Search Results

Search found 2727 results on 110 pages for 'operator overloading'.

Page 72/110 | < Previous Page | 68 69 70 71 72 73 74 75 76 77 78 79  | Next Page >

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Unknown C# keywords: params

    - by Chris Skardon
    Often overlooked, and (some may say) unloved, is the params keyword, but it’s an awesome keyword, and one you should definitely check out. What does it do? Well, it lets you specify a single parameter that can have a variable number of arguments. You what? Best shown with an example, let’s say we write an add method: public int Add(int first, int second) { return first + second; } meh, it’s alright, does what it says on the tin, but it’s not exactly awe-inspiring… Oh noes! You need to add 3 things together??? public int Add(int first, int second, int third) { return first + second + third; } oh yes, you code master you! Overloading a-plenty! Now a fourth… Ok, this is starting to get a bit ridiculous, if only there was some way… public int Add(int first, int second, params int[] others) { return first + second + others.Sum(); } So now I can call this with any number of int arguments? – well, any number > 2..? Yes! int ret = Add(1, 2, 3); Is as valid as: int ret = Add(1, 2, 3, 4); Of course you probably won’t really need to ever do that method, so what could you use it for? How about adding strings together? What about a logging method? We all know ToString can be an expensive method to call, it might traverse every node on a class hierarchy, or may just be the name of the type… either way, we don’t really want to call it if we can avoid it, so how about a logging method like so: public void Log(LogLevel level, params object[] objs) { if(LoggingLevel < level) return; StringBuilder output = new StringBuilder(); foreach(var obj in objs) output.Append((obj == null) ? "null" : obj.ToString()); return output; } Now we only call ‘ToString’ when we want to, and because we’re passing in just objects we don’t have to call ToString if the Logging Level isn’t what we want… Of course, there are a multitude of things to use params for…

    Read the article

  • Why would I learn C++11, having known C and C++?

    - by Shahbaz
    I am a programmer in C and C++, although I don't stick to either language and write a mixture of the two. Sometimes having code in classes, possibly with operator overloading, or templates and the oh so great STL is obviously a better way. Sometimes use of a simple C function pointer is much much more readable and clear. So I find beauty and practicality in both languages. I don't want to get into the discussion of "If you mix them and compile with a C++ compiler, it's not a mix anymore, it's all C++" I think we all understand what I mean by mixing them. Also, I don't want to talk about C vs C++, this question is all about C++11. C++11 introduces what I think are significant changes to how C++ works, but it has introduced many special cases that change how different features behave in different circumstances, placing restrictions on multiple inheritance, adding lambda functions, etc. I know that at some point in the future, when you say C++ everyone would assume C++11. Much like when you say C nowadays, you most probably mean C99. That makes me consider learning C++11. After all, if I want to continue writing code in C++, I may at some point need to start using those features simply because my colleagues have. Take C for example. After so many years, there are still many people learning and writing code in C. Why? Because the language is good. What good means is that, it follows many of the rules to create a good programming language. So besides being powerful (which easy or hard, almost all programming languages are), C is regular and has few exceptions, if any. C++11 however, I don't think so. I'm not sure that the changes introduced in C++11 are making the language better. So the question is: Why would I learn C++11? Update: My original question in short was: "I like C++, but the new C++11 doesn't look good because of this and this and this. However, deep down something tells me I need to learn it. So, I asked this question here so that someone would help convince me to learn it." However, the zealous people here can't tolerate pointing out a flaw in their language and were not at all constructive in this manner. After the moderator edited the question, it became more like a "So, how about this new C++11?" which was not at all my question. Therefore, in a day or too I am going to delete this question if no one comes up with an actual convincing argument. P.S. If you are interested in knowing what flaws I was talking about, you can edit my question and see the previous edits.

    Read the article

  • Complete Beginner to Game Programming and Unreal Engine 4, Looking For Advice [on hold]

    - by onemic
    I am currently a 2nd year programming student(Just finished my first year so I will be starting my second year in September) and have mainly learned C and C++ in my classes. In terms of what I know of C++, I know about general inheritance, polymorphism, overloading operators, iterators, a little bit about templates(only class and function templates) etc. but not of the more advanced topics like linked lists and other sequential containers(containers in general I guess), enumerations, most of the standard library(other than like strings and vectors), and probably a bunch of other stuff I dont even know about yet. I subscribed to Unreal Engine 4 as I was very intrigued by their Unreal Tournament announcement earlier this month, especially after hearing that UE4 is going completely C++. Of course my end goal in doing this programming program is to eventually go into game/graphics programming. Since it's my summer off, I thought what better way then to actually apply some of my skills to a personal project so I actually have a firmer understanding of C++ past what my professors tell me. My questions are this: What would be the best way to start off making a small personal game in UE4 as a project for the summer? What should I be aiming for, especially for someone that is still learning C++? Should I focus on making a simple 2D game rather than a 3D one to get started? Seeing the Flappy Chicken showcase intrigued me because before I thought the UE engine was pretty much pigeonholed into being for FPS games What should my expectations be going into UE4 and a game engine for the first time?(UE4 will be my first foray into making a game) What can I expect to gain from making things in UE4, in terms of making games and in terms of further fleshing out my knowledge of C++? Would you recommend I start off 100% using C++ for scripting or using the visual blueprints? Since I'm not a designer, how would I be able to add objects and designs to my game? For someone at my level is retaining the UE4 subscription worth it or is it better to cancel and resub when I learn enough about UE4 and C++? Lastly is there anything to be gained in terms of knowledge/insight through me looking at the source code for UE4? I opened it in VS2013, but noticed that most of the files were C# files and not cpp's. Thanks in advance for taking the time to answer.

