Search Results

Search found 12001 results on 481 pages for 'naked objects'.

Page 73/481 | < Previous Page | 69 70 71 72 73 74 75 76 77 78 79 80  | Next Page >

  • jQuery accessing objects

    - by user1275268
    I'm trying to access the values of an object from a function I created with a callback, but have run into some trouble. I'm still fairly new at jQuery/javascript. I call the function as follows: siteDeps(id,function(data){ $.each(data,function(key,val) { console.log(key); console.log(val); }); }); The function runs 5 ajax queries from XML data and returns data as an multidimensional object; here is a excerpt showing the meat of it: function siteDeps(id,callback) { var result = { sitecontactid : {}, siteaddressid : {}, sitephoneid : {}, contactaddressid : {}, contactphoneid : {} }; ...//.... var url5 = decodeURIComponent("sql2xml.php?query=xxxxxxxxxxx"); $.get(url5, function(data){ $(data).find('ID').each(function(i){ result.delsitephoneid[i] = $(this).text(); }); }); callback(result); } The console.log output shows this: sitecontactid Object 0: "2" 1: "3" __proto__: Object siteaddressid Object 0: "1" __proto__: Object sitephoneid Object 0: "1" 1: "5" 2: "54" __proto__: Object contactaddressid Object 0: "80" __proto__: Object contactphoneid Object 0: "6" __proto__: Object How can I extract the callback data in a format I can use, for instance sitephoneid: "1","5","54" Or is there a better/simpler way to do this? Thanks in advance.

    Read the article

  • Nesting Linq-to-Objects query within Linq-to-Entities query –what is happening under the covers?

    - by carewithl
    var numbers = new int[] { 1, 2, 3, 4, 5 }; var contacts = from c in context.Contacts where c.ContactID == numbers.Max() | c.ContactID == numbers.FirstOrDefault() select c; foreach (var item in contacts) Console.WriteLine(item.ContactID); Linq-to-Entities query is first translated into Linq expression tree, which is then converted by Object Services into command tree. And if Linq-to-Entities query nests Linq-to-Objects query, then this nested query also gets translated into an expression tree. a) I assume none of the operators of the nested Linq-to-Objects query actually get executed, but instead data provider for particular DB (or perhaps Object Services) knows how to transform the logic of Linq-to-Objects operators into appropriate SQL statements? b) Data provider knows how to create equivalent SQL statements only for some of the Linq-to-Objects operators? c) Similarly, data provider knows how to create equivalent SQL statements only for some of the non-Linq methods in the Net Framework class library? EDIT: I know only some Sql so I can't be completely sure, but reading Sql query generated for the above code it seems data provider didn't actually execute numbers.Max method, but instead just somehow figured out that numbers.Max should return the maximum value and then proceed to include in generated Sql query a call to TSQL's build-in MAX function. It also put all the values held by numbers array into a Sql query. SELECT CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN '0X0X' ELSE '0X1X' END AS [C1], [Extent1].[ContactID] AS [ContactID], [Extent1].[FirstName] AS [FirstName], [Extent1].[LastName] AS [LastName], [Extent1].[Title] AS [Title], [Extent1].[AddDate] AS [AddDate], [Extent1].[ModifiedDate] AS [ModifiedDate], [Extent1].[RowVersion] AS [RowVersion], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[CustomerTypeID] END AS [C2], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[InitialDate] END AS [C3], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[PrimaryDesintation] END AS [C4], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[SecondaryDestination] END AS [C5], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[PrimaryActivity] END AS [C6], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[SecondaryActivity] END AS [C7], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[Notes] END AS [C8], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[RowVersion] END AS [C9], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[BirthDate] END AS [C10], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[HeightInches] END AS [C11], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[WeightPounds] END AS [C12], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[DietaryRestrictions] END AS [C13] FROM [dbo].[Contact] AS [Extent1] LEFT OUTER JOIN (SELECT [Extent2].[ContactID] AS [ContactID], [Extent2].[BirthDate] AS [BirthDate], [Extent2].[HeightInches] AS [HeightInches], [Extent2].[WeightPounds] AS [WeightPounds], [Extent2].[DietaryRestrictions] AS [DietaryRestrictions], [Extent3].[CustomerTypeID] AS [CustomerTypeID], [Extent3].[InitialDate] AS [InitialDate], [Extent3].[PrimaryDesintation] AS [PrimaryDesintation], [Extent3].[SecondaryDestination] AS [SecondaryDestination], [Extent3].[PrimaryActivity] AS [PrimaryActivity], [Extent3].[SecondaryActivity] AS [SecondaryActivity], [Extent3].[Notes] AS [Notes], [Extent3].[RowVersion] AS [RowVersion], cast(1 as bit) AS [C1] FROM [dbo].[ContactPersonalInfo] AS [Extent2] INNER JOIN [dbo].[Customers] AS [Extent3] ON [Extent2].[ContactID] = [Extent3].[ContactID]) AS [Project1] ON [Extent1].[ContactID] = [Project1].[ContactID] LEFT OUTER JOIN (SELECT TOP (1) [c].[C1] AS [C1] FROM (SELECT [UnionAll3].[C1] AS [C1] FROM (SELECT [UnionAll2].[C1] AS [C1] FROM (SELECT [UnionAll1].[C1] AS [C1] FROM (SELECT 1 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable1] UNION ALL SELECT 2 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable2]) AS [UnionAll1] UNION ALL SELECT 3 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable3]) AS [UnionAll2] UNION ALL SELECT 4 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable4]) AS [UnionAll3] UNION ALL SELECT 5 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable5]) AS [c]) AS [Limit1] ON 1 = 1 LEFT OUTER JOIN (SELECT TOP (1) [c].[C1] AS [C1] FROM (SELECT [UnionAll7].[C1] AS [C1] FROM (SELECT [UnionAll6].[C1] AS [C1] FROM (SELECT [UnionAll5].[C1] AS [C1] FROM (SELECT 1 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable6] UNION ALL SELECT 2 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable7]) AS [UnionAll5] UNION ALL SELECT 3 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable8]) AS [UnionAll6] UNION ALL SELECT 4 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable9]) AS [UnionAll7] UNION ALL SELECT 5 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable10]) AS [c]) AS [Limit2] ON 1 = 1 CROSS JOIN (SELECT MAX([UnionAll12].[C1]) AS [A1] FROM (SELECT [UnionAll11].[C1] AS [C1] FROM (SELECT [UnionAll10].[C1] AS [C1] FROM (SELECT [UnionAll9].[C1] AS [C1] FROM (SELECT 1 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable11] UNION ALL SELECT 2 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable12]) AS [UnionAll9] UNION ALL SELECT 3 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable13]) AS [UnionAll10] UNION ALL SELECT 4 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable14]) AS [UnionAll11] UNION ALL SELECT 5 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable15]) AS [UnionAll12]) AS [GroupBy1] WHERE [Extent1].[ContactID] IN ([GroupBy1].[A1], (CASE WHEN ([Limit1].[C1] IS NULL) THEN 0 ELSE [Limit2].[C1] END)) Based on this, is it possible that Linq2Entities provider indeed doesn't execute non-Linq and Linq-to-Object methods, but instead creates equivalent SQL statements for some of them ( and for others it throws an exception )? Thank you in advance

