Search Results

Search found 19410 results on 777 pages for 'white screen'.

Page 717/777 | < Previous Page | 713 714 715 716 717 718 719 720 721 722 723 724  | Next Page >

  • LINQ Many to Many With In or Contains Clause (and a twist)

    - by Chris
    I have a many to many table structure called PropertyPets. It contains a dual primary key consisting of a PropertyID (from a Property table) and one or more PetIDs (from a Pet table). Next I have a search screen where people can multiple select pets from a jquery multiple select dropdown. Let's say somebody selects Dogs and Cats. Now, I want to be able to return all properties that contain BOTH dogs and cats in the many to many table, PropertyPets. I'm trying to do this with Linq to Sql. I've looked at the Contains clause, but it doesn't seem to work for my requirement: var result = properties.Where(p => search.PetType.Contains(p.PropertyPets)); Here, search.PetType is an int[] array of the Id's for Dog and Cat (which were selected in the multiple select drop down). The problem is first, Contains requires a string not an IEnumerable of type PropertyPet. And second, I need to find the properties that have BOTH dogs and cats and not just simply containing one or the other. Thank you for any pointers.

    Read the article

  • selected option not clearing from memory android

    - by user2980560
    I have a small random number spinner that when you click gives a random number. I am having two problems. The first is when the main activity loads it displays a random number on the screen without the random number spinner being clicked. I am unsure what to set to false to keep it from opening with the main activity. The second problem is that when you select an option from the spinner it does not clear. Meaning that If you click on option D6 or D20 then you can not click on the same option again until selecting the other option first. Essentially the selection does not clear out of memory after the random number is selected. Here is the random number code public void onItemSelected(AdapterView<?> parent, View view, int pos, long id) { Random rand = new Random(); int roll; // An item was selected. if (spinner1.getSelectedItemPosition()==0) { roll = rand.nextInt(6)+1; } else { roll = rand.nextInt(20)+1; } // Put the result into a string. String text = "You rolled a " + roll; // Build a dialog box and with the result string and a single button AlertDialog.Builder builder = new AlertDialog.Builder(this); builder.setMessage(text).setCancelable(false) .setPositiveButton("OK", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int id) { // do things when the user clicks ok. } }); AlertDialog alert = builder.create(); // Show the dialog box. alert.show(); }

    Read the article

  • Creating a function within a loop (pointers?)

    - by user352151
    Im trying to create a simple loop that creates 50 buttons, adds them to screen and then when a button is pressed, it traces out that number. I can get it to work by doing stuff I consider hacky (such as using the buttons X/Y location to determine its value), but I'd rather just be able to hold a single value in the function. The code itself is: for (var a:int = 0; a < 5; a++) { for (var b:int = 0; b < 10; b++) { var n = (a * 10) + b + 1; var btt:SimpleButton = new BasicGameButton(); btt.x = 20 + b * 50; btt.y = 50 + a * 80; addChild(btt); btt.addEventListener(MouseEvent.CLICK, function f() { trace(n); } ); } } At the moment, whenever a button is pressed, it simply outputs "50". Is there a way of "freezing" the value of n when the function is created, for that function? (BasicGameButton is just a square button, created in the flash library) Many thanks.

    Read the article

  • How to arrange HTML5 web page elements?

    - by Argus9
    I'm trying to make a sample web page to get acquainted with HTML5, and I'd like to try replicating Facebook's page layout; that is, the header that spans the entire width of the screen, a small footer at the bottom, and a three-column main body, consisting of a list of links on the left, the main content in the middle, and an optional section on the right (for ads, frames, etc.). It's neat and displays well in multiple window sizes. So far, I've tried to accomplish this with a <header>, <footer> and a <nav> and <section> block, respectively. There's a few anomalies with the page, however. The footer (which contains a simple text block with copyright info) appears at the top-right of the page below the header when the window is maximized. On the other hand, when there isn't enough space to display everything in the window, it places the main body text below the section. In other words, it keeps moving elements around to fit the window. Could someone please tell me how I'd achieve the look I'm going for? I've tried playing around with a few CSS attributes I read about through Google, but I'm pretty sure I don't know what I'm doing, and could really use some guidance. Thank you!

    Read the article

  • I'm writing a diagnostic app for iOS that loads a predetermined set of webpages and records the time it takes for the page to render on the device.

    - by user1754840
    I'm writing a sort of diagnostic app for iOS that opens a predetermined list of websites and records the elapsed time it takes each to load. I have the app open a UIWebView within a ViewController. Here are the important bits of the ViewController source: - (void)viewDidLoad { [super viewDidLoad]; DataClass *obj = [DataClass getInstance]; obj.startOfTest = [NSDate date]; //load the first webpage NSString *urlString = [websites objectAtIndex:obj.counter]; //assume firstWebsite is already instantiated and counter is initially set to zero obj.counter = obj.counter + 1; NSURL *url = [NSURL URLWithString:urlString]; NSURLRequest *request = [NSURLRequest requestWithURL:url]; [obj.websiteStartTimes addObject:[NSDate date]]; [webView loadRequest:request]; } - (void)webViewDidFinishLoading:(UIWebView *)localWebView{ DataClass *obj = [DataClass getInstance]; //gets 'global' variables if(!webView.loading){ NSString *urlString = [websites objectAt:obj.counter]; obj.counter = obj.counter + 1; NSURL *url = [NSURL URLWithString:urlString]; NSURLRequest *request = [NSURLRequest requestWithURL:url]; [obj.websiteStartTimes addObject:[NSDate date]]; [webView loadRequest:request]; } The problem with this code is that it seems to load the next website before the one before it has finished. I would have thought that both the call to webViewDidFinishLoading AND the if statement within that would ensure that the website would be done, but that's not the case. I've noticed that sometimes, a single website will invoke the didFinishLoading method more than once, but it would only enter the if statement once. For example, if I have a list of ten websites, the webView would only really show the 3rd and the 6th website on the list and then indicate that it was "done" rendering them all. What else can I do to ensure that a website is done loading completely and rendered to the screen before the app moves on to the next one?

    Read the article

  • Add Your Gmail Account to Outlook 2010 Using IMAP

    - by Mysticgeek
    If you’re upgrading from Outlook 2003 to 2010, you might want to use IMAP with your Gmail account to synchronize mail across multiple machines. Using our guide, you will be able to start using it in no time. Enable IMAP in Gmail First log into your Gmail account and open the Settings panel. Click on the Forwarding and POP/IMAP tab and verify IMAP is enabled and save changes. Next open Outlook 2010, click on the File tab to access the Backstage view. Click on Account Settings and Add and remove accounts or change existing connection settings. In the Account Settings window click on the New button. Enter in your name, email address, and password twice then click Next. Outlook will configure the email server settings, the amount of time it takes will vary. Provided everything goes correctly, the configuration will be successful and you can begin using your account. Manually Configure IMAP Settings If the above instructions don’t work, then we’ll need to manually configure the settings. Again, go into Auto Account Setup and select Manually configure server settings or additional server types and click Next.   Select Internet E-mail – Connect to POP or IMAP server to send and receive e-mail messages. Now we need to manually enter in our settings similar to the following. Under the Server Information section verify the following. Account Type: IMAP Incoming mail server: imap.gmail.com Outgoing mail server (SMTP): smtp.gmail.com Note: If you have a Google Apps account make sure to put the full email address ([email protected]) in the Your Name and User Name fields. Note: If you live outside of the US you might need to use imap.googlemail.com and smtp.googlemail.com Next, we need to click on the More Settings button… In the Internet E-mail Settings screen that pops up, click on the Outgoing Server tab, and check the box next to My outgoing server (SMTP) requires authentication. Also select the radio button next to Use same settings as my incoming mail server. In the same window click on the Advanced tab and verify the following. Incoming server: 993 Incoming server encrypted connection: SSL Outgoing server encrypted connection TLS Outgoing server: 587 Note: You will need to change the Outgoing server encrypted connection first, otherwise it will default back to port 25. Also, if TLS doesn’t work, we were able to successfully use Auto. Click OK when finished. Now we want to test the settings, before continuing on…it’s just easier that way incase something was entered incorrectly. To make sure the settings are tested, check the box Test Account Settings by clicking the Next button. If you’ve entered everything in correctly, both tasks will be completed successfully and you can close out of the window. and begin using your account via Outlook 2010. You’ll get a final congratulations message you can close out of… And begin using your account via Outlook 2010. Conclusion Using IMAP allows you to synchronize email across multiple machines and devices. The IMAP feature in Gmail is free to use, and this should get you started using it with Outlook 2010. If you’re still using 2007 or just upgraded to it, check out our guide on how to use Gmail IMAP in Outlook 2007. Similar Articles Productive Geek Tips Add Your Gmail To Windows Live MailForce Outlook 2007 to Download Complete IMAP ItemsUse Gmail IMAP in Microsoft Outlook 2007Prevent Outlook with Gmail IMAP from Showing Duplicate Tasks in the To-Do BarSetting up Gmail IMAP Support for Windows Vista Mail TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips VMware Workstation 7 Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Cool Looking Skins for Windows Media Player 12 Move the Mouse Pointer With Your Face Movement Using eViacam Boot Windows Faster With Boot Performance Diagnostics Create Ringtones For Your Android Phone With RingDroid Enhance Your Laptop’s Battery Life With These Tips Easily Search Food Recipes With Recipe Chimp

    Read the article

  • SQL SERVER – Server Side Paging in SQL Server 2011 Performance Comparison

    - by pinaldave
    Earlier, I have written about SQL SERVER – Server Side Paging in SQL Server 2011 – A Better Alternative. I got many emails asking for performance analysis of paging. Here is the quick analysis of it. The real challenge of paging is all the unnecessary IO reads from the database. Network traffic was one of the reasons why paging has become a very expensive operation. I have seen many legacy applications where a complete resultset is brought back to the application and paging has been done. As what you have read earlier, SQL Server 2011 offers a better alternative to an age-old solution. This article has been divided into two parts: Test 1: Performance Comparison of the Two Different Pages on SQL Server 2011 Method In this test, we will analyze the performance of the two different pages where one is at the beginning of the table and the other one is at its end. Test 2: Performance Comparison of the Two Different Pages Using CTE (Earlier Solution from SQL Server 2005/2008) and the New Method of SQL Server 2011 We will explore this in the next article. This article will tackle test 1 first. Test 1: Retrieving Page from two different locations of the table. Run the following T-SQL Script and compare the performance. SET STATISTICS IO ON; USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 5 SELECT * FROM Sales.SalesOrderDetail ORDER BY SalesOrderDetailID OFFSET @PageNumber*@RowsPerPage ROWS FETCH NEXT 10 ROWS ONLY GO USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 12100 SELECT * FROM Sales.SalesOrderDetail ORDER BY SalesOrderDetailID OFFSET @PageNumber*@RowsPerPage ROWS FETCH NEXT 10 ROWS ONLY GO You will notice that when we are reading the page from the beginning of the table, the database pages read are much lower than when the page is read from the end of the table. This is very interesting as when the the OFFSET changes, PAGE IO is increased or decreased. In the normal case of the search engine, people usually read it from the first few pages, which means that IO will be increased as we go further in the higher parts of navigation. I am really impressed because using the new method of SQL Server 2011,  PAGE IO will be much lower when the first few pages are searched in the navigation. Test 2: Retrieving Page from two different locations of the table and comparing to earlier versions. In this test, we will compare the queries of the Test 1 with the earlier solution via Common Table Expression (CTE) which we utilized in SQL Server 2005 and SQL Server 2008. Test 2 A : Page early in the table -- Test with pages early in table USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 5 ;WITH CTE_SalesOrderDetail AS ( SELECT *, ROW_NUMBER() OVER( ORDER BY SalesOrderDetailID) AS RowNumber FROM Sales.SalesOrderDetail PC) SELECT * FROM CTE_SalesOrderDetail WHERE RowNumber >= @PageNumber*@RowsPerPage+1 AND RowNumber <= (@PageNumber+1)*@RowsPerPage ORDER BY SalesOrderDetailID GO SET STATISTICS IO ON; USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 5 SELECT * FROM Sales.SalesOrderDetail ORDER BY SalesOrderDetailID OFFSET @PageNumber*@RowsPerPage ROWS FETCH NEXT 10 ROWS ONLY GO Test 2 B : Page later in the table -- Test with pages later in table USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 12100 ;WITH CTE_SalesOrderDetail AS ( SELECT *, ROW_NUMBER() OVER( ORDER BY SalesOrderDetailID) AS RowNumber FROM Sales.SalesOrderDetail PC) SELECT * FROM CTE_SalesOrderDetail WHERE RowNumber >= @PageNumber*@RowsPerPage+1 AND RowNumber <= (@PageNumber+1)*@RowsPerPage ORDER BY SalesOrderDetailID GO SET STATISTICS IO ON; USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 12100 SELECT * FROM Sales.SalesOrderDetail ORDER BY SalesOrderDetailID OFFSET @PageNumber*@RowsPerPage ROWS FETCH NEXT 10 ROWS ONLY GO From the resultset, it is very clear that in the earlier case, the pages read in the solution are always much higher than the new technique introduced in SQL Server 2011 even if we don’t retrieve all the data to the screen. If you carefully look at both the comparisons, the PAGE IO is much lesser in the case of the new technique introduced in SQL Server 2011 when we read the page from the beginning of the table and when we read it from the end. I consider this as a big improvement as paging is one of the most used features for the most part of the application. The solution introduced in SQL Server 2011 is very elegant because it also improves the performance of the query and, at large, the database. Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Install Quartz.Net as a windows service and Test installation

    - by Tarun Arora
    In this blog post I’ll be covering, 01: Where to download Quartz.net from 02: How to install Quartz.net as a Windows service 03: Test the Quartz.net Installation If you are new to Quartz.net I would recommend reading the blog post on a brief introduction to Quartz.net. 01 – Where to download Quartz.net? http://sourceforge.net/projects/quartznet/files/quartznet/       Currently version  Quartz.Net 2.0.1 is the recommended download version. 02 – How to install Quartz.net as a Windows service         Go to the download location and unzip the Quartz.net package Navigate to the folder Quartz.Net \ Server \ bin – This is where you will find different .net version installers of the quartz.net packages. For example in the screen shot above, you can see the Quartz.net .net 3.5 and .net 4 packages. Open up the Quartz.net .net 4.0 folder, this folder contains the files you need to install Quartz.net as a windows service Copy the contents of the folder Downloads\Quartz.NET-2.0.1\server\bin\4.0 to the folder %program files%\Quartz.net   5. Open up a new CMD as an administrator and run the below command to install Quartz.net as a windows service /> Quartz.Server.exe install 6. How do I know that Quartz.Net service has installed as a Windows service? Go to run prompt and type ‘services.msc’ you should now see all the windows services installed on your machine. Navigate down to look for Quartz.Net. The service installs itself as an automatic startup Type and log on as ‘Local System’. You can easily change this to your prefer account that you would like to run the service as. If you wanted to name the Quartz service something else then that’s also possible… Can I change the default display name of the quartz.net windows service? Yes, you can! Navigate to C:\Program Files (x86)\Quartz.Net\ and open up the config file ‘quartz.config’ - You can change the instance name - You can change the default thread count of 10 - The port that the service listens to (by default this is port 555) A blog post on more configuration details can be found here. 03 – Test Quartz.Net windows service installation So, I have installed Quartz.Net as a windows service, how do I test whether my installation has been successful. Open up cmd as an administrator and run the below command, C:\Program Files (x86)\Quartz.Net> Quartz.Server.exe –i Since by default the Quartz.net windows service writes INFO level diagnostics (this can be changed from Quartz.Server.exe.config) you should see the service information show up on the console. For instance in the example above I can see that the service is running in a NON CLUSTERED mode, its currently not started and is currently in standby mode with 0 number of jobs executed so far… This was second in the series of posts on enterprise scheduling using Quartz.net, in the next post I’ll be covering how to run your first scheduled task using Quartz.net windows service. Thank you for taking the time out and reading this blog post. If you enjoyed the post, remember to subscribe to http://feeds.feedburner.com/TarunArora. Stay tuned!

