Search Results

Search found 2844 results on 114 pages for 'iterative conversion'.

Page 72/114 | < Previous Page | 68 69 70 71 72 73 74 75 76 77 78 79  | Next Page >

  • Easy way to keeping angles between -179 and 180 degrees

    - by User1
    Is there an easy way to convert an angle (in degrees) to be between -179 and 180? I'm sure I could use mod (%) and some if statements, but it gets ugly: //Make angle between 0 and 360 angle%=360; //Make angle between -179 and 180 if (angle180) angle-=360; It just seems like there should be a simple math operation that will do both statements at the same time. I may just have to create a static method for the conversion for now.

    Read the article

  • generating random enums

    - by null_radix
    How do I randomly select a value for an enum type in C++? I would like to do something like this. enum my_type(A,B,C,D,E,F,G,h,J,V); my_type test(rand() % 10); But this is illegal... there is not an implicit conversion from int to an enum type.

    Read the article

  • How can I find the value of a blury image Matlab question

    - by user332447
    Is there a method to detect the value of a image rgb that is blury? I simply want to store the blury value of my image in a variable called blury value? Is there a dedicated function? %image1 which is rgb is stored in variable img1 img1 = imread('102.jpg'); % conversion to grayscale stored in img1_grey variable img1_grey = rgb2gray(img1); blury_value = function_matlab(img1)

    Read the article

  • Why does Convert.ToBoolean("0") fail?

    - by JL
    I know that trying to convert string "0" to boolean will fail, I also know how to fix this, thanks to Jon Skeets answers on other questions. What I would like to know is WHY does C# not recognize "0" as a valid input for a boolean conversion, surely you could look at it like 0 = false, 1 = true, or even -1 = false and 0 = true, anyways, my logic tells me that it could be a valid input, so is there a very good reason why its not? My bet is old vb6 would be able to recognize the string input "0" as valid.

    Read the article

  • When I do ""+1 I get a String - Why

    - by steve
    Hi, Please understand firstly that I fully understand that Java will return a String when I use ""+int. What I'm really not sure about is what exactly is happening down at the memory aspect. How exactly is java performing this conversion. I mean this in a very indepth way, not 'auto boxing' or anything like that :) I'm hoping someone with a deeper understanding can explain what exactly is done.

    Read the article

  • Return an empty C-String

    - by Evorlor
    Simple Question: How do you return an empty C-String with as little code as possible? I have code that needs to return an empty char*. I am looking for something along the lines of return "";. I know there are several ways to do this, but I am looking for the most efficient way possible. Using return ""; gives warning: conversion from string literal to 'char *' is deprecated [-Wdeprecated-writable-strings] Thanks!

    Read the article

  • Make exact mp4 (H264) format for uploading to youtube

    - by WHITECOLOR
    With ffmpeg I'm converting video from mp3 and picture to upload it to youtube. After upload, conversion fails. Reasons are unknown. I believe the problem is in format. By the way If I'm uploading file 5 minutes length, it fails if I upload 30 seconds of this file it succeeds. I have donwload mp4 file from youtube. Then I uploaded it, it is done very fast. So a nice solution would be to convert videos to the same format that is done by google. I got the following output by mpeg: ffmpeg version N-44264-g070b0e1 Copyright (c) 2000-2012 the FFmpeg developers built on Sep 7 2012 17:38:57 with gcc 4.7.1 (GCC) configuration: --enable-gpl --enable-version3 --disable-pthreads --enable-runt ime-cpudetect --enable-avisynth --enable-bzlib --enable-frei0r --enable-libass - -enable-libcelt --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-l ibfreetype --enable-libgsm --enable-libmp3lame --enable-libnut --enable-libopenj peg --enable-librtmp --enable-libschroedinger --enable-libspeex --enable-libtheo ra --enable-libutvideo --enable-libvo-aacenc --enable-libvo-amrwbenc --enable-li bvorbis --enable-libvpx --enable-libx264 --enable-libxavs --enable-libxvid --ena ble-zlib libavutil 51. 72.100 / 51. 72.100 libavcodec 54. 55.100 / 54. 55.100 libavformat 54. 25.105 / 54. 25.105 libavdevice 54. 2.100 / 54. 2.100 libavfilter 3. 16.100 / 3. 16.100 libswscale 2. 1.101 / 2. 1.101 libswresample 0. 15.100 / 0. 15.100 libpostproc 52. 0.100 / 52. 0.100 Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'youtubetrack0.mp4': Metadata: major_brand : mp42 minor_version : 0 compatible_brands: isommp42 creation_time : 2012-10-02 22:58:57 Duration: 00:06:46.66, start: 0.000000, bitrate: 176 kb/s Stream #0:0(und): Video: h264 (Constrained Baseline) (avc1 / 0x31637661), yu v420p, 450x360, 78 kb/s, 6 fps, 6 tbr, 12 tbn, 12 tbc Metadata: creation_time : 1970-01-01 00:00:00 handler_name : VideoHandler Stream #0:1(und): Audio: aac (mp4a / 0x6134706D), 44100 Hz, stereo, s16, 95 kb/s Metadata: creation_time : 2012-10-02 22:58:57 handler_name : IsoMedia File Produced by Google, 5-11-2011 Is it possible to construct ffmpeg parameters so that that would give the same format that google internally does? Is the information above sufficient? I couldn't construct needed params. For example I don't understand how to set tbn and what 95 kb/s mean in "Stream #0:1(und): Audio:". Now I just do: ffmpeg -i videoimage.jpg -i audio.mp3 video.mp4 Info I've got: ffmpeg version N-44998-gdf82454 Copyright (c) 2000-2012 the FFmpeg developers built on Oct 2 2012 23:03:12 with gcc 4.7.1 (GCC) configuration: --disable-static --enable-shared --enable-gpl --enable-version3 --disable-pthreads --enable-runtime-cpudetect --enable-avisynth --enable-bzlib --enable-frei0r --enable-libass --enable-libcelt --enable-libopencore-amrnb --en able-libopencore-amrwb --enable-libfreetype --enable-libgsm --enable-libmp3lame --enable-libnut --enable-libopenjpeg --enable-librtmp --enable-libschroedinger - -enable-libspeex --enable-libtheora --enable-libutvideo --enable-libvo-aacenc -- enable-libvo-amrwbenc --enable-libvorbis --enable-libvpx --enable-libx264 --enab le-libxavs --enable-libxvid --enable-zlib libavutil 51. 73.101 / 51. 73.101 libavcodec 54. 63.100 / 54. 63.100 libavformat 54. 29.105 / 54. 29.105 libavdevice 54. 3.100 / 54. 3.100 libavfilter 3. 19.102 / 3. 19.102 libswscale 2. 1.101 / 2. 1.101 libswresample 0. 16.100 / 0. 16.100 libpostproc 52. 1.100 / 52. 1.100 Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'video.mp4': Metadata: major_brand : isom minor_version : 512 compatible_brands: isomiso2avc1mp41 encoder : Lavf54.25.105 Duration: 00:06:46.81, start: 0.000000, bitrate: 129 kb/s Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuvj420p, 450x360, 3392 kb/s, 25 fps, 25 tbr, 25 tbn, 50 tbc Metadata: handler_name : VideoHandler Stream #0:1(und): Audio: aac (mp4a / 0x6134706D), 44100 Hz, stereo, s16, 127 kb/s Metadata: handler_name : SoundHandler This video fails the conversion on youtube. I also tried to use other vcode parmam and extensions of output file (mp4, wmv, avi) but failed too. Would be greatful for help.