    Read the article

  • How do engines avoid "Phase Lock" (multiple objects in same location) in a Physics Engine?

    - by C0M37
    Let me explain Phase Lock first: When two objects of non zero mass occupy the same space but have zero energy (no velocity). Do they bump forever with zero velocity resolution vectors or do they just stay locked together until an outside force interacts? In my home brewed engine, I realized that if I loaded a character into a tree and moved them, they would signal a collision and hop back to their original spot. I suppose I could fix this by implementing impulses in the event of a collision instead of just jumping back to the last spot I was in (my implementation kind of sucks). But while I make my engine more robust, I'm just curious on how most other physics engines handle this case. Do objects that start in the same spot with no movement speed just shoot out from each other in a random direction? Or do they sit there until something happens? Which option is generally the best approach?

    Read the article

  • SQL SERVER – ERROR: FIX using Compatibility Level – Database diagram support objects cannot be installed because this database does not have a valid owner – Part 2

    - by pinaldave
    Earlier I wrote a blog post about how to resolve the error with database diagram. Today I faced the same error when I was dealing with a database which is upgraded from SQL Server 2005 to SQL Server 2008 R2. When I was searching for the solution online I ended up on my own earlier solution SQL SERVER – ERROR: FIX – Database diagram support objects cannot be installed because this database does not have a valid owner. I really found it interesting that I ended up on my own solution. However, the solution to the problem this time was a bit different. Let us see how we can resolve the same. Error: Database diagram support objects cannot be installed because this database does not have a valid owner. To continue, first use the Files page of the Database Properties dialog box or the ALTER AUTHORIZATION statement to set the database owner to a valid login, then add the database diagram support objects. Workaround / Fix / Solution : Follow the steps listed below and it should for sure solve your problem. (NOTE: Please try this for the databases upgraded from previous version. For everybody else you should just follow the steps mentioned here.) Select your database >> Right Click >> Select Properties Go to the Options In the Dropdown at right labeled “Compatibility Level” choose “SQL Server 2005(90)” Select FILE in left side of page In the OWNER box, select button which has three dots (…) in it Now select user ‘sa’ or NT AUTHORITY\SYSTEM and click OK. This will solve your problem. However, there is one very important note you must consider. When you change any database owner, there are always security related implications. I suggest you check your security policies before changing authorization. I did this to quickly solve my problem on my development server. If you are on production server, you may open yourself to potential security compromise. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Error Messages, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Should concrete classes avoid calling other concrete classes, except for data objects?

    - by Kazark
    In Appendix A to The Art of Unit Testing, Roy Osherove, speaking about ways to write testable code from the start, says, An abstract class shouldn't call concrete classes, and concerete classes shouldn't call concrete classes either, unless they're data objects (objects holding data, with no behavior). (259) The first half of the sentence is simply Dependency Inversion from SOLID. The second half seems rather extreme to me. That means that every time I'm going to write a class that isn't a simple data structure, which is most classes, I should write an interface or abstract class first, right? Is it really worthwhile to go that far in defining abstract classes an interfaces? Can anyone explain why in more detail, or refute it in spite of its benefit for testability?