    Read the article

  • Control to Control Binding in WPF/Silverlight

    - by psheriff
    In the past if you had two controls that you needed to work together, you would have to write code. For example, if you want a label control to display any text a user typed into a text box you would write code to do that. If you want turn off a set of controls when a user checks a check box, you would also have to write code. However, with XAML, these operations become very easy to do. Bind Text Box to Text Block As a basic example of this functionality, let’s bind a TextBlock control to a TextBox. When the user types into a TextBox the value typed in will show up in the TextBlock control as well. To try this out, create a new Silverlight or WPF application in Visual Studio. On the main window or user control type in the following XAML. <StackPanel>  <TextBox Margin="10" x:Name="txtData" />  <TextBlock Margin="10"              Text="{Binding ElementName=txtData,                             Path=Text}" /></StackPanel> Now run the application and type into the TextBox control. As you type you will see the data you type also appear in the TextBlock control. The {Binding} markup extension is responsible for this behavior. You set the ElementName attribute of the Binding markup to the name of the control that you wish to bind to. You then set the Path attribute to the name of the property of that control you wish to bind to. That’s all there is to it! Bind the IsEnabled Property Now let’s apply this concept to something that you might use in a business application. Consider the following two screen shots. The idea is that if the Add Benefits check box is un-checked, then the IsEnabled property of the three “Benefits” check boxes will be set to false (Figure 1). If the Add Benefits check box is checked, then the IsEnabled property of the “Benefits” check boxes will be set to true (Figure 2). Figure 1: Uncheck Add Benefits and the Benefits will be disabled. Figure 2: Check Add Benefits and the Benefits will be enabled. To accomplish this, you would write XAML to bind to each of the check boxes in the “Benefits To Add” section to the check box named chkBenefits. Below is a fragment of the XAML code that would be used. <CheckBox x:Name="chkBenefits" /> <CheckBox Content="401k"           IsEnabled="{Binding ElementName=chkBenefits,                               Path=IsChecked}" /> Since the IsEnabled property is a boolean type and the IsChecked property is also a boolean type, you can bind these two together. If they were different types, or if you needed them to set the IsEnabled property to the inverse of the IsChecked property then you would need to use a ValueConverter class. SummaryOnce you understand the basics of data binding in XAML, you can eliminate a lot code. Connecting controls together is as easy as just setting the ElementName and Path properties of the Binding markup extension. NOTE: You can download the complete sample code at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "SL – Basic Control Binding" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free eBook on "Fundamentals of N-Tier".

    Read the article

  • Ubuntu Control Center Makes Using Ubuntu Easier

    - by Vivek
    Users who are new to Ubuntu might find it somewhat difficult to configure. Today we take a look at using Ubuntu Control Center which makes managing different aspects of the system easier. About Ubuntu Control Center A lot of utilities and software has been written to work with Ubuntu. Ubuntu Control Center is one such cool utility which makes it easy for configuring Ubuntu. The following is a brief description of Ubuntu Control Center: Ubuntu Control Center or UCC is an application inspired by Mandriva Control Center and aims to centralize and organize in a simple and intuitive form the main configuration tools for Ubuntu distribution. UCC uses all the native applications already bundled with Ubuntu, but it also utilize some third-party apps like “Hardinfo”, “Boot-up Manager”, “GuFW” and “Font-Manager”. Ubuntu Control Center Here we look at installation and use of Ubuntu Control Center in Ubuntu 10.04. First we have to satisfy some dependencies. You will need to install Font-Manager and jstest-gtk (link below)…before installing Ubuntu Control Center (UCC). Click the Install Package button. You’ll be prompted to enter in your admin password for each installation package. Installation is successful…close out of the screen. Download and install Font-Manager…again you’ll need to enter in your password to complete installation.   Once you have installed the two dependencies, you are all set to install Ubuntu Control Center (link below), double click the downloaded Ubuntu Control Center deb file to install it. Once installed you can find it under Applications \ System Tools \ UCC. Once you launch it you can start managing your system, software, hardware, and more.   You can easily control various aspects of your Ubuntu System using Ubuntu Control Center. Here we look at configuring the firewall under Network and Internet.     UCC allows easy access for configuring several aspects of your system. Once you install UCC you’ll see how easy it is to configure your Ubuntu system through an intuitive clean graphical interface. If you’re new to Ubuntu, using UCC can help you in setting up your system how you like in a user friendly way. Home Page of UCC http://code.google.com/p/ucc/ Links Download Font-Manager ManagerDownload jstest-gtkUbuntu Control Center (UCC) Similar Articles Productive Geek Tips Adding extra Repositories on UbuntuAllow Remote Control To Your Desktop On UbuntuAssign a Hotkey to Open a Terminal Window in UbuntuInstall VMware Tools on Ubuntu Edgy EftInstall Monodevelop on Ubuntu Linux TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 How to Forecast Weather, without Gadgets Outlook Tools, one stop tweaking for any Outlook version Zoofs, find the most popular tweeted YouTube videos Video preview of new Windows Live Essentials 21 Cursor Packs for XP, Vista & 7 Map the Stars with Stellarium

    Read the article

  • Create a Customized Tab on the Office 2010 Ribbon

    - by Mysticgeek
    Some MS Office users were put off a bit by the Ribbon feature in 2007 for being cumbersome and confusing. Today we look at a cool new feature in Office 2010 that allows you to create your own custom tabs with specific commands for easier document creation. Create a Customized Tab In our example we’re using Word, but you can create a custom tab in the other Office apps as well. To do so, right-click on the Ribbon and select Customize the Ribbon. The Word Options screen opens up and from here you can manage a lot of customization options. We want to create a new customized tab, so click on the New Tab button.   Now give it a name… Now just drag the commands you want to add from the left column over to your new custom group. You have every command available to choose from. You can select specific groups or all commands from the dropdown menu on the left. That is all there is to it…now you have your own customized tab with the commands you use most often to help you work more efficiently. In this example We didn’t add a whole lot of commands, but you can customize it with as many as you need. You can also create other tabs with different sets of commands too. When you create a customized tab in one application, it’s only going to be in that app. For example if you create on in Word, it’s not going to show in Excel as commands differ between apps. If you want a custom tab in another Office app you’ll need to create one for it. Another very cool thing you can do is export the customizations to use on another machine or pass them to a coworker. To export the customizations, go to the Customize Ribbon section and at the bottom of the right field click Import/Export then Export all customizations. Then save the file to a location on your hard drive.   To import the settings to another machine, go into Ribbon Customizations and select Import customizations file… then browse the the file you exported. You’ll be prompted to confirm you want to import he customizations… After confirming the choice now you’ll see the customization show up on the other machine. This is very handy if you work on several machines throughout the day and want to easily bring your customized tabs with you. If you find yourself using a lot of specific commands throughout the day, creating your own customized tab will help access them more quickly. If you want to test out Office 2010 it’s currently in Public Beta and can be downloaded for free. Download Office 2010 Beta Similar Articles Productive Geek Tips Maximize Space by "Auto-Hiding" the Ribbon in Office 2007Make Learning Office 2007 & 2010 Fun with Ribbon HeroAdd or Remove Apps from the Microsoft Office 2007 or 2010 SuiteHow To Bring Back the Old Menus in Office 2007How To Take Screenshots with Word 2010 TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Enable Check Box Selection in Windows 7 OnlineOCR – Free OCR Service Betting on the Blind Side, a Vanity Fair article 30 Minimal Logo Designs that Say More with Less LEGO Digital Designer – Free Create a Personal Website Quickly using Flavors.me

    Read the article

  • Create a Customized Tab on the Office 2010 Ribbon

    - by Mysticgeek
    Some MS Office users were put off a bit by the Ribbon feature in 2007 for being cumbersome and confusing. Today we look at a cool new feature in Office 2010 that allows you to create your own custom tabs with specific commands for easier document creation. Create a Customized Tab In our example we’re using Word, but you can create a custom tab in the other Office apps as well. To do so, right-click on the Ribbon and select Customize the Ribbon. The Word Options screen opens up and from here you can manage a lot of customization options. We want to create a new customized tab, so click on the New Tab button.   Now give it a name… Now just drag the commands you want to add from the left column over to your new custom group. You have every command available to choose from. You can select specific groups or all commands from the dropdown menu on the left. That is all there is to it…now you have your own customized tab with the commands you use most often to help you work more efficiently. In this example We didn’t add a whole lot of commands, but you can customize it with as many as you need. You can also create other tabs with different sets of commands too. When you create a customized tab in one application, it’s only going to be in that app. For example if you create on in Word, it’s not going to show in Excel as commands differ between apps. If you want a custom tab in another Office app you’ll need to create one for it. Another very cool thing you can do is export the customizations to use on another machine or pass them to a coworker. To export the customizations, go to the Customize Ribbon section and at the bottom of the right field click Import/Export then Export all customizations. Then save the file to a location on your hard drive.   To import the settings to another machine, go into Ribbon Customizations and select Import customizations file… then browse the the file you exported. You’ll be prompted to confirm you want to import he customizations… After confirming the choice now you’ll see the customization show up on the other machine. This is very handy if you work on several machines throughout the day and want to easily bring your customized tabs with you. If you find yourself using a lot of specific commands throughout the day, creating your own customized tab will help access them more quickly. If you want to test out Office 2010 it’s currently in Public Beta and can be downloaded for free. Download Office 2010 Beta Similar Articles Productive Geek Tips Maximize Space by "Auto-Hiding" the Ribbon in Office 2007Make Learning Office 2007 & 2010 Fun with Ribbon HeroAdd or Remove Apps from the Microsoft Office 2007 or 2010 SuiteHow To Bring Back the Old Menus in Office 2007How To Take Screenshots with Word 2010 TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Enable Check Box Selection in Windows 7 OnlineOCR – Free OCR Service Betting on the Blind Side, a Vanity Fair article 30 Minimal Logo Designs that Say More with Less LEGO Digital Designer – Free Create a Personal Website Quickly using Flavors.me

