Search Results

Search found 1967 results on 79 pages for 'round robin'.

Page 73/79 | < Previous Page | 69 70 71 72 73 74 75 76 77 78 79  | Next Page >

  • Win 7 Netbook refuses to ping JetDirect card (all other PCs work)

    - by Luke Puplett
    I have an odd thing occuring here. From a Windows 7 netbook, I cannot ping an HP printer on the network, while all other machines (Win7/Vista) can. And the netbook can also ping everything else on the LAN. Example showing that the netbook can ping 192.168.3.4 but not 3.6. C:\Users\backdoor>ping w7ue1m Pinging w7ue1m.corp.biz.co.uk [192.168.3.4] with 32 bytes of data: Reply from 192.168.3.4: bytes=32 time=7ms TTL=128 Reply from 192.168.3.4: bytes=32 time=4ms TTL=128 Reply from 192.168.3.4: bytes=32 time=2ms TTL=128 Reply from 192.168.3.4: bytes=32 time=2ms TTL=128 Ping statistics for 192.168.3.4: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 2ms, Maximum = 7ms, Average = 3ms C:\Users\backdoor>ping uktnprint1 Pinging uktnprint1.corp.biz.co.uk [192.168.3.6] with 32 bytes of data: Reply from 192.168.3.0: Destination host unreachable. Reply from 192.168.3.0: Destination host unreachable. Reply from 192.168.3.0: Destination host unreachable. Reply from 192.168.3.0: Destination host unreachable. Ping statistics for 192.168.3.6: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),`enter code here` The IPCONFIG result for the netbook is fine. IPv4 Address. . . . . . . . . . . : 192.168.3.0 Subnet Mask . . . . . . . . . . . : 255.255.0.0 Default Gateway . . . . . . . . . : 192.168.1.1 Most unusual network thing I've seen in years. I must reiterate that only this netbook is having trouble pinging/printing. Thanks, Luke ** UPDATE ** Am now on a Vista box, and here's the IPCONFIG: IPv4 Address. . . . . . . . . . . : 192.168.3.3 Subnet Mask . . . . . . . . . . . : 255.255.0.0 Default Gateway . . . . . . . . . : 192.168.1.1 Pinging uktnprint1.corp.biz.co.uk [192.168.3.6] with 32 bytes of data: Reply from 192.168.3.6: bytes=32 time=2ms TTL=60 Firewall is off. I'll look into the chance of an IP conflict because it's the only thing I can think of - compare arp caches of each machine. Cheers!

    Read the article

  • Unable to make the session state request to the session state server.

    - by Angry_IT_Guru
    For about 4-5 months now, I seem to be having this sporadic issue--mainly during our busiest time of the day between 10:30-11:45AM, where all my Windows 2003 web servers in a Microsoft NLB cluster start throwing session state server errors. A sample error is below. System.Web.HttpException: Unable to make the session state request to the session state server. Please ensure that the ASP.NET State service is started and that the client and server ports are the same. If the server is on a remote machine, please ensure that it accepts remote requests by checking the value of HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\aspnet_state\Parameters\AllowRemoteConnection. If the server is on the local machine, and if the before mentioned registry value does not exist or is set to 0, then the state server connection string must use either 'localhost' or '127.0.0.1' as the server name. at System.Web.SessionState.OutOfProcSessionStateStore.MakeRequest(StateProtocolVerb verb, String id, StateProtocolExclusive exclusiveAccess, Int32 extraFlags, Int32 timeout, Int32 lockCookie, Byte[] buf, Int32 cb, Int32 networkTimeout, SessionNDMakeRequestResults& results) at System.Web.SessionState.OutOfProcSessionStateStore.SetAndReleaseItemExclusive(HttpContext context, String id, SessionStateStoreData item, Object lockId, Boolean newItem) at System.Web.SessionState.SessionStateModule.OnReleaseState(Object source, EventArgs eventArgs) at System.Web.HttpApplication.SyncEventExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() at System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) Now I'm using ASP.NET State service on a centralized back-end Windows 2003 server that all servers communicate to. I was originally using SQL Server state for a couple years as well prior to having this issue. The problem with SQL wqas that when the issue occurred, it created a blocking situation which essentially impacted all users across all servers. The product company recommended that I use the standard ASP.NET State service as that was what they technically supported. Why this would make a difference is beyond me -- but I had no choice but to try it! I have attempted to create multiple application pools, adding additional servers, chaning TCP/IP timeout from 20 to 30 seconds, and even calling Microsoft ASP.NET product support, with very little success. I even recommended that they review whether they are using read-only session state instead of read/write per page request -- as I understand that this basically causes every page to make round-trips to state server even if state isn't being used on the page. Unfortunately, the application is developed by our product company and they insist that it is something with my environment because other clients do not have these sort of issues. However, I've talked to other clients and they tell me when they've seen issues like they, they've basically had to create another web farm. This issue almost seems like I've simply reached some architectural limit within the application... Microsoft's position on the issue is that the session state needs to be reduced and the returncode being reported back from the state server indicates buffers are full. To better understand the scope of issues (rather than wait for customers to call and complain), I installed ELMAH and configured it to send me e-mails when unhandled exceptions occur. I basically get 500-1000 e-mails during the time period of high activity! If any one has any other ideas I could try or better ways to troubleshoot, I'd appreciate it.

