin will remove everything" is what I meant). But the app requires some resources to run. I usually put those resources into a folder. I want to move those resources into the App folder ( package contents). Can I do that? Is it a good practice to do that? When I test the app directly running from Xcode, the App runs fine. But if i run it from finder, the app will say fails to create resources folder because permission denied. I checked the app's folder permission - User(me) has read/write access. I am wondering what is causing this different behavior. The last option is to use Application Support folder, but I don't want to leave trails when user deletes the app. Can someone help me out here?

    Read the article

  • __declspec(dllimport) causes compiler crash on MSVC 2010

    - by Zero
    In a *.cpp file, trying to use a third party lib: #define DLL_IMPORT #include <thirdParty.h> // Third party header has code like: // #ifdef DLL_IMPORT // #define DLL_DECL __declspec(dllimport) // fatal error C1001: An internal error has occurred in the compiler. Alternative: #define NO_DLL #include <thirdParty.h> // Third party header has code like: // #elif defined(NO_DLL) // #define DLL_DECL // Compiles fine, but linker errors as can't find DLL functions // I can reproduce results by remove macros and #define all together and manually editing the third party files to have __declspec(dllimport) or not Has anyone come across anything similar, or can hint at the cause? (which is created using CMake). Above is actual example of 2 line *.cpp that crashes so it's narrowed down to something in the #include. The following also work fine: Compile the examples provided by the third party (they provide a *.sln) that use dllimport/export so it doesn't appear to be the fault of the library Compile the third party lib as part of the production project (so dllexport works fine) I've trawled the project settings pages of the two projects to try and spot differences, but have come up blank. Of course, it's possible I'm missing something as those settings pages are not the easiest to navigate. I'll get access to VS2008 in a day or so, so can compare with that. The third party library is MySql++.

    Read the article

  • Php random row help...

    - by Skillman
    I've created some code that will return a random row, (well, all the rows in a random order) But i'm assuming its VERY uneffiecent and is gonna be a problem in a big database... Anyone know of a better way? Here is my current code: $count3 = 1; $count4 = 1; //Civilian stuff... $query = ("SELECT * FROM `*Table Name*` ORDER BY `Id` ASC"); $result = mysql_query($query); while($row = mysql_fetch_array($result)) { $count = $count + 1; $civilianid = $row['Id']; $arrayofids[$count] = $civilianid; //echo $arrayofids[$count]; } while($alldone != true) { $randomnum = (rand()%$count) + 1; //echo $randomnum . "<br>"; //echo $arrayofids[$randomnum] . "<br>"; $currentuserid = $arrayofids[$randomnum]; $count3 += 1; while($count4 < $count3) { $count4 += 1; $currentarrayid = $listdone[$count4]; //echo "<b>" . $currentarrayid . ":" . $currentuserid . "</b> "; if ($currentarrayid == $currentuserid){ $found = true; //echo " '" .$found. "' "; } } if ($found == true) { //Reset array/variables... $count4 = 1; $found = false; } else { $listdone[$count3] = $currentuserid; //echo "<u>" . $count3 .";". $listdone[$count3] . "</u> "; $query = ("SELECT * FROM `*Tablesname*` WHERE Id = '$currentuserid'"); $result = mysql_query($query); $row = mysql_fetch_array($result); $username = $row['Username']; echo $username . "<br>"; $count4 = 1; $amountdone += 1; if ($amountdone == $count) { //$count $alldone = true; } } } Basically it will loop until its gets an id (randomly) that hasnt been chosen yet. -So the last username could take hours :P Is this 'bad' code? :P :(