    Read the article

  • Parallelism in .NET – Part 3, Imperative Data Parallelism: Early Termination

    - by Reed
    Although simple data parallelism allows us to easily parallelize many of our iteration statements, there are cases that it does not handle well.  In my previous discussion, I focused on data parallelism with no shared state, and where every element is being processed exactly the same. Unfortunately, there are many common cases where this does not happen.  If we are dealing with a loop that requires early termination, extra care is required when parallelizing. Often, while processing in a loop, once a certain condition is met, it is no longer necessary to continue processing.  This may be a matter of finding a specific element within the collection, or reaching some error case.  The important distinction here is that, it is often impossible to know until runtime, what set of elements needs to be processed. In my initial discussion of data parallelism, I mentioned that this technique is a candidate when you can decompose the problem based on the data involved, and you wish to apply a single operation concurrently on all of the elements of a collection.  This covers many of the potential cases, but sometimes, after processing some of the elements, we need to stop processing. As an example, lets go back to our previous Parallel.ForEach example with contacting a customer.  However, this time, we’ll change the requirements slightly.  In this case, we’ll add an extra condition – if the store is unable to email the customer, we will exit gracefully.  The thinking here, of course, is that if the store is currently unable to email, the next time this operation runs, it will handle the same situation, so we can just skip our processing entirely.  The original, serial case, with this extra condition, might look something like the following: foreach(var customer in customers) { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) break; customer.LastEmailContact = DateTime.Now; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re processing our loop, but at any point, if we fail to send our email successfully, we just abandon this process, and assume that it will get handled correctly the next time our routine is run.  If we try to parallelize this using Parallel.ForEach, as we did previously, we’ll run into an error almost immediately: the break statement we’re using is only valid when enclosed within an iteration statement, such as foreach.  When we switch to Parallel.ForEach, we’re no longer within an iteration statement – we’re a delegate running in a method. This needs to be handled slightly differently when parallelized.  Instead of using the break statement, we need to utilize a new class in the Task Parallel Library: ParallelLoopState.  The ParallelLoopState class is intended to allow concurrently running loop bodies a way to interact with each other, and provides us with a way to break out of a loop.  In order to use this, we will use a different overload of Parallel.ForEach which takes an IEnumerable<T> and an Action<T, ParallelLoopState> instead of an Action<T>.  Using this, we can parallelize the above operation by doing: Parallel.ForEach(customers, (customer, parallelLoopState) => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) parallelLoopState.Break(); else customer.LastEmailContact = DateTime.Now; } }); There are a couple of important points here.  First, we didn’t actually instantiate the ParallelLoopState instance.  It was provided directly to us via the Parallel class.  All we needed to do was change our lambda expression to reflect that we want to use the loop state, and the Parallel class creates an instance for our use.  We also needed to change our logic slightly when we call Break().  Since Break() doesn’t stop the program flow within our block, we needed to add an else case to only set the property in customer when we succeeded.  This same technique can be used to break out of a Parallel.For loop. That being said, there is a huge difference between using ParallelLoopState to cause early termination and to use break in a standard iteration statement.  When dealing with a loop serially, break will immediately terminate the processing within the closest enclosing loop statement.  Calling ParallelLoopState.Break(), however, has a very different behavior. The issue is that, now, we’re no longer processing one element at a time.  If we break in one of our threads, there are other threads that will likely still be executing.  This leads to an important observation about termination of parallel code: Early termination in parallel routines is not immediate.  Code will continue to run after you request a termination. This may seem problematic at first, but it is something you just need to keep in mind while designing your routine.  ParallelLoopState.Break() should be thought of as a request.  We are telling the runtime that no elements that were in the collection past the element we’re currently processing need to be processed, and leaving it up to the runtime to decide how to handle this as gracefully as possible.  Although this may seem problematic at first, it is a good thing.  If the runtime tried to immediately stop processing, many of our elements would be partially processed.  It would be like putting a return statement in a random location throughout our loop body – which could have horrific consequences to our code’s maintainability. In order to understand and effectively write parallel routines, we, as developers, need a subtle, but profound shift in our thinking.  We can no longer think in terms of sequential processes, but rather need to think in terms of requests to the system that may be handled differently than we’d first expect.  This is more natural to developers who have dealt with asynchronous models previously, but is an important distinction when moving to concurrent programming models. As an example, I’ll discuss the Break() method.  ParallelLoopState.Break() functions in a way that may be unexpected at first.  When you call Break() from a loop body, the runtime will continue to process all elements of the collection that were found prior to the element that was being processed when the Break() method was called.  This is done to keep the behavior of the Break() method as close to the behavior of the break statement as possible. We can see the behavior in this simple code: var collection = Enumerable.Range(0, 20); var pResult = Parallel.ForEach(collection, (element, state) => { if (element > 10) { Console.WriteLine("Breaking on {0}", element); state.Break(); } Console.WriteLine(element); }); If we run this, we get a result that may seem unexpected at first: 0 2 1 5 6 3 4 10 Breaking on 11 11 Breaking on 12 12 9 Breaking on 13 13 7 8 Breaking on 15 15 What is occurring here is that we loop until we find the first element where the element is greater than 10.  In this case, this was found, the first time, when one of our threads reached element 11.  It requested that the loop stop by calling Break() at this point.  However, the loop continued processing until all of the elements less than 11 were completed, then terminated.  This means that it will guarantee that elements 9, 7, and 8 are completed before it stops processing.  You can see our other threads that were running each tried to break as well, but since Break() was called on the element with a value of 11, it decides which elements (0-10) must be processed. If this behavior is not desirable, there is another option.  Instead of calling ParallelLoopState.Break(), you can call ParallelLoopState.Stop().  The Stop() method requests that the runtime terminate as soon as possible , without guaranteeing that any other elements are processed.  Stop() will not stop the processing within an element, so elements already being processed will continue to be processed.  It will prevent new elements, even ones found earlier in the collection, from being processed.  Also, when Stop() is called, the ParallelLoopState’s IsStopped property will return true.  This lets longer running processes poll for this value, and return after performing any necessary cleanup. The basic rule of thumb for choosing between Break() and Stop() is the following. Use ParallelLoopState.Stop() when possible, since it terminates more quickly.  This is particularly useful in situations where you are searching for an element or a condition in the collection.  Once you’ve found it, you do not need to do any other processing, so Stop() is more appropriate. Use ParallelLoopState.Break() if you need to more closely match the behavior of the C# break statement. Both methods behave differently than our C# break statement.  Unfortunately, when parallelizing a routine, more thought and care needs to be put into every aspect of your routine than you may otherwise expect.  This is due to my second observation: Parallelizing a routine will almost always change its behavior. This sounds crazy at first, but it’s a concept that’s so simple its easy to forget.  We’re purposely telling the system to process more than one thing at the same time, which means that the sequence in which things get processed is no longer deterministic.  It is easy to change the behavior of your routine in very subtle ways by introducing parallelism.  Often, the changes are not avoidable, even if they don’t have any adverse side effects.  This leads to my final observation for this post: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • Parallelism in .NET – Part 7, Some Differences between PLINQ and LINQ to Objects

    - by Reed
    In my previous post on Declarative Data Parallelism, I mentioned that PLINQ extends LINQ to Objects to support parallel operations.  Although nearly all of the same operations are supported, there are some differences between PLINQ and LINQ to Objects.  By introducing Parallelism to our declarative model, we add some extra complexity.  This, in turn, adds some extra requirements that must be addressed. In order to illustrate the main differences, and why they exist, let’s begin by discussing some differences in how the two technologies operate, and look at the underlying types involved in LINQ to Objects and PLINQ . LINQ to Objects is mainly built upon a single class: Enumerable.  The Enumerable class is a static class that defines a large set of extension methods, nearly all of which work upon an IEnumerable<T>.  Many of these methods return a new IEnumerable<T>, allowing the methods to be chained together into a fluent style interface.  This is what allows us to write statements that chain together, and lead to the nice declarative programming model of LINQ: double min = collection .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Other LINQ variants work in a similar fashion.  For example, most data-oriented LINQ providers are built upon an implementation of IQueryable<T>, which allows the database provider to turn a LINQ statement into an underlying SQL query, to be performed directly on the remote database. PLINQ is similar, but instead of being built upon the Enumerable class, most of PLINQ is built upon a new static class: ParallelEnumerable.  When using PLINQ, you typically begin with any collection which implements IEnumerable<T>, and convert it to a new type using an extension method defined on ParallelEnumerable: AsParallel().  This method takes any IEnumerable<T>, and converts it into a ParallelQuery<T>, the core class for PLINQ.  There is a similar ParallelQuery class for working with non-generic IEnumerable implementations. This brings us to our first subtle, but important difference between PLINQ and LINQ – PLINQ always works upon specific types, which must be explicitly created. Typically, the type you’ll use with PLINQ is ParallelQuery<T>, but it can sometimes be a ParallelQuery or an OrderedParallelQuery<T>.  Instead of dealing with an interface, implemented by an unknown class, we’re dealing with a specific class type.  This works seamlessly from a usage standpoint – ParallelQuery<T> implements IEnumerable<T>, so you can always “switch back” to an IEnumerable<T>.  The difference only arises at the beginning of our parallelization.  When we’re using LINQ, and we want to process a normal collection via PLINQ, we need to explicitly convert the collection into a ParallelQuery<T> by calling AsParallel().  There is an important consideration here – AsParallel() does not need to be called on your specific collection, but rather any IEnumerable<T>.  This allows you to place it anywhere in the chain of methods involved in a LINQ statement, not just at the beginning.  This can be useful if you have an operation which will not parallelize well or is not thread safe.  For example, the following is perfectly valid, and similar to our previous examples: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); However, if SomeOperation() is not thread safe, we could just as easily do: double min = collection .Select(item => item.SomeOperation()) .AsParallel() .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); In this case, we’re using standard LINQ to Objects for the Select(…) method, then converting the results of that map routine to a ParallelQuery<T>, and processing our filter (the Where method) and our aggregation (the Min method) in parallel. PLINQ also provides us with a way to convert a ParallelQuery<T> back into a standard IEnumerable<T>, forcing sequential processing via standard LINQ to Objects.  If SomeOperation() was thread-safe, but PerformComputation() was not thread-safe, we would need to handle this by using the AsEnumerable() method: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .AsEnumerable() .Min(item => item.PerformComputation()); Here, we’re converting our collection into a ParallelQuery<T>, doing our map operation (the Select(…) method) and our filtering in parallel, then converting the collection back into a standard IEnumerable<T>, which causes our aggregation via Min() to be performed sequentially. This could also be written as two statements, as well, which would allow us to use the language integrated syntax for the first portion: var tempCollection = from item in collection.AsParallel() let e = item.SomeOperation() where (e.SomeProperty > 6 && e.SomeProperty < 24) select e; double min = tempCollection.AsEnumerable().Min(item => item.PerformComputation()); This allows us to use the standard LINQ style language integrated query syntax, but control whether it’s performed in parallel or serial by adding AsParallel() and AsEnumerable() appropriately. The second important difference between PLINQ and LINQ deals with order preservation.  PLINQ, by default, does not preserve the order of of source collection. This is by design.  In order to process a collection in parallel, the system needs to naturally deal with multiple elements at the same time.  Maintaining the original ordering of the sequence adds overhead, which is, in many cases, unnecessary.  Therefore, by default, the system is allowed to completely change the order of your sequence during processing.  If you are doing a standard query operation, this is usually not an issue.  However, there are times when keeping a specific ordering in place is important.  If this is required, you can explicitly request the ordering be preserved throughout all operations done on a ParallelQuery<T> by using the AsOrdered() extension method.  This will cause our sequence ordering to be preserved. For example, suppose we wanted to take a collection, perform an expensive operation which converts it to a new type, and display the first 100 elements.  In LINQ to Objects, our code might look something like: // Using IEnumerable<SourceClass> collection IEnumerable<ResultClass> results = collection .Select(e => e.CreateResult()) .Take(100); If we just converted this to a parallel query naively, like so: IEnumerable<ResultClass> results = collection .AsParallel() .Select(e => e.CreateResult()) .Take(100); We could very easily get a very different, and non-reproducable, set of results, since the ordering of elements in the input collection is not preserved.  To get the same results as our original query, we need to use: IEnumerable<ResultClass> results = collection .AsParallel() .AsOrdered() .Select(e => e.CreateResult()) .Take(100); This requests that PLINQ process our sequence in a way that verifies that our resulting collection is ordered as if it were processed serially.  This will cause our query to run slower, since there is overhead involved in maintaining the ordering.  However, in this case, it is required, since the ordering is required for correctness. PLINQ is incredibly useful.  It allows us to easily take nearly any LINQ to Objects query and run it in parallel, using the same methods and syntax we’ve used previously.  There are some important differences in operation that must be considered, however – it is not a free pass to parallelize everything.  When using PLINQ in order to parallelize your routines declaratively, the same guideline I mentioned before still applies: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • Parallelism in .NET – Part 9, Configuration in PLINQ and TPL

    - by Reed
    Parallel LINQ and the Task Parallel Library contain many options for configuration.  Although the default configuration options are often ideal, there are times when customizing the behavior is desirable.  Both frameworks provide full configuration support. When working with Data Parallelism, there is one primary configuration option we often need to control – the number of threads we want the system to use when parallelizing our routine.  By default, PLINQ and the TPL both use the ThreadPool to schedule tasks.  Given the major improvements in the ThreadPool in CLR 4, this default behavior is often ideal.  However, there are times that the default behavior is not appropriate.  For example, if you are working on multiple threads simultaneously, and want to schedule parallel operations from within both threads, you might want to consider restricting each parallel operation to using a subset of the processing cores of the system.  Not doing this might over-parallelize your routine, which leads to inefficiencies from having too many context switches. In the Task Parallel Library, configuration is handled via the ParallelOptions class.  All of the methods of the Parallel class have an overload which accepts a ParallelOptions argument. We configure the Parallel class by setting the ParallelOptions.MaxDegreeOfParallelism property.  For example, let’s revisit one of the simple data parallel examples from Part 2: Parallel.For(0, pixelData.GetUpperBound(0), row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re looping through an image, and calling a method on each pixel in the image.  If this was being done on a separate thread, and we knew another thread within our system was going to be doing a similar operation, we likely would want to restrict this to using half of the cores on the system.  This could be accomplished easily by doing: var options = new ParallelOptions(); options.MaxDegreeOfParallelism = Math.Max(Environment.ProcessorCount / 2, 1); Parallel.For(0, pixelData.GetUpperBound(0), options, row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); Now, we’re restricting this routine to using no more than half the cores in our system.  Note that I included a check to prevent a single core system from supplying zero; without this check, we’d potentially cause an exception.  I also did not hard code a specific value for the MaxDegreeOfParallelism property.  One of our goals when parallelizing a routine is allowing it to scale on better hardware.  Specifying a hard-coded value would contradict that goal. Parallel LINQ also supports configuration, and in fact, has quite a few more options for configuring the system.  The main configuration option we most often need is the same as our TPL option: we need to supply the maximum number of processing threads.  In PLINQ, this is done via a new extension method on ParallelQuery<T>: ParallelEnumerable.WithDegreeOfParallelism. Let’s revisit our declarative data parallelism sample from Part 6: double min = collection.AsParallel().Min(item => item.PerformComputation()); Here, we’re performing a computation on each element in the collection, and saving the minimum value of this operation.  If we wanted to restrict this to a limited number of threads, we would add our new extension method: int maxThreads = Math.Max(Environment.ProcessorCount / 2, 1); double min = collection .AsParallel() .WithDegreeOfParallelism(maxThreads) .Min(item => item.PerformComputation()); This automatically restricts the PLINQ query to half of the threads on the system. PLINQ provides some additional configuration options.  By default, PLINQ will occasionally revert to processing a query in parallel.  This occurs because many queries, if parallelized, typically actually cause an overall slowdown compared to a serial processing equivalent.  By analyzing the “shape” of the query, PLINQ often decides to run a query serially instead of in parallel.  This can occur for (taken from MSDN): Queries that contain a Select, indexed Where, indexed SelectMany, or ElementAt clause after an ordering or filtering operator that has removed or rearranged original indices. Queries that contain a Take, TakeWhile, Skip, SkipWhile operator and where indices in the source sequence are not in the original order. Queries that contain Zip or SequenceEquals, unless one of the data sources has an originally ordered index and the other data source is indexable (i.e. an array or IList(T)). Queries that contain Concat, unless it is applied to indexable data sources. Queries that contain Reverse, unless applied to an indexable data source. If the specific query follows these rules, PLINQ will run the query on a single thread.  However, none of these rules look at the specific work being done in the delegates, only at the “shape” of the query.  There are cases where running in parallel may still be beneficial, even if the shape is one where it typically parallelizes poorly.  In these cases, you can override the default behavior by using the WithExecutionMode extension method.  This would be done like so: var reversed = collection .AsParallel() .WithExecutionMode(ParallelExecutionMode.ForceParallelism) .Select(i => i.PerformComputation()) .Reverse(); Here, the default behavior would be to not parallelize the query unless collection implemented IList<T>.  We can force this to run in parallel by adding the WithExecutionMode extension method in the method chain. Finally, PLINQ has the ability to configure how results are returned.  When a query is filtering or selecting an input collection, the results will need to be streamed back into a single IEnumerable<T> result.  For example, the method above returns a new, reversed collection.  In this case, the processing of the collection will be done in parallel, but the results need to be streamed back to the caller serially, so they can be enumerated on a single thread. This streaming introduces overhead.  IEnumerable<T> isn’t designed with thread safety in mind, so the system needs to handle merging the parallel processes back into a single stream, which introduces synchronization issues.  There are two extremes of how this could be accomplished, but both extremes have disadvantages. The system could watch each thread, and whenever a thread produces a result, take that result and send it back to the caller.  This would mean that the calling thread would have access to the data as soon as data is available, which is the benefit of this approach.  However, it also means that every item is introducing synchronization overhead, since each item needs to be merged individually. On the other extreme, the system could wait until all of the results from all of the threads were ready, then push all of the results back to the calling thread in one shot.  The advantage here is that the least amount of synchronization is added to the system, which means the query will, on a whole, run the fastest.  However, the calling thread will have to wait for all elements to be processed, so this could introduce a long delay between when a parallel query begins and when results are returned. The default behavior in PLINQ is actually between these two extremes.  By default, PLINQ maintains an internal buffer, and chooses an optimal buffer size to maintain.  Query results are accumulated into the buffer, then returned in the IEnumerable<T> result in chunks.  This provides reasonably fast access to the results, as well as good overall throughput, in most scenarios. However, if we know the nature of our algorithm, we may decide we would prefer one of the other extremes.  This can be done by using the WithMergeOptions extension method.  For example, if we know that our PerformComputation() routine is very slow, but also variable in runtime, we may want to retrieve results as they are available, with no bufferring.  This can be done by changing our above routine to: var reversed = collection .AsParallel() .WithExecutionMode(ParallelExecutionMode.ForceParallelism) .WithMergeOptions(ParallelMergeOptions.NotBuffered) .Select(i => i.PerformComputation()) .Reverse(); On the other hand, if are already on a background thread, and we want to allow the system to maximize its speed, we might want to allow the system to fully buffer the results: var reversed = collection .AsParallel() .WithExecutionMode(ParallelExecutionMode.ForceParallelism) .WithMergeOptions(ParallelMergeOptions.FullyBuffered) .Select(i => i.PerformComputation()) .Reverse(); Notice, also, that you can specify multiple configuration options in a parallel query.  By chaining these extension methods together, we generate a query that will always run in parallel, and will always complete before making the results available in our IEnumerable<T>.