    Read the article

  • Installing EclipseFP on Mac OS X

    - by Dom Kennedy
    I am trying to install EclipseFP. I'm running OS X Mavericks. I've tried following both the official installation instructions and the advice in this answer on SU, but I'm still having the same problem. I can get the plugin itself installed painlessly using Help -> Install New Software..., Bbut when I restart and switch to the Haskell perspective, things start to go wrong. The installation instructions tells me that I should receive a prompt to install BuildWrapper and Scion Browser. I do not receive this prompt. Furthermore, if I create a new Haskell project, my code has no syntax highlighting, and the Hoogle search feature does not appear to do anything. It's clear that the plugin is not set up correctly yet. I've tried running cabal update in Terminal, but this does not change anything. After several attempts going round in circles with this on Eclipse Juno, I uninstalled Eclispe and the Haskell Platform and performed a clean install of Eclipse Luna and the latest Haskell Platform. However, the problems are persisting. I've tried going into Preferences to see if I could sort any of this out manually. I should initially point out that my GHC installation seems to be correctly references under Preferences -> Haskell Implementations Under Haskell -> Helper executables, there are areas for configuring the options of both BuildWrapper and Scion Browser. At present, both are blank. I tried clicking the Install from Hackage... button beside each of them with no success; I receive an error message saying Expected executable <workspace>/.metadata/.plugins/net.sf.eclipsefp.haskell.ui/sandbox/.cabal-sandbox/bin/buildwrapper not found!` (replace buildwrapper for scion-browser and the message is the same) The Eclipse console displays the following exception after doing the above with BuildWrapper: src/Language/Haskell/BuildWrapper/GHCStorage.hs:313:32: Not in scope: data constructor ‘MatchGroup’ cabal.real: Error: some packages failed to install: buildwrapper-0.7.4 failed during the building phase. The exception was: ExitFailure 1 and after doing it for Scion-Browser: zip-archive-0.2.3.4 (reinstall) changes: text-1.1.0.0 -> 0.11.3.1 pandoc-1.12.3.3 (latest: 1.13) -http-conduit (new version) Graphalyze-0.14.1.0 (reinstall) changes: pandoc-1.12.4.2 -> 1.12.3.3, text-1.1.0.0 -> 0.11.3.1 cabal.real: The following packages are likely to be broken by the reinstalls: pandoc-1.12.4.2 unordered-containers-0.2.4.0 aeson-0.7.0.4 scientific-0.2.0.2 case-insensitive-1.1.0.3 HTTP-4000.2.10 Use --force-reinstalls if you want to install anyway. After receiving similar results as the above on previous attempts, I've tried using force-reinstalls and ended up at more dead ends. I am at a loss as to what is wrong and how to solve this. I should point out that my GHC installation appears to be correctly configured under Preferences -> Haskell -> Haskell Implementations. Apologies if any of this information is irrelevant, I'm just not really sure what is important and what isn't at this point. Any help anyone could provide me with would be greatly appreciated.