    Read the article

  • The blocking nature of aggregates

    - by Rob Farley
    I wrote a post recently about how query tuning isn’t just about how quickly the query runs – that if you have something (such as SSIS) that is consuming your data (and probably introducing a bottleneck), then it might be more important to have a query which focuses on getting the first bit of data out. You can read that post here.  In particular, we looked at two operators that could be used to ensure that a query returns only Distinct rows. and The Sort operator pulls in all the data, sorts it (discarding duplicates), and then pushes out the remaining rows. The Hash Match operator performs a Hashing function on each row as it comes in, and then looks to see if it’s created a Hash it’s seen before. If not, it pushes the row out. The Sort method is quicker, but has to wait until it’s gathered all the data before it can do the sort, and therefore blocks the data flow. But that was my last post. This one’s a bit different. This post is going to look at how Aggregate functions work, which ties nicely into this month’s T-SQL Tuesday. I’ve frequently explained about the fact that DISTINCT and GROUP BY are essentially the same function, although DISTINCT is the poorer cousin because you have less control over it, and you can’t apply aggregate functions. Just like the operators used for Distinct, there are different flavours of Aggregate operators – coming in blocking and non-blocking varieties. The example I like to use to explain this is a pile of playing cards. If I’m handed a pile of cards and asked to count how many cards there are in each suit, it’s going to help if the cards are already ordered. Suppose I’m playing a game of Bridge, I can easily glance at my hand and count how many there are in each suit, because I keep the pile of cards in order. Moving from left to right, I could tell you I have four Hearts in my hand, even before I’ve got to the end. By telling you that I have four Hearts as soon as I know, I demonstrate the principle of a non-blocking operation. This is known as a Stream Aggregate operation. It requires input which is sorted by whichever columns the grouping is on, and it will release a row as soon as the group changes – when I encounter a Spade, I know I don’t have any more Hearts in my hand. Alternatively, if the pile of cards are not sorted, I won’t know how many Hearts I have until I’ve looked through all the cards. In fact, to count them, I basically need to put them into little piles, and when I’ve finished making all those piles, I can count how many there are in each. Because I don’t know any of the final numbers until I’ve seen all the cards, this is blocking. This performs the aggregate function using a Hash Match. Observant readers will remember this from my Distinct example. You might remember that my earlier Hash Match operation – used for Distinct Flow – wasn’t blocking. But this one is. They’re essentially doing a similar operation, applying a Hash function to some data and seeing if the set of values have been seen before, but before, it needs more information than the mere existence of a new set of values, it needs to consider how many of them there are. A lot is dependent here on whether the data coming out of the source is sorted or not, and this is largely determined by the indexes that are being used. If you look in the Properties of an Index Scan, you’ll be able to see whether the order of the data is required by the plan. A property called Ordered will demonstrate this. In this particular example, the second plan is significantly faster, but is dependent on having ordered data. In fact, if I force a Stream Aggregate on unordered data (which I’m doing by telling it to use a different index), a Sort operation is needed, which makes my plan a lot slower. This is all very straight-forward stuff, and information that most people are fully aware of. I’m sure you’ve all read my good friend Paul White (@sql_kiwi)’s post on how the Query Optimizer chooses which type of aggregate function to apply. But let’s take a look at SQL Server Integration Services. SSIS gives us a Aggregate transformation for use in Data Flow Tasks, but it’s described as Blocking. The definitive article on Performance Tuning SSIS uses Sort and Aggregate as examples of Blocking Transformations. I’ve just shown you that Aggregate operations used by the Query Optimizer are not always blocking, but that the SSIS Aggregate component is an example of a blocking transformation. But is it always the case? After all, there are plenty of SSIS Performance Tuning talks out there that describe the value of sorted data in Data Flow Tasks, describing the IsSorted property that can be set through the Advanced Editor of your Source component. And so I set about testing the Aggregate transformation in SSIS, to prove for sure whether providing Sorted data would let the Aggregate transform behave like a Stream Aggregate. (Of course, I knew the answer already, but it helps to be able to demonstrate these things). A query that will produce a million rows in order was in order. Let me rephrase. I used a query which produced the numbers from 1 to 1000000, in a single field, ordered. The IsSorted flag was set on the source output, with the only column as SortKey 1. Performing an Aggregate function over this (counting the number of rows per distinct number) should produce an additional column with 1 in it. If this were being done in T-SQL, the ordered data would allow a Stream Aggregate to be used. In fact, if the Query Optimizer saw that the field had a Unique Index on it, it would be able to skip the Aggregate function completely, and just insert the value 1. This is a shortcut I wouldn’t be expecting from SSIS, but certainly the Stream behaviour would be nice. Unfortunately, it’s not the case. As you can see from the screenshots above, the data is pouring into the Aggregate function, and not being released until all million rows have been seen. It’s not doing a Stream Aggregate at all. This is expected behaviour. (I put that in bold, because I want you to realise this.) An SSIS transformation is a piece of code that runs. It’s a physical operation. When you write T-SQL and ask for an aggregation to be done, it’s a logical operation. The physical operation is either a Stream Aggregate or a Hash Match. In SSIS, you’re telling the system that you want a generic Aggregation, that will have to work with whatever data is passed in. I’m not saying that it wouldn’t be possible to make a sometimes-blocking aggregation component in SSIS. A Custom Component could be created which could detect whether the SortKeys columns of the input matched the Grouping columns of the Aggregation, and either call the blocking code or the non-blocking code as appropriate. One day I’ll make one of those, and publish it on my blog. I’ve done it before with a Script Component, but as Script components are single-use, I was able to handle the data knowing everything about my data flow already. As per my previous post – there are a lot of aspects in which tuning SSIS and tuning execution plans use similar concepts. In both situations, it really helps to have a feel for what’s going on behind the scenes. Considering whether an operation is blocking or not is extremely relevant to performance, and that it’s not always obvious from the surface. In a future post, I’ll show the impact of blocking v non-blocking and synchronous v asynchronous components in SSIS, using some of LobsterPot’s Script Components and Custom Components as examples. When I get that sorted, I’ll make a Stream Aggregate component available for download.