    Read the article

  • Parallelism in .NET – Part 2, Simple Imperative Data Parallelism

    - by Reed
    In my discussion of Decomposition of the problem space, I mentioned that Data Decomposition is often the simplest abstraction to use when trying to parallelize a routine.  If a problem can be decomposed based off the data, we will often want to use what MSDN refers to as Data Parallelism as our strategy for implementing our routine.  The Task Parallel Library in .NET 4 makes implementing Data Parallelism, for most cases, very simple. Data Parallelism is the main technique we use to parallelize a routine which can be decomposed based off data.  Data Parallelism refers to taking a single collection of data, and having a single operation be performed concurrently on elements in the collection.  One side note here: Data Parallelism is also sometimes referred to as the Loop Parallelism Pattern or Loop-level Parallelism.  In general, for this series, I will try to use the terminology used in the MSDN Documentation for the Task Parallel Library.  This should make it easier to investigate these topics in more detail. Once we’ve determined we have a problem that, potentially, can be decomposed based on data, implementation using Data Parallelism in the TPL is quite simple.  Let’s take our example from the Data Decomposition discussion – a simple contrast stretching filter.  Here, we have a collection of data (pixels), and we need to run a simple operation on each element of the pixel.  Once we know the minimum and maximum values, we most likely would have some simple code like the following: for (int row=0; row < pixelData.GetUpperBound(0); ++row) { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This simple routine loops through a two dimensional array of pixelData, and calls the AdjustContrast routine on each pixel. As I mentioned, when you’re decomposing a problem space, most iteration statements are potentially candidates for data decomposition.  Here, we’re using two for loops – one looping through rows in the image, and a second nested loop iterating through the columns.  We then perform one, independent operation on each element based on those loop positions. This is a prime candidate – we have no shared data, no dependencies on anything but the pixel which we want to change.  Since we’re using a for loop, we can easily parallelize this using the Parallel.For method in the TPL: Parallel.For(0, pixelData.GetUpperBound(0), row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); Here, by simply changing our first for loop to a call to Parallel.For, we can parallelize this portion of our routine.  Parallel.For works, as do many methods in the TPL, by creating a delegate and using it as an argument to a method.  In this case, our for loop iteration block becomes a delegate creating via a lambda expression.  This lets you write code that, superficially, looks similar to the familiar for loop, but functions quite differently at runtime. We could easily do this to our second for loop as well, but that may not be a good idea.  There is a balance to be struck when writing parallel code.  We want to have enough work items to keep all of our processors busy, but the more we partition our data, the more overhead we introduce.  In this case, we have an image of data – most likely hundreds of pixels in both dimensions.  By just parallelizing our first loop, each row of pixels can be run as a single task.  With hundreds of rows of data, we are providing fine enough granularity to keep all of our processors busy. If we parallelize both loops, we’re potentially creating millions of independent tasks.  This introduces extra overhead with no extra gain, and will actually reduce our overall performance.  This leads to my first guideline when writing parallel code: Partition your problem into enough tasks to keep each processor busy throughout the operation, but not more than necessary to keep each processor busy. Also note that I parallelized the outer loop.  I could have just as easily partitioned the inner loop.  However, partitioning the inner loop would have led to many more discrete work items, each with a smaller amount of work (operate on one pixel instead of one row of pixels).  My second guideline when writing parallel code reflects this: Partition your problem in a way to place the most work possible into each task. This typically means, in practice, that you will want to parallelize the routine at the “highest” point possible in the routine, typically the outermost loop.  If you’re looking at parallelizing methods which call other methods, you’ll want to try to partition your work high up in the stack – as you get into lower level methods, the performance impact of parallelizing your routines may not overcome the overhead introduced. Parallel.For works great for situations where we know the number of elements we’re going to process in advance.  If we’re iterating through an IList<T> or an array, this is a typical approach.  However, there are other iteration statements common in C#.  In many situations, we’ll use foreach instead of a for loop.  This can be more understandable and easier to read, but also has the advantage of working with collections which only implement IEnumerable<T>, where we do not know the number of elements involved in advance. As an example, lets take the following situation.  Say we have a collection of Customers, and we want to iterate through each customer, check some information about the customer, and if a certain case is met, send an email to the customer and update our instance to reflect this change.  Normally, this might look something like: foreach(var customer in customers) { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } } Here, we’re doing a fair amount of work for each customer in our collection, but we don’t know how many customers exist.  If we assume that theStore.GetLastContact(customer) and theStore.EmailCustomer(customer) are both side-effect free, thread safe operations, we could parallelize this using Parallel.ForEach: Parallel.ForEach(customers, customer => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } }); Just like Parallel.For, we rework our loop into a method call accepting a delegate created via a lambda expression.  This keeps our new code very similar to our original iteration statement, however, this will now execute in parallel.  The same guidelines apply with Parallel.ForEach as with Parallel.For. The other iteration statements, do and while, do not have direct equivalents in the Task Parallel Library.  These, however, are very easy to implement using Parallel.ForEach and the yield keyword. Most applications can benefit from implementing some form of Data Parallelism.  Iterating through collections and performing “work” is a very common pattern in nearly every application.  When the problem can be decomposed by data, we often can parallelize the workload by merely changing foreach statements to Parallel.ForEach method calls, and for loops to Parallel.For method calls.  Any time your program operates on a collection, and does a set of work on each item in the collection where that work is not dependent on other information, you very likely have an opportunity to parallelize your routine.

    Read the article

  • Parallelism in .NET – Part 4, Imperative Data Parallelism: Aggregation

    - by Reed
    In the article on simple data parallelism, I described how to perform an operation on an entire collection of elements in parallel.  Often, this is not adequate, as the parallel operation is going to be performing some form of aggregation. Simple examples of this might include taking the sum of the results of processing a function on each element in the collection, or finding the minimum of the collection given some criteria.  This can be done using the techniques described in simple data parallelism, however, special care needs to be taken into account to synchronize the shared data appropriately.  The Task Parallel Library has tools to assist in this synchronization. The main issue with aggregation when parallelizing a routine is that you need to handle synchronization of data.  Since multiple threads will need to write to a shared portion of data.  Suppose, for example, that we wanted to parallelize a simple loop that looked for the minimum value within a dataset: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This seems like a good candidate for parallelization, but there is a problem here.  If we just wrap this into a call to Parallel.ForEach, we’ll introduce a critical race condition, and get the wrong answer.  Let’s look at what happens here: // Buggy code! Do not use! double min = double.MaxValue; Parallel.ForEach(collection, item => { double value = item.PerformComputation(); min = System.Math.Min(min, value); }); This code has a fatal flaw: min will be checked, then set, by multiple threads simultaneously.  Two threads may perform the check at the same time, and set the wrong value for min.  Say we get a value of 1 in thread 1, and a value of 2 in thread 2, and these two elements are the first two to run.  If both hit the min check line at the same time, both will determine that min should change, to 1 and 2 respectively.  If element 1 happens to set the variable first, then element 2 sets the min variable, we’ll detect a min value of 2 instead of 1.  This can lead to wrong answers. Unfortunately, fixing this, with the Parallel.ForEach call we’re using, would require adding locking.  We would need to rewrite this like: // Safe, but slow double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach(collection, item => { double value = item.PerformComputation(); lock(syncObject) min = System.Math.Min(min, value); }); This will potentially add a huge amount of overhead to our calculation.  Since we can potentially block while waiting on the lock for every single iteration, we will most likely slow this down to where it is actually quite a bit slower than our serial implementation.  The problem is the lock statement – any time you use lock(object), you’re almost assuring reduced performance in a parallel situation.  This leads to two observations I’ll make: When parallelizing a routine, try to avoid locks. That being said: Always add any and all required synchronization to avoid race conditions. These two observations tend to be opposing forces – we often need to synchronize our algorithms, but we also want to avoid the synchronization when possible.  Looking at our routine, there is no way to directly avoid this lock, since each element is potentially being run on a separate thread, and this lock is necessary in order for our routine to function correctly every time. However, this isn’t the only way to design this routine to implement this algorithm.  Realize that, although our collection may have thousands or even millions of elements, we have a limited number of Processing Elements (PE).  Processing Element is the standard term for a hardware element which can process and execute instructions.  This typically is a core in your processor, but many modern systems have multiple hardware execution threads per core.  The Task Parallel Library will not execute the work for each item in the collection as a separate work item. Instead, when Parallel.ForEach executes, it will partition the collection into larger “chunks” which get processed on different threads via the ThreadPool.  This helps reduce the threading overhead, and help the overall speed.  In general, the Parallel class will only use one thread per PE in the system. Given the fact that there are typically fewer threads than work items, we can rethink our algorithm design.  We can parallelize our algorithm more effectively by approaching it differently.  Because the basic aggregation we are doing here (Min) is communitive, we do not need to perform this in a given order.  We knew this to be true already – otherwise, we wouldn’t have been able to parallelize this routine in the first place.  With this in mind, we can treat each thread’s work independently, allowing each thread to serially process many elements with no locking, then, after all the threads are complete, “merge” together the results. This can be accomplished via a different set of overloads in the Parallel class: Parallel.ForEach<TSource,TLocal>.  The idea behind these overloads is to allow each thread to begin by initializing some local state (TLocal).  The thread will then process an entire set of items in the source collection, providing that state to the delegate which processes an individual item.  Finally, at the end, a separate delegate is run which allows you to handle merging that local state into your final results. To rewriting our routine using Parallel.ForEach<TSource,TLocal>, we need to provide three delegates instead of one.  The most basic version of this function is declared as: public static ParallelLoopResult ForEach<TSource, TLocal>( IEnumerable<TSource> source, Func<TLocal> localInit, Func<TSource, ParallelLoopState, TLocal, TLocal> body, Action<TLocal> localFinally ) The first delegate (the localInit argument) is defined as Func<TLocal>.  This delegate initializes our local state.  It should return some object we can use to track the results of a single thread’s operations. The second delegate (the body argument) is where our main processing occurs, although now, instead of being an Action<T>, we actually provide a Func<TSource, ParallelLoopState, TLocal, TLocal> delegate.  This delegate will receive three arguments: our original element from the collection (TSource), a ParallelLoopState which we can use for early termination, and the instance of our local state we created (TLocal).  It should do whatever processing you wish to occur per element, then return the value of the local state after processing is completed. The third delegate (the localFinally argument) is defined as Action<TLocal>.  This delegate is passed our local state after it’s been processed by all of the elements this thread will handle.  This is where you can merge your final results together.  This may require synchronization, but now, instead of synchronizing once per element (potentially millions of times), you’ll only have to synchronize once per thread, which is an ideal situation. Now that I’ve explained how this works, lets look at the code: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Although this is a bit more complicated than the previous version, it is now both thread-safe, and has minimal locking.  This same approach can be used by Parallel.For, although now, it’s Parallel.For<TLocal>.  When working with Parallel.For<TLocal>, you use the same triplet of delegates, with the same purpose and results. Also, many times, you can completely avoid locking by using a method of the Interlocked class to perform the final aggregation in an atomic operation.  The MSDN example demonstrating this same technique using Parallel.For uses the Interlocked class instead of a lock, since they are doing a sum operation on a long variable, which is possible via Interlocked.Add. By taking advantage of local state, we can use the Parallel class methods to parallelize algorithms such as aggregation, which, at first, may seem like poor candidates for parallelization.  Doing so requires careful consideration, and often requires a slight redesign of the algorithm, but the performance gains can be significant if handled in a way to avoid excessive synchronization.