    Read the article

  • git: Is it possible to save the packed objects of a dry run and push them later?

    - by shovavnik
    I'm trying to push a bunch of commits that contain a lot of code and a few thousand MP3 and PDF files besides (ranging from 5-40 MB each). Git successfully packs the objects: C:\MyProject> git push Counting objects: 7582, done. Delta compression using up to 2 threads. Compressing objects: 100% (7510/7510), done. But it fails to send the push for some as yet unknown reason. The problem is that it takes it a very long time to repack the files (I'm on a battery-powered laptop and it took about 20 minutes to pack). So I guess my question can be phrases thus: Is it possible to save the packed objects created in a dry run? Once saved, is it possible to push those packed objects and avoid repacking? I looked it up in the git manual and elsewhere and couldn't find anything conclusive. Any help or pointers are appreciated.

    Read the article

  • State of the art Culling and Batching techniques in rendering

    - by Kristian Skarseth
    I'm currently working with upgrading and restructuring an OpenGL render engine. The engine is used for visualising large scenes of architectural data (buildings with interior), and the amount of objects can become rather large. As is the case with any building, there is a lot of occluded objects within walls, and you naturally only see the objects that are in the same room as you, or the exterior if you are on the outside. This leaves a large number of objects that should be occluded through occlusion culling and frustum culling. At the same time there is a lot of repetative geometry that can be batched in renderbatches, and also a lot of objects that can be rendered with instanced rendering. The way I see it, it can be difficult to combine renderbatching and culling in an optimal fashion. If you batch too many objects in the same VBO it's difficult to cull the objects on the CPU in order to skip rendering that batch. At the same time if you skip the culling on the cpu, a lot of objects will be processed by the GPU while they are not visible. If you skip batching copletely in order to more easily cull on the CPU, there will be an unwanted high amount of render calls. I have done some research into existing techniques and theories as to how these problems are solved in modern graphics, but I have not been able to find any concrete solution. An idea a colleague and me came up with was restricting batches to objects relatively close to eachother e.g all chairs in a room or within a radius of n meeters. This could be simplified and optimized through use of oct-trees. Does anyone have any pointers to techniques used for scene managment, culling, batching etc in state of the art modern graphics engines?

    Read the article

  • Versioning APIs

    - by Sharon
    Suppose that you have a large project supported by an API base. The project also ships a public API that end(ish) users can use. Sometimes you need to make changes to the API base that supports your project. For example, you need to add a feature that needs an API change, a new method, or requires altering of one of the objects, or the format of one of those objects, passed to or from the API. Assuming that you are also using these objects in your public API, the public objects will also change any time you do this, which is undesirable as your clients may rely on the API objects remaining identical for their parsing code to work. (cough C++ WSDL clients...) So one potential solution is to version the API. But when we say "version" the API, it sounds like this also must mean to version the API objects as well as well as providing duplicate method calls for each changed method signature. So I would then have a plain old clr object for each version of my api, which again seems undesirable. And even if I do this, I surely won't be building each object from scratch as that would end up with vast amounts of duplicated code. Rather, the API is likely to extend the private objects we are using for our base API, but then we run into the same problem because added properties would also be available in the public API when they are not supposed to be. So what is some sanity that is usually applied to this situation? I know many public services such as Git for Windows maintains a versioned API, but I'm having trouble imagining an architecture that supports this without vast amounts of duplicate code covering the various versioned methods and input/output objects. I'm aware that processes such as semantic versioning attempt to put some sanity on when public API breaks should occur. The problem is more that it seems like many or most changes require breaking the public API if the objects aren't more separated, but I don't see a good way to do that without duplicating code.

    Read the article

  • Ruby: Why is Array.sort slow for large objects?

    - by David Waller
    A colleague needed to sort an array of ActiveRecord objects in a Rails app. He tried the obvious Array.sort! but it seemed surprisingly slow, taking 32s for an array of 3700 objects. So just in case it was these big fat objects slowing things down, he reimplemented the sort by sorting an array of small objects, then reordering the original array of ActiveRecord objects to match - as shown in the code below. Tada! The sort now takes 700ms. That really surprised me. Does Ruby's sort method end up copying objects about the place rather than just references? He's using Ruby 1.8.6/7. def self.sort_events(events) event_sorters = Array.new(events.length) {|i| EventSorter.new(i, events[i])} event_sorters.sort! event_sorters.collect {|es| events[es.index]} end private # Class used by sort_events class EventSorter attr_reader :sqn attr_reader :time attr_reader :index def initialize(index, event) @index = index @sqn = event.sqn @time = event.time end def <=>(b) @time != b.time ? @time <=> b.time : @sqn <=> b.sqn end end

    Read the article

  • Why do I get null objects in a many-to-many bag?