    Read the article

  • The blocking nature of aggregates

    - by Rob Farley
    I wrote a post recently about how query tuning isn’t just about how quickly the query runs – that if you have something (such as SSIS) that is consuming your data (and probably introducing a bottleneck), then it might be more important to have a query which focuses on getting the first bit of data out. You can read that post here.  In particular, we looked at two operators that could be used to ensure that a query returns only Distinct rows. and The Sort operator pulls in all the data, sorts it (discarding duplicates), and then pushes out the remaining rows. The Hash Match operator performs a Hashing function on each row as it comes in, and then looks to see if it’s created a Hash it’s seen before. If not, it pushes the row out. The Sort method is quicker, but has to wait until it’s gathered all the data before it can do the sort, and therefore blocks the data flow. But that was my last post. This one’s a bit different. This post is going to look at how Aggregate functions work, which ties nicely into this month’s T-SQL Tuesday. I’ve frequently explained about the fact that DISTINCT and GROUP BY are essentially the same function, although DISTINCT is the poorer cousin because you have less control over it, and you can’t apply aggregate functions. Just like the operators used for Distinct, there are different flavours of Aggregate operators – coming in blocking and non-blocking varieties. The example I like to use to explain this is a pile of playing cards. If I’m handed a pile of cards and asked to count how many cards there are in each suit, it’s going to help if the cards are already ordered. Suppose I’m playing a game of Bridge, I can easily glance at my hand and count how many there are in each suit, because I keep the pile of cards in order. Moving from left to right, I could tell you I have four Hearts in my hand, even before I’ve got to the end. By telling you that I have four Hearts as soon as I know, I demonstrate the principle of a non-blocking operation. This is known as a Stream Aggregate operation. It requires input which is sorted by whichever columns the grouping is on, and it will release a row as soon as the group changes – when I encounter a Spade, I know I don’t have any more Hearts in my hand. Alternatively, if the pile of cards are not sorted, I won’t know how many Hearts I have until I’ve looked through all the cards. In fact, to count them, I basically need to put them into little piles, and when I’ve finished making all those piles, I can count how many there are in each. Because I don’t know any of the final numbers until I’ve seen all the cards, this is blocking. This performs the aggregate function using a Hash Match. Observant readers will remember this from my Distinct example. You might remember that my earlier Hash Match operation – used for Distinct Flow – wasn’t blocking. But this one is. They’re essentially doing a similar operation, applying a Hash function to some data and seeing if the set of values have been seen before, but before, it needs more information than the mere existence of a new set of values, it needs to consider how many of them there are. A lot is dependent here on whether the data coming out of the source is sorted or not, and this is largely determined by the indexes that are being used. If you look in the Properties of an Index Scan, you’ll be able to see whether the order of the data is required by the plan. A property called Ordered will demonstrate this. In this particular example, the second plan is significantly faster, but is dependent on having ordered data. In fact, if I force a Stream Aggregate on unordered data (which I’m doing by telling it to use a different index), a Sort operation is needed, which makes my plan a lot slower. This is all very straight-forward stuff, and information that most people are fully aware of. I’m sure you’ve all read my good friend Paul White (@sql_kiwi)’s post on how the Query Optimizer chooses which type of aggregate function to apply. But let’s take a look at SQL Server Integration Services. SSIS gives us a Aggregate transformation for use in Data Flow Tasks, but it’s described as Blocking. The definitive article on Performance Tuning SSIS uses Sort and Aggregate as examples of Blocking Transformations. I’ve just shown you that Aggregate operations used by the Query Optimizer are not always blocking, but that the SSIS Aggregate component is an example of a blocking transformation. But is it always the case? After all, there are plenty of SSIS Performance Tuning talks out there that describe the value of sorted data in Data Flow Tasks, describing the IsSorted property that can be set through the Advanced Editor of your Source component. And so I set about testing the Aggregate transformation in SSIS, to prove for sure whether providing Sorted data would let the Aggregate transform behave like a Stream Aggregate. (Of course, I knew the answer already, but it helps to be able to demonstrate these things). A query that will produce a million rows in order was in order. Let me rephrase. I used a query which produced the numbers from 1 to 1000000, in a single field, ordered. The IsSorted flag was set on the source output, with the only column as SortKey 1. Performing an Aggregate function over this (counting the number of rows per distinct number) should produce an additional column with 1 in it. If this were being done in T-SQL, the ordered data would allow a Stream Aggregate to be used. In fact, if the Query Optimizer saw that the field had a Unique Index on it, it would be able to skip the Aggregate function completely, and just insert the value 1. This is a shortcut I wouldn’t be expecting from SSIS, but certainly the Stream behaviour would be nice. Unfortunately, it’s not the case. As you can see from the screenshots above, the data is pouring into the Aggregate function, and not being released until all million rows have been seen. It’s not doing a Stream Aggregate at all. This is expected behaviour. (I put that in bold, because I want you to realise this.) An SSIS transformation is a piece of code that runs. It’s a physical operation. When you write T-SQL and ask for an aggregation to be done, it’s a logical operation. The physical operation is either a Stream Aggregate or a Hash Match. In SSIS, you’re telling the system that you want a generic Aggregation, that will have to work with whatever data is passed in. I’m not saying that it wouldn’t be possible to make a sometimes-blocking aggregation component in SSIS. A Custom Component could be created which could detect whether the SortKeys columns of the input matched the Grouping columns of the Aggregation, and either call the blocking code or the non-blocking code as appropriate. One day I’ll make one of those, and publish it on my blog. I’ve done it before with a Script Component, but as Script components are single-use, I was able to handle the data knowing everything about my data flow already. As per my previous post – there are a lot of aspects in which tuning SSIS and tuning execution plans use similar concepts. In both situations, it really helps to have a feel for what’s going on behind the scenes. Considering whether an operation is blocking or not is extremely relevant to performance, and that it’s not always obvious from the surface. In a future post, I’ll show the impact of blocking v non-blocking and synchronous v asynchronous components in SSIS, using some of LobsterPot’s Script Components and Custom Components as examples. When I get that sorted, I’ll make a Stream Aggregate component available for download.

    Read the article

  • Do I need to store a generic rotation point/radius for rotating around a point other than the origin for object transforms?