    Read the article

  • Parallelism in .NET – Part 11, Divide and Conquer via Parallel.Invoke

    - by Reed
    Many algorithms are easily written to work via recursion.  For example, most data-oriented tasks where a tree of data must be processed are much more easily handled by starting at the root, and recursively “walking” the tree.  Some algorithms work this way on flat data structures, such as arrays, as well.  This is a form of divide and conquer: an algorithm design which is based around breaking up a set of work recursively, “dividing” the total work in each recursive step, and “conquering” the work when the remaining work is small enough to be solved easily. Recursive algorithms, especially ones based on a form of divide and conquer, are often a very good candidate for parallelization. This is apparent from a common sense standpoint.  Since we’re dividing up the total work in the algorithm, we have an obvious, built-in partitioning scheme.  Once partitioned, the data can be worked upon independently, so there is good, clean isolation of data. Implementing this type of algorithm is fairly simple.  The Parallel class in .NET 4 includes a method suited for this type of operation: Parallel.Invoke.  This method works by taking any number of delegates defined as an Action, and operating them all in parallel.  The method returns when every delegate has completed: Parallel.Invoke( () => { Console.WriteLine("Action 1 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); }, () => { Console.WriteLine("Action 2 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); }, () => { Console.WriteLine("Action 3 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); } ); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Running this simple example demonstrates the ease of using this method.  For example, on my system, I get three separate thread IDs when running the above code.  By allowing any number of delegates to be executed directly, concurrently, the Parallel.Invoke method provides us an easy way to parallelize any algorithm based on divide and conquer.  We can divide our work in each step, and execute each task in parallel, recursively. For example, suppose we wanted to implement our own quicksort routine.  The quicksort algorithm can be designed based on divide and conquer.  In each iteration, we pick a pivot point, and use that to partition the total array.  We swap the elements around the pivot, then recursively sort the lists on each side of the pivot.  For example, let’s look at this simple, sequential implementation of quicksort: public static void QuickSort<T>(T[] array) where T : IComparable<T> { QuickSortInternal(array, 0, array.Length - 1); } private static void QuickSortInternal<T>(T[] array, int left, int right) where T : IComparable<T> { if (left >= right) { return; } SwapElements(array, left, (left + right) / 2); int last = left; for (int current = left + 1; current <= right; ++current) { if (array[current].CompareTo(array[left]) < 0) { ++last; SwapElements(array, last, current); } } SwapElements(array, left, last); QuickSortInternal(array, left, last - 1); QuickSortInternal(array, last + 1, right); } static void SwapElements<T>(T[] array, int i, int j) { T temp = array[i]; array[i] = array[j]; array[j] = temp; } Here, we implement the quicksort algorithm in a very common, divide and conquer approach.  Running this against the built-in Array.Sort routine shows that we get the exact same answers (although the framework’s sort routine is slightly faster).  On my system, for example, I can use framework’s sort to sort ten million random doubles in about 7.3s, and this implementation takes about 9.3s on average. Looking at this routine, though, there is a clear opportunity to parallelize.  At the end of QuickSortInternal, we recursively call into QuickSortInternal with each partition of the array after the pivot is chosen.  This can be rewritten to use Parallel.Invoke by simply changing it to: // Code above is unchanged... SwapElements(array, left, last); Parallel.Invoke( () => QuickSortInternal(array, left, last - 1), () => QuickSortInternal(array, last + 1, right) ); } This routine will now run in parallel.  When executing, we now see the CPU usage across all cores spike while it executes.  However, there is a significant problem here – by parallelizing this routine, we took it from an execution time of 9.3s to an execution time of approximately 14 seconds!  We’re using more resources as seen in the CPU usage, but the overall result is a dramatic slowdown in overall processing time. This occurs because parallelization adds overhead.  Each time we split this array, we spawn two new tasks to parallelize this algorithm!  This is far, far too many tasks for our cores to operate upon at a single time.  In effect, we’re “over-parallelizing” this routine.  This is a common problem when working with divide and conquer algorithms, and leads to an important observation: When parallelizing a recursive routine, take special care not to add more tasks than necessary to fully utilize your system. This can be done with a few different approaches, in this case.  Typically, the way to handle this is to stop parallelizing the routine at a certain point, and revert back to the serial approach.  Since the first few recursions will all still be parallelized, our “deeper” recursive tasks will be running in parallel, and can take full advantage of the machine.  This also dramatically reduces the overhead added by parallelizing, since we’re only adding overhead for the first few recursive calls.  There are two basic approaches we can take here.  The first approach would be to look at the total work size, and if it’s smaller than a specific threshold, revert to our serial implementation.  In this case, we could just check right-left, and if it’s under a threshold, call the methods directly instead of using Parallel.Invoke. The second approach is to track how “deep” in the “tree” we are currently at, and if we are below some number of levels, stop parallelizing.  This approach is a more general-purpose approach, since it works on routines which parse trees as well as routines working off of a single array, but may not work as well if a poor partitioning strategy is chosen or the tree is not balanced evenly. This can be written very easily.  If we pass a maxDepth parameter into our internal routine, we can restrict the amount of times we parallelize by changing the recursive call to: // Code above is unchanged... SwapElements(array, left, last); if (maxDepth < 1) { QuickSortInternal(array, left, last - 1, maxDepth); QuickSortInternal(array, last + 1, right, maxDepth); } else { --maxDepth; Parallel.Invoke( () => QuickSortInternal(array, left, last - 1, maxDepth), () => QuickSortInternal(array, last + 1, right, maxDepth)); } We no longer allow this to parallelize indefinitely – only to a specific depth, at which time we revert to a serial implementation.  By starting the routine with a maxDepth equal to Environment.ProcessorCount, we can restrict the total amount of parallel operations significantly, but still provide adequate work for each processing core. With this final change, my timings are much better.  On average, I get the following timings: Framework via Array.Sort: 7.3 seconds Serial Quicksort Implementation: 9.3 seconds Naive Parallel Implementation: 14 seconds Parallel Implementation Restricting Depth: 4.7 seconds Finally, we are now faster than the framework’s Array.Sort implementation.

    Read the article

  • Dual Boot issues with Windows 7 and Ubuntu

    - by Michael
    I'm finding myself in a rather unique situation. I've read through just about every resource I can find about this and while things have helped me understand some background, I haven't yet been able to find a solution. So I'm asking here. I originally had just a Windows 7 64-bit OS installation on my desktop. Learning that I couldn't do anything with Apache, PHP and MySql from within a 64-bit system, I did some research and found out that I could use Ubuntu. I've installed the latest version: 11.04. I created a CD to install Ubuntu from and the install went just fine. I installed it side-by-side with Windows 7. I can boot into Ubuntu just fine through the dual-boot option. When I reboot to load Windows though, the Grub2 list shows Windows 7 (loader) and when I select this option the Windows System Recovery loads instead of the actual OS. I haven't made it past there because I didn't know what to do. I just shut the computer down and rebooted into Ubuntu. I've been working for the last hour and a half to try to figure out how to boot into the Windows 7 OS and I haven't got a clue. While I'm somewhat proficient with Windows 7, I'm totally new to Ubuntu, so if you do know what needs to happen, please keep it simple enough that I'll be able to understand. Thanks for all your help in advance. Here's the results after using the Boot Info Script: Boot Info Script 0.55 dated February 15th, 2010 ============================= Boot Info Summary: ============================== => Grub 2 is installed in the MBR of /dev/sda and looks on the same drive in partition #5 for cbh. => Windows is installed in the MBR of /dev/sdb => Grub 2 is installed in the MBR of /dev/mapper/pdc_bdadcfbdif and looks on the same drive in partition #5 for cbh. sda1: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Mounting failed: fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy sda2: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Mounting failed: fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy sda3: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Mounting failed: fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy sdb1: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files/dirs: /bootmgr /Boot/BCD sdb2: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files/dirs: sdb3: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files/dirs: /bootmgr /boot/BCD sdb4: _________________________________________________________________________ File system: Extended Partition Boot sector type: - Boot sector info: sdb5: _________________________________________________________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Ubuntu 11.04 Boot files/dirs: /boot/grub/grub.cfg /etc/fstab /boot/grub/core.img sdb6: _________________________________________________________________________ File system: swap Boot sector type: - Boot sector info: pdc_bdadcfbdif1: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files/dirs: /bootmgr /Boot/BCD pdc_bdadcfbdif2: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Windows 7 Boot files/dirs: /bootmgr /Boot/BCD /Windows/System32/winload.exe pdc_bdadcfbdif3: _________________________________________________________________________ File system: Boot sector type: Unknown Boot sector info: Mounting failed: fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy mount: unknown filesystem type '' =========================== Drive/Partition Info: ============================= Drive: sda ___________________ _____________________________________________________ Disk /dev/sda: 750.2 GB, 750156374016 bytes 255 heads, 63 sectors/track, 91201 cylinders, total 1465149168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start End Size Id System /dev/sda1 * 2,048 206,847 204,800 7 HPFS/NTFS /dev/sda2 206,911 1,440,372,735 1,440,165,825 7 HPFS/NTFS /dev/sda3 1,440,372,736 1,464,856,575 24,483,840 7 HPFS/NTFS Drive: sdb ___________________ _____________________________________________________ Disk /dev/sdb: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start End Size Id System /dev/sdb1 * 2,048 206,847 204,800 7 HPFS/NTFS /dev/sdb2 206,911 1,342,554,688 1,342,347,778 7 HPFS/NTFS /dev/sdb3 1,930,344,448 1,953,521,663 23,177,216 7 HPFS/NTFS /dev/sdb4 1,342,556,158 1,930,344,447 587,788,290 5 Extended /dev/sdb5 1,342,556,160 1,896,806,399 554,250,240 83 Linux /dev/sdb6 1,896,808,448 1,930,344,447 33,536,000 82 Linux swap / Solaris Drive: pdc_bdadcfbdif ___________________ _____________________________________________________ Disk /dev/mapper/pdc_bdadcfbdif: 750.0 GB, 749999947776 bytes 255 heads, 63 sectors/track, 91182 cylinders, total 1464843648 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start End Size Id System /dev/mapper/pdc_bdadcfbdif1 * 2,048 206,847 204,800 7 HPFS/NTFS /dev/mapper/pdc_bdadcfbdif2 206,911 1,440,372,735 1,440,165,825 7 HPFS/NTFS /dev/mapper/pdc_bdadcfbdif3 1,440,372,736 1,464,856,575 24,483,840 7 HPFS/NTFS /dev/mapper/pdc_bdadcfbdif3 ends after the last sector of /dev/mapper/pdc_bdadcfbdif blkid -c /dev/null: ____________________________________________________________ Device UUID TYPE LABEL /dev/mapper/pdc_bdadcfbdif1 888E54CC8E54B482 ntfs SYSTEM /dev/mapper/pdc_bdadcfbdif2 C2766BF6766BEA1D ntfs OS /dev/mapper/pdc_bdadcfbdif: PTTYPE="dos" /dev/sda1 888E54CC8E54B482 ntfs SYSTEM /dev/sda2 C2766BF6766BEA1D ntfs OS /dev/sda3 BE6CA31D6CA2CF87 ntfs HP_RECOVERY /dev/sda promise_fasttrack_raid_member /dev/sdb1 20B65685B6565B7C ntfs SYSTEM /dev/sdb2 B4467A314679F508 ntfs HP /dev/sdb3 6E10B7A410B77227 ntfs FACTORY_IMAGE /dev/sdb4: PTTYPE="dos" /dev/sdb5 266f9801-cf4f-4acc-affa-2092be035f0c ext4 /dev/sdb6 1df35749-a887-45ff-a3de-edd52239847d swap /dev/sdb: PTTYPE="dos" error: /dev/mapper/pdc_bdadcfbdif3: No such file or directory error: /dev/sdc: No medium found error: /dev/sdd: No medium found error: /dev/sde: No medium found error: /dev/sdf: No medium found error: /dev/sdg: No medium found ============================ "mount | grep ^/dev output: =========================== Device Mount_Point Type Options /dev/sdb5 / ext4 (rw,errors=remount-ro,commit=0) =========================== sdb5/boot/grub/grub.cfg: =========================== # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi set default="0" if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { insmod vbe insmod vga insmod video_bochs insmod video_cirrus } insmod part_msdos insmod ext2 set root='(/dev/sdb,msdos5)' search --no-floppy --fs-uuid --set=root 266f9801-cf4f-4acc-affa-2092be035f0c if loadfont /usr/share/grub/unicode.pf2 ; then set gfxmode=auto load_video insmod gfxterm fi terminal_output gfxterm insmod part_msdos insmod ext2 set root='(/dev/sdb,msdos5)' search --no-floppy --fs-uuid --set=root 266f9801-cf4f-4acc-affa-2092be035f0c set locale_dir=($root)/boot/grub/locale set lang=en_US insmod gettext if [ "${recordfail}" = 1 ]; then set timeout=-1 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray if background_color 44,0,30; then clear fi ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### if [ ${recordfail} != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode if [ "$linux_gfx_mode" != "text" ]; then load_video; fi menuentry 'Ubuntu, with Linux 2.6.38-8-generic-pae' --class ubuntu --class gnu-linux --class gnu --class os { recordfail set gfxpayload=$linux_gfx_mode insmod part_msdos insmod ext2 set root='(/dev/sdb,msdos5)' search --no-floppy --fs-uuid --set=root 266f9801-cf4f-4acc-affa-2092be035f0c linux /boot/vmlinuz-2.6.38-8-generic-pae root=UUID=266f9801-cf4f-4acc- affa-2092be035f0c ro quiet splash vt.handoff=7 initrd /boot/initrd.img-2.6.38-8-generic-pae } menuentry 'Ubuntu, with Linux 2.6.38-8-generic-pae (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os { recordfail set gfxpayload=$linux_gfx_mode insmod part_msdos insmod ext2 set root='(/dev/sdb,msdos5)' search --no-floppy --fs-uuid --set=root 266f9801-cf4f-4acc-affa-2092be035f0c echo 'Loading Linux 2.6.38-8-generic-pae ...' linux /boot/vmlinuz-2.6.38-8-generic-pae root=UUID=266f9801-cf4f-4acc-affa-2092be035f0c ro single echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-2.6.38-8-generic-pae } ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { insmod part_msdos insmod ext2 set root='(/dev/sdb,msdos5)' search --no-floppy --fs-uuid --set=root 266f9801-cf4f-4acc-affa-2092be035f0c linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { insmod part_msdos insmod ext2 set root='(/dev/sdb,msdos5)' search --no-floppy --fs-uuid --set=root 266f9801-cf4f-4acc-affa-2092be035f0c linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### menuentry "Windows 7 (loader) (on /dev/sdb1)" --class windows --class os { insmod part_msdos insmod ntfs set root='(/dev/sdb,msdos1)' search --no-floppy --fs-uuid --set=root 20B65685B6565B7C chainloader +1 } menuentry "Windows Recovery Environment (loader) (on /dev/sdb3)" --class windows --class os { insmod part_msdos insmod ntfs set root='(/dev/sdb,msdos3)' search --no-floppy --fs-uuid --set=root 6E10B7A410B77227 drivemap -s (hd0) ${root} chainloader +1 } ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### =============================== sdb5/etc/fstab: =============================== # /etc/fstab: static file system information. # # Use 'blkid -o value -s UUID' to print the universally unique identifier # for a device; this may be used with UUID= as a more robust way to name # devices that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> proc /proc proc nodev,noexec,nosuid 0 0 # / was on /dev/sdb5 during installation UUID=266f9801-cf4f-4acc-affa-2092be035f0c / ext4 errors=remount-ro 0 1 # swap was on /dev/sdb6 during installation UUID=1df35749-a887-45ff-a3de-edd52239847d none swap sw 0 0 =================== sdb5: Location of files loaded by Grub: =================== 900.1GB: boot/grub/core.img 825.0GB: boot/grub/grub.cfg 688.7GB: boot/initrd.img-2.6.38-8-generic-pae 688.0GB: boot/vmlinuz-2.6.38-8-generic-pae 688.7GB: initrd.img 688.0GB: vmlinuz =========================== Unknown MBRs/Boot Sectors/etc ======================= Unknown BootLoader on pdc_bdadcfbdif3 =======Devices which don't seem to have a corresponding hard drive============== sdc sdd sde sdf sdg =============================== StdErr Messages: =============================== ERROR: dos: partition address past end of RAID device hexdump: /dev/mapper/pdc_bdadcfbdif3: No such file or directory hexdump: /dev/mapper/pdc_bdadcfbdif3: No such file or directory ERROR: dos: partition address past end of RAID device