    Read the article

  • Convert from apache rewrite to nginx

    - by Linux Intel
    I want to convert from apache rewrite modules to nginx RewriteCond %{QUERY_STRING} mosConfig_[a-zA-Z_]{1,21}(=|\%3D) [OR] RewriteCond %{QUERY_STRING} base64_encode.*\(.*\) [OR] RewriteCond %{QUERY_STRING} (\<|%3C).*script.*(\>|%3E) [NC,OR] RewriteCond %{QUERY_STRING} GLOBALS(=|\[|\%[0-9A-Z]{0,2}) [OR] RewriteCond %{QUERY_STRING} _REQUEST(=|\[|\%[0-9A-Z]{0,2}) RewriteCond %{QUERY_STRING} SELECT(=|\[|\%[0-9A-Z]{0,2}) [OR] RewriteCond %{QUERY_STRING} UNION(=|\[|\%[0-9A-Z]{0,2}) [OR] RewriteCond %{QUERY_STRING} UPDATE(=|\[|\%[0-9A-Z]{0,2}) [OR] RewriteRule ^([^.]*)/?$ index.php [L] RewriteRule ^domain/trial/cms$ index/index.php?%{QUERY_STRING} [L] RewriteCond %{HTTP:Range} ([a-z]+) [NC] RewriteRule ([0-9_\-]+)flv$ http://www.domain.com [R,L] RewriteCond %{ENV:byte-ranges-specifier} !^$ RewriteRule ([0-9_\-]+)flv$ http://www.domain.com [R,L] RewriteCond %{HTTP_USER_AGENT} !^Mozilla/5 [NC] RewriteCond %{HTTP_USER_AGENT} !^Mozilla/4 [NC] RewriteCond %{HTTP_USER_AGENT} !^Opera [NC] RewriteRule ([0-9_\-]+)flv$ http://www.domain.com [R,L] RewriteRule ^$ index/index.php?%{QUERY_STRING} [L] RewriteCond %{SCRIPT_FILENAME} !sss.php [NC] RewriteCond %{SCRIPT_FILENAME} !m-administrator [NC] RewriteRule ^([^/^.]*)$ sss.php?encrypted=$1&%{QUERY_STRING} [L] RewriteCond %{SCRIPT_FILENAME} !sss.php [NC] RewriteCond %{SCRIPT_FILENAME} !m-administrator [NC] RewriteRule ^([^/^.]*)/([^/^.]*)$ sss.php?tab=$1&page=$2&%{QUERY_STRING} [L] RewriteCond %{SCRIPT_FILENAME} !sss.php [NC] RewriteCond %{SCRIPT_FILENAME} !m-administrator [NC] RewriteRule ^([^/^.]*)/([^/^.]*)/([^.]*)$ sss.php?tab=$1&page=$2&queryString=$3&%{QUERY_STRING} [L] RewriteCond %{SCRIPT_FILENAME} !sss.php [NC] RewriteCond %{SCRIPT_FILENAME} !security.php [NC] RewriteRule ^([^/]*)$ index/$1?%{QUERY_STRING} [L] I tried to convert it by online tools such as : http://www.anilcetin.com/convert-apache-htaccess-to-nginx/ but it didn't convert it correctly. The conversion output is : if ($args ~ "mosConfig_[a-zA-Z_]{1,21}(=|%3D)"){ set $rule_0 1; } if ($args ~ "base64_encode.*(.*)"){ set $rule_0 1; } if ($args ~* "(<|%3C).*script.*(>|%3E)"){ set $rule_0 1; } if ($args ~ "GLOBALS(=|[|%[0-9A-Z]{0,2})"){ set $rule_0 1; } if ($args ~ "_REQUEST(=|[|%[0-9A-Z]{0,2})"){ set $rule_0 1; } if ($args ~ "SELECT(=|[|%[0-9A-Z]{0,2})"){ set $rule_0 1; } if ($args ~ "UNION(=|[|%[0-9A-Z]{0,2})"){ set $rule_0 1; } if ($args ~ "UPDATE(=|[|%[0-9A-Z]{0,2})"){ set $rule_0 1; } if ($rule_0 = "1"){ rewrite ^/([^.]*)/?$ /index.php last; } if ($rule_1 = ""){ rewrite ^/domain/trial/cms$ /index/index.php?$args last; } if ($http_range ~* "([a-z]+)"){ set $rule_2 1$rule_2; } if ($rule_2 = "1"){ rewrite /([0-9_-]+)flv$ http://www.domain.com redirect; } #ignored: condition 0 if ($rule_3 = "1"){ rewrite /([0-9_-]+)flv$ http://www.domain.com redirect; } if ($http_user_agent !~* "^Mozilla/5"){ set $rule_4 1$rule_4; } if ($http_user_agent !~* "^Mozilla/4"){ set $rule_4 2$rule_4; } if ($http_user_agent !~* "^Opera"){ set $rule_4 3$rule_4; } if ($rule_4 = "321"){ rewrite /([0-9_-]+)flv$ http://www.domain.com redirect; } if ($rule_5 = ""){ rewrite ^/$ /index/index.php?$args last; } if ($uri !~* "sss.php"){ set $rule_6 1$rule_6; } if ($uri !~* "m-administrator"){ set $rule_6 2$rule_6; } if ($rule_6 = "21"){ rewrite ^/([^/^.]*)$ /sss.php?encrypted=$1&$args last; } if ($uri !~* "sss.php"){ set $rule_7 1$rule_7; } if ($uri !~* "m-administrator"){ set $rule_7 2$rule_7; } if ($rule_7 = "21"){ rewrite ^/([^/^.]*)/([^/^.]*)$ /sss.php?tab=$1&page=$2&$args last; } if ($uri !~* "sss.php"){ set $rule_8 1$rule_8; } if ($uri !~* "m-administrator"){ set $rule_8 2$rule_8; } if ($rule_8 = "21"){ rewrite ^/([^/^.]*)/([^/^.]*)/([^.]*)$ /sss.php?tab=$1&page=$2&queryString=$3&$args last; } if ($uri !~* "sss.php"){ set $rule_9 1$rule_9; } if ($uri !~* "security.php"){ set $rule_9 2$rule_9; } if ($rule_9 = "21"){ rewrite ^/([^/]*)$ /index/$1?$args last; } Please help me with the proper conversion result for nginx in order to work perfectly.