    - by Casey
    I'm having trouble implementing a non-origin point rotation. I have a class Transform that stores each component separately in three 3D vectors for position, scale, and rotation. This is fine for local rotations based on the center of the object. The issue is how do I determine/concatenate non-origin rotations in addition to origin rotations. Normally this would be achieved as a Transform-Rotate-Transform for the center rotation followed by a Transform-Rotate-Transform for the non-origin point. The problem is because I am storing the individual components, the final Transform matrix is not calculated until needed by using the individual components to fill an appropriate Matrix. (See GetLocalTransform()) Do I need to store an additional rotation (and radius) for world rotations as well or is there a method of implementation that works while only using the single rotation value? Transform.h #ifndef A2DE_CTRANSFORM_H #define A2DE_CTRANSFORM_H #include "../a2de_vals.h" #include "CMatrix4x4.h" #include "CVector3D.h" #include <vector> A2DE_BEGIN class Transform { public: Transform(); Transform(Transform* parent); Transform(const Transform& other); Transform& operator=(const Transform& rhs); virtual ~Transform(); void SetParent(Transform* parent); void AddChild(Transform* child); void RemoveChild(Transform* child); Transform* FirstChild(); Transform* LastChild(); Transform* NextChild(); Transform* PreviousChild(); Transform* GetChild(std::size_t index); std::size_t GetChildCount() const; std::size_t GetChildCount(); void SetPosition(const a2de::Vector3D& position); const a2de::Vector3D& GetPosition() const; a2de::Vector3D& GetPosition(); void SetRotation(const a2de::Vector3D& rotation); const a2de::Vector3D& GetRotation() const; a2de::Vector3D& GetRotation(); void SetScale(const a2de::Vector3D& scale); const a2de::Vector3D& GetScale() const; a2de::Vector3D& GetScale(); a2de::Matrix4x4 GetLocalTransform() const; a2de::Matrix4x4 GetLocalTransform(); protected: private: a2de::Vector3D _position; a2de::Vector3D _scale; a2de::Vector3D _rotation; std::size_t _curChildIndex; Transform* _parent; std::vector<Transform*> _children; }; A2DE_END #endif Transform.cpp #include "CTransform.h" #include "CVector2D.h" #include "CVector4D.h" A2DE_BEGIN Transform::Transform() : _position(), _scale(1.0, 1.0), _rotation(), _curChildIndex(0), _parent(nullptr), _children() { /* DO NOTHING */ } Transform::Transform(Transform* parent) : _position(), _scale(1.0, 1.0), _rotation(), _curChildIndex(0), _parent(parent), _children() { /* DO NOTHING */ } Transform::Transform(const Transform& other) : _position(other._position), _scale(other._scale), _rotation(other._rotation), _curChildIndex(0), _parent(other._parent), _children(other._children) { /* DO NOTHING */ } Transform& Transform::operator=(const Transform& rhs) { if(this == &rhs) return *this; this->_position = rhs._position; this->_scale = rhs._scale; this->_rotation = rhs._rotation; this->_curChildIndex = 0; this->_parent = rhs._parent; this->_children = rhs._children; return *this; } Transform::~Transform() { _children.clear(); _parent = nullptr; } void Transform::SetParent(Transform* parent) { _parent = parent; } void Transform::AddChild(Transform* child) { if(child == nullptr) return; _children.push_back(child); } void Transform::RemoveChild(Transform* child) { if(_children.empty()) return; _children.erase(std::remove(_children.begin(), _children.end(), child), _children.end()); } Transform* Transform::FirstChild() { if(_children.empty()) return nullptr; return *(_children.begin()); } Transform* Transform::LastChild() { if(_children.empty()) return nullptr; return *(_children.end()); } Transform* Transform::NextChild() { if(_children.empty()) return nullptr; std::size_t s(_children.size()); if(_curChildIndex >= s) { _curChildIndex = s; return nullptr; } return _children[_curChildIndex++]; } Transform* Transform::PreviousChild() { if(_children.empty()) return nullptr; if(_curChildIndex == 0) { return nullptr; } return _children[_curChildIndex--]; } Transform* Transform::GetChild(std::size_t index) { if(_children.empty()) return nullptr; if(index > _children.size()) return nullptr; return _children[index]; } std::size_t Transform::GetChildCount() const { if(_children.empty()) return 0; return _children.size(); } std::size_t Transform::GetChildCount() { return static_cast<const Transform&>(*this).GetChildCount(); } void Transform::SetPosition(const a2de::Vector3D& position) { _position = position; } const a2de::Vector3D& Transform::GetPosition() const { return _position; } a2de::Vector3D& Transform::GetPosition() { return const_cast<a2de::Vector3D&>(static_cast<const Transform&>(*this).GetPosition()); } void Transform::SetRotation(const a2de::Vector3D& rotation) { _rotation = rotation; } const a2de::Vector3D& Transform::GetRotation() const { return _rotation; } a2de::Vector3D& Transform::GetRotation() { return const_cast<a2de::Vector3D&>(static_cast<const Transform&>(*this).GetRotation()); } void Transform::SetScale(const a2de::Vector3D& scale) { _scale = scale; } const a2de::Vector3D& Transform::GetScale() const { return _scale; } a2de::Vector3D& Transform::GetScale() { return const_cast<a2de::Vector3D&>(static_cast<const Transform&>(*this).GetScale()); } a2de::Matrix4x4 Transform::GetLocalTransform() const { Matrix4x4 p((_parent ? _parent->GetLocalTransform() : a2de::Matrix4x4::GetIdentity())); Matrix4x4 t(a2de::Matrix4x4::GetTranslationMatrix(_position)); Matrix4x4 r(a2de::Matrix4x4::GetRotationMatrix(_rotation)); Matrix4x4 s(a2de::Matrix4x4::GetScaleMatrix(_scale)); return (p * t * r * s); } a2de::Matrix4x4 Transform::GetLocalTransform() { return static_cast<const Transform&>(*this).GetLocalTransform(); } A2DE_END

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • Sorting a Linked List [closed]