    Read the article

  • CodePlex Daily Summary for Friday, March 05, 2010

    CodePlex Daily Summary for Friday, March 05, 2010New Projects.svn Folders Cleanup Tool: dotSVN Cleanup is a tool that allows you to remove the .svn folders . Just click, browse, say abracadabra ...and the magic is done. Have fun with...Accord: The Accord framework creates an easy we to integrate any Dependency Injection framework into your project, while abstracting the details of your im...Asp.net MVC Lab: Try asp.net mvc outASP.NET Themes management with Webforms: The provided source is an example for how to use themes in ASP.NET Webforms. this source is the "up to date" support for the article I wroteB&W Port Scanner: B&W Port Scanner (formerly Net Inspector) is a fast TCP Port scan utility. The main idea is support of customizable operations to be performed f...BizTalk SWAT - Simple Web Activity Tracker: This is a web based version of BizTalk HAT. The concept is designed to be able to share and enable sharing of orchestration info easily. Some of th...C# Linear Hash Table: A C# dictionary-like implementation of a linear hash table. It is more memory efficiant than the .NET dictionary, and also almost as fast. NOTE: On...DBF Import Export Wizard: DBF Import Export Wizard is a tool for anyone needing to import DBF files into SQL Server or to export SQL Server tables to a DBF file. This proje...Domain as XML - Driven Development: Visual Studio Code Samples: Domain as XML - Driven Development: Visual Studio Code SamplesEasyDownload: This application allows to manage downloads handling an stack of files and several useful configurationsEos2: .FlightTickets: This application allows to buy flight ticketsFotofly PhotoViewer: A Silverlight control that uses the Fotofly metadata library to show the people in a photo (using Windows Live Photo Gallery People metadata) and a...Fujiy source code: Source code examplesGameSet: This application allows to play games with distributed users.Injectivity (Dependency Injection): Injectivity is a dependency injection framework (written in C#) with a strong focus on the ease of configuration and performance. Having been writt...Inventory: Keep track of inputs, materias and salesLoanTin.Com Source Code: LoanTin.Com - a Social Networking Website as same as Tumblr.com, based on source code of Loantiner Project, allow anyone can share anything to anyo...mysln: my solutions.NumTextBox: TextBox控件重写 之NumTextBox,主要实现的功能是,只允许输入数字,或String,Numeric,Currency,Decimal,Float,Double,Short,Int,Long 修改自:http://www.codeproject.com/KB/edit/num...Quick Performance Monitor: This small utility helps to monitor performance counters without using the full blown perfmon tool from Windows. It supports a number of command li...Runo: Runo ResearchSales: This application allows to manage a hardware storeScrewWiki Form Auth Provider: Enables your ASP.NET site to use Forms Authentication to integrate with your ScrewWiki. User management is performed on a parent site, and cookie i...SDS: Scientific DataSet library and tools: The SDS library makes it easy for .Net developers to read, write and share scalars, vectors, matrices and multidimensional grids which are very com...ShapeSweeper: Minesweeper-like game for the Zune HD. Each hidden object has three properties to discover--location, color, and shape--and all three must be corre...SilverlightExcel: an Excel file viewer in Silverlight 4: SilverlightExcel is a Silverlight application allowing you to open and view Excel files and also create graphs.sPWadmin: pwAdmin is an Web Interface based on JSP that uses the PW-Java API to control an PW-Server.Video Player control in Silverlight: A control for playing video in Silverlight 4 with chapters on timeline control. This player will be easily skinnable and customizable. More Featur...XNA Light Pre Pass Renderer: A demo/sample that shows how to write a light pre pass renderer in XNA.Zimms: Collaboration Site for friends, a code depot, and scratch padNew Releases.svn Folders Cleanup Tool: dotSVN Cleanup Tool: dotSVN Cleanup Tool executableAccord: Alpha: Initial build of the Accord framework.AcPrac: AcPrac Ver 0.1: The first version of AcPrac. It is not fully functional, but rather a version to get the bugs out. Please report all bugs.ASP.NET: ASP.NET Browser Definition Files: This download contains: ASP.NET 4 Browser Definition Files -- You can use the new ASP.NET 4 browser definition files with earlier versions of ASP....B&W Port Scanner: Black`n`White Port Scanner 1.0: B&W Port Scanner 1.0 Final Release Date: 03.03.2010 Black`n`WhiteBizTalk SWAT - Simple Web Activity Tracker: BizTalk SWAT: This is a web based version of BizTalk HAT. The concept is designed to be able to share and enable sharing of orchestration info easily. It uses th...BTP Tools: CSB+CUV+HCSB dict files 2010-03-04: 5. is now missing a space between the Strong’s number and the Count: >CSB Translation: 圣所 7, 至圣所G39+G394 it should be: CSB Translation: 圣所 7, 至圣所G...C# Linear Hash Table: Linear Hash Table: First working version of the Linear Hash Table.Cassiopeia: WinTools 1.0 beta: First ReleaseComposure: Caliburn-44007-trunk-vs2010.net40: This is a very simple conversion of the Caliburn trunk (rev 44007) for use in Visual Studio 2010 RC1 built against .NET40. Because the conversion w...Cover Creator: CoverCreator 1.3.0: English and Polish version. Functionality to add image to the front page. Load / save covers.DBF Import Export Wizard: DBF Import Export Wizard Source Code: Version 0.1.0.3DBF Import Export Wizard: DBF_Import_Export_Wizard Setup 0.1.0.3: Zip file contains Setup.exeESB Toolkit Extensions: Tellago BizTalk ESB 2.0 Toolkit Extensions v0.2: Windows Installer file that installs Library on a BizTalk ESB 2.0 system. This Install automatically configures the esb.config to use the new compo...Fotofly PhotoViewer: Fotofly Photoview v0.1: The first public release. Based on a Silverlight application I have been using for over a year at www.tassography.com. This version uses Fotofly v0...HPC with GPUs applied to CG: Cuda Soft Bodies simulation: Cuda src for soft bodiesHPC with GPUs applied to CG: Full Soft Bodies src: full src code for soft bodies simulationInjectivity (Dependency Injection): 2.8.166.2135: Release 2.8.166.2135 of the Injectivity dependency injection framework.Line Counter: 1.5 (Code Outline Preview): This version contains preview of the code outline feature, you can now view C# code outline within Line Counter. Note that the code outline now onl...Micajah Mindtouch Deki Wiki Copier: MicajahWikiCopier: You should use the following line arguments: WikiCopier.exe "http://oldwikiwithdata.wik.is/@api/deki" "login" "password" "http://newwiki.somename.l...ncontrols: Alpha 0.4.0.1: Added some example on the Console Project.NumTextBox: NumTextBox初始版本: TextBox控件重写 之NumTextBox,主要实现的功能是,只允许输入数字,或String,Numeric,Currency,Decimal,Float,Double,Short,Int,Long 此为初始版本PSCodeplex: PS CodePlex 0.2: PS CodePlex 0.2 has some breaking changes to the parameters. A few of the parameters are renamed and a few are made as switch parameters. Add-Rele...Quick Performance Monitor: QPerfMon First release - Version 1.0.0: The first release of the utility.RapidWebDev - .NET Enterprise Software Development Infrastructure: ProductManagement Quick Sample 0.2: This is a sample product management application to demonstrate how to develop enterprise software in RapidWebDev. The glossary of the system are ro...ScrewWiki Form Auth Provider: ScrewWiki Forms Authentication: Initial ReleaseSee.Sharper: See.Sharper.Docs-1.10.3.4: HTML documentation (including Doxygen project)See.Sharper: See.Sharper-1.10.3.4: Solution (Source files, debug and release binaries)Solar.Generic: Solar.Generic 0.8.0.0 Beta (Revised, Renamed): Solar.Generic 0.8.0.0 (Revised & Renamed) Renamed project from Solar.Commons to Solar.Generic. Project solution file is now in format of Visual ...Solar.Security: Solar.Security 1.1.0.0: Performed several major refactorings of code base. Stripped In-Memory implementation of IConfiguration interface of transactional behavior due to...sPWadmin: pwAdmin v0.7: -Star System Simulator: Star System Simulator 2.3: Changes in this release: Fixed several localisation issues. Features in this release: Model star systems in 3D. Euler-Cromer method. Improved...SysI: sysi, stable and ready: This time for sure.TheWhiteAmbit: TheWhiteAmbit - Demo: Two little demos demonstrating: - fast realtime raytracing - generating bent normals for shading (CUDA capable GPU needed = nVidia GeForce >8x00)VsTortoise - a TortoiseSVN add-in for Microsoft Visual Studio: VsTortoise Build 22 Beta: Build 22 (beta) New: Visual Studio 2010 RC support (VsTortoise for Visual Studio 2010 RC screenshots) New: VsTortoise integrates in to Solution E...WinMergeFS: WinMergeFS 0.1.42128alpha: WinMergeFS provides AuFS functionality for windows. With WinMergeFS users can mount multiple directories into a virtual drive. Plugin based root se...WSDLGenerator: WSDLGenerator 0.0.0.2: - Bugs fixed - Code refactored - Added support for custom typesXNA Light Pre Pass Renderer: LightPrePassRendererXNA: Zipped source code for the light pre pass renderer made with XNA.Most Popular ProjectsMetaSharpRawrWBFS ManagerAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitWindows Presentation Foundation (WPF)LiveUpload to FacebookASP.NETMicrosoft SQL Server Community & SamplesMost Active ProjectsUmbraco CMSRawrBlogEngine.NETSDS: Scientific DataSet library and toolsMapWindow GISpatterns & practices – Enterprise LibraryjQuery Library for SharePoint Web ServicesIonics Isapi Rewrite FilterMDT Web FrontEndDiffPlex - a .NET Diff Generator

    Read the article

  • Building and Deploying Windows Azure Web Sites using Git and GitHub for Windows

    - by shiju
    Microsoft Windows Azure team has released a new version of Windows Azure which is providing many excellent features. The new Windows Azure provides Web Sites which allows you to deploy up to 10 web sites  for free in a multitenant shared environment and you can easily upgrade this web site to a private, dedicated virtual server when the traffic is grows. The Meet Windows Azure Fact Sheet provides the following information about a Windows Azure Web Site: Windows Azure Web Sites enable developers to easily build and deploy websites with support for multiple frameworks and popular open source applications, including ASP.NET, PHP and Node.js. With just a few clicks, developers can take advantage of Windows Azure’s global scale without having to worry about operations, servers or infrastructure. It is easy to deploy existing sites, if they run on Internet Information Services (IIS) 7, or to build new sites, with a free offer of 10 websites upon signup, with the ability to scale up as needed with reserved instances. Windows Azure Web Sites includes support for the following: Multiple frameworks including ASP.NET, PHP and Node.js Popular open source software apps including WordPress, Joomla!, Drupal, Umbraco and DotNetNuke Windows Azure SQL Database and MySQL databases Multiple types of developer tools and protocols including Visual Studio, Git, FTP, Visual Studio Team Foundation Services and Microsoft WebMatrix Signup to Windows and Enable Azure Web Sites You can signup for a 90 days free trial account in Windows Azure from here. After creating an account in Windows Azure, go to https://account.windowsazure.com/ , and select to preview features to view the available previews. In the Web Sites section of the preview features, click “try it now” which will enables the web sites feature Create Web Site in Windows Azure To create a web sites, login to the Windows Azure portal, and select Web Sites from and click New icon from the left corner  Click WEB SITE, QUICK CREATE and put values for URL and REGION dropdown. You can see the all web sites from the dashboard of the Windows Azure portal Set up Git Publishing Select your web site from the dashboard, and select Set up Git publishing To enable Git publishing , you must give user name and password which will initialize a Git repository Clone Git Repository We can use GitHub for Windows to publish apps to non-GitHub repositories which is well explained by Phil Haack on his blog post. Here we are going to deploy the web site using GitHub for Windows. Let’s clone a Git repository using the Git Url which will be getting from the Windows Azure portal. Let’s copy the Git url and execute the “git clone” with the git url. You can use the Git Shell provided by GitHub for Windows. To get it, right on the GitHub for Windows, and select open shell here as shown in the below picture. When executing the Git Clone command, it will ask for a password where you have to give password which specified in the Windows Azure portal. After cloning the GIT repository, you can drag and drop the local Git repository folder to GitHub for Windows GUI. This will automatically add the Windows Azure Web Site repository onto GitHub for Windows where you can commit your changes and publish your web sites to Windows Azure. Publish the Web Site using GitHub for Windows We can add multiple framework level files including ASP.NET, PHP and Node.js, to the local repository folder can easily publish to Windows Azure from GitHub for Windows GUI. For this demo, let me just add a simple Node.js file named Server.js which handles few request handlers. 1: var http = require('http'); 2: var port=process.env.PORT; 3: var querystring = require('querystring'); 4: var utils = require('util'); 5: var url = require("url"); 6:   7: var server = http.createServer(function(req, res) { 8: switch (req.url) { //checking the request url 9: case '/': 10: homePageHandler (req, res); //handler for home page 11: break; 12: case '/register': 13: registerFormHandler (req, res);//hamdler for register 14: break; 15: default: 16: nofoundHandler (req, res);// handler for 404 not found 17: break; 18: } 19: }); 20: server.listen(port); 21: //function to display the html form 22: function homePageHandler (req, res) { 23: console.log('Request handler home was called.'); 24: res.writeHead(200, {'Content-Type': 'text/html'}); 25: var body = '<html>'+ 26: '<head>'+ 27: '<meta http-equiv="Content-Type" content="text/html; '+ 28: 'charset=UTF-8" />'+ 29: '</head>'+ 30: '<body>'+ 31: '<form action="/register" method="post">'+ 32: 'Name:<input type=text value="" name="name" size=15></br>'+ 33: 'Email:<input type=text value="" name="email" size=15></br>'+ 34: '<input type="submit" value="Submit" />'+ 35: '</form>'+ 36: '</body>'+ 37: '</html>'; 38: //response content 39: res.end(body); 40: } 41: //handler for Post request 42: function registerFormHandler (req, res) { 43: console.log('Request handler register was called.'); 44: var pathname = url.parse(req.url).pathname; 45: console.log("Request for " + pathname + " received."); 46: var postData = ""; 47: req.on('data', function(chunk) { 48: // append the current chunk of data to the postData variable 49: postData += chunk.toString(); 50: }); 51: req.on('end', function() { 52: // doing something with the posted data 53: res.writeHead(200, "OK", {'Content-Type': 'text/html'}); 54: // parse the posted data 55: var decodedBody = querystring.parse(postData); 56: // output the decoded data to the HTTP response 57: res.write('<html><head><title>Post data</title></head><body><pre>'); 58: res.write(utils.inspect(decodedBody)); 59: res.write('</pre></body></html>'); 60: res.end(); 61: }); 62: } 63: //Error handler for 404 no found 64: function nofoundHandler(req, res) { 65: console.log('Request handler nofound was called.'); 66: res.writeHead(404, {'Content-Type': 'text/plain'}); 67: res.end('404 Error - Request handler not found'); 68: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If there is any change in the local repository folder, GitHub for Windows will automatically detect the changes. In the above step, we have just added a Server.js file so that GitHub for Windows will detect the changes. Let’s commit the changes to the local repository before publishing the web site to Windows Azure. After committed the all changes, you can click publish button which will publish the all changes to Windows Azure repository. The following screen shot shows deployment history from the Windows Azure portal.   GitHub for Windows is providing a sync button which can use for synchronizing between local repository and Windows Azure repository after making any commit on the local repository after any changes. Our web site is running after the deployment using Git Summary Windows Azure Web Sites lets the developers to easily build and deploy websites with support for multiple framework including ASP.NET, PHP and Node.js and can easily deploy the Web Sites using Visual Studio, Git, FTP, Visual Studio Team Foundation Services and Microsoft WebMatrix. In this demo, we have deployed a Node.js Web Site to Windows Azure using Git. We can use GitHub for Windows to publish apps to non-GitHub repositories and can use to publish Web SItes to Windows Azure.