    Read the article

  • destructor being called by subclass

    - by zero
    I'm currently learning more about php objects and constructors/destructors, but i've noticed in my code that the parent class's destructor is being called twice, I thought it was because i was extending the first class to my second class and that the second class was calling it, but this is what the php docs say about that: Like constructors, parent destructors will not be called implicitly by the engine. In order to run a parent destructor, one would have to explicitly call parent::__destruct() in the destructor body. so if it is not being called by the subclass then is it because by extended the first class that i've made a reference to the parent class making it call itself twice or I'm I way off base here? the code: <?php class test{ public $test1 = "this is a test of a pulic property"; private $test2 = "this is a test of a private property"; protected $test3 = "this is a test of a protected property"; const hello = 900000; function __construct($h){ //echo 'this is the constructor test '.$h; } function x($x2){ echo ' this is fn x'.$x2; } function y(){ print "this is fn y"; } } $obj = new test("this is an \"arg\" sent to instance of test"); class hey extends test{ function hey(){ $this->x('<br>from the host with the most'); echo ' <br>from hey class'.$this->test3; } } $obj2 = new hey(); echo $obj2::hello; ?>

    Read the article

  • Existing function to slice pandas object by axis number

    - by Zero
    Pandas has the following indexers: Object Type Indexers Series s.loc[indexer] DataFrame df.loc[row_indexer,column_indexer] Panel p.loc[item_indexer,major_indexer,minor_indexer] I would like to be able to index dynamically by axis, for example: df = pd.DataFrame(data=0, index=['row1', 'row2', 'row3'], columns=['col1', 'col2', col3']) df.index(['row1', 'row3'], axis=0) # index by rows df.index(['col1', 'col2'], axis=1) # index by columns Is there a built-in function that does this?

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Ext3 fs: Block bitmap for group 1 not in group (block 0). is fs dead?

    - by ip
    Hi, My company has a server with one big partition with Mysql database and php files. Now this partition seems to be corrupted, as reported from kernel messages when I tried to mount it manually: [329862.817837] EXT3-fs error (device loop1): ext3_check_descriptors: Block bitmap for group 1 not in group (block 0)! [329862.817846] EXT3-fs: group descriptors corrupted! I've tried to recovery it running tools from a PLD livecd. These are the tools I have tested: - e2retrieve - testdisk - photorec - dd_rescue/dd_rhelp - ddrescue - fsck.ext2 - e2salvage without any success. dumpe2fs 1.41.3 (12-Oct-2008) Filesystem volume name: /dev/sda3 Last mounted on: <not available> Filesystem UUID: dd51610b-6de0-4392-a6f3-67160dbc0343 Filesystem magic number: 0xEF53 Filesystem revision #: 1 (dynamic) Filesystem features: has_journal filetype sparse_super Default mount options: (none) Filesystem state: not clean with errors Errors behavior: Continue Filesystem OS type: Linux Inode count: 9502720 Block count: 18987570 Reserved block count: 949378 Free blocks: 11555345 Free inodes: 11858398 First block: 0 Block size: 4096 Fragment size: 4096 Blocks per group: 32768 Fragments per group: 32768 Inodes per group: 16384 Inode blocks per group: 512 Last mount time: Wed Mar 24 09:31:03 2010 Last write time: Mon Apr 12 11:46:32 2010 Mount count: 10 Maximum mount count: 30 Last checked: Thu Jan 1 01:00:00 1970 Check interval: 0 (<none>) Reserved blocks uid: 0 (user root) Reserved blocks gid: 0 (group root) First inode: 11 Inode size: 128 Journal inode: 8 Journal backup: inode blocks dumpe2fs: A block group is missing an inode table while reading journal inode There's any other tools I have to test before considering these disk definitely unrecoverable? Many thanks, ip

    Read the article

  • Sorting in Pivot Table on how data is summarized, not just the value

    - by user26453
    Often I am creating pivot tables that summarize some count by some category. Let's say I am counting Yes/No responses by some category. I usually add the count field and display it as a "% of row", and then create a pivot chart. However, if I want to sort one of the columns, say "Yes", Excel sorts by the underlying count, not the calculated percentage. Any way around this?