    Read the article

  • CodePlex Daily Summary for Friday, February 19, 2010

    CodePlex Daily Summary for Friday, February 19, 2010New ProjectsApplication Management Library: Application Management makes your application life easier. It will automatic do memory management, handle and log unhandled exceptions, profiling y...Audio Service - Play Wave Files From Windows Service: This is a windows service that Check a registry key, when the key is updated with a new wave file path the service plays the wave file.Aviamodels: 3d drawing AviamodelsControl of payment proofs program for Greek citizens: This is a program that is used for Greek citizens who want to keep track of their payment proofs.Cover Creator: Cover Creator gives you the possibility to create and print CD covers. Content of CD is taken from http://www.freedb.org/ or can be added/modyfied ...DevBoard: DevBoard is a webbased scrum tool that helps developers/team get a clear overview of the project progress. It's developed in C# and silverlight.Flex AdventureWorks: The is mostly a skunk-works application to help me get acclimated to CodePlex. The long term goal is to integrate a Flex UI with the AdventureWor...GRE Wordlist: An intuitive and customizable word list for GRE aspirants. Developed in Java using a word list similar to Barron's.Indexer: A desktop file Index and Search tool which allows you to choose a list of folders to index, and then search on later. It is based on Lucene.net an...Project Management Office (PMO) for SharePoint: Sample web part for the Code Mastery event in Boston, February 11, 2010.Restart SQL Audit Policy and Job: Resolve SQL 2008 Audit Network Connectivity Issue.Rounded Corners / DIV Container: The RoundedDiv round corners container is a skin-able, CSS compliant UI control. Select which corners should be rounded, collapse and expand the c...Silverlight Google Search Application: The Silverlight Google Search Application uses Google Search API and behaves like Internet Search Application with option to preview desired page i...Weather Forecast Control: MyWeather forecast control pulls up to date weather forecast information from The Weather Channel for your website.New ReleasesApplication Management Library: ApplicationManagement v1.0: First ReleaseAudio Service - Play Wave Files From Windows Service: Audio Service v1.0: This is a working version of the Audio Service. Please use as you need to.AutoMapper: 1.0.1 for Silverlight 3.0 Alpha: AutoMapper for Silverlight 3.0. Features not supported: IDataReader mapping IListSource mapping All other features are supported.Buzz Dot Net: Buzz Dot Net v.1.10219: Buzz Dot Net Library (Parser & Objects) + WPF Example (using MVVM & Threading)Canvas VSDOC Intellisense: V 1.0.0.0a: This release contains two JavaScript files: canvas-utils.js (can be referenced in both runtime and development environment) canvas-vsdoc.js (must ...Control of payment proofs program for Greek citizens: Payment Proofs: source codeCourier: Beta 2: Added Rx Framework support and re-factored how message registration and un-registration works Blog post explaining the updates and re-factoring c...Cover Creator: Initial release: This is initial stable release. For now only in Polish language.Employee Scheduler: Employee Scheduler 2.2: Small Bug found. Small total hour calculation bug. See http://employeescheduler.codeplex.com/WorkItem/View.aspx?WorkItemId=6059 Extract the files...EnhSim: Release v1.9.7.1: Release v1.9.7.1Implemented Dislodged Foreign Object trinket Whispering Fanged Skull now also procs off Flame shock dots You can toggle bloodlust o...Extend SmallBasic: Teaching Extensions v.007: added SimpleSquareTest added Tortoise.Approve() for virtual proctor how to use virtual proctor: change the path in the proctor.txt