    Read the article

  • CodePlex Daily Summary for Monday, March 15, 2010

    CodePlex Daily Summary for Monday, March 15, 2010New ProjectsAT Accounts: AT Accounts helps developers to intergrate accounting functionality in their applications. It has both the WPF userinterface and SilverlightChild page list(for dnn4/5): A free module which can display sub pages list for a selected tab. It is template based and support options like Recursive/Child tab prefix/link...dashCommerce: dashCommerce is the leading ASP.NET e-commerce platform.Fire Utilities: My Development Utiltites and base classes: New Zealand Bank Account ValidatorFlyCatch (Bugtracking System): A simple webbased Bugtracking System.fracback: Fractal feedback concepts, based on video feedbackftc3650: code for ftc 3650Google AJAX Search Services for jQuery: This plug-in encapsulates part of the Google AJAX Search API to streamline the process of Google Search integration.Little Black Book DB: This is the Database for the following Projects: SQL Azure PHP Connection SQL Azure Ruby Connection SQL Azure Python Connection SQL Azure .NE...MediaCommMVC: MediaCommMVC is a community platform focusing on photos, videos and discussions. It's based on ASP.NET MVC and uses (fluent) nhibernate, jquery an...Miracle OS: The Miracle OS is an OS from Fox. We work on it, but it isn't ready. Do you want help us? Please send a mail to victor@fox.fi.stMultiwfn: (1)Plotting various graph(filled color/contour/relief map...) (2)Generate Cube file (3)Manipulate & analyze wavefunction Supportting lots of proper...MySpace DataRelay: Data Relay is the foundation of MySpace's middle tier. At its heart, it is a messaging system for relaying information both between clients and ser...NinjaCMS: Ninja CMS is an asp.net based content management system which provides a designer friendly, developer friendly interface to work with. It's flexibl...open gaze and mouse analyzer: Ogama allows recording and analyzing eye- and mouse-tracking data from slideshow eyetracking experiments in parallel. It´s developed in C#.NET and ...Özkasoft.Net | E-Commerce: Özkasoft's E-Commerce ProjectProfiCV: Profi CVpyTarget: Implement a powerful iscsi target in python, and easily use under most popular systems. It also includes the following features: multi-target, mult...SharePoint Platform Extensions: SharePoint Platform Extensions by Espora. Sorting Algorithm Visualization: Sorting Algorithm Visualization Displays Bead Sort, Binary Tree Sort, Bubble Sort, Bucket Sort, Cocktail Sort, Counting Sort, Gnome Sort, In Place ...Specify: A framework for creating executable specifications in .NET. Spell Corrector: A spell corrector that uses Bayes algorithm and BK (Burkhard-Keller) tree.SQL Azure Ruby Connection: This is a demo to show how to connect to SQL Azure with Ruby on Rails.uManage - AD Self-Service Portal: uManage is an Active Directory Self-Service Portal as well as Help Desk web application designed for use on intranet systems. It allows users to u...Winforms Rounded Group Box Control: Rounded Group Box - A Grouping control with Rounded Corners, Gradients, and Drop ShadowWizard Engine: Host application agnostic wizard engine platform, that allows you to fluently define complex conditional flows and provides means for execution of ...WS-Transfer based File Upload: WS-Transer based upload of large files in multiple partsXAMLStylePad: XAMLStylePad - is a simple in use styles and templates XAML-editor. It designed for comfortable coding in XAML with real-time preview result on aut...Your Twitt Engine: Ovo je aplikacija za sve ljude koji su na svom radnom mjestu pod prismotrom poslodavca ili sefa, koji kontroliraju njihov monitor. Tako uz ovu apl...New ReleasesAmiBroker Plug-ins with C#. A non official AmiBroker Plug-in SDK: AniBroker Plug-in SDK v0.0.5: Removed dependency on .NET 4.0, now it works fine with .NET 2.0BeerMath.net: 0.1: Version 0.1Initial set of calculations supported: IBUs Color ABV/ABWChild page list(for dnn4/5): Child Page List 2.6: Source code is also include in module package.dashCommerce: dashCommerce Releases: You can download both Source and WebReady packages at http://www.dashcommerce.org. If you wish to submit patches, then use the Source Code tab her...ExcelDna: ExcelDna Version 0.23: ExcelDna Version 0.23 2010/03/14 - Packing and other features This release adds a number of features to ExcelDna: Add ExplicitExports attribute to ...Family Tree Analyzer: Version 1.0.7.1: Version 1.0.7.0 Update Census form to show family totals Fix England and Wales Lost Cousins reports to be England OR Wales Problems with Gedcom in...Foursquare BlogEngine Widget: foursquare widget for BlogEngine.NET Version 0.2: To see the changes which have been made, visit http://philippkueng.ch/post/Foursquare-BlogEngineNET-Widget-Version-02.aspx For installation instruc...GLB Virtual Player Builder: 0.4.0 Official Archetypes Release: Updated for new archetypes. The builder still includes the old player formats, and you can still import your old players' builds. Please PM me an...Home Access Plus+: v3.1.4.0: Version 3.1.3.1 Release Change Log: Added Breadcrumbs to My Computer File Changes: ~/bin/CHS Extranet.dll ~/bin/CHS Extranet.pdb ~/images/arro...Little Black Book DB: Little Black Book R1: This is the first release of the Little black book presentation I presented at Confoo. I decided to package the Database along with the Windows Az...mite.net - .NET API for mite: Version 1.2.1: Added Support for budget type Modified TimerMapper to return timers Fixed Encoding issue in xml conversionMultiwfn: multiwfn1.0: multiwfn1.0Multiwfn: multiwfn1.0_source: multiwfn1.0_sourceMultiwfn: multiwfn1.1: multiwfn1.1Multiwfn: multiwfn1.1_source: multiwfn1.1_sourceMultiwfn: multiwfn1.2: 1.2 2010-FEB-9 *加入了对10f型轨道的支持。 *新支持非限制性Post-HF波函数用以计算自旋密度。 *新增加直接读入高斯03/09的fch文件的支持,可以观看NBO轨道,详见readme实例4.10。 *绘制平面图时允许通过输入三个点坐标定义平面,允许自定义平面的原点与平移向...Multiwfn: multiwfn1.2_source: Include all the file that needed by compilation in CVF6.5PowerShell Community Extensions: 2.0 Beta 2: Release NotesThis is a pretty close to final release. We have eliminated all of the names that ran afound of the module loading mechanism which me...pyTarget: pyTarget.binary-for-windows-x86.rar: pyTarget.binary-for-windows-x86.rarpyTarget: pyTarget.src.tar.bz2: pyTarget.src.tar.bz2RedBulb for XNA Framework: RedBulbConsole (Console, Menu and TrackHUD Sample): http://bayimg.com/image/jalhmaacd.jpgScrum Sprint Monitor: 1.0.0.45262 (.NET 4.0 RC): Tested against TFS 2010 RC. For the .NET 3.5 SP1 platform, use the .NET 3.5 SP1 download. What is new in this release? Major performance increase ...sELedit: sELedit v1.1: Removed: Clone and Delete Button Added: Context Menu to Item List Added: Clone and Delete button to Context Menu Added: Export / Import Item ...Sorting Algorithm Visualization: Beta 1: Sorting Algorithm VisualizationSpecify: Version 1.0: Version 1.0Spell Corrector: Spell Corrector 0.1: A basic version that supports basic functionality.Spell Corrector: Spell Corrector 0.1 Source Code: Source code of version 0.1Spiral Architecture Driven Development (SADD): SADD v.0.9: Pre-final release with the NEW materials now all in English ! The Final release is coming soon. After guest column for SADD publication in MS Ar...Spiral Architecture Driven Development (SADD) for Russian: SADD v.0.9: Pre-final release with the NEW materials now all in English ! The Final release is coming soon. After guest column for SADD publication in MS Ar...SQL Azure Ruby Connection: Little Black Book Ruby R1: This is the Ruby Demo that I demostrated at Confoo. Special Thanks to Tony Thompson for putting this demo together. To check out Tony's Portfolio ...The Scrum Factory: The Scrum Factory Server - V1a: This is the newest version of the server. Some minor bugs from version v1 were fixed, and some slighted changed were made some database views.twNowplaying: twNowplaying 1.0.0.4: Please note that the user has to press the Twitter logo to log in the first time the application is started.uManage - AD Self-Service Portal: uManage - v1.0 (.NET 4.0 RC): Initial Release of uManage. NOTE: Designed for ASP.NET and .NET 4.0 RC ONLY! This is the initial release of uManage and covers the first phase of ...Virtu: Virtu 0.8: Source Requirements.NET Framework 3.5 with Service Pack 1 Visual Studio 2008 with Service Pack 1, or Visual C# 2008 Express Edition with Service Pa...Visual Studio DSite: Speech Synthesizer (Text to Speech) in Visual C++: A very simple text to speech program written in visual c 2008.White Tiger: 0.0.4.0: *now you can disable the file security checks *winforms aplications created to manage tablesWinforms Rounded Group Box Control: Release 1.0: To use this control simply add the class to your project and compile it. It will then show up in the projects components section in the toolbox. ...WS-Transfer based File Upload: 0.5: Implements the binary file transfer mechanism onlyXsltDb - DotNetNuke XSLT module: 01.00.89: Super modules configuration names. 16767 - Fixed more bug fixes...Yakiimo3D: DirectX11 Rheinhard Tonemapping Source and Binary: DirectX11 Rheinhard tonemapping source and binary.Your Twitt Engine: test: Slobodno probajte sa vasim twitter korisničkim računomMost Popular ProjectsMetaSharpWBFS ManagerRawrAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitASP.NET Ajax LibraryWindows Presentation Foundation (WPF)ASP.NETLiveUpload to FacebookMost Active ProjectsLINQ to TwitterRawrN2 CMSBlogEngine.NETpatterns & practices – Enterprise LibrarySharePoint Team-MailerjQuery Library for SharePoint Web ServicesCaliburn: An Application Framework for WPF and SilverlightFarseer Physics EngineCalcium: A modular application toolset leveraging Prism