    Read the article

  • Resizing a LUKS encrypted volume

    - by mgorven
    I have a 500GiB ext4 filesystem on top of LUKS on top of an LVM LV. I want to resize the LV to 100GiB. I know how to resize ext4 on top of an LVM LV, but how do I deal with the LUKS volume? mgorven@moab:~% sudo lvdisplay /dev/moab/backup --- Logical volume --- LV Name /dev/moab/backup VG Name moab LV UUID nQ3z1J-Pemd-uTEB-fazN-yEux-nOxP-QQair5 LV Write Access read/write LV Status available # open 1 LV Size 500.00 GiB Current LE 128000 Segments 1 Allocation inherit Read ahead sectors auto - currently set to 2048 Block device 252:3 mgorven@moab:~% sudo cryptsetup status backup /dev/mapper/backup is active and is in use. type: LUKS1 cipher: aes-cbc-essiv:sha256 keysize: 256 bits device: /dev/mapper/moab-backup offset: 3072 sectors size: 1048572928 sectors mode: read/write mgorven@moab:~% sudo tune2fs -l /dev/mapper/backup tune2fs 1.42 (29-Nov-2011) Filesystem volume name: backup Last mounted on: /srv/backup Filesystem UUID: 63877e0e-0549-4c73-8535-b7a81eb363ed Filesystem magic number: 0xEF53 Filesystem revision #: 1 (dynamic) Filesystem features: has_journal ext_attr resize_inode dir_index filetype extent flex_bg sparse_super large_file huge_file uninit_bg dir_nlink extra_isize Filesystem flags: signed_directory_hash Default mount options: (none) Filesystem state: clean with errors Errors behavior: Continue Filesystem OS type: Linux Inode count: 32768000 Block count: 131071616 Reserved block count: 0 Free blocks: 112894078 Free inodes: 32044830 First block: 0 Block size: 4096 Fragment size: 4096 Reserved GDT blocks: 992 Blocks per group: 32768 Fragments per group: 32768 Inodes per group: 8192 Inode blocks per group: 512 RAID stride: 128 RAID stripe width: 128 Flex block group size: 16 Filesystem created: Sun Mar 11 19:24:53 2012 Last mount time: Sat May 19 13:29:27 2012 Last write time: Fri Jun 1 11:07:22 2012 Mount count: 0 Maximum mount count: 100 Last checked: Fri Jun 1 11:03:50 2012 Check interval: 31104000 (12 months) Next check after: Mon May 27 11:03:50 2013 Lifetime writes: 118 GB Reserved blocks uid: 0 (user root) Reserved blocks gid: 0 (group root) First inode: 11 Inode size: 256 Required extra isize: 28 Desired extra isize: 28 Journal inode: 8 Default directory hash: half_md4 Directory Hash Seed: 383bcbc5-fde9-4720-b98e-2d6224713ecf Journal backup: inode blocks