file (located i...FolderSize: FolderSize.Win32.1.0.1.0: FolderSize.Win32.1.0.1.0 A simple utility intended to be used to scan harddrives for the folders that take most place and display this to the user...GLB Virtual Player Builder: v0.4.0 Beta: Allows for user to import and use archetypes for building players. The archetypes are contained in the file "archetypes.xml". This file is editab...Google Map WebPart from SharePoint List: GMap Stable Release: GMap Stable ReleaseHenge3D Physics Library for XNA: Henge3D Source (2010-02 R2): Fixed a build error related to an assembly attribute in XBOX 360 builds. Tweaked the controls in the sample when targeting the 360. Reduced the...Indexer: Beta Release 1: Just the initial/rough cut.NukeCS: NukeCS 5.2.3 Source Code: update version to 5.2.3ODOS: ODOS STABLE 1.5.0: Thank you for your patience while we develop this version. Not that much has been added, though. Just doing some sub-conscious stuff to make life...PoshBoard: PoshBoard 3.0 Beta 1: Welcome to the first beta release of PoshBoard 3.0 ! IMPORTANT WARNING : this release is absolutly not feature complete and is error-prone. Okay, ...Restart SQL Audit Policy and Job: Restart SQL 2008 Audit Policy and Job: This folder contains three pieces of source code: Server Audit Status (Started).xml - Import this on-schedule policy into your server's Policy-Ba...SAL- Self Artificial Learning: Artificial Learning 2AQV Working Proof Of Concept: This is the Simulation proof of concept version that comes after the 1aq version. AQ stands for Anwering Questions.SharePoint 2010 Word Automation: SP 2010 Word Automation - Workflow Actions 1.1: This release includes two new custom workflow activities for SharePoint designer Convert Folder Convert Library More information about these new...SharePoint Outlook Connector: Version 1.0.1.1: Exception Logging has been improved.Sharpy: Sharpy 1.2 Alpha: This is the third Sharpy release. A change has been made to allow overriding the master page from the controller. The release contains the single ...Silverlight Google Search Application: SL Google Search App Alpha: This is just a first alpha version of the application, as it looks like when I uploaded it to CodePlex. The application works, requires Silverlight...Starter Kit Mytrip.Mvc.Entity: Mytrip.Mvc.Entity 1.0 RC: EF Membership UserManager FileManager Localization Captcha ClientValidation Theme CrossBrowser VS 2010 RC MVC 2 RC db MSSQL2008thinktecture WSCF.blue: WSCF.blue V1 Update (1.0.6): This release is an update for WSCF.blue V1. Below are the bug fixes made since the V1.0.5 release: The data contract type filter was not including...TS3QueryLib.Net: TS3QueryLib.Net Version 0.18.13.0: Changelog Added overloads to all methods of QueryRunenr class handling permission tasks to allow passing of permission name instead of permissionid...Umbraco CMS: Umbraco 4.1 Beta 2: This is the second beta of Umbraco 4.1. Umbraco 4.1 is more advanced than ever, yet faster, lighter and simpler to use than ever. We, on behalf of...VCC: Latest build, v2.1.30218.0: Automatic drop of latest buildZack's Fiasco - Code Generated DAL: v1.2.4: Enhancements: SQL Server CRUD Stored Procedures added option for USE <db> added option to create or not create INSERT sprocs added option to cr...Most Popular ProjectsRawrWBFS ManagerAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitWindows Presentation Foundation (WPF)Image Resizer Powertoy Clone for WindowsASP.NETMicrosoft SQL Server Community & SamplesDotNetNuke® Community EditionMost Active ProjectsRawrSharpyDinnerNow.netBlogEngine.NETjQuery Library for SharePoint Web ServicesNB_Store - Free DotNetNuke Ecommerce Catalog Modulepatterns & practices – Enterprise LibraryPHPExcelFacebook Developer ToolkitFluent Ribbon Control Suite