    - by Jim Geurts
    I have a bag defined for a many-to-many list: <class name="Author" table="Authors"> <id name="Id" column="AuthorId"> <generator class="identity" /> </id> <property name="Name" /> <bag name="Books" table="Author_Book_Map" where="IsDeleted=0" fetch="join"> <key column="AuthorId" /> <many-to-many class="Book" column="BookId" where="IsDeleted=0" /> </bag> </class> If I return all author objects using something like the following, I will get what initially appeared to be duplicate Author records: Session.Query<Author>().List<Author>() The extra author objects are created when an author is mapped to Book objects that have IsDeleted = 1 and IsDeleted = 0. Rather than creating one Author object with an enumerable that contains only the books with IsDeleted = 0, it will create two author objects. The first author object has a Books enumerable that contains books with IsDeleted = 0. The second author object will contain an enumerable of null book objects. Similarly, if an object only has one book map, and that map points to a book with IsDeleted = 1, then an author object is returned with a Books collection having one null object. I'm thinking part of the problem stems from the map table objects linking to rows that satisfy the where condition on the bag object but do not meet the many-to-many where condition. This is happening with NHibernate version 3.0.0.4980. Is this a configuration issue or something else?

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • F# Objects &ndash; Integration with the other .Net Languages &ndash; Part 2

    - by MarkPearl
    So in part one of my posting I covered the real basics of object creation. Today I will hopefully dig a little deeper… My expert F# book brings up an interesting point – properties in F# are just syntactic sugar for method calls. This makes sense… for instance assume I had the following object with the property exposed called Firstname. type Person(Firstname : string, Lastname : string) = member v.Firstname = Firstname I could extend the Firstname property with the following code and everything would be hunky dory… type Person(Firstname : string, Lastname : string) = member v.Firstname = Console.WriteLine("Side Effect") Firstname   All that this would do is each time I use the property Firstname, I would see the side effect printed to the screen saying “Side Effect”. Member methods have a very similar look & feel to properties, in fact the only difference really is that you declare that parameters are being passed in. type Person(Firstname : string, Lastname : string) = member v.FullName(middleName) = Firstname + " " + middleName + " " + Lastname   In the code above, FullName requires the parameter middleName, and if viewed from another project in C# would show as a method and not a property. Precomputation Optimizations Okay, so something that is obvious once you think of it but that poses an interesting side effect of mutable value holders is pre-computation of results. All it is, is a slight difference in code but can result in quite a huge saving in performance. Basically pre-computation means you would not need to compute a value every time a method is called – but could perform the computation at the creation of the object (I hope I have got it right). In a way I battle to differentiate this from lazy evaluation but I will show an example to explain the principle. Let me try and show an example to illustrate the principle… assume the following F# module namespace myNamespace open System module myMod = let Add val1 val2 = Console.WriteLine("Compute") val1 + val2 type MathPrecompute(val1 : int, val2 : int) = let precomputedsum = Add val1 val2 member v.Sum = precomputedsum type MathNormalCompute(val1 : int, val2 : int) = member v.Sum = Add val1 val2 Now assume you have a C# console app that makes use of the objects with code similar to the following… using System; using myNamespace; namespace CSharpTest { class Program { static void Main(string[] args) { Console.WriteLine("Constructing Objects"); var myObj1 = new myMod.MathNormalCompute(10, 11); var myObj2 = new myMod.MathPrecompute(10, 11); Console.WriteLine(""); Console.WriteLine("Normal Compute Sum..."); Console.WriteLine(myObj1.Sum); Console.WriteLine(myObj1.Sum); Console.WriteLine(myObj1.Sum); Console.WriteLine(""); Console.WriteLine("Pre Compute Sum..."); Console.WriteLine(myObj2.Sum); Console.WriteLine(myObj2.Sum); Console.WriteLine(myObj2.Sum); Console.ReadKey(); } } } The output when running the console application would be as follows…. You will notice with the normal compute object that the system would call the Add function every time the method was called. With the Precompute object it only called the compute method when the object was created. Subtle, but something that could lead to major performance benefits. So… this post has gone off in a slight tangent but still related to F# objects.

    Read the article

  • Collision Resolution

    - by CiscoIPPhone
    I know quite well how to check for collisions, but I don't know how to handle the collision in a good way. Simplified, if two objects collide I use some calculations to change the velocity direction. If I don't move the two objects they will still overlap and if the velocity is not big enough they will still collide after next update. This can cause objects to get stuck in each other. But what if I try to move the two objects so they do not overlap. This sounds like a good idea but I have realised that if there is more than two objects this becomes very complicated. What if I move the two objects and one of them collides with other objects so I have to move them too and they may collide with walls etc. I have a top down 2D game in mind but I don't think that has much to do with it. How are collisions usually handled? This question is asked on behalf of Wooh

    Read the article

  • How do I create statistics to make ‘small’ objects appear ‘large’ to the Optmizer?

    - by Maria Colgan
    I recently spoke with a customer who has a development environment that is a tiny fraction of the size of their production environment. His team has been tasked with identifying problem SQL statements in this development environment before new code is released into production. The problem is the objects in the development environment are so small, the execution plans selected in the development environment rarely reflects what actually happens in production. To ensure the development environment accurately reflects production, in the eyes of the Optimizer, the statistics used in the development environment must be the same as the statistics used in production. This can be achieved by exporting the statistics from production and import them into the development environment. Even though the underlying objects are a fraction of the size of production, the Optimizer will see them as the same size and treat them the same way as it would in production. Below are the necessary steps to achieve this in their environment. I am using the SH sample schema as the application schema who's statistics we want to move from production to development. Step 1. Create a staging table, in the production environment, where the statistics can be stored Step 2. Export the statistics for the application schema, from the data dictionary in production, into the staging table Step 3. Create an Oracle directory on the production system where the export of the staging table will reside and grant the SH user the necessary privileges on it. Step 4. Export the staging table from production using data pump export Step 5. Copy the dump file containing the stating table from production to development Step 6. Create an Oracle directory on the development system where the export of the staging table resides and grant the SH user the necessary privileges on it.  Step 7. Import the staging table into the development environment using data pump import Step 8. Import the statistics from the staging table into the dictionary in the development environment. You can get a copy of the script I used to generate this post here. +Maria Colgan

    Read the article

  • How can I author objects with perspective that fit into a tile-based map but span multiple tiles?