    Read the article

  • Can't Remove Logical Drive/Array from HP P400

    - by Myles
    This is my first post here. Thank you in advance for any assistance with this matter. I'm trying to remove a logical drive (logical drive 2) and an array (array "B") from my Smart Array P400. The host is a DL580 G5 running 64-bit Red Hat Enterprise Linux Server release 5.7 (Tikanga). I am unable to remove the array using either hpacucli or cpqacuxe. I believe it is because of "OS Status: LOCKED". The file system that lives on this array has been unmounted. I do not want to reboot the host. Is there some way to "release" this logical drive so I can remove the array? Note that I do not need to preserve the data on logical drive 2. I intend to physically remove the drives from the machine and replace them with larger drives. I'm using the cciss kernel module that ships with Red Hat 5.7. Here is some information pertaining to the host and the P400 configuration: [root@gort ~]# cat /etc/redhat-release Red Hat Enterprise Linux Server release 5.7 (Tikanga) [root@gort ~]# uname -a Linux gort 2.6.18-274.el5 #1 SMP Fri Jul 8 17:36:59 EDT 2011 x86_64 x86_64 x86_64 GNU/Linux [root@gort ~]# rpm -qa | egrep '^(hp|cpq)' cpqacuxe-9.30-15.0 hp-health-9.25-1551.7.rhel5 hpsmh-7.1.2-3 hpdiags-9.3.0-466 hponcfg-3.1.0-0 hp-snmp-agents-9.25-2384.8.rhel5 hpacucli-9.30-15.0 [root@gort ~]# hpacucli HP Array Configuration Utility CLI 9.30.15.0 Detecting Controllers...Done. Type "help" for a list of supported commands. Type "exit" to close the console. => ctrl all show config detail Smart Array P400 in Slot 0 (Embedded) Bus Interface: PCI Slot: 0 Cache Serial Number: PA82C0J9SVW34U RAID 6 (ADG) Status: Enabled Controller Status: OK Hardware Revision: D Firmware Version: 7.22 Rebuild Priority: Medium Expand Priority: Medium Surface Scan Delay: 15 secs Surface Scan Mode: Idle Wait for Cache Room: Disabled Surface Analysis Inconsistency Notification: Disabled Post Prompt Timeout: 0 secs Cache Board Present: True Cache Status: OK Cache Ratio: 25% Read / 75% Write Drive Write Cache: Disabled Total Cache Size: 256 MB Total Cache Memory Available: 208 MB No-Battery Write Cache: Disabled Cache Backup Power Source: Batteries Battery/Capacitor Count: 1 Battery/Capacitor Status: OK SATA NCQ Supported: True Logical Drive: 1 Size: 136.7 GB Fault Tolerance: RAID 1 Heads: 255 Sectors Per Track: 32 Cylinders: 35132 Strip Size: 128 KB Full Stripe Size: 128 KB Status: OK Caching: Enabled Unique Identifier: 600508B100184A395356573334550002 Disk Name: /dev/cciss/c0d0 Mount Points: /boot 101 MB, /tmp 7.8 GB, /usr 3.9 GB, /usr/local 2.0 GB, /var 3.9 GB, / 2.0 GB, /local 113.2 GB OS Status: LOCKED Logical Drive Label: A0027AA78DEE Mirror Group 0: physicaldrive 1I:1:2 (port 1I:box 1:bay 2, SAS, 146 GB, OK) Mirror Group 1: physicaldrive 1I:1:1 (port 1I:box 1:bay 1, SAS, 146 GB, OK) Drive Type: Data Array: A Interface Type: SAS Unused Space: 0 MB Status: OK Array Type: Data physicaldrive 1I:1:1 Port: 1I Box: 1 Bay: 1 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 146 GB Rotational Speed: 10000 Firmware Revision: HPDE Serial Number: 3NM57RF40000983878FX Model: HP DG146BB976 Current Temperature (C): 29 Maximum Temperature (C): 35 PHY Count: 2 PHY Transfer Rate: Unknown, Unknown physicaldrive 1I:1:2 Port: 1I Box: 1 Bay: 2 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 146 GB Rotational Speed: 10000 Firmware Revision: HPDE Serial Number: 3NM55VQC000098388524 Model: HP DG146BB976 Current Temperature (C): 29 Maximum Temperature (C): 36 PHY Count: 2 PHY Transfer Rate: Unknown, Unknown Logical Drive: 2 Size: 546.8 GB Fault Tolerance: RAID 5 Heads: 255 Sectors Per Track: 32 Cylinders: 65535 Strip Size: 64 KB Full Stripe Size: 256 KB Status: OK Caching: Enabled Parity Initialization Status: Initialization Completed Unique Identifier: 600508B100184A395356573334550003 Disk Name: /dev/cciss/c0d1 Mount Points: None OS Status: LOCKED Logical Drive Label: A5C9C6F81504 Drive Type: Data Array: B Interface Type: SAS Unused Space: 0 MB Status: OK Array Type: Data physicaldrive 1I:1:3 Port: 1I Box: 1 Bay: 3 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 146 GB Rotational Speed: 10000 Firmware Revision: HPDE Serial Number: 3NM2H5PE00009802NK19 Model: HP DG146ABAB4 Current Temperature (C): 30 Maximum Temperature (C): 37 PHY Count: 1 PHY Transfer Rate: Unknown physicaldrive 1I:1:4 Port: 1I Box: 1 Bay: 4 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 146 GB Rotational Speed: 10000 Firmware Revision: HPDE Serial Number: 3NM28YY400009750MKPJ Model: HP DG146ABAB4 Current Temperature (C): 31 Maximum Temperature (C): 36 PHY Count: 1 PHY Transfer Rate: 3.0Gbps physicaldrive 2I:1:5 Port: 2I Box: 1 Bay: 5 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 146 GB Rotational Speed: 10000 Firmware Revision: HPDE Serial Number: 3NM2FGYV00009802N3GN Model: HP DG146ABAB4 Current Temperature (C): 30 Maximum Temperature (C): 38 PHY Count: 1 PHY Transfer Rate: Unknown physicaldrive 2I:1:6 Port: 2I Box: 1 Bay: 6 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 146 GB Rotational Speed: 10000 Firmware Revision: HPDE Serial Number: 3NM8AFAK00009920MMV1 Model: HP DG146BB976 Current Temperature (C): 31 Maximum Temperature (C): 41 PHY Count: 2 PHY Transfer Rate: Unknown, Unknown physicaldrive 2I:1:7 Port: 2I Box: 1 Bay: 7 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 146 GB Rotational Speed: 10000 Firmware Revision: HPDE Serial Number: 3NM2FJQD00009801MSHQ Model: HP DG146ABAB4 Current Temperature (C): 29 Maximum Temperature (C): 39 PHY Count: 1 PHY Transfer Rate: Unknown