    Read the article

  • CodePlex Daily Summary for Monday, April 12, 2010

    CodePlex Daily Summary for Monday, April 12, 2010New Projects3 Hour Game Design Contest: The 3 Hour Game Design Contest is a programming contest for making simple games in 3 hours. 3 hours may not seem like enough time to make a game, b...BI Monkey SSIS ETL Framework: The BI Monkey SSIS ETL Framework is an ETL Execution, Control and Logging system for ETL projects using SSIS. It is supported by a SQL Server metad...Blend Sample Data Helpers: Helper behavior classes to generate sample images and data from Internet sources such as Flickr images. Bold TCP for Delphi 7: Open Sourcing the Bold TCP for Delphi 7.cfThreadingTools: This library project contains classes and extensions which will allow easy handling of multi-threaded UI-accesses.CuBiX_SDL: CuBiX_SDL : CuBiX est un projet personnel.Draglets: Draglets makes it easier for editors and CMS-developers to move and reorder content at their web sites. It's developed in ASP.NET, C# with WCF and ...DSQLT - Dynamic SQL Templates: DSQLT - Dynamic SQL Templates Use Stored Procedures as templates for dynamic SQL statements. Substitute parameters @0-@9 with values like objectna...Edtter: Edtter is a sample web application built on ASP.NET MVC 2 Framework. (Japanese Version Only)Forms Based Authentication Management - SharePoint2007FBA: This is my own update to Stacy Draper's FBABasic project for Forms Based Authentication in MOSS 2007. In additon to managing your fba user's roles,...Height Map to 3D World at XNA: Height Map to 3D World is a XNA project that developed firstly by Eric Grossinger and secondly improved by Karadeniz Technical University Computer ...HouseFly: A simple contact and note taking applicationITM 495 - iPhone Web App: School ProjectKaufleute: This will be finished laterLR: this project is about connecting toPowerShell Integration Services: A set of tools aimed at Extract Transform and Load tasks. Focused on getting the most common ETL tasks done without SSIS. Salient: A collection of, hopefully, useful libraries.Samurai.Validation: Extensible and flexible .Net object validation frameworkSamurai.Workflow: Samurai Workflow is a slim, easy-to-use workflow framework for WPF applications.SharePoint User Management WebPart: SharePoint User Management WebPartUrl shorte(ne)r: It's simple Url Shortener (like: http://tinyurl.com) Currently only Polish language is supported. In future will be provided multi language suppor...Yasbg: Yasbg (pronounced yas-bug) is Yet Another Static Blog Generator. It is made in C# using MarkdownSharp for markdown. Currently in alpha. New Releases.NET Extensions - Extension Methods Library: Release 2010.06: Added an universal approach for grouping extension methods like conversions. Conversion are now available on any data type (it's actually extension...3 Hour Game Design Contest: 3H-GDC mVII: This is the collection of game files for the 7th 3H-GDCB&W Port Scanner: Black`n`White Port Scanner 3.0: B&W Port Scanner 3 includes FTP Server detection tool, Better stability, Optimized memory management, Saving & Opening Result sets ... and more new...BI Monkey SSIS ETL Framework: Framework v1 Alpha: This Alpha release is not fully tested and some functionality is not operating as intended.Bluetooth Radar: Version 1.7: UI Changes Device UserControl Randomly placed devices.BugTracker.NET: BugTracker.NET 3.4.1: For the tasks/time tracking feature, added a way of viewing all the tasks at once, not just the tasks for one bug. Also added a way of exporting a...cfThreadingTools: cfThreadingTools 0.1.1.8: This is the first public available release. Following items are included: BaseTools-class which allows thread-safe setting of properties and callin...DeepZoom Pivot Constructor: DeepZoom Pivot Constructor v0.1: This is a test release of the library platform - Targets .NET 3.5 No samples yet, etc., but it works well :-)DSQLT - Dynamic SQL Templates: Initial release with License Included: nothing changed but license print procedure included the zip file contains database backup SQL script readmeForms Based Authentication Management - SharePoint2007FBA: SharePoint2007FBA 1.0.0.0: Downloads for the Project solution and the WSP package. Please read the Setup Guide. If you are unfamiliar with setting up Forms Based Authenticati...Foursquare BlogEngine Widget: foursquare widget for BlogEngine.NET version 0.3: To see the changes which have been made, visit http://philippkueng.ch/post/Foursquare-BlogEngineNET-widget-version-03.aspx For installation instruc...Framework Detector: FrameworkDetect Support .NET 4 v2: FrameworkDetect Support .NET 4Happy Turtle Plugins for BVI :: Repository Based Versioning for Visual Studio: Happy Turtle 1.0.46860: This is the second beta release of the SVN based version incrementor. Please feel free to create a thread in the discussion tabs and provide feedb...Height Map to 3D World at XNA: 3DWorld: Just open .rar file and extract it any folder and run Proje2Dto3D.exe file.HTML Ruby: 6.20.2: Removed rubyLineSpace option Improved options panel Fixed ruby text font-size rendering issue with complex ruby annotation Removed more waste...HTML Ruby: 6.20.3: Removed unused code Temporary partial fix for Firefox 3.7a4pre nightly buildHTML Ruby: 6.21.0: Added support for current HTML5 ruby annotation format. All ruby annotations are converted to XHTML 1.1 complex ruby annotation.Kooboo HTML form: Kooboo HTML Form Module for 2.1.0.0: Compatible with Kooboo cms 2.1.0.0 Upgrade to MVC 2Kooboo Menu: Kooboo CMS Menu for 2.1.0.0: Compatible with Kooboo cms 2.1.0.0 Upgrade to MVC 2Kooboo Meta: Kooboo Meta Module for 2.1.0.0: Compatible with Kooboo cms 2.1.0.0 Upgrade to MVC 2Kooboo PageMenu: Kooboo CMS PageMenu for 2.1.0.0: Compatible with Kooboo cms 2.1.0.0 Upgrade to MVC 2Kooboo Search: Kooboo CMS Search module for 2.1.0.0: Compatible with Kooboo cms 2.1.0.0 Upgrade to MVC 2Numina Application/Security Framework: Numina.Framework Core 50212: Added bulk import user page Added General settings page for updating Company Name, Theme, and API Key Add/Edit application calls Full URL to h...Rawr: Rawr 2.3.14: - Rawr3: Tons of fixes for Rawr3 compatability and UI. - Significant performance improvements all around. - More fixes and improvements to Wowhea...Rich Ajax empowered Web/Cloud Applications: 6.4 beta 2: The first fully featured version of Visual webGui offering web/cloud development tool that puts all ASP.NET Ajax limits behind with enhanced perfor...SharePoint User Management WebPart: User Management Web part 1.0: Most of the organization have one SharePoint Site which is configured with windows authenticated which is for internal employees having AD authenti...SkeinLibManaged: SkeinLibManaged 1.1.0.0 (Beta): This is the compiled DLL with XML documentation, so there should be plenty of context sensitive help and Intellisense. This is the Release version,...VCC: Latest build, v2.1.30411.0: Automatic drop of latest buildVFPX: Code References 1.1 Beta: Visit the Code References Info Page for complete information about this release.VisioAutomation: VisioAutomation 2.5.0: VisioAutomation 2.5.0- General cleanup/bugfixes - Many low-level changes the the VisioAutomation extension methods - these are far fewer now - This...Visual Studio DSite: English To Spanish Translator (Visual C++ 2008): A simple english to spanish translator made in visual c 2008, using the Google Translate API.WatchersNET CKEditor™ Provider for DotNetNuke: CKEditor Provider 1.10.00: Whats NewFile Browser: Inherits Folder Permissions from DotNetNuke Updated the Editor to Version 3.2.1 revision 5372 Added CkEditor jQuery Adap...Web/Cloud Applications Development Framework | Visual WebGui: 6.4 beta 2: The first fully featured version of Visual webGui offering web/cloud development tool that puts all ASP.NET Ajax limits behind with unique develope...WPF Data Virtualization: 1.0.0.0: First ReleaseYasbg: Yasbg Alpha: ReadmeYet Another Static Blog Generator is a command line utility that generates static html files for blogs. Currently, it is NOT feed enabled. I...異世界の新着動画: Ver. 10-04-12: ニコ生の仕様変更に対応 アンケート時間の設定追加Most Popular ProjectsWBFS ManagerRawrASP.NET Ajax LibraryMicrosoft SQL Server Product Samples: DatabaseAJAX Control ToolkitSilverlight ToolkitWindows Presentation Foundation (WPF)ASP.NETMicrosoft SQL Server Community & SamplesFacebook Developer ToolkitMost Active ProjectsRawrnopCommerce. Open Source online shop e-commerce solution.AutoPocopatterns & practices – Enterprise LibraryShweet: SharePoint 2010 Team Messaging built with PexFarseer Physics EngineNB_Store - Free DotNetNuke Ecommerce Catalog ModuleIonics Isapi Rewrite FilterBlogEngine.NETBeanProxy

    Read the article

  • Surface Review from Canadian Guy Who Didn&rsquo;t Go To Build

    - by D'Arcy Lussier
    I didn’t go to Build last week, opted to stay home and go trick-or-treating with my daughters instead. I had many friends that did go however, and I was able to catch up with James Chambers last night to hear about the conference and play with his Surface RT and Nokia 920 WP8 devices. I’ve been using Windows 8 for a while now, so I’m not going to comment on OS features – lots of posts out there on that already. Let me instead comment on the hardware itself. Size and Weight The size of the tablet was awesome. The Windows 8 tablet I’m using to reference this against is the one from Build 2011 (Samsung model) we received as well as my iPad. The Surface RT was taller and slightly heavier than the iPad, but smaller and lighter than the Samsung Win 8 tablet. I still don’t prefer the default wide-screen format, but the Surface RT is much more usable even when holding it by the long edge than the Samsung. Build Quality No issues with the build quality, it seemed very solid. But…y’know, people have been going on about how the Surface RT materials are so much better than the plastic feeling models Samsung and others put out. I didn’t really notice *that* much difference in that regard with the Surface RT. Interesting feature I didn’t expect – the Windows button on the device is touch-sensitive, not a mechanical one. I didn’t try video or anything, so I can’t comment on the media experience. The kickstand is a great feature, and the way the Surface RT connects to the combo case/keyboard touchcover is very slick while being incredibly simple. What About That Touch Cover Keyboard? So first, kudos to Microsoft on the touch cover! This thing was insanely responsive (including the trackpad) and really delivered on the thinness I was expecting. With that said, and remember this is with very limited use, I would probably go with the Type Cover instead of the Touch Cover. The difference is buttons. The Touch Cover doesn’t actually have “buttons” on the keyboard – hence why its a “touch” cover. You tap on a key to type it. James tells me after a while you get used to it and you can type very fast. For me, I just prefer the tactile feeling of a button being pressed/depressed. But still – typing on the touch case worked very well. Would I Buy One? So after playing with it, did I cry out in envy and rage that I wasn’t able to get one of these machines? Did I curse my decision to collect Halloween candy with my kids instead of being at Build getting hardware? Well – no. Even with the keyboard, the Surface RT is not a business laptop replacement device. While Office does come included, you can’t install any other applications outside of Windows Store Apps. This might be limiting depending on what other applications you need to have available on your computer. Surface RT is a great personal computing device, as long as you’re not already invested in a competing ecosystem. I’ve heard people make statements that they’re going to replace all the iPads in their homes with Surface tablets. In my home, that’s not feasible – my wife and daughters have amassed quite a collection of games via iTunes. We also buy all our music via iTunes as well, so even with the XBox streaming music service now available we’re still tied quite tightly to iTunes. So who is the Surface RT for? In my mind, if you’re looking for a solid, compact device that provides basic business functionality (read: email) or if you have someone that needs a very simple to use computer for email, web browsing, etc., then Surface RT is a great option. For me, I’m waiting on the Samsung Ativ Smart PC Pro and am curious to see what changes the Surface Pro will come with.

    Read the article

  • cannot make ubuntu 64-bit v12.04 install work

    - by honestann
    I decided it was time to update my ubuntu (single boot) computer from 64-bit v10.04 to 64-bit v12.04. Unfortunately, for some reason (or reasons) I just can't make it work. Note that I am attempting a fresh install of 64-bit v12.04 onto a new 3TB hard disk, not an upgrade of the 1TB hard disk that contains my working 64-bit v10.04 installation. To perform the attempted install of v12.04 I unplug the SATA cable from the 1TB drive and plug it into the 3TB drive (to avoid risking damage to my working v10.04 installation). I downloaded the ubuntu 64-bit v12.04 install DVD ISO file (~1.6 GB) from the ubuntu releases webpage and burned it onto a DVD. I have downloaded the DVD ISO file 3 times and burned 3 of these installation DVDs (twice with v10.04 and once with my winxp64 system), but none of them work. I run the "check disk" on the DVDs at the beginning of the installation process to assure the DVD is valid. When installation completes and the system boots the 3TB drive, it reports "unknown filesystem". After installation on the 250GB drives, the system boots up fine. During every install I plug the same SATA cable (sda) into only one disk drive (the 3TB or one of the 250GB drives) and leave the other disk drives unconnected (for simplicity). It is my understanding that 64-bit ubuntu (and 64-bit linux in general) has no problem with 3TB disk drives. In the BIOS I have tried having EFI set to "enabled" and "auto" with no apparent difference (no success). I never bothered setting the BIOS to "non-EFI". I have tried partitioning the drive in a few ways to see if that makes a difference, but so far it has not mattered. Typically I manually create partitions something like this: 8GB /boot ext4 8GB swap 3TB / ext4 But I've also tried the following, just in case it matters: 8GB boot efi 8GB swap 8GB /boot ext4 3TB / ext4 Note: In the partition dialog I specify bootup on the same drive I am partitioning and installing ubuntu v12.04 onto. It is a VERY DANGEROUS FACT that the default for this always comes up with the wrong drive (some other drive, generally the external drive). Unless I'm stupid or misunderstanding something, this is very wrong and very dangerous default behavior. Note: If I connect the SATA cable to the 1TB drive that has been my ubuntu 64-bit v10.04 system drive for the past 2 years, it boots up and runs fine. I guess there must be a log file somewhere, and maybe it gives some hints as to what the problem is. I should be able to boot off the 1TB drive with the 3TB drive connected as a secondary (non-boot) drive and get the log file, assuming there is one and someone tells me the name (and where to find it if the name is very generic). After installation on the 3TB drive completes and the system reboots, the following prints out on a black screen: Loading Operating System ... Boot from CD/DVD : Boot from CD/DVD : error: unknown filesystem grub rescue> Note: I have two DVD burners in the system, hence the duplicate line above. Note: I install and boot 64-bit ubuntu v12.04 on both of my 250GB in this same system, but still cannot make the 3TB drive boot. Sigh. Any ideas? ========== motherboard == gigabyte 990FXA-UD7 CPU == AMD FX-8150 8-core bulldozer @ 3.6 GHz RAM == 8GB of DDR3 in 2 sticks (matched pair) HDD == seagate 3TB SATA3 @ 7200 rpm (new install 64-bit v12.04 FAILS) HDD == seagate 1TB SATA3 @ 7200 rpm (64-bit v10.04 WORKS for two years) HDD == seagate 250GB SATA2 @ 7200 rpm (new install 64-bit v12.04 WORKS) HDD == seagate 250GB SATA2 @ 7200 rpm (new install 64-bit v12.04 WORKS) GPU == nvidia GTX-285 ??? == no overclocking or other funky business USB == external seagate 2TB HDD for making backups DVD == one bluray burner (SATA) DVD == one DVD burner (SATA) 64-bit ubuntu v10.04 has booted and run fine on the seagate 1TB drive for 2 years.

    Read the article

< Previous Page | 713 714 715 716 717 718 719 720 721 722 723 724  | Next Page >