    - by Mohit Sehgal
    I want to sort a linked list. Here Node is class representing a node in a Linked List I have written a code to bubble sort a linked list. Program does not finishes execution. Kindly point out the mistakes. class Node { public: int data; public: Node *next; Node() { data=0;next=0; } Node(int d) { data=d; } void setData(int d) { data=d; } void print() { cout<<data<<endl; } bool operator==(Node n) { return this->data==n.data; } bool operator >(Node d) { if((this->data) > (d.data)) return true; return false; } }; class LList { public: int noOfNodes; Node *start;/*Header Node*/ LList() { start=new Node; noOfNodes=0;start=0; } void addAtFront(Node* n) { n->next=(start); start=n; noOfNodes++; } void addAtLast(Node* n) { Node *cur=(start); n->next=NULL; if(start==NULL) { start=n; noOfNodes++; return; } while(cur->next!=NULL) { cur=cur->next; } cur->next=n; noOfNodes++; } void addAtPos(Node *n,int pos) { if(pos==1) { addAtFront(n);return; } Node *cur=(start); Node *prev=NULL; int curPos=0; n->next=NULL; while(cur!=NULL) { curPos++; if(pos==curPos+1) { prev=cur; } if(pos==curPos) { n->next=cur; prev->next=n; break; } cur=cur->next; } noOfNodes++; } void removeFirst() { Node *del=start; start=start->next; delete del; noOfNodes--; return; } void removeLast() { Node *cur=start,*prev=NULL; while(cur->next!=NULL) { prev=cur; cur=cur->next; } prev->next=NULL; Node *del=cur->next; delete del; noOfNodes--; return; } void removeNodeAt(int pos) { if(pos<1) return; if(pos==1) { removeFirst();return;} int curPos=1; Node* cur=start->next; Node* prev=start; Node* del=NULL; while(curPos<pos&&cur!=NULL) { curPos++; if(curPos==pos) { del=cur; prev->next=cur->next; cur->next=NULL; delete del; noOfNodes--; break; } prev=prev->next; cur=cur->next; } } void removeNode(Node *d) { Node *cur=start; if(*d==*cur) { removeFirst();return; } cur=start->next; Node *prev=start,*del=NULL; while(cur!=NULL) { if(*cur==*d) { del=cur; prev->next=cur->next; delete del; noOfNodes--; break; } prev=prev->next; cur=cur->next; } } int getPosition(Node data) { int pos=0; Node *cur=(start); while(cur!=NULL) { pos++; if(*cur==data) { return pos; } cur=cur->next; } return -1;//not found } Node getNode(int pos) { if(pos<1) return -1;// not a valid position else if(pos>noOfNodes) return -1; // not a valid position Node *cur=(start); int curPos=0; while(cur!=NULL) { if(++curPos==pos) return *cur; cur=cur->next; } } void reverseList()//reverse the list { Node* cur=start->next; Node* d=NULL; Node* prev=start; while(cur!=NULL) { d=cur->next; cur->next=start; start=cur; prev->next=d; cur=d; } } void sortBubble() { Node *i=start,*j=start,*prev=NULL,*temp=NULL,*after=NULL; int count=noOfNodes-1;int icount=0; while(i->next!=NULL) { j=start; after=j->next; icount=0; while(++icount!=count) { if((*j)>(*after)) { temp=after->next; after->next=j; prev->next=j->next; j->next=temp; prev=after; after=j->next; } else{ prev=j; j=after; after=after->next; } } i=i->next; count--; } } void traverse() { Node *cur=(start); int c=0; while(cur!=NULL) { // cout<<"start"<<start; c++; cur->print(); cur=cur->next; } noOfNodes=c; } ~LList() { delete start; } }; int main() { int n; cin>>n; int d; LList list; Node *node; Node *temp=new Node(2123); for(int i=0;i<n;i++) { cin>>d; node=new Node(d); list.addAtLast(node); } list.addAtPos(temp,1); cout<<"traverse\n"; list.traverse(); temp=new Node(12); list.removeNode(temp); cout<<"12 removed"; list.traverse(); list.reverseList(); cout<<"\nreversed\n"; list.traverse(); cout<<"bubble sort\n"; list.sortBubble(); list.traverse(); getch(); delete node; return 0; }

    Read the article

  • PostSharp, Obfuscation, and IL

    - by simonc
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day! Cross posted from Simple Talk.

    Read the article

  • NAT and P2P router crash

    - by returnFromException
    So..i had this argument with my networks teacher. He said that some people complains about router crashes due to many entrys on NAT tables on a router. I didnt understand and i asked: "If the application uses the same port, why does the router crash?. It should have only one entry (pc-ip,pcport;public-ip,public-port)". And he said: "it doesnt matter its using the same port". I got the idea that NAT creates an entry for every packet that passes trought it. Iam assuming NAT with overloading as you might have guessed. So the questions are: 1-How does nat entrys are created? On a packet basis or connection basis? I mean: suppose i send a udp packet..does the router create an entry? 2-When i start a TCP connection, does the router create a persistant nat entry until the connection closes? 3-Was my teacher right? The NAT table can overload assuming an aplication on the same port sending packets? Thanks in advance.