    - by Growler
    I'm creating a tilemap city and trying to figure out the most efficient way to create unique building scenes. The trick is, I need to maintain a sort of 2D, almost-top-down perspective, which is hard to do with buildings or large objects that span multiple tiles. I've tried doing three buildings at a time, and mixing and matching the base layer and colors, like this: This creates a weird overlapping effect, and also doesn't seem that efficient from a production standpoint. But it was the best way to have shadows appear correctly on the neighboring buildings. I'm wondering if modular buildings would be the way to go? That way I can mix and match any set of buildings together as tiles: I guess I would have to risk some perspective and shadowing to get the buildings to align correctly. What sort of authoring process could I use to allow me to create a variety of buildings (or other objects) that maintain this perspective while spanning multiple tiles worth of screen space? Would you recommend creating blank buildings, and then affixing art overlays as necessary to make the buildings unique? Or should they be directly part of the building tile (for example, create a separate tileset of buildings signs and colorings)?

    Read the article

  • How to REALLY start thinking in terms of objects?

    - by Mr Grieves
    I work with a team of developers who all have several years of experience with languages such as C# and Java. Most of them are young enough to have been shown OOP as a standard way to develop software in university and are very comfortable with concepts such as inheritance, abstraction, encapsulation and polymorphism. Yet, many of them, and I have to include myself, still tend to create classes which are meant to be used in a very functional fashion. The resulting software is often several smaller classes which correctly represent business objects which get passed through larger classes which only supply ways to modify and use those objects (functions). Large complex difficult-to-maintain classes named Manager are usually the result of such behaviour. I can see two theoretical reasons why people might write this type of code: It's easy to start thinking of everything in terms of the database Deep down, for me, a computer handling a web request feels more like a functional operation than an object oriented operation when you think about Request Handlers, Threads, Processes, CPU Cores and CPU operations... I want source code which is easy to read and easy to modify. I have seen excellent examples of OO code which meet these objectives. How can I start writing code like this? How I can I really start thinking in an object oriented fashion? How can I share such a mentality with my colleagues?

    Read the article

  • Are there legitimate reasons for returning exception objects instead of throwing them?

    - by stakx
    This question is intended to apply to any OO programming language that supports exception handling; I am using C# for illustrative purposes only. Exceptions are usually intended to be raised when an problem arises that the code cannot immediately handle, and then to be caught in a catch clause in a different location (usually an outer stack frame). Q: Are there any legitimate situations where exceptions are not thrown and caught, but simply returned from a method and then passed around as error objects? This question came up for me because .NET 4's System.IObserver<T>.OnError method suggests just that: exceptions being passed around as error objects. Let's look at another scenario, validation. Let's say I am following conventional wisdom, and that I am therefore distinguishing between an error object type IValidationError and a separate exception type ValidationException that is used to report unexpected errors: partial interface IValidationError { } abstract partial class ValidationException : System.Exception { public abstract IValidationError[] ValidationErrors { get; } } (The System.Component.DataAnnotations namespace does something quite similar.) These types could be employed as follows: partial interface IFoo { } // an immutable type partial interface IFooBuilder // mutable counterpart to prepare instances of above type { bool IsValid(out IValidationError[] validationErrors); // true if no validation error occurs IFoo Build(); // throws ValidationException if !IsValid(…) } Now I am wondering, could I not simplify the above to this: partial class ValidationError : System.Exception { } // = IValidationError + ValidationException partial interface IFoo { } // (unchanged) partial interface IFooBuilder { bool IsValid(out ValidationError[] validationErrors); IFoo Build(); // may throw ValidationError or sth. like AggregateException<ValidationError> } Q: What are the advantages and disadvantages of these two differing approaches?

    Read the article

  • How are objects modelled in a functional programming language?

    - by Giorgio
    In an answer to this question (written by Pete) there are some considerations about OOP versus FP. In particular, it is suggested that FP languages are not very suitable for modelling (persistent) objects that have an identity and a mutable state. I was wondering if this is true or, in other words, how one would model objects in a functional programming language. From my basic knowledge of Haskell I thought that one could use monads in some way, but I really do not know enough on this topic to come up with a clear answer. So, how are entities with an identity and a mutable persistent state normally modelled in a functional language? EDIT Here are some further details to clarify what I have in mind. Take a typical Java application in which I can (1) read a record from a database table into a Java object, (2) modify the object in different ways, (3) save the modified object to the database. How would this be implemented e.g. in Haskell? I would initially read the record into a record value (defined by a data definition), perform different transformations by applying functions to this initial value (each intermediate value is a new, modified copy of the original record) and then write the final record value to the database. Is this all there is to it? How can I ensure that at each moment in time only one copy of the record is valid / accessible? One does not want to have different immutable values representing different snapshots of the same object to be accessible at the same time.