    Read the article

  • CodePlex Daily Summary for Sunday, September 30, 2012

    CodePlex Daily Summary for Sunday, September 30, 2012Popular ReleasesCAPTCHA Solver: Initial Release: This is the initial Release :) Still very much a WIP.MCEBuddy 2.x: MCEBuddy 2.2.17: Reccomended update to 2.2.16 Changelog for 2.2.17 (32bit and 64bit) 1. Fixed bugs around thread synchronization with new remote model (fixes cause the app to crash or hang) 2. Updated UPnP code base, faster and more reliable now 3. Now you can get audio/video properties for multiple files on main page. Selected multiple files and right click, all selected files properties will be shown. 4. Fix a bug, not able to enter a conversion task name in the GUIAggravation: Version 1.0: This version 1.0 release is pretty stable. You need the Silverlight 4 runtime, developer tools, and Experssion Blend 4 installed.Readable Passphrase Generator: KeePass Plugin 0.7.1: See the KeePass Plugin Step By Step Guide for instructions on how to install the plugin. Changes Built against KeePass 2.20Windows 8 Toolkit - Charts and More: Beta 1.0: The First Compiled Version of my LibraryPDF.NET: PDF.NET.Ver4.5-OpenSourceCode: PDF.NET Ver4.5 ????,????Web??????。 PDF.NET Ver4.5 Open Source Code,include a sample Web application project.D3 Loot Tracker: 1.4: Session name is displayed in the UI. Changes data directory for clickonce deployment so that sessions files are persisted between versions. Added a delete button in the sessions list window. Allow opening of the sessions local folder from the session list widow. Display the session name in the main window Ability to select which diablo process to hook up to when pressing new () function BUT only if multi-process support is selected in the generals settings tab menu. Session picker...CRM 2011 Visual Ribbon Editor: Visual Ribbon Editor 1.1 Beta: Visual Ribbon Editor 1.1 Beta What's New: Fixed scrolling issue in UnHide dialog Added support for connecting via ADFS / IFD Added support for more than one action for a button Added support for empty StringParameter for Javascript functions Fixed bug in rule CrmClientTypeRule when selecting Outlook option Extended Prefix field in New Button dialogVisual Studio Icon Patcher: Version 1.5.2: This version contains no new images from v1.5.1 Contains the following improvements: Better support for detecting the installed languages The extract & inject commands won’t run if Visual Studio is running You may now run in extract or inject mode The p/invoke code was cleaned up based on Code Analysis recommendations When a p/invoke method fails the Win32 error message is now displayed Error messages use red text Status messages use green textZXing.Net: ZXing.Net 0.9.0.0: On the way to a release 1.0 the API should be stable now with this version. sync with rev. 2393 of the java version improved api better Unity support Windows RT binaries Windows CE binaries new Windows Service demo new WPF demo WindowsCE Hotfix: Fixes an error with ISO8859-1 encoding and scannning of QR-Codes. The hotfix is only needed for the WindowsCE platform.C.B.R. : Comic Book Reader: CBR 0.7: Synthesis since 0.6 : ePUB : Complete refactoring Add a new dedicated feed viewer for opds stream PDF conversion : improved with image merge Make all backstage panel scrollable Integrate the new AvalonDock 2 library. Support multi-document. Library explorer and Table of content are now toolboxes Designer for dynamic books is now mvvm and much better New BrowserForControl Customized xps viewer to suppress toolbars and bind it to cbr commands Add quick start manual and button ...menu4web: menu4web 1.0 - free javascript menu for web sites: menu4web 1.0 has been tested with all major browsers: Firefox, Chrome, IE, Opera and Safari. Minified m4w.js library is less than 9K. Includes 21 menu examples of different styles. Can be freely distributed under The MIT License (MIT).Rawr: Rawr 5.0.0: This is the Downloadable WPF version of Rawr!For web-based version see http://elitistjerks.com/rawr.php You can find the version notes at: http://rawr.codeplex.com/wikipage?title=VersionNotes Rawr Addon (NOT UPDATED YET FOR MOP)We now have a Rawr Official Addon for in-game exporting and importing of character data hosted on Curse. The Addon does not perform calculations like Rawr, it simply shows your exported Rawr data in wow tooltips and lets you export your character to Rawr (including ba...Coevery - Free CRM: Coevery 1.0.0.26: The zh-CN issue has been solved. We also add a project management module.VidCoder: 1.4.1 Beta: Updated to HandBrake 4971. This should fix some issues with stuck PGS subtitles. Fixed build break which prevented pre-compiled XML serializers from showing up. Fixed problem where a preset would get errantly marked as modified when re-opening the encode settings window or importing a new preset.Snake!: Snake 1.0: Version 1 StablePaging SharePoint ListItems using listitems position: Paginglistitems V1.0: This is a console application which has two methods both on CSOM and SOM to display the listitems in a paged manner.SharePoint Move Discussion Threads: SharePoint Move Discussion Threads ver 0.1: ver 0.1NTCPMSG: V1.1.1.0: increase the performance. Support .net framework 4.0.BlackJumboDog: Ver5.7.2: 2012.09.23 Ver5.7.2 (1)InetTest?? (2)HTTP?????????????????100???????????New Projects2D Sprite Editor: This is a 2d sprite editor. Import your sprite sheet, trace your animations frame and export the coordinates points in a simple txt file, ready to import.caifenweb1: test project.CatchThatException: This is a small logging library We created at developerpath.com to help us log exceptions. It write it to a text file and you can easilay open that txt.FsxWs - WebServices for Microsoft FSX: WebServices for MS Flight Simulator. Get flights data as JSON, KML. !! Still in SetUp phase - be patient !!GetTPB: Some training in downloading and parsing web pages, with multithreading too.JSON-RPC Client Generator (for XBMC): The goal of this project is to provide a .Net client for the XBMC JSONRPC API. The main part is not XBMC dependent and may be used for any JSON-RPC client.matlab-silhouette-pose-wtf: Whatevermfp: this is random codeMVC Grid: MVC Grid ExampleMyWebSocketTry: sssssssssssssssssssssssssssssssssssssssNetduino Console: Netduino Console is an interface with built in messaging layers that allows you as a developer to dynamically create plugins following a provided interface to iSharePoint ASP.NET Verifier: Project will allow to verify SharePoint 2010 components using ASP.NET web applicationSharepoint Custom Upload: This is a SharePoint solution that allows an administrator to customize the upload page individually for each document library in a site.. It allows you to makeWinWeb Browser Deluxe: WinWeb Browser Deluxe es un navegador web de código abierto basado en Internet Explorer hecho en Visual Basic .NET. Descargalo ya!writethatoutput: This is the official release page for WriteThatOutPut from developerpath.com

    Read the article

  • Preserving Permalinks

    - by Daniel Moth
    One of the things that gets me on a rant is websites that break permalinks. If you have posted something somewhere and there is a public URL pointing to it, that URL should never ever return a 404. You are breaking all websites that ever linked to you and you are breaking all search engine links to your content (that others will try and follow). It is a pet peeve of mine. So when I had to move my blog, obviously I would preserve the root URL (www.danielmoth.com/Blog/), but I also wanted to preserve every URL my blog has generated over the years. To be clear, our focus here is on the URL formatting, not the content migration which I'll talk about in my next post. In this post, I'll describe my solution first and then what it solves. 1. The IIS7 Rewrite Module and web.config There are a few ways you can map an old URL to a new one (so when requests to the old URL come in, they get redirected to the new one). The new blog engine I use (dasBlog) has built-in functionality to do that (Scott refers to it here). Instead, the way I chose to address the issue was to use the IIS7 rewrite module. The IIS7 rewrite module allows redirecting URLs based on pattern matching, regular expressions and, of course, hardcoded full URLs for things that don't fall into any pattern. You can configure it visually from IIS Manager using a handy dialog that allows testing patterns against input URLs. Here is what mine looked like after configuring a few rules: To learn more about this technology check out this video, the reference page and this overview blog post; all 3 pages have a collection of related resources at the bottom worth checking out too. All the visual configuration ends up in a web.config file at the root folder of your website. If you are on a shared hosting service, probably the only way you can use the Rewrite Module is by directly editing the web.config file. Next, I'll describe the URLs I had to map and how that manifested itself in the web.config file. What I did was create the rules locally using the GUI, and then took the generated web.config file and uploaded it to my live site. You can view my web.config here. 2. Monthly Archives Observe the difference between the way the two blog engines generate this type of URL Blogger: /Blog/2004_07_01_mothblog_archive.html dasBlog: /Blog/default,month,2004-07.aspx In my web.config file, the rule that deals with this is the one named "monthlyarchive_redirect". 3. Categories Observe the difference between the way the two blog engines generate this type of URL Blogger: /Blog/labels/Personal.html dasBlog: /Blog/CategoryView,category,Personal.aspx In my web.config file the rule that deals with this is the one named "category_redirect". 4. Posts Observe the difference between the way the two blog engines generate this type of URL Blogger: /Blog/2004/07/hello-world.html dasBlog: /Blog/Hello-World.aspx In my web.config file the rule that deals with this is the one named "post_redirect". Note: The decision is taken to use dasBlog URLs that do not include the date info (see the description of my Appearance settings). If we included the date info then it would have to include the day part, which blogger did not generate. This makes it impossible to redirect correctly and to have a single permalink for blog posts moving forward. An implication of this decision, is that no two blog posts can have the same title. The tool I will describe in my next post (inelegantly) deals with duplicates, but not with triplicates or higher. 5. Unhandled by a generic rule Unfortunately, the two blog engines use different rules for generating URLs for blog posts. Most of the time the conversion is as simple as the example of the previous section where a post titled "Hello World" generates a URL with the words separated by a hyphen. Some times that is not the case, for example: /Blog/2006/05/medc-wrap-up.html /Blog/MEDC-Wrapup.aspx or /Blog/2005/01/best-of-moth-2004.html /Blog/Best-Of-The-Moth-2004.aspx or /Blog/2004/11/more-windows-mobile-2005-details.html /Blog/More-Windows-Mobile-2005-Details-Emerge.aspx In short, blogger does not add words to the title beyond ~39 characters, it drops some words from the title generation (e.g. a, an, on, the), and it preserve hyphens that appear in the title. For this reason, we need to detect these and explicitly list them for redirects (no regular expression can help here because the full set of rules is not listed anywhere). In my web.config file the rule that deals with this is the one named "Redirect rule1 for FullRedirects" combined with the rewriteMap named "StaticRedirects". Note: The tool I describe in my next post will detect all the URLs that need to be explicitly redirected and will list them in a file ready for you to copy them to your web.config rewriteMap. 6. C# code doing the same as the web.config I wrote some naive code that does the same thing as the web.config: given a string it will return a new string converted according to the 3 rules above. It does not take into account the 4th case where an explicit hard-coded conversion is needed (the tool I present in the next post does take that into account). static string REGEX_post_redirect = "[0-9]{4}/[0-9]{2}/([0-9a-z-]+).html"; static string REGEX_category_redirect = "labels/([_0-9a-z-% ]+).html"; static string REGEX_monthlyarchive_redirect = "([0-9]{4})_([0-9]{2})_[0-9]{2}_mothblog_archive.html"; static string Redirect(string oldUrl) { GroupCollection g; if (RunRegExOnIt(oldUrl, REGEX_post_redirect, 2, out g)) return string.Concat(g[1].Value, ".aspx"); if (RunRegExOnIt(oldUrl, REGEX_category_redirect, 2, out g)) return string.Concat("CategoryView,category,", g[1].Value, ".aspx"); if (RunRegExOnIt(oldUrl, REGEX_monthlyarchive_redirect, 3, out g)) return string.Concat("default,month,", g[1].Value, "-", g[2], ".aspx"); return string.Empty; } static bool RunRegExOnIt(string toRegEx, string pattern, int groupCount, out GroupCollection g) { if (pattern.Length == 0) { g = null; return false; } g = new Regex(pattern, RegexOptions.IgnoreCase | RegexOptions.Compiled).Match(toRegEx).Groups; return (g.Count == groupCount); } Comments about this post welcome at the original blog.