    Read the article

  • LINQ – SequenceEqual() method

    - by nmarun
    I have been looking at LINQ extension methods and have blogged about what I learned from them in my blog space. Next in line is the SequenceEqual() method. Here’s the description about this method: “Determines whether two sequences are equal by comparing the elements by using the default equality comparer for their type.” Let’s play with some code: 1: int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; 2: // int[] numbersCopy = numbers; 3: int[] numbersCopy = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; 4:  5: Console.WriteLine(numbers.SequenceEqual(numbersCopy)); This gives an output of ‘True’ – basically compares each of the elements in the two arrays and returns true in this case. The result is same even if you uncomment line 2 and comment line 3 (I didn’t need to say that now did I?). So then what happens for custom types? For this, I created a Product class with the following definition: 1: class Product 2: { 3: public int ProductId { get; set; } 4: public string Name { get; set; } 5: public string Category { get; set; } 6: public DateTime MfgDate { get; set; } 7: public Status Status { get; set; } 8: } 9:  10: public enum Status 11: { 12: Active = 1, 13: InActive = 2, 14: OffShelf = 3, 15: } In my calling code, I’m just adding a few product items: 1: private static List<Product> GetProducts() 2: { 3: return new List<Product> 4: { 5: new Product 6: { 7: ProductId = 1, 8: Name = "Laptop", 9: Category = "Computer", 10: MfgDate = new DateTime(2003, 4, 3), 11: Status = Status.Active, 12: }, 13: new Product 14: { 15: ProductId = 2, 16: Name = "Compact Disc", 17: Category = "Water Sport", 18: MfgDate = new DateTime(2009, 12, 3), 19: Status = Status.InActive, 20: }, 21: new Product 22: { 23: ProductId = 3, 24: Name = "Floppy", 25: Category = "Computer", 26: MfgDate = new DateTime(1993, 3, 7), 27: Status = Status.OffShelf, 28: }, 29: }; 30: } Now for the actual check: 1: List<Product> products1 = GetProducts(); 2: List<Product> products2 = GetProducts(); 3:  4: Console.WriteLine(products1.SequenceEqual(products2)); This one returns ‘False’ and the reason is simple – this one checks for reference equality and the products in the both the lists get different ‘memory addresses’ (sounds like I’m talking in ‘C’). In order to modify this behavior and return a ‘True’ result, we need to modify the Product class as follows: 1: class Product : IEquatable<Product> 2: { 3: public int ProductId { get; set; } 4: public string Name { get; set; } 5: public string Category { get; set; } 6: public DateTime MfgDate { get; set; } 7: public Status Status { get; set; } 8:  9: public override bool Equals(object obj) 10: { 11: return Equals(obj as Product); 12: } 13:  14: public bool Equals(Product other) 15: { 16: //Check whether the compared object is null. 17: if (ReferenceEquals(other, null)) return false; 18:  19: //Check whether the compared object references the same data. 20: if (ReferenceEquals(this, other)) return true; 21:  22: //Check whether the products' properties are equal. 23: return ProductId.Equals(other.ProductId) 24: && Name.Equals(other.Name) 25: && Category.Equals(other.Category) 26: && MfgDate.Equals(other.MfgDate) 27: && Status.Equals(other.Status); 28: } 29:  30: // If Equals() returns true for a pair of objects 31: // then GetHashCode() must return the same value for these objects. 32: // read why in the following articles: 33: // http://geekswithblogs.net/akraus1/archive/2010/02/28/138234.aspx 34: // http://stackoverflow.com/questions/371328/why-is-it-important-to-override-gethashcode-when-equals-method-is-overriden-in-c 35: public override int GetHashCode() 36: { 37: //Get hash code for the ProductId field. 38: int hashProductId = ProductId.GetHashCode(); 39:  40: //Get hash code for the Name field if it is not null. 41: int hashName = Name == null ? 0 : Name.GetHashCode(); 42:  43: //Get hash code for the ProductId field. 44: int hashCategory = Category.GetHashCode(); 45:  46: //Get hash code for the ProductId field. 47: int hashMfgDate = MfgDate.GetHashCode(); 48:  49: //Get hash code for the ProductId field. 50: int hashStatus = Status.GetHashCode(); 51: //Calculate the hash code for the product. 52: return hashProductId ^ hashName ^ hashCategory & hashMfgDate & hashStatus; 53: } 54:  55: public static bool operator ==(Product a, Product b) 56: { 57: // Enable a == b for null references to return the right value 58: if (ReferenceEquals(a, b)) 59: { 60: return true; 61: } 62: // If one is null and the other not. Remember a==null will lead to Stackoverflow! 63: if (ReferenceEquals(a, null)) 64: { 65: return false; 66: } 67: return a.Equals((object)b); 68: } 69:  70: public static bool operator !=(Product a, Product b) 71: { 72: return !(a == b); 73: } 74: } Now THAT kinda looks overwhelming. But lets take one simple step at a time. Ok first thing you’ve noticed is that the class implements IEquatable<Product> interface – the key step towards achieving our goal. This interface provides us with an ‘Equals’ method to perform the test for equality with another Product object, in this case. This method is called in the following situations: when you do a ProductInstance.Equals(AnotherProductInstance) and when you perform actions like Contains<T>, IndexOf() or Remove() on your collection Coming to the Equals method defined line 14 onwards. The two ‘if’ blocks check for null and referential equality using the ReferenceEquals() method defined in the Object class. Line 23 is where I’m doing the actual check on the properties of the Product instances. This is what returns the ‘True’ for us when we run the application. I have also overridden the Object.Equals() method which calls the Equals() method of the interface. One thing to remember is that anytime you override the Equals() method, its’ a good practice to override the GetHashCode() method and overload the ‘==’ and the ‘!=’ operators. For detailed information on this, please read this and this. Since we’ve overloaded the operators as well, we get ‘True’ when we do actions like: 1: Console.WriteLine(products1.Contains(products2[0])); 2: Console.WriteLine(products1[0] == products2[0]); This completes the full circle on the SequenceEqual() method. See the code used in the article here.

    Read the article

  • SQL queries break our game! (Back-end server is at capacity)

    - by TimH
    We have a Facebook game that stores all persistent data in a MySQL database that is running on a large Amazon RDS instance. One of our tables is 2GB in size. If I run any queries on that table that take more than a couple of seconds, any SQL actions performed by our game will fail with the error: HTTP/1.1 503 Service Unavailable: Back-end server is at capacity This obviously brings down our game! I've monitored CPU usage on the RDS instance during these periods, and though it does spike, it doesn't go much over 50%. Previously we were on a smaller instance size and it did hit 100%, so I'd hoped just throwing more CPU capacity at the problem would solve it. I now think it's an issue with the number of open connections. However, I've only been working with SQL for 8 months or so, so I'm no expert on MySQL configuration. Is there perhaps some configuration setting I can change to prevent these queries from overloading the server, or should I just not be running them whilst our game is up? I'm using MySQL Workbench to run the queries. Here's an example.... SELECT * FROM BlueBoxEngineDB.Transfer WHERE Amount = 1000 AND FromUserId = 4 AND Status='Complete'; As you can see, it's not overly complex. There are only 5 columns in the table. Any help would be very much appreciated - Thanks!

    Read the article

  • asterisk/freeswitch in nat/no-nat setup

    - by pQd
    hi, my current setup - i use bunch of sip hard-phones around few offices. all devices have two sip accounts configured - one on internal sip proxy [for calls between the branches], another - at 3rd party voip providers [ since it's in different countries - those are different providers, but that's irrelevant ]. i was thinking about terminating sip calls on something like asterisk/freeswitch server and having all sip-devices log on just once to such server[s] - mostly to provide things like voicemail, groupcalls, redirections etc. it seems perfectly doable but there is one problem - i cannot find examples how to prepare for nat/no nat. for calls routed to from/to 3rd party voip operator - i'll need handling for nat/stun etc, but for handling of internal calls - i do not want any nat, all traffic should go via vpns to different branches. can you provide me some hints how to configure it? any tutorials? thanks!

    Read the article

  • What is needed to use anycast IPs?

    - by coredump
    So, there're a bunch of questions on SF about the uses and how anycast IPs are cool. My approach is something more practical. What specifically I need to have to use one of those addresses? Do I need to be an AS (Autonomous System)? If I want to use an Anycast IP on my internal network, is it possible? Do I need anything special with a registrar/operator(s) to use it? Basically, if I want to use an Anycast IP address, what exactly I need, from the equipment to configuration part.

    Read the article

  • Internet speed is suddenly slow only on my laptop, but it's normal in other devices

    - by Wael
    I have a TP-Link router connected to a ZTE modem, with 2 laptops, a tablet, 2 phones connected via the router's WiFi, and an additional desktop connected via ethernet to the router. Today, my laptop started to have a very slow connection to the internet, which at first I thought it was the operator's problem to find out later on that it works fine on other devices. I tried to connect directly via WiFi to the modem, but it was as slow. I cannot access facebook at all, google takes forever to do a search, and youtube barely works. The weird thing though, is that when youtube does work, the streaming is full speed. This happens also when I download a file! My browse is Firefox, but I used Chrome and IE9 with the same results. I work on Windows 7 Thanks for any advices.