    Read the article

  • What is an efficient algorithm for randomly assigning a pool of objects to a parent using specific rules

    - by maple_shaft
    I need some expert answers to help me determine the most efficient algorithm in this scenario. Consider the following data structures: type B { A parent; } type A { set<B> children; integer minimumChildrenAllowed; integer maximumChildrenAllowed; } I have a situation where I need to fetch all the orphan children (there could be hundreds of thousands of these) and assign them RANDOMLY to A type parents based on the following rules. At the end of the job, there should be no orphans left At the end of the job, no object A should have less children than its predesignated minimum. At the end of the job, no object A should have more children than its predesignated maximum. If we run out of A objects then we should create a new A with default values for minimum and maximum and assign remaining orphans to these objects. The distribution of children should be as evenly distributed as possible. There may already be some children assigned to A before the job starts. I was toying with how to do this but I am afraid that I would just end up looping across the parents sorted from smallest to largest, and then grab an orphan for each parent. I was wondering if there is a more efficient way to handle this?

    Read the article

  • SOA Suite Integration: Part 1: Building a Web Service

    - by Anthony Shorten
    Over the next few weeks I will be posting blog entries outlying the SOA Suite integration of the Oracle Utilities Application Framework. This will illustrate how easy it is to integrate by providing some samples. I will use a consistent set of features as examples. The examples will be simple and while will not illustrate ALL the possibilities it will illustrate the relative ease of integration. Think of them as a foundation. You can obviously build upon them. Now, to ease a few customers minds, this series will certainly feature the latest version of SOA Suite and the latest version of Oracle Utilities Application Framework but the principles will apply to past versions of both those products. So if you have Oracle SOA Suite 10g or are a customer of Oracle Utilities Application Framework V2.1 or above most of what I will show you will work with those versions. It is just easier in Oracle SOA Suite 11g and Oracle Utilities Application Framework V4.x. This first posting will not feature SOA Suite at all but concentrate on the capability for the Oracle Utilities Application Framework to create Web Services you can use for integration. The XML Application Integration (XAI) component of the Oracle Utilities Application Framework allows product objects to be exposed as XML based transactions or as Web Services (or both). XAI was written before Web Services became fashionable and has allowed customers of our products to provide a consistent interface into and out of our product line. XAI has been enhanced over the last few years to take advantages of the maturing landscape of Web Services in the market place to a point where it now easier to integrate to SOA infrastructure. There are a number of object types that can be exposed as Web Services: Maintenance Objects – These are the lowest level objects that can be exposed as Web Services. Customers of past versions of the product will be familiar with XAI services based upon Maintenance Objects as they used to be the only method of generating Web Services. These are still supported for background compatibility but are starting to become less popular as they were strict in their structure and were solely attribute based. To generate Maintenance Object based Web Services definition you need to use the XAI Schema Editor component. Business Objects – In Oracle Utilities Application Framework V2.1 we introduced the concept of Business Objects. These are site or industry specific objects that are based upon Maintenance Objects. These allow sites to respecify, in configuration, the structure and elements of a Maintenance Object and other Business Objects (they are true objects with support for inheritance, polymorphism, encapsulation etc.). These can be exposed as Web Services. Business Services – As with Business Objects, we introduced Business Services in Oracle Utilities Application Framework V2.1 which allowed applications services and query zones to be expressed as custom services. These can then be exposed as Web Services via the Business Service definition. Service Scripts - As with Business Objects and Business Services, we introduced Service Scripts in Oracle Utilities Application Framework V2.1. These allow services and/objects to be combined into complex objects or simply expose common routines as callable scripts. These can also be defined as Web Services. For the purpose of this series we will restrict ourselves to Business Objects. The techniques can apply to any of the objects discussed above. Now, lets get to the important bit of this blog post, the creation of a Web Service. To build a Business Object, you first logon to the product and navigate to the Administration Menu by selecting the Admin Menu from the Menu action on left top of the screen (next to Home). A popup menu will appear with the menu’s available. If you do not see the Admin menu then you do not have authority to use it. Here is an example: Navigate to the B menu and select the + symbol next to the Business Object menu item. This indicates that you want to ADD a new Business Object. This menu will appear if you are running Alphabetic mode in your installation (I almost forgot that point). You will be presented with the Business Object maintenance screen. You will fill out the following on the first tab (at a minimum): Business Object – The name of the Business Object. Typically you will make it descriptive and also prefix with CM to denote it as a customization (you can easily find it if you prefix it). As I running this on my personal copy of the product I will use my initials as the prefix and call the sample Web Service “AS-User”. Description – A short description of the object to tell others what it is used for. For my example, I will use “Anthony Shorten’s User Object”. Detailed Description – You can add a long description to help other developers understand your object. I am just going to specify “Anthony Shorten’s Test Object for SOA Suite Integration”. Maintenance Object – As this Business Service is going to be based upon a Maintenance Object I will specify the desired Maintenance Object. In this example, I have decided to use the Framework object USER. Now, I chose this for a number of reasons. It is meaningful, simple and is across all our product