    Read the article

  • CodePlex Daily Summary for Thursday, April 15, 2010

    CodePlex Daily Summary for Thursday, April 15, 2010New ProjectsApplication Logging Repository (ALR): The ALR is a light-weight logging framework that allows applications to log events and exceptions to a central repository.Arkane.FileProperties.DSS: Arkane.FileProperties.Dss is a library for parsing the file header of a .DSS file (as used by Olympus digital dictaphone systems) to obtain time, v...B in conTrol project: This project enables controling log-in and locking your workstation automatically, identifyng you bluetooth.DarkBook: DarkBook is a personal library project.Direct2D for Microsoft .Net: Direct2D, DirectWrite and Windows Imaging wrappers for .Net. This library allows to access Direct2D, DirectWrite and Windows Imaging Windows API f...DJ Ware: DJ Ware is an extensible music player with plugin support and innovative features to organize and explore music files. It is developed with C#, WPF...gpsMe: gpsMe is a Windows Mobile 6.x mapping solution allowing to place the user on a personnalized map. The screen requirements are VGA or WVGA but, you ...jErrorLog: jErrorLog is an error logging component for use in DotNet 2.0 or later applications. It can log error messages to any of the following: database, e...KEMET_API: Java Library (open - source). This library is a help to study egyptian hieroglyphs.Meadow: A web site project for a Swedish floorball team called Slackers. Home page built with ASP.NET 2.0, ASP.NET AJAX and SQL Server 2005.Mustang Math: Mustang Math makes it easier for young children to practice basic math facts on the computer. No keyboard or mouse required - just say the answer!...Net.Formats.oEmbed: oEmbed format implementation in c#. oEmbed is a format for allowing an embedded representation of a URL on third party sites. The simple API allows...Normlize O/R Mapper: Open source O/RM tool that participates with traditional inheritance object models as well as Hibernate/nHibernate style class shells. As I have t...N-Twill Twitter Client for VB.NET: Proyecto de cliente twitter hecho con la libreria TwitterVB2 y hecho en VB.net 2008.SIQM: Spatial Information Quality Management Toolset TIMETABLEASY Web: Under developmentTweetSharp: TweetSharp is a complete .NET library for micro-blogging platforms that allows you to write short and sweet expressions that fly to Twitter, Yammer...UISandbox: UISandbox is a sample C# source code showing how to deal with plugins requiring sandbox, when those plugins must interact with WPF application inte...WinForm SharePoint Web Part Manager: The SharePoint Web Part Manager is a WinForm tool using the SharePoint object model that enables developers and power users to add, update, delete,...WoW Character Viewer: View your World of Warcraft character (or anyone else's character), using this application. Written using Visual Basic Express 2008, then ported t...Xrns2XMod: Xrns2XMod converts from Renoise format (xrns) to mod or xm, which are more compatible formats playable from xmplay or vlc.New ReleasesArkane.FileProperties.DSS: 1.0 stable release: Executables and merge module for 1.0. (See documentation.)Bluetooth Radar: Version 2.0: Add IrDA reference for Bluetooth sending using Obex Add Project icon Add Bluetooth detection mode (Auto close application is there is no blueto...BUtil: BUtil 5.0 Alpha: Backup tasks adding.... in progressChronos WPF: Chronos v1.0 RC 1: Chronos v1.0 RC 1. Development will be feature frozen after this release, only bug fixes will be allowed. Updated nRoute assembly to v0.4 (http:...clipShow: Version 2.5: Release that addresses the canonical syntax issues in search discoverd by Tschachim (thanks again!). Also, the play list and play all menu items s...DarkBook: DarkBook alpha: Hi, here comes the alpha version of Darkbook. It has all the functions already but is still in developing. I hope it's helpful for you, at least it...DirectQ: Release 1.8.3a: Improvements to 1.8.2, which will be shortly be removed. This replaces the original 1.8.3 release from earlier today which had some late-breaking ...Effect Custom Tool for Visual Studio: Effect Custom Tool v1.1: Effect Custom Tool for Visual Studio is a visual studio 2008 extension that helps you generate c# classes from effect (*.fx) files for use with Xna...Folder Bookmarks: Folder Bookmarks 1.4.3: This is the latest version of Folder Bookmarks (1.4.3), with general improvements. It has an installer - it will create a directory 'CPascoe' in My...gpsMe: gpsMe v0.3: Required Hardware Windows Mobile 6 .Net Compact Framework 3.5 integrated gps device VGA or WVGA screen (normally works on others)IST435: Lab 4 - Enterprise Level CMS with DotNetNuke: Lab 4 - Enterprise Level CMS with DotNetNukeThis is the "starter kit" that you must base your Lab 4 on. This lab must be completed in-class.Mouse Jiggler: MouseJiggle-1.1: 1.1 release of Mouse Jiggler, now with x64 compatibility and the ability to start jiggling on run with the --jiggle or -j command-line switch.Mustang Math: MustangMath.exe: This is a quick and dirty "0.1" prototype to demonstrate the speech recognition idea. It starts asking you questions automatically on launch and k...MvcContrib: a Codeplex Foundation project: 2.0.36.0 for MVC2 (RTW): Please see the Change Log for a complete list of changes. MVC BootCamp Description of the releases: MvcContrib.Release.zip MvcContrib.dll MvcC...Nito.LINQ: Beta (v0.3): New features for this release: Several new supported platforms (see below). PDBs that are source-indexed to the appropriate CodePlex changeset. ...OpenIdPortableArea: 0.1.0.2 OpenIdPortableArea: OpenIdPortableArea.Release: DotNetOpenAuth.dll DotNetOpenAuth.xml MvcContrib.dll MvcContrib.xml OpenIdPortableArea.dll OpenIdPortableAre...PokeIn Comet Ajax Library: PokeIn Sample with Library v0.2: New version of PokeIn library with sample. v0.2 There are new features in this release and no bug detected yet.Project Tru Tiên: Elements-test V1-fix (v2): Là EL test được fix tiếp theo bản fix V1, tạm gọi đây là bản fix V2 của ELtest Trong bản fix này EL được fix thêm vụ Quest, Quest chỉnh sửa đúng t...Rule 18 - Love your clipboard: Rule 18: This is the third public beta for the first version of Rule 18. This version has been updated to support Visual Studio 2010 RTM and .NET 4.0 RTM. ...SevenZipSharp: SevenZipSharp 0.62: Added: Extraction from SFX archives. Now it is possible to unrar RAR self-extractors, unzip ZIP self-extractors, etc. Extraction from DOC, XLS, (...SharePoint Labs: SPLab3001A-FRA-Level200: SPLab3001A-FRA-Level200 This SharePoint Lab will teach the persistence object layer that SharePoint uses to centraly store configuration data and o...TTXPathNavigator: TTXPathNavigator for VS2010: Version for Visual Studio 2010turing machine simulator: SDS: SDS documentVecDraw: VecDraw_0.2.25: Alpha release for test purposesWinForm SharePoint Web Part Manager: Beta 1: First release of the WinForm SharePoitn web part manager toolXrns2XMod: Xrns2XMod 0.5.1: Mod and XM conversion format - No sample data conversion at momentZip Solution: ZipSolution 5.3: Features: 1. Added WaitMsec for visual studio support with getting access to files in post build event; 2. Added ShowTextInToolbars to app.config ...Most Popular ProjectsRawrWBFS ManagerAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitWindows Presentation Foundation (WPF)ASP.NETMicrosoft SQL Server Community & SamplesPHPExcelpatterns & practices – Enterprise LibraryMost Active ProjectsRawrpatterns & practices – Enterprise LibraryGMap.NET - Great Maps for Windows Forms & PresentationFarseer Physics EngineIonics Isapi Rewrite FilterNB_Store - Free DotNetNuke Ecommerce Catalog ModuleBlogEngine.NETjQuery Library for SharePoint Web ServicesDotRasFacebook Developer Toolkit