    Read the article

  • Cleaning Up Unused Users and Groups (Ubuntu 10.10 Server)

    - by PhpMyCoder
    Hello experts, I'm very much a beginner when it comes to Ubuntu and I've been learning the ropes by diving in and writing a (backend-language independent) web app framework that relies on apache, some clever mod_rewrites, Ubuntu permissions, groups, and users. One thing that really annoys my inner clean-freak is that there are loads of users and groups that are created when Ubuntu is installed that are never used (Or so I think). Since I'm just running a simple web app server, I would like to know: What users/groups can I remove? Since you'll probably ask for it...here's a list of all the users on my box (excluding the ones I know that I need): root daemon bin sys sync man lp mail uucp proxy backup list irc gnats nobody libuuid syslog And a list of all of the groups: root daemon bin sys adm tty disk lp mail uucp man proxy kmem dialout fax voice cdrom floppy tape sudo audio dip backup operator list irc src gnats shadow utmp video sasl plugdev users nogroup libuuid crontab syslog fuse mlocate ssl-cert lpadmin sambashare admin

    Read the article

  • Accessing DHCP Client's vendor-encapsulated-options

    - by Jason Owen
    In the dhcpd.conf file for isc-dhcpd-V3.1.1, I have set up a vendor options space and defined several different options. I am able to use those definitions to send options from the server to the client in the vendor-encapsulated-options option (code 43). However, the client is also sending vendor options back to the server, in the same way, and I'd like to respond differently depending on the type and contents of the options. As far as I can tell, the the server isn't parsing the client's vendor-encapsulated-options at all - the option operator is just returning null. Is there a way to get the server to populate the options in the vendor space I've defined?

    Read the article

  • CUPS basic auth error through web interface

    - by Inaimathi
    I'm trying to configure CUPS to allow remote administration through the web interface. There's enough documentation out there that I can figure out what to change in my cupsd.conf (changing Listen localhost:631 to Port 631, and adding Allow @LOCAL to the /, /admin and /admin/conf sections). I'm now at the point where I can see the CUPS interface from another machine on the same network. The trouble is, when I try to Add Printer, I'm asked for a username and password, but my response is rejected even when I know I've gotten it right (I assume it's asking for the username and password of someone in the lpadmin group on the server machine; I've sshed in with credentials its rejecting, and the user I'm using has been added to the lpadmin group). If I disable auth outright, by changing DefaultAuthType Basic to DefaultAuthType None, I get an "Unauthorized" error instead of a password request when I try to Add Printer. What am I doing wrong? Is there a way of letting users from the local network to administer the print server through the CUPS web interface? EDIT: By request, my complete cupsd.conf (spoiler: minimally edited default config file that comes with the edition of CUPS from the Debian wheezy repos): LogLevel warn MaxLogSize 0 SystemGroup lpadmin Port 631 # Listen localhost:631 Listen /var/run/cups/cups.sock Browsing On BrowseOrder allow,deny BrowseAllow all BrowseLocalProtocols CUPS dnssd # DefaultAuthType Basic DefaultAuthType None WebInterface Yes <Location /> Order allow,deny Allow @LOCAL </Location> <Location /admin> Order allow,deny Allow @LOCAL </Location> <Location /admin/conf> AuthType Default Require user @SYSTEM Order allow,deny Allow @LOCAL </Location> # Set the default printer/job policies... <Policy default> # Job/subscription privacy... JobPrivateAccess default JobPrivateValues default SubscriptionPrivateAccess default SubscriptionPrivateValues default # Job-related operations must be done by the owner or an administrator... <Limit Create-Job Print-Job Print-URI Validate-Job> Order deny,allow </Limit> <Limit Send-Document Send-URI Hold-Job Release-Job Restart-Job Purge-Jobs Set-Job-Attributes Create-Job-Subscription Renew-Subscription Cancel-Subscription Get-Notifications Reprocess-Job Cancel-Current-Job Suspend-Current-Job Resume-Job Cancel-My-Jobs Close-Job CUPS-Move-Job CUPS-Get-Document> Require user @OWNER @SYSTEM Order deny,allow </Limit> # All administration operations require an administrator to authenticate... <Limit CUPS-Add-Modify-Printer CUPS-Delete-Printer CUPS-Add-Modify-Class CUPS-Delete-Class CUPS-Set-Default CUPS-Get-Devices> AuthType Default Require user @SYSTEM Order deny,allow </Limit> # All printer operations require a printer operator to authenticate... <Limit Pause-Printer Resume-Printer Enable-Printer Disable-Printer Pause-Printer-After-Current-Job Hold-New-Jobs Release-Held-New-Jobs Deactivate-Printer Activate-Printer Restart-Printer Shutdown-Printer Startup-Printer Promote-Job Schedule-Job-After Cancel-Jobs CUPS-Accept-Jobs CUPS-Reject-Jobs> AuthType Default Require user @SYSTEM Order deny,allow </Limit> # Only the owner or an administrator can cancel or authenticate a job... <Limit Cancel-Job CUPS-Authenticate-Job> Require user @OWNER @SYSTEM Order deny,allow </Limit> <Limit All> Order deny,allow </Limit> </Policy> # Set the authenticated printer/job policies... <Policy authenticated> # Job/subscription privacy... JobPrivateAccess default JobPrivateValues default SubscriptionPrivateAccess default SubscriptionPrivateValues default # Job-related operations must be done by the owner or an administrator... <Limit Create-Job Print-Job Print-URI Validate-Job> AuthType Default Order deny,allow </Limit> <Limit Send-Document Send-URI Hold-Job Release-Job Restart-Job Purge-Jobs Set-Job-Attributes Create-Job-Subscription Renew-Subscription Cancel-Subscription Get-Notifications Reprocess-Job Cancel-Current-Job Suspend-Current-Job Resume-Job Cancel-My-Jobs Close-Job CUPS-Move-Job CUPS-Get-Document> AuthType Default Require user @OWNER @SYSTEM Order deny,allow </Limit> # All administration operations require an administrator to authenticate... <Limit CUPS-Add-Modify-Printer CUPS-Delete-Printer CUPS-Add-Modify-Class CUPS-Delete-Class CUPS-Set-Default> AuthType Default Require user @SYSTEM Order deny,allow </Limit> # All printer operations require a printer operator to authenticate... <Limit Pause-Printer Resume-Printer Enable-Printer Disable-Printer Pause-Printer-After-Current-Job Hold-New-Jobs Release-Held-New-Jobs Deactivate-Printer Activate-Printer Restart-Printer Shutdown-Printer Startup-Printer Promote-Job Schedule-Job-After Cancel-Jobs CUPS-Accept-Jobs CUPS-Reject-Jobs> AuthType Default Require user @SYSTEM Order deny,allow </Limit> # Only the owner or an administrator can cancel or authenticate a job... <Limit Cancel-Job CUPS-Authenticate-Job> AuthType Default Require user @OWNER @SYSTEM Order deny,allow </Limit> <Limit All> Order deny,allow </Limit> </Policy>