lines. I could choose ANY maintenance object I wished to expose (including any custom ones, if I had them). Parent Business Object – If I was not using a Maintenance Object but building a child Business Object against another Business Object, then I would specify the Parent Business Object here. I am not using Parent’s so I will leave this blank. You either use Parent Business Object or Maintenance Object not both. Application Service – Business Objects like other objects are subject to security. You can attach an Application Service to an object to specify which groups of users (remember services are attached to user groups not users) have appropriate access to the object. I will use a default service provided with the product, F1-DFLTS ,as this is just a demonstration so I do not have to be too sophisticated about security. Instance Control – This allows the object to create instances in its objects. You can specify a Business Object purely to hold rules. I am being simple here so I will set it to Allow New Instances to allow the Business Object to be used to create, read, update and delete user records. The rest of the tab I will leave empty as I want this to be a very simple object. Other options allow lots of flexibility. The contents should look like this: Before saving your work, you need to navigate to the Schema tab and specify the contents of your object. I will save some time. When you create an object the schema will only contain the basic root elements of the object (in fact only the schema tag is visible). When you go to the Schema Tab, on the dashboard you will see a BO Schema zone with a solitary button. This will allow you to Generate the Schema for you from our metadata. Click on the Generate button to generate a basic schema from the metadata. You will now see a Schema with the element tags and references to the metadata of the Maintenance object (in the mapField attribute). I could spend a while outlining all the ways you can change the schema with defaults, formatting, tagging etc but the online help has plenty of great examples to illustrate this. You can use the Schema Tips zone in the for more details of the available customizations. Note: The tags are generated from the language pack you have installed. The sample is English so the tags are in English (which is the base language of all installations). If you are using a language pack then the tags will be generated in the language of the user that generated the object. At this point you can save your Business Object by pressing the Save action. At this point you have a basic Business Object based on the USER maintenance object ready for use but it is not defined as a Web Service yet. To do this you need to define the newly created Business Object as an XAI Inbound Service. The easiest and quickest way is to select + off the XAI Inbound Service off the context menu on the Business Object maintenance screen. This will prepopulate the service definition with the following: Adapter – This will be set to Business Adaptor. This indicates that the service is either Business Object, Business Service or Service Script based. Schema Type – Whether the object is a Business Object, Business Service or Service Script. In this case it is a Business Object. Schema Name – The name of the object. In this case it is the Business Object AS-User. Active – Set to Yes. This means the service is available upon startup automatically. You can enable and disable services as needed. Transaction Type – A default transaction type as this is Business Object Service. More about this in later postings. In our case we use the default Read. This means that if we only specify data and not a transaction type then the product will assume you want to issue a read against the object. You need to fill in the following: XAI Inbound Service – The name of the Web Service. Usually people use the same name as the underlying object , in the case of this example, but this can match your sites interfacing standards. By the way you can define multiple XAI Inbound Services/Web Services against the same object if you want. Description and Detail Description – Documentation for your Web Service. I just supplied some basic documentation for this demonstration. You can now save the service definition. Note: There are lots of other options on this screen that allow for behavior of your service to be specified. I will leave them blank for now. When you save the service you are issued with two new pieces of information. XAI Inbound Service Id is a randomly generated identifier used internally by the XAI Servlet. WSDL URL is the WSDL standard URL used for integration. We will take advantage of that in later posts. An example of the definition is shown below: Now you have defined the service but it will only be available when the next server restart or when you flush the data cache. XAI Inbound Services are cached for performance so the cache needs to be told of this new service. To refresh the cache you can use the Admin –> X –> XAI Command menu item. From the command dropdown select Refresh Registry and press Send Command. You will see an XML of the command sent to the server (the presence of the XML means it is finished). If you have an error around the authorization, then check your default user and password settings on the XAI Options menu item. Be careful with flushing the cache as the cache is shared (unless of course you are the only Web Service user on the system – In that case it only affects you). The Web Service is NOW available to be used. To perform a simple test of your new Web Service, navigate to the Admin –> X –> XAI Submission menu item. You will see an open XML request tab. You need to type in the request XML you want to test in the Main tab. The first tag is the XAI Inbound Service Name and the elements are as per your schema (minus the schema tag itself as that is only used internally). My example is as follows (I want to return the details of user SYSUSER) – Remember to close tags. Hitting the Save button will issue the XML and return the response according to the Business Object schema. Now before you panic, you noticed that it did not ask for credentials. It propagates the online credentials to the service call on this function. You now have a Web Service you can use for integration. We will reuse this information in subsequent posts. The process I just described can be used for ANY object in the system you want to expose. This whole process at a minimum can take under a minute. Obviously I only showed the basics but you can at least get an appreciation of the ease of defining a Web Service (just by using a browser). The next posts now build upon this. Hope you enjoyed the post.