    Read the article

  • Corsair Hackers Reboot

    It wasn't easy for me to attend but it was absolutely worth to go. The Linux User Group of Mauritius (LUGM) organised another get-together for any open source enthusiast here on the island. Strangely named "Corsair Hackers Reboot" but it stands for a positive cause: "Corsair Hackers Reboot Event A collaborative activity involving LUGM, UoM Computer Club, Fortune Way Shopping Mall and several geeks from around the island, striving to put FOSS into homes & offices. The public is invited to discover and explore Free Software & Open Source." And it was a good opportunity for me and the kids to visit the east coast of Mauritius, too. Perfect timing It couldn't have been better... Why? Well, for two important reasons (in terms of IT): End of support for Microsoft Windows XP - 08.04.2014 Release of Ubuntu 14.04 Long Term Support - 17.04.2014 Quite funnily, those two IT dates weren't the initial reasons and only during the weeks of preparations we put those together. And therefore it was even more positive to promote the use of Linux and open source software in general to a broader audience. Getting there ... Thanks to the new motor way M3 and all the additional road work which has been completed recently it was very simple to get across the island in a very quick and relaxed manner. Compared to my trips in the early days of living in Mauritius (and riding on a scooter) it was very smooth and within less than an hour we hit Centrale de Flacq. Well, being in the city doesn't necessarily mean that one has arrived at the destination. But thanks to modern technology I had a quick look on Google Maps, and we finally managed to get a parking behind the huge bus terminal in Flacq. From there it was just a short walk to Fortune Way. The children were trying to count the number of buses... Well, lots and lots of buses - really impressive actually. What was presented? There were different areas set up. Right at the entrance one's attention was directly drawn towards the elevated hacker's stage. Similar to rock stars performing their gig there was bunch of computers, laptops and networking equipment in order to cater the right working conditions for coding/programming challenge(s) on the one hand and for the pen-testing or system hacking competition on the other hand. Personally, I was very impresses that actually Nitin took care of the pen-testing competition. He hardly started one year back with Linux in general, and Kali Linux specifically. Seeing his personal development from absolute newbie to a decent Linux system administrator within such a short period of time, is really impressive. His passion to open source software made him a living. Next, clock-wise seen, was the Kid's Corner with face-painting as the main attraction. Additionally, there were numerous paper print outs to colour. Plus a decent workstation with the educational suite GCompris. Of course, my little ones were into that. They already know GCompris since a while as they are allowed to use it on an IGEL thin client terminal here at home. To simplify my life, I set up GCompris as full-screen guest session on the server, and they can pass the login screen without any further obstacles. And because it's a thin client hooked up to a XDMCP remote session I don't have to worry about the hardware on their desk, too. The next section was the main attraction of the event: BYOD - Bring Your Own Device Well, compared to the usual context of BYOD the corsairs had a completely different intention. Here, you could bring your own laptop and a team of knowledgeable experts - read: geeks and so on - offered to fully convert your system on any Linux distribution of your choice. And even though I came later, I was told that the USB pen drives had been in permanent use. From being prepared via dd command over launching LiveCD session to finally installing a fresh Linux system on bare metal. Most interestingly, I did a similar job already a couple of months ago, while upgrading an existing Windows XP system to Xubuntu 13.10. So far, the female owner is very happy and enjoys her system almost every evening to go shopping online, checking mails, and reading latest news from the Anime world. Back to the Hackers event, Ish told me that they managed approximately 20 conversion during the day. Furthermore, Ajay and others gladly assisted some visitors with some tricky issues and by the end of the day you can call is a success. While I was around, there was a elderly male visitor that got a full-fledged system conversion to a Linux system running completely in French language. A little bit more to the centre it was Yasir's turn to demonstrate his Arduino hardware that he hooked up with an experimental electrical circuit board connected to an LCD matrix display. That's the real spirit of hacking, and he showed some minor adjustments on the fly while demo'ing the system. Also, very interesting there was a thermal sensor around. Personally, I think that platforms like the Arduino as well as the Raspberry Pi have a great potential at a very affordable price in order to bring a better understanding of electronics as well as computer programming to a broader audience. It would be great to see more of those experiments during future activities. And last but not least there were a small number of vendors. Amongst them was Emtel - once again as sponsor of the general internet connectivity - and another hardware supplier from Riche Terre shopping mall. They had a good collection of Android related gimmicks, like a autonomous web cam that can convert any TV with HDMI connector into an online video chat system given WiFi. It's actually kind of awesome to have a Skype or Google hangout video session on the big screen rather than on the laptop. Some pictures of the event LUGM: Great conversations on Linux, open source and free software during the Corsair Hackers Reboot LUGM: Educational workstation running GCompris suite attracted the youngest attendees of the day. Of course, face painting had to be done prior to hacking... LUGM: Nadim demoing some Linux specifics to interested visitors. Everyone was pretty busy during the whole day LUGM: The hacking competition, here pen-testing a wireless connection and access point between multiple machines LUGM: Well prepared workstations to be able to 'upgrade' visitors' machines to any Linux operating system Final thoughts Gratefully, during the preparations of the event I was invited to leave some comments or suggestions, and the team of the LUGM did a great job. The outdoor banner was a eye-catcher, the various flyers and posters for the event were clearly written and as far as I understood from the quick chats I had with Ish, Nadim, Nitin, Ajay, and of course others all were very happy about the event execution. Great job, LUGM! And I'm already looking forward to the next Corsair Hackers Reboot event ... Crossing fingers: Very soon and hopefully this year again :) Update: In the media The event had been announced in local media, too. L'Express: Salon informatique: Hacking Challenge à Flacq

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Developing an Implementation Plan with Iterations by Russ Pitts