    Read the article

  • Windows 7 Group Policy to display message for login tries left before account lock

    - by Vivek
    My requirement is to display the the remaining count left on the login screen when user trying to login using Windows 7 OS before account lock in case user enter invalid password. I am having Active Directory on Windows 2008 R2 server. I set the maximum Lockout count = 5 in GPO policy. Example: If user try login first 1 attempt is failed, next time enter password and login shold show message for remaining attemps left.( my case count 4 left) Please let me know as this is urgent for me.

    Read the article

  • help setting up an IPSEC vpn from my linux box

    - by robthewolf
    I have an office with a router and a remote server (Linux - Ubuntu 10.10). Both locations need to connect to a data supplier through a VPN. The VPN is an IPSEC gateway. I was able to configure my Linksys rv42 router to create a VPN connection successfully and now I need to do the same for Linux server. I have been messing around with this for too long. First I tried OpenVPN, but that is SSL and not IPSEC. Then I tried Shrew. I think I have the settings correct but I haven't been able to create the connection. It maybe that I have to use something else like a direct IPSEC config or something like that. If someone knows of a way to turn the following settings that I have been given below into a working IPSEC VPN connection I would be very grateful. Here are the settings I was given that must be used to connect to my supplier: Local destination network: 192.168.4.0/24 Local destination hosts: 192.168.4.100 Remote destination network: 192.167.40.0/24 Remote destination hosts: 192.168.40.27 VPN peering point: xxx.xxx.xxx.xxx Then they have given me the following details: IPSEC/ISAKMP Phase 1 Parameters: Authentication method: pre shared secret Diffie Hellman group: group 2 Encryption Algorithm: 3DES Lifetime in seconds:28800 Phase 2 parameters: IPSEC security: ESP Encryption algortims: 3DES Authentication algorithms: MD5 lifetime in seconds: 28800 pfs: disabled Here are the settings from my attempt to use shrew: n:version:2 n:network-ike-port:500 n:network-mtu-size:1380 n:client-addr-auto:0 n:network-frag-size:540 n:network-dpd-enable:1 n:network-notify-enable:1 n:client-banner-enable:1 n:client-dns-used:1 b:auth-mutual-psk:YjJzN2QzdDhyN2EyZDNpNG42ZzQ= n:phase1-dhgroup:2 n:phase1-keylen:0 n:phase1-life-secs:28800 n:phase1-life-kbytes:0 n:vendor-chkpt-enable:0 n:phase2-keylen:0 n:phase2-pfsgroup:-1 n:phase2-life-secs:28800 n:phase2-life-kbytes:0 n:policy-nailed:0 n:policy-list-auto:1 n:client-dns-auto:1 n:network-natt-port:4500 n:network-natt-rate:15 s:client-dns-addr:0.0.0.0 s:client-dns-suffix: s:network-host:xxx.xxx.xxx.xxx s:client-auto-mode:pull s:client-iface:virtual s:client-ip-addr:192.168.4.0 s:client-ip-mask:255.255.255.0 s:network-natt-mode:enable s:network-frag-mode:disable s:auth-method:mutual-psk s:ident-client-type:address s:ident-client-data:192.168.4.0 s:ident-server-type:address s:ident-server-data:192.168.40.0 s:phase1-exchange:aggressive s:phase1-cipher:3des s:phase1-hash:md5 s:phase2-transform:3des s:phase2-hmac:md5 s:ipcomp-transform:disabled Finally here is the debug output from the shrew log: 10/12/22 17:22:18 ii : ipc client process thread begin ... 