    Read the article

  • =~ (equal-sign tilde) and m" ... " in .htaccess directive [closed]

    - by Lèse majesté
    I saw this bit of code on an old forum post: SSLRequire %{HTTP_HOST} =~ m"\.secure\.powweb\.com" And I was just wondering what the =~ and m" ... " meant. I've been searching online and in the Apache documentation for any mention of the equal-sign tilde operator, but I've found no mention of it. I know that some directives can take a tilde to use a regular expression, but I've never seen the m" ... " form used before. What exactly is that m" ... " for? Where else would you see this form?

    Read the article

  • Entering IT field with only hobby experience?

    - by EA Bisson
    I can build computers, install servers, network mac, linux, and windows, build servers, do support etc. I do all of this at home/for friends/for hobbies. I have worked with computers every day since I was in elementary school (commodore 64, windows 3.1 etc.). I have IT bachelors in administrative management (so basically nothing good). I am getting another bachelor's in server admin, including about 5 certifications. I am the IT go to gal at every position usually because I know more than the IT people and have better people skills. My job history is random: office admin, hair braider, disney ride operator, camp counselor etc. I found a job I want its a entry level specialist (server) position. What do I put on a resume?

    Read the article

  • Chrome shows "The site's security certificate is not trusted" error

    - by Emerald214
    From this morning I get this error whenever I access Google Docs and some websites. My system datetime is correct and I checked "Automatically from the Internet". My BIOS is OK. I cleared everything (cache, cookie, private data) in Chrome and restarted OS but nothing changes. How to fix it? Firefox works but Chrome has that problem. The site's security certificate is not trusted! You attempted to reach docs.google.com, but the server presented a certificate issued by an entity that is not trusted by your computer's operating system. This may mean that the server has generated its own security credentials, which Google Chrome cannot rely on for identity information, or an attacker may be trying to intercept your communications. You cannot proceed because the website operator has requested heightened security for this domain.

    Read the article

  • Chrome is reporting GMail has Invalid Server Certificate, how do I find out who's fiddling with my certs?

    - by chillitom
    Chrome is giving the following warning when ever I try and visit GMail or a bunch of other SSL sites. Invalid Server Certificate You attempted to reach mail.google.com, but the server presented an invalid certificate. You cannot proceed because the website operator has requested heightened security for this domain. This is the certificate the Chrome reports as invalid: -----BEGIN CERTIFICATE----- MIIDIjCCAougAwIBAgIQK59+5colpiUUIEeCdTqbuTANBgkqhkiG9w0BAQUFADBM MQswCQYDVQQGEwJaQTElMCMGA1UEChMcVGhhd3RlIENvbnN1bHRpbmcgKFB0eSkg THRkLjEWMBQGA1UEAxMNVGhhd3RlIFNHQyBDQTAeFw0xMTEwMjYwMDAwMDBaFw0x MzA5MzAyMzU5NTlaMGkxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlh MRYwFAYDVQQHFA1Nb3VudGFpbiBWaWV3MRMwEQYDVQQKFApHb29nbGUgSW5jMRgw FgYDVQQDFA9tYWlsLmdvb2dsZS5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJ AoGBAK85FZho5JL+T0/xu/8NLrD+Jaq9aARnJ+psQ0ynbcvIj36B7ocmJRASVDOe qj2bj46Ss0sB4/lKKcMP/ay300yXKT9pVc9wgwSvLgRudNYPFwn+niAkJOPHaJys Eb2S5LIbCfICMrtVGy0WXzASI+JMSo3C2j/huL/3OrGGvvDFAgMBAAGjgecwgeQw DAYDVR0TAQH/BAIwADA2BgNVHR8ELzAtMCugKaAnhiVodHRwOi8vY3JsLnRoYXd0 ZS5jb20vVGhhd3RlU0dDQ0EuY3JsMCgGA1UdJQQhMB8GCCsGAQUFBwMBBggrBgEF BQcDAgYJYIZIAYb4QgQBMHIGCCsGAQUFBwEBBGYwZDAiBggrBgEFBQcwAYYWaHR0 cDovL29jc3AudGhhd3RlLmNvbTA+BggrBgEFBQcwAoYyaHR0cDovL3d3dy50aGF3 dGUuY29tL3JlcG9zaXRvcnkvVGhhd3RlX1NHQ19DQS5jcnQwDQYJKoZIhvcNAQEF BQADgYEANYARzVI+hCn7wSjhIOUCj19xZVgdYnJXPOZeJWHTy60i+NiBpOf0rnzZ wW2qkw1iB5/yZ0eZNDNPPQJ09IHWOAgh6OKh+gVBnJzJ+fPIo+4NpddQVF4vfXm3 fgp8tuIsqK7+lNfNFjBxBKqeecPStiSnJavwSI4vw6e7UN0Pz7A= -----END CERTIFICATE----- I think someone or something (proxy, anti-virus, browser extension) is snooping on my SSL traffic. How can I determine who/what is doing this?

    Read the article

  • dev_install failed on ARM chromebook

    - by user1027721
    I'm trying this guide for having access to emerge on chromeos. http://www.chromium.org/chromium-os/how-tos-and-troubleshooting/install-software-on-base-images Unfortunately I always got the same error which is $ sudo dev_install Starting installation of developer packages. First, we download the necessary files. Downloading https://commondatastorage.googleapis.com/chromeos-dev-installer/board/daisy/full-3.168.0.0/packages/app-misc/mime-types-8.tbz2 % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 127 100 127 0 0 252 0 --:--:-- --:--:-- --:--:-- 305 [: 184: -ne: unexpected operator Extracting /usr/local/portage/packages/app-misc/mime-types-8.tbz2 I think that it somehow returns a 404 everytime. Thanks for your help

    Read the article

< Previous Page | 68 69 70 71 72 73 74 75 76 77 78 79  | Next Page >