    - by user535886
    Developing an Implementation Plan with Iterations by Russ Pitts  Ok, so you have come to grips with understanding that applying the iterative concept, as defined by OUM is simply breaking up the project effort you have estimated for each phase into one or more six week calendar duration blocks of work. Idea being the business user(s) or key recipient(s) of work product(s) being developed never go longer than six weeks without having some sort of review or prototyping of the work results for an iteration…”think-a-little”, “do-a-little”, and “show-a-little” in a six week or less timeframe…ideally the business user(s) or key recipients(s) are involved throughout. You also understand the OUM concept that you only plan for that which you have knowledge of. The concept further defined, a project plan initially is developed at a high-level, and becomes more detailed as project knowledge grows. Agreeing to this concept means you also have to admit to the fallacy that one can plan with precision beyond six weeks into a project…Anything beyond six weeks is a best guess in most cases when dealing with software implementation projects. Project planning, as defined by OUM begins with the Implementation Plan view, which is a very high-level perspective of the effort estimated for each of the five OUM phases, as well as the number of iterations within each phase. You might wonder how can you predict the number of iterations for each phase at this early point in the project. Remember project planning is not an exact science, and initially is high-level and abstract in nature, and then becomes more detailed and precise as the project proceeds. So where do you start in defining iterations for each phase for a project? The following are three easy steps to initially define the number of iterations for each phase: Step 1 => Start with identifying the known factors… …Prior to starting a project you should know: · The agreed upon time-period for an iteration (e.g 6 weeks, or 4 weeks, or…) within a phase (recommend keeping iteration time-period consistent within a phase, if not for the entire project) · The number of resources available for the project · The number of total number of man-day (effort) you have estimated for each of the five OUM phases of the project · The number of work days for a week Step 2 => Calculate the man-days of effort required for an iteration within a phase… Lets assume for the sake of this example there are 10 project resources, and you have estimated 2,536 man-days of work effort which will need to occur for the elaboration phase of the project. Let’s also assume a week for this project is defined as 5 business days, and that each iteration in the elaboration phase will last a calendar duration of 6 weeks. A simple calculation is performed to calculate the daily burn rate for a single iteration, which produces a result of… ((Number of resources * days per week) * duration of iteration) = Number of days required per iteration ((10 resources * 5 days/week) * 6 weeks) = 300 man days of effort required per iteration Step 3 => Calculate the number of iterations that can occur within a phase Next calculate the number of iterations that can occur for the amount of man-days of effort estimated for the phase being considered… (number of man-days of effort estimated / number of man-days required per iteration) = # of iterations for phase (2,536 man-days of estimated effort for phase / 300 man days of effort required per iteration) = 8.45 iterations, which should be rounded to a whole number such as 9 iterations* *Note - It is important to note this is an approximate calculation, not an exact science. This particular example is a simple one, which assumes all resources are utilized throughout the phase, including tech resources, etc. (rounding down or up to a whole number based on project factor considerations). It is also best in many cases to round up to higher number, as this provides some calendar scheduling contingency.

    Read the article

  • How can I thoroughly evaluate a prospective employer?

    - by glenviewjeff
    We hear much about code smells, test smells, and even project smells, but I have heard no discussion about employer "smells" outside of the Joel Test. After much frustration working for employers with a bouquet of unpleasant corporate-culture odors, I believe it's time for me to actively seek a more mature development environment. I've started assembling a list of questions to help vet employers by identifying issues during a job interview, and am looking for additional ideas. I suppose this list could easily be modified by an employer to vet an employee as well, but please answer from the interviewee's perspective. I think it would be important to ask many of these questions of multiple people to find out if consistent answers are given. For the most part, I tried to put the questions in each section in the order they could be asked. An undesired answer to an early question will often make follow-ups moot. Values What constitutes "well-written" software? What attributes does a good developer have? Same question for manager. Process Do you have a development process? How rigorously do you follow it? How do you decide how much process to apply to each project? Describe a typical project lifecycle. Ask the following if they don't come up otherwise: Waterfall/iterative: How much time is spent in upfront requirements gathering? upfront design? Testing Who develops tests (developers or separate test engineers?) When are they developed? When are the tests executed? How long do they take to execute? What makes a good test? How do you know you've tested enough? What percentage of code is tested? Review What is the review process like? What percentage of code is reviewed? Design? How frequently can I expect to participate as code/design reviewer/reviewee? What are the criteria applied to review and where do the criteria come from? Improvement What new tools and techniques have you evaluated or deployed in the past year? What training courses have your employees been given in the past year? What will I be doing for the first six months in your company (hinting at what kind of organized mentorship/training has been thought through, if any) What changes to your development process have been made in the past year? How do you improve and learn from your mistakes as an organization? What was your organizations biggest mistake in the past year, and how was it addressed? What feedback have you given to management lately? Was it implemented? If not, why? How does your company use "best practices?" How do you seek them out from the outside or within, and how do you share them with each other? Ethics Tell me about an ethical problem you or your employees experienced recently and how was it resolved? Do you use open-source software? What open-source contributions have you made? Follow-Ups I liked what @jim-leonardo said on this Stack Overflow question: Really a thing to ask yourself: "Does this person seem like they are trying to recruit me and make me interested?" I think this is one of the most important bits. If they seem to be taking the attitude that the only one being interviewed is you, then they probably will treat you poorly. Good interviewers understand they have to sell the position as much as the candidate needs to sell themselves. @SethP added: Glassdoor.com is a good web site for researching potential employers. It contains information about how specific companies conduct interviews...

    Read the article

  • How to Build Services from Legacy Applications

    - by Chris Falter
    The SOA consultants invaded the executive suite at your company or agency, preached the true religion, and converted the unbelievers. Now by divine imperative you must convert your legacy applications into a suite of reusable services.  But as usual, you lack the time and resources that you need in order to develop the services properly.  So you googled or bing’ed, found this blog post, and began crying in gratitude.  Yes, as the title implies, I am going to reveal my easy, 3-step, works-every-time process for converting silos of legacy applications into the inventory of services your CIO has been dreaming about.  So just close your eyes and count to 3 … now open them … and here it is…. Not. While wishful thinking is too often the coin of the IT realm, even the most naive practitioner knows that converting legacy applications into reusable services requires more than a magic wand.  The reason is simple: if your starting point is your legacy applications, then you will simply be bolting a web service technology layer on top of your legacy API.  And that legacy API is built in the image of the silo applications.  Enter the wide gate of the legacy API, follow the broad path of generating service interfaces from existing code, and you will arrive at the siloed enterprise destruction that you thought you were escaping. The Straight and Narrow Path This past week I had the opportunity to learn how the FBI Criminal Justice Information Systems department has been transitioning from silo applications to a service inventory.  Lafe Hutcheson, IT Specialist in the architecture group and fellow attendee at an SOA Architect Certification Workshop, was my guide.  Lafe has survived the chaos of an SOA initiative, so it is not surprising that he was able to return from a US Army deployment to Kabul, Afghanistan with nary a scratch.  According to Lafe, building their service inventory is a three-phase process: Model a business process.  This requires intense collaboration between the IT and business wings of the organization, of course.  The FBI uses IBM Websphere tools to model the process with BPMN. Identify candidate services to facilitate the business process. Convert the BPMN to an executable BPEL orchestration, model and develop the services, and use a BPEL engine to run the process.  The FBI uses ActiveVOS for orchestration services. The 12 Step Program to End Your Legacy API Addiction Thomas Erl has documented a process for building a web service inventory that is quite similar to the FBI process. Erl’s process adds a technology architecture definition phase, which allows for the technology environment to influence the inventory blueprint.  For example, if you are using an enterprise service bus, you will probably not need to build your own utility services for logging or intermediate routing.  Erl also lists a service-oriented analysis phase that highlights the 12-step process of applying the principles of service orientation to modeling your services.  Erl depicts the modeling of a service inventory as an iterative process: model a business process, define the relevant technology architecture, define the service inventory blueprint, analyze the services, then model another business process, rinse and repeat.  (Astute readers will note that Erl’s diagram, restricted to analysis and modeling process, does not include the implementation phase that concludes the FBI service development methodology.) The service-oriented analysis phase is where you find the 12 steps that will free you from your legacy API addiction. In a nutshell, you identify the steps in the process that need services; identify the different types of services (agnostic entity services, service compositions, and utility services) that are required; apply service-orientation principles; and normalize the inventory into cohesive service models. Rather than discuss each of the 12 steps individually, I will close by simply referring my readers to Erl’s explanation.