10/12/22 17:22:18 < A : peer config add message 10/12/22 17:22:18 DB : peer added ( obj count = 1 ) 10/12/22 17:22:18 ii : local address 217.xxx.xxx.xxx selected for peer 10/12/22 17:22:18 DB : tunnel added ( obj count = 1 ) 10/12/22 17:22:18 < A : proposal config message 10/12/22 17:22:18 < A : proposal config message 10/12/22 17:22:18 < A : client config message 10/12/22 17:22:18 < A : local id '192.168.4.0' message 10/12/22 17:22:18 < A : remote id '192.168.40.0' message 10/12/22 17:22:18 < A : preshared key message 10/12/22 17:22:18 < A : peer tunnel enable message 10/12/22 17:22:18 DB : new phase1 ( ISAKMP initiator ) 10/12/22 17:22:18 DB : exchange type is aggressive 10/12/22 17:22:18 DB : 217.xxx.xxx.xxx:500 <- 206.xxx.xxx.xxx:500 10/12/22 17:22:18 DB : c1a8b31ac860995d:0000000000000000 10/12/22 17:22:18 DB : phase1 added ( obj count = 1 ) 10/12/22 17:22:18 : security association payload 10/12/22 17:22:18 : - proposal #1 payload 10/12/22 17:22:18 : -- transform #1 payload 10/12/22 17:22:18 : key exchange payload 10/12/22 17:22:18 : nonce payload 10/12/22 17:22:18 : identification payload 10/12/22 17:22:18 : vendor id payload 10/12/22 17:22:18 ii : local supports nat-t ( draft v00 ) 10/12/22 17:22:18 : vendor id payload 10/12/22 17:22:18 ii : local supports nat-t ( draft v01 ) 10/12/22 17:22:18 : vendor id payload 10/12/22 17:22:18 ii : local supports nat-t ( draft v02 ) 10/12/22 17:22:18 : vendor id payload 10/12/22 17:22:18 ii : local supports nat-t ( draft v03 ) 10/12/22 17:22:18 : vendor id payload 10/12/22 17:22:18 ii : local supports nat-t ( rfc ) 10/12/22 17:22:18 : vendor id payload 10/12/22 17:22:18 ii : local supports DPDv1 10/12/22 17:22:18 : vendor id payload 10/12/22 17:22:18 ii : local is SHREW SOFT compatible 10/12/22 17:22:18 : vendor id payload 10/12/22 17:22:18 ii : local is NETSCREEN compatible 10/12/22 17:22:18 : vendor id payload 10/12/22 17:22:18 ii : local is SIDEWINDER compatible 10/12/22 17:22:18 : vendor id payload 10/12/22 17:22:18 ii : local is CISCO UNITY compatible 10/12/22 17:22:18 = : cookies c1a8b31ac860995d:0000000000000000 10/12/22 17:22:18 = : message 00000000 10/12/22 17:22:18 - : send IKE packet 217.xxx.xxx.xxx:500 - 206.xxx.xxx.xxx:500 ( 484 bytes ) 10/12/22 17:22:18 DB : phase1 resend event scheduled ( ref count = 2 ) 10/12/22 17:22:18 ii : opened tap device tap0 10/12/22 17:22:28 - : resend 1 phase1 packet(s) 217.xxx.xxx.xxx:500 - 206.xxx.xxx.xxx:500 10/12/22 17:22:38 - : resend 1 phase1 packet(s) 217.xxx.xxx.xxx:500 - 206.xxx.xxx.xxx:500 10/12/22 17:22:48 - : resend 1 phase1 packet(s) 217.xxx.xxx.xxx:500 - 206.xxx.xxx.xxx:500 10/12/22 17:22:58 ii : resend limit exceeded for phase1 exchange 10/12/22 17:22:58 ii : phase1 removal before expire time 10/12/22 17:22:58 DB : phase1 deleted ( obj count = 0 ) 10/12/22 17:22:58 ii : closed tap device tap0 10/12/22 17:22:58 DB : tunnel stats event canceled ( ref count = 1 ) 10/12/22 17:22:58 DB : removing tunnel config references 10/12/22 17:22:58 DB : removing tunnel phase2 references 10/12/22 17:22:58 DB : removing tunnel phase1 references 10/12/22 17:22:58 DB : tunnel deleted ( obj count = 0 ) 10/12/22 17:22:58 DB : removing all peer tunnel refrences 10/12/22 17:22:58 DB : peer deleted ( obj count = 0 ) 10/12/22 17:22:58 ii : ipc client process thread exit ...