    Read the article

  • SQL SERVER – Find Referenced or Referencing Object in SQL Server using sys.sql_expression_dependencies

    - by pinaldave
    A very common question which I often receive are: How do I find all the tables used in a particular stored procedure? How do I know which stored procedures are using a particular table? Both are valid question but before we see the answer of this question – let us understand two small concepts – Referenced and Referencing. Here is the sample stored procedure. CREATE PROCEDURE mySP AS SELECT * FROM Sales.Customer GO Reference: The table Sales.Customer is the reference object as it is being referenced in the stored procedure mySP. Referencing: The stored procedure mySP is the referencing object as it is referencing Sales.Customer table. Now we know what is referencing and referenced object. Let us run following queries. I am using AdventureWorks2012 as a sample database. If you do not have SQL Server 2012 here is the way to get SQL Server 2012 AdventureWorks database. Find Referecing Objects of a particular object Here we are finding all the objects which are using table Customer in their object definitions (regardless of the schema). USE AdventureWorks GO SELECT referencing_schema_name = SCHEMA_NAME(o.SCHEMA_ID), referencing_object_name = o.name, referencing_object_type_desc = o.type_desc, referenced_schema_name, referenced_object_name = referenced_entity_name, referenced_object_type_desc = o1.type_desc, referenced_server_name, referenced_database_name --,sed.* -- Uncomment for all the columns FROM sys.sql_expression_dependencies sed INNER JOIN sys.objects o ON sed.referencing_id = o.[object_id] LEFT OUTER JOIN sys.objects o1 ON sed.referenced_id = o1.[object_id] WHERE referenced_entity_name = 'Customer' The above query will return all the objects which are referencing the table Customer. Find Referenced Objects of a particular object Here we are finding all the objects which are used in the view table vIndividualCustomer. USE AdventureWorks GO SELECT referencing_schema_name = SCHEMA_NAME(o.SCHEMA_ID), referencing_object_name = o.name, referencing_object_type_desc = o.type_desc, referenced_schema_name, referenced_object_name = referenced_entity_name, referenced_object_type_desc = o1.type_desc, referenced_server_name, referenced_database_name --,sed.* -- Uncomment for all the columns FROM sys.sql_expression_dependencies sed INNER JOIN sys.objects o ON sed.referencing_id = o.[object_id] LEFT OUTER JOIN sys.objects o1 ON sed.referenced_id = o1.[object_id] WHERE o.name = 'vIndividualCustomer' The above query will return all the objects which are referencing the table Customer. I am just glad to write above query. There are more to write to this subject. In future blog post I will write more in depth about other DMV which also aids in finding referenced data. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL DMV, SQL Query, SQL Server, SQL Tips and Tricks, SQL Utility, T SQL, Technology

    Read the article

  • JavaScript or PHP based WYSIWYG vector based image editor

    - by Jeroen Pluimers
    For a PHP based site of a client, I'm looking for a vector based image editor that allows: end user creation of vectored images consisting of objects supports upload of bitmap images to be used as objects inside the vector image supports adding text objects to add to the vector image, and change properties (font name, font style, font size) of the text objects preferably supports layering or grouping of objects inside the vector image integrates nicely with a PHP based site (so a PHP or JavaScript library is preferred) can store the vector image in SVG, EPS or PDF Both commercial and FOSS solutions are OK. Any idea where to find such a library? --jeroen

    Read the article

  • Scene Graph as Object Container?

    - by Bunkai.Satori
    Scene graph contains game nodes representing game objects. At a first glance, it might seem practical to use Scene Graph as physical container for in game objects, instead of std::vector< for example. My question is, is it practical to use Scene Graph to contain the game objects, or should it be used only to define scene objects/nodes linkages, while keepig the objects stored in separate container, such as std::vector<?

    Read the article

  • F# Objects &ndash; Integrating with the other .Net Languages &ndash; Part 1

    - by MarkPearl
    In the next few blog posts I am going to explore objects in F#. Up to now, my dabbling in F# has really been a few liners and while I haven’t reached the point where F# is my language of preference – I am already seeing the benefits of the language when solving certain types of programming problems. For me I believe that the F# language will be used in a silo like architecture and that the real benefit of having F# under your belt is so that you can solve problems that F# lends itself towards and then interact with other .Net languages in doing the rest. When I was still very new to the F# language I did the following post covering how to get F# & C# to talk to each other. Today I am going to use a similar approach to demonstrate the structure of F# objects when inter-operating with other languages. Lets start with an empty F# class … type Person() = class end   Very simple, and all we really have done is declared an object that has nothing in it. We could if we wanted to make an object that takes a constructor with parameters… the code for this would look something like this… type Person =     {         Firstname : string         Lastname : string     }   What’s interesting about this syntax is when you try and interop with this object from another .Net language like C# - you would see the following…   Not only has a constructor been created that accepts two parameters, but Firstname and Lastname are also exposed on the object. Now it’s important to keep in mind that value holders in F# are immutable by default, so you would not be able to change the value of Firstname after the construction of the object – in C# terms it has been set to readonly. One could however explicitly state that the value holders were mutable, which would then allow you to change the values after the actual creation of the object. type Person = { mutable Firstname : string mutable Lastname : string }   Something that bugged me for a while was what if I wanted to have an F# object that requires values in its constructor, but does not expose them as part of the object. After bashing my head for a few moments I came up with the following syntax – which achieves this result. type Person(Firstname : string, Lastname : string) = member v.Fullname = Firstname + " " + Lastname What I haven’t figured out yet is what is the difference between the () & {} brackets when declaring an object.

    Read the article

< Previous Page | 69 70 71 72 73 74 75 76 77 78 79 80  | Next Page >