    Read the article

  • Open source adventures with... wait for it... Microsoft

    - by Jeff
    Last week, Microsoft announced that it was going to open source the rest of the ASP.NET MVC Web stack. The core MVC framework has been open source for a long time now, but the other pieces around it are also now out in the wild. Not only that, but it's not what I call "big bang" open source, where you release the source with each version. No, they're actually committing in real time to a public repository. They're also taking contributions where it makes sense. If that weren't exciting enough, CodePlex, which used to be a part of the team I was on, has been re-org'd to a different part of the company where it is getting the love and attention (and apparently money) that it deserves. For a period of several months, I lobbied to get a PM gig with that product, but got nowhere. A year and a half later, I'm happy to see it finally treated right. In any case, I found a bug in Razor, the rendering engine, before the beta came out. I informally sent the bug info to some people, but it wasn't fixed for the beta. Now, with the project being developed in the open, I was able to submit the issue, and went back and forth with the developer who wrote the code (I met him once at a meet up in Bellevue, I think), and he committed a fix. I tried it a day later, and the bug was gone. There's a lot to learn from all of this. That open source software is surprisingly efficient and often of high quality is one part of it. For me the win is that it demonstrates how open and collaborative processes, as light as possible, lead to better software. In other words, even if this were a project being developed internally, at a bank or something, getting stakeholders involved early and giving people the ability to respond leads to awesomeness. While there is always a place for big thinking, experience has shown time and time again that trying to figure everything out up front takes too long, and rarely meets expectations. This is a lesson that probably half of Microsoft has yet to learn, including the team I was on before I split. It's the reason that team still hasn't shipped anything to general availability. But I've seen what an open and iterative development style can do for teams, at Microsoft and other places that I've worked. When you can have a conversation with people, and take ideas and turn them into code quickly, you're winning. So why don't people like winning? I think there are a lot of reasons, and they can generally be categorized into fear, skepticism and bad experiences. I can't give the Web stack teams enough credit. Not only did they dream big, but they changed a culture that often seems immovable and hopelessly stuck. This is a very public example of this culture change, but it's starting to happen at every scale in Microsoft. It's really interesting to see in a company that has been written off as dead the last decade.

    Read the article

  • Valuing "Working Software over Comprehensive Documentation"

    - by tom.spitz
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} I subscribe to the tenets put forth in the Manifesto for Agile Software Development - http://agilemanifesto.org. As Oracle's chief methodologist, that might seem a self-deprecating attitude. After all, the agile manifesto tells us that we should value "individuals and interactions" over "processes and tools." My job includes process development. I also subscribe to ideas put forth in a number of subsequent works including Balancing Agility and Discipline: A Guide for the Perplexed (Boehm/Turner, Addison-Wesley) and Agile Project Management: Creating Innovative Products (Highsmith, Addison-Wesley). Both of these books talk about finding the right balance between "agility and discipline" or between a "predictive and adaptive" project approach. So there still seems to be a place for us in creating the Oracle Unified Method (OUM) to become the "single method framework that supports the successful implementation of every Oracle product." After all, the real idea is to apply just enough ceremony and produce just enough documentation to suit the needs of the particular project that supports an enterprise in moving toward its desired future state. The thing I've been struggling with - and the thing I'd like to hear from you about right now - is the prevalence of an ongoing obsession with "documents." OUM provides a comprehensive set of guidance for an iterative and incremental approach to engineering and implementing software systems. Our intent is first to support the information technology system implementation and, as necessary, support the creation of documentation. OUM, therefore, includes a supporting set of document templates. Our guidance is to employ those templates, sparingly, as needed; not create piles of documentation that you're not gonna (sic) need. In other words, don't serve the method, make the method serve you. Yet, there seems to be a "gimme" mentality in some circles that if you give me a sample document - or better yet - a repository of samples - then I will be able to do anything cheaply and quickly. The notion is certainly appealing AND reuse can save time. Plus, documents are a lowest common denominator way of packaging reusable stuff. However, without sustained investment and management I've seen "reuse repositories" turn quickly into garbage heaps. So, I remain a skeptic. I agree that providing document examples that promote consistency is helpful. However, there may be too much emphasis on the documents themselves and not enough on creating a system that meets the evolving needs of the business. How can we shift the emphasis toward working software and away from our dependency on documents - especially on large, complex implementation projects - while still supporting the need for documentation? I'd like to hear your thoughts.

    Read the article

  • When will EBS 12.2 be released?

    - by Steven Chan (Oracle Development)
    The most frequently asked question at OpenWorld this year was, "When will EBS 12.2 be released?" Sadly, Oracle's communication policies prohibit us from speculating about release dates for unreleased software. We are not permitted to give estimates, rough timelines, guesses, or anything else that remotely resembles specific guidance on release dates. You can monitor My Oracle Support and this blog for updates on EBS 12.2.  I'll post them here as soon as they're available.  I'm embedding an old favourite from 2007 in its entirety here, since it applies equally to new releases as well as certifications. "Loose Lips Sink Ships" (March 20, 2007)If I were to sort emails in my inbox into groups, the biggest -- by far -- would be the one for emails that start with, "When will _____ be certified with the E-Business Suite?"  I answer these dutifully but know that my replies can sometimes be maddening, for two reasons:  technical uncertainty, and Oracle's rules for such communications. On the Spiral Model of CertificationsTechnology stack certifications tend to be highly iterative in nature.  As a result, statements about certification dates tend to be accurate only when made in hindsight.  Laypeople are horrified to hear this, but it's the ugly truth.  Uncertainty is simply inherent to the process.  I've become inured to it over the years, but it might come as a surprise to you that it can take many cycles to get fully-released software to work together.  Take this scenario: We test a particular combination of Component A and B. If we encounter a problem, say, with Component A, we log a bug. We receive a new version of Component A. The process iterates again. The reality is this: until a certification is completed and released, there's no accurate way of telling how many iterations are yet to come.  This is true regardless of the number of iterations that have already been completed.  Our Lips Are SealedGenerally, people understand that things are subject to change, so the second reason I can't say anything specific is actually much more important than the first.  "Loose lips might sink ships" was coined in World War II in an effort to remind people that careless talk can have serious consequences.  Curiously, this applies to Oracle's communications about upcoming features, configurations, and releases, too.  As a publicly traded company, we have very strict policies that prohibit us from linking specific releases to specific dates.  If you've ever listened to an earnings call with analysts, you'll often hear them asking, "Can you add a little more color to that statement?"  For certifications, color is usually the only thing that I have.  Sometimes I can provide a bit more information about the technical nature of the certification in question, such as expected footprints or version levels.  I can occasionally share technical issues that we've found, too, to convey the degree of risk or complexity involved in the certification.  Aside from that, there's little additional information about specific dates, date ranges, or even speculation about dates that I can provide... that is, without having one of those uncomfortable conversations with Oracle Legal.  So, as much as it pains me to do so, when it comes to dates, I'm always forced to conclude with a generic reply that blandly states one of the following: We're working on that certification right now That certification is in the pipeline but hasn't been started yet We don't have plans for that certification Don't Shoot the MessengerThankfully, I've developed a thick skin over the years -- which is a good thing, considering the colorful and energetic responses I've received over the years after answering these questions.  However, on behalf of my Oracle colleagues who are faced with these questions every day in the field, I urge you to remember that they're required to follow these same corporate rules about date disclosures.  It never hurts to ask, but don't be too disappointed if we can't provide you with a detailed answer.  The Go-Go's had it right, after all.  Related Articles Webcast Replay Available: Technical Preview of EBS 12.2 Online Patching