    Read the article

  • Ext3 fs: Block bitmap for group 1 not in group (block 0). is fs dead?

    - by ip
    My company has a server with one big partition with Mysql database and php files. Now this partition seems to be corrupted, as reported from kernel messages when I tried to mount it manually: [329862.817837] EXT3-fs error (device loop1): ext3_check_descriptors: Block bitmap for group 1 not in group (block 0)! [329862.817846] EXT3-fs: group descriptors corrupted! I've tried to recovery it running tools from a PLD livecd. These are the tools I have tested: - e2retrieve - testdisk - photorec - dd_rescue/dd_rhelp - ddrescue - fsck.ext2 - e2salvage without any success. dumpe2fs 1.41.3 (12-Oct-2008) Filesystem volume name: /dev/sda3 Last mounted on: <not available> Filesystem UUID: dd51610b-6de0-4392-a6f3-67160dbc0343 Filesystem magic number: 0xEF53 Filesystem revision #: 1 (dynamic) Filesystem features: has_journal filetype sparse_super Default mount options: (none) Filesystem state: not clean with errors Errors behavior: Continue Filesystem OS type: Linux Inode count: 9502720 Block count: 18987570 Reserved block count: 949378 Free blocks: 11555345 Free inodes: 11858398 First block: 0 Block size: 4096 Fragment size: 4096 Blocks per group: 32768 Fragments per group: 32768 Inodes per group: 16384 Inode blocks per group: 512 Last mount time: Wed Mar 24 09:31:03 2010 Last write time: Mon Apr 12 11:46:32 2010 Mount count: 10 Maximum mount count: 30 Last checked: Thu Jan 1 01:00:00 1970 Check interval: 0 (<none>) Reserved blocks uid: 0 (user root) Reserved blocks gid: 0 (group root) First inode: 11 Inode size: 128 Journal inode: 8 Journal backup: inode blocks dumpe2fs: A block group is missing an inode table while reading journal inode e2fsck 1.41.3 (12-Oct-2008) fsck.ext3: Group descriptors look bad... trying backup blocks... fsck.ext3: A block group is missing an inode table while checking ext3 journal for /dev/sda3 I tried also backup superblocks, same error result. There's any other tools I have to test before considering these disk definitely unrecoverable? Many thanks, ip

    Read the article

  • Using cookies with lynx

    - by XXL
    lynx -cfg=cfg.file $URL this works with the following contents of the .cfg file: SET_COOKIES:TRUE ACCEPT_ALL_COOKIES:TRUE PERSISTENT_COOKIES:TRUE COOKIE_FILE:cookie.file however, this does not: lynx -cookies=1 -accept_all_cookies=1 -cookie_file=cookie.file $URL if it's going to be of any help - here's the trace: parse_arg(arg_name=-cookies=1, mask=1, count=2) parse_arg lookup(cookies=1) ...skip (mask 1/4) parse_arg(arg_name=-accept_all_cookies=1, mask=1, count=3) parse_arg lookup(accept_all_cookies=1) ...skip (mask 1/4) parse_arg(arg_name=-cookie_file=cookie.file, mask=1, count=4) parse_arg lookup(cookie_file=cookie.file) ...skip (mask 1/4) parse_arg(arg_name=$URL, mask=1, count=5) parse_arg startfile:$URL obvious question, why? the actual difference, from what i see, is the inability to trigger "PERSISTENT_COOKIES:TRUE" by command-line options in lynx. or, maybe, i have overlooked/misunderstood something?

    Read the article

  • how can i move ext3 partition to the beginning of drive without losing data?

    - by Felipe Alvarez
    I have a 500GB external drive. It had two partitions, each around 250GB. I removed the first partition. I'd like to move the 2nd to the left, so it consumes 100% of the drive. How can this be accomplished without any GUI tools (CLI only)? fdisk Disk /dev/sdd: 500.1 GB, 500107862016 bytes 255 heads, 63 sectors/track, 60801 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Disk identifier: 0xc80b1f3d Device Boot Start End Blocks Id System /dev/sdd2 29374 60801 252445410 83 Linux parted Model: ST350032 0AS (scsi) Disk /dev/sdd: 500GB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 2 242GB 500GB 259GB primary ext3 type=83 dumpe2fs Filesystem volume name: extstar Last mounted on: <not available> Filesystem UUID: f0b1d2bc-08b8-4f6e-b1c6-c529024a777d Filesystem magic number: 0xEF53 Filesystem revision #: 1 (dynamic) Filesystem features: has_journal dir_index filetype needs_recovery sparse_super large_file Filesystem flags: signed_directory_hash Default mount options: (none) Filesystem state: clean Errors behavior: Continue Filesystem OS type: Linux Inode count: 15808608 Block count: 63111168 Reserved block count: 0 Free blocks: 2449985 Free inodes: 15799302 First block: 0 Block size: 4096 Fragment size: 4096 Blocks per group: 32768 Fragments per group: 32768 Inodes per group: 8208 Inode blocks per group: 513 Filesystem created: Mon Feb 15 08:07:01 2010 Last mount time: Fri May 21 19:31:30 2010 Last write time: Fri May 21 19:31:30 2010 Mount count: 5 Maximum mount count: 29 Last checked: Mon May 17 14:52:47 2010 Check interval: 15552000 (6 months) Next check after: Sat Nov 13 14:52:47 2010 Reserved blocks uid: 0 (user root) Reserved blocks gid: 0 (group root) First inode: 11 Inode size: 256 Required extra isize: 28 Desired extra isize: 28 Journal inode: 8 Default directory hash: half_md4 Directory Hash Seed: d0363517-c095-4f53-baa7-7428c02fbfc6 Journal backup: inode blocks Journal size: 128M

    Read the article

  • Somebody knows why the sectors of the IBM floppy disk are named 1 to 8 (and not 0 to 7 )

    - by Olivier Briand
    I am now programming on a 8 bits Z80 computer with CP/M 2.2, (as a hobby) and the floppy disk format is IBM, 40 tracks, 8 sectors per track, 512 bytes per sector. free space is 154 Ko on each face of the disk. Why the sectors are indexed 1 to 8 (and not zero to seven, as usually is seen with computers)? The catalog of the floppy disk is on the track 1 (sector 1 to 4, 64 entries). I'm wondering is the catalog on track zero? Is the zero track reserved to included a system (as track 0 & 1 are reserved to the system on a CP/M floppy disk, and catalog is on track 2)?

    Read the article

< Previous Page | 67 68 69 70 71 72 73 74 75 76 77 78  | Next Page >