    Read the article

  • Solving Diophantine Equations Using Python

    - by HARSHITH
    In mathematics, a Diophantine equation (named for Diophantus of Alexandria, a third century Greek mathematician) is a polynomial equation where the variables can only take on integer values. Although you may not realize it, you have seen Diophantine equations before: one of the most famous Diophantine equations is: We are not certain that McDonald's knows about Diophantine equations (actually we doubt that they do), but they use them! McDonald's sells Chicken McNuggets in packages of 6, 9 or 20 McNuggets. Thus, it is possible, for example, to buy exactly 15 McNuggets (with one package of 6 and a second package of 9), but it is not possible to buy exactly 16 nuggets, since no non- negative integer combination of 6's, 9's and 20's adds up to 16. To determine if it is possible to buy exactly n McNuggets, one has to solve a Diophantine equation: find non-negative integer values of a, b, and c, such that 6a + 9b + 20c = n. Write an iterative program that finds the largest number of McNuggets that cannot be bought in exact quantity. Your program should print the answer in the following format (where the correct number is provided in place of n): "Largest number of McNuggets that cannot be bought in exact quantity: n"

    Read the article

  • Improving long-polling Ajax performance

    - by Bears will eat you
    I'm writing a webapp (Firefox-compatible only) which uses long polling (via jQuery's ajax abilities) to send more-or-less constant updates from the server to the client. I'm concerned about the effects of leaving this running for long periods of time, say, all day or overnight. The basic code skeleton is this: function processResults(xml) { // do stuff with the xml from the server } function fetch() { setTimeout(function () { $.ajax({ type: 'GET', url: 'foo/bar/baz', dataType: 'xml', success: function (xml) { processResults(xml); fetch(); }, error: function (xhr, type, exception) { if (xhr.status === 0) { console.log('XMLHttpRequest cancelled'); } else { console.debug(xhr); fetch(); } } }); }, 500); } (The half-second "sleep" is so that the client doesn't hammer the server if the updates are coming back to the client quickly - which they usually are.) After leaving this running overnight, it tends to make Firefox crawl. I'd been thinking that this could be partially caused by a large stack depth since I've basically written an infinitely recursive function. However, if I use Firebug and throw a breakpoint into fetch, it looks like this is not the case. The stack that Firebug shows me is only about 4 or 5 frames deep, even after an hour. One of the solutions I'm considering is changing my recursive function to an iterative one, but I can't figure out how I would insert the delay in between Ajax requests without spinning. I've looked at the JS 1.7 "yield" keyword but I can't quite wrap my head around it, to figure out if it's what I need here. Is the best solution just to do a hard refresh on the page periodically, say, once every hour? Is there a better/leaner long-polling design pattern that won't put a hurt on the browser even after running for 8 or 12 hours? Or should I just skip the long polling altogether and use a different "constant update" pattern since I usually know how frequently the server will have a response for me?

    Read the article

  • Python progression path - From apprentice to guru

    - by Morlock
    Hi all, I've been learning, working, and playing with Python for a year and a half now. As a biologist slowly making the turn to bio-informatics, this language has been a the very core of all the major contributions I have made in the lab. (bash and R scripts have helped some too. My C++ capabilities are very not functional yet). I more or less fell in love with the way Python permits me to express beautiful solutions and also with the semantics of the language that allows such a natural flow from thoughts to workable code. What I would like to know from you is your answer to a kind of question I have seldom seen in this or other forums. Let me sum up what I do NOT want to ask first ;) I don't want to know how to QUICKLY learn Python Nor do I want to find out the best way to get acquainted with the language Finally, I don't want to know a 'one trick that does it all' approach. What I do want to know your opinion about, is: What are the steps YOU would recommend to a Python journeyman, from apprenticeship to guru status (feel free to stop wherever your expertise dictates it), in order that one IMPROVES CONSTANTLY, becoming a better and better Python coder, one step at a time. The kind of answers I would enjoy (but feel free to surprise the readership :P ), is formatted more or less like this: Read this (eg: python tutorial), pay attention to that kind of details Code for so manytime/problems/lines of code Then, read this (eg: this or that book), but this time, pay attention to this Tackle a few real-life problems Then, proceed to reading Y. Be sure to grasp these concepts Code for X time Come back to such and such basics or move further to... (you get the point :) This process depicts an iterative Learn/Code cycle, and I really care about knowing your opinion on what exactly one should pay attention to, at various stages, in order to progress CONSTANTLY (with due efforts, of course). If you come from a specific field of expertise, discuss the path you see as appropriate in this field. Thanks a lot for sharing your opinions and good Python coding!

    Read the article

  • Disco/MapReduce: Using results of previous iteration as input to new iteration

    - by muckabout
    Currently am implementing PageRank on Disco. As an iterative algorithm, the results of one iteration are used as input to the next iteration. I have a large file which represents all the links, with each row representing a page and the values in the row representing the pages to which it links. For Disco, I break this file into N chunks, then run MapReduce for one round. As a result, I get a set of (page, rank) tuples. I'd like to feed this rank to the next iteration. However, now my mapper needs two inputs: the graph file, and the pageranks. I would like to "zip" together the graph file and the page ranks, such that each line represents a page, it's rank, and it's out links. Since this graph file is separated into N chunks, I need to split the pagerank vector into N parallel chunks, and zip the regions of the pagerank vectors to the graph chunks This all seems more complicated than necessary, and as a pretty straightforward operation (with the quintessential mapreduce algorithm), it seems I'm missing something about Disco that could really simplify the approach. Any thoughts?

    Read the article

  • Project Euler Question 14 (Collatz Problem)

    - by paradox
    The following iterative sequence is defined for the set of positive integers: n -n/2 (n is even) n -3n + 1 (n is odd) Using the rule above and starting with 13, we generate the following sequence: 13 40 20 10 5 16 8 4 2 1 It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1. Which starting number, under one million, produces the longest chain? NOTE: Once the chain starts the terms are allowed to go above one million. I tried coding a solution to this in C using the bruteforce method. However, it seems that my program stalls when trying to calculate 113383. Please advise :) #include <stdio.h> #define LIMIT 1000000 int iteration(int value) { if(value%2==0) return (value/2); else return (3*value+1); } int count_iterations(int value) { int count=1; //printf("%d\n", value); while(value!=1) { value=iteration(value); //printf("%d\n", value); count++; } return count; } int main() { int iteration_count=0, max=0; int i,count; for (i=1; i<LIMIT; i++) { printf("Current iteration : %d\n", i); iteration_count=count_iterations(i); if (iteration_count>max) { max=iteration_count; count=i; } } //iteration_count=count_iterations(113383); printf("Count = %d\ni = %d\n",max,count); }

    Read the article

  • java BufferedReader specific length returns NUL characters

    - by Bastien
    I have a TCP socket client receiving messages (data) from a server. messages are of the type length (2 bytes) + data (length bytes), delimited by STX & ETX characters. I'm using a bufferedReader to retrieve the two first bytes, decode the length, then read again from the same bufferedReader the appropriate length and put the result in a char array. most of the time, I have no problem, but SOMETIMES (1 out of thousands of messages received), when attempting to read (length) bytes from the reader, I get only part of it, the rest of my array being filled with "NUL" characters. I imagine it's because the buffer has not yet been filled. char[] bufLen = new char[2]; _bufferedReader.read(bufLen); int len = decodeLength(bufLen); char[] _rawMsg = new char[len]; _bufferedReader.read(_rawMsg); return _rawMsg; I solved the problem in several iterative ways: first I tested the last char of my array: if it wasn't ETX I would read chars from the bufferedReader one by one until I would reach ETX, then start over my regular routine. the consequence is that I would basically DROP one message. then, in order to still retrieve that message, I would find the first occurence of the NUL char in my "truncated" message, read & store additional characters one at a time until I reached ETX, and append them to my "truncated" messages, confirming length is ok. it works also, but I'm really thinking there's something I could do better, like checking if the total number of characters I need are available in the buffer before reading it, but can't find the right way to do it... any idea / pointer ? thanks !

    Read the article

< Previous Page | 68 69 70 71 72 73 74 75 76 77 78 79  | Next Page >