    Read the article

  • Compiling examples for consuming the REST Endpoints for WCF Service using Agatha

    - by REA_ANDREW
    I recently made two contributions to the Agatha Project by Davy Brion over on Google Code, and one of the things I wanted to follow up with was a post showing examples and some, seemingly required tid bits.  The contributions which I made where: To support StructureMap To include REST (JSON and XML) support for the service contract The examples which I have made, I want to format them so they fit in with the current format of examples over on Agatha and hopefully create and submit a third patch which will include these examples to help others who wish to use these additions. Whilst building these examples for both XML and JSON I have learnt a couple of things which I feel are not really well documented, but are extremely good practice and once known make perfect sense.  I have chosen a real basic e-commerce context for my example Requests and Responses, and have also made use of the excellent tool AutoMapper, again on Google Code. Setting the scene I have followed the Pipes and Filters Pattern with the IQueryable interface on my Repository and exposed the following methods to query Products: IQueryable<Product> GetProducts(); IQueryable<Product> ByCategoryName(this IQueryable<Product> products, string categoryName) Product ByProductCode(this IQueryable<Product> products, String productCode) I have an interface for the IProductRepository but for the concrete implementation I have simply created a protected getter which populates a private List<Product> with 100 test products with random data.  Another good reason for following an interface based approach is that it will demonstrate usage of my first contribution which is the StructureMap support.  Finally the two Domain Objects I have made are Product and Category as shown below: public class Product { public String ProductCode { get; set; } public String Name { get; set; } public Decimal Price { get; set; } public Decimal Rrp { get; set; } public Category Category { get; set; } }   public class Category { public String Name { get; set; } }   Requirements for the REST Support One of the things which you will notice with Agatha is that you do not have to decorate your Request and Response objects with the WCF Service Model Attributes like DataContract, DataMember etc… Unfortunately from what I have seen, these are required if you want the same types to work with your REST endpoint.  I have not tried but I assume the same result can be achieved by simply decorating the same classes with the Serializable Attribute.  Without this the operation will fail. Another surprising thing I have found is that it did not work until I used the following Attribute parameters: Name Namespace e.g. [DataContract(Name = "GetProductsRequest", Namespace = "AgathaRestExample.Service.Requests")] public class GetProductsRequest : Request { }   Although I was surprised by this, things kind of explained themselves when I got round to figuring out the exact construct required for both the XML and the REST.  One of the things which you already know and are then reminded of is that each of your Requests and Responses ultimately inherit from an abstract base class respectively. This information needs to be represented in a way native to the format being used.  I have seen this in XML but I have not seen the format which is required for the JSON. JSON Consumer Example I have used JQuery to create the example and I simply want to make two requests to the server which as you will know with Agatha are transmitted inside an array to reduce the service calls.  I have also used a tool called json2 which is again over at Google Code simply to convert my JSON expression into its string format for transmission.  You will notice that I specify the type of Request I am using and the relevant Namespace it belongs to.  Also notice that the second request has a parameter so each of these two object are representing an abstract Request and the parameters of the object describe it. <script type="text/javascript"> var bodyContent = $.ajax({ url: "http://localhost:50348/service.svc/json/processjsonrequests", global: false, contentType: "application/json; charset=utf-8", type: "POST", processData: true, data: JSON.stringify([ { __type: "GetProductsRequest:AgathaRestExample.Service.Requests" }, { __type: "GetProductsByCategoryRequest:AgathaRestExample.Service.Requests", CategoryName: "Category1" } ]), dataType: "json", success: function(msg) { alert(msg); } }).responseText; </script>   XML Consumer Example For the XML Consumer example I have chosen to use a simple Console Application and make a WebRequest to the service using the XML as a request.  I have made a crude static method which simply reads from an XML File, replaces some value with a parameter and returns the formatted XML.  I say crude but it simply shows how XML Templates for each type of Request could be made and then have a wrapper utility in whatever language you use to combine the requests which are required.  The following XML is the same Request array as shown above but simply in the XML Format. <?xml version="1.0" encoding="utf-8" ?> <ArrayOfRequest xmlns="http://schemas.datacontract.org/2004/07/Agatha.Common" xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> <Request i:type="a:GetProductsRequest" xmlns:a="AgathaRestExample.Service.Requests"/> <Request i:type="a:GetProductsByCategoryRequest" xmlns:a="AgathaRestExample.Service.Requests"> <a:CategoryName>{CategoryName}</a:CategoryName> </Request> </ArrayOfRequest>   It is funny because I remember submitting a question to StackOverflow asking whether there was a REST Client Generation tool similar to what Microsoft used for their RestStarterKit but which could be applied to existing services which have REST endpoints attached.  I could not find any but this is now definitely something which I am going to build, as I think it is extremely useful to have but also it should not be too difficult based on the information I now know about the above.  Finally I thought that the Strategy Pattern would lend itself really well to this type of thing so it can accommodate for different languages. I think that is about it, I have included the code for the example Console app which I made below incase anyone wants to have a mooch at the code.  As I said above I want to reformat these to fit in with the current examples over on the Agatha project, but also now thinking about it, make a Documentation Web method…{brain ticking} :-) Cheers for now and here is the final bit of code: static void Main(string[] args) { var request = WebRequest.Create("http://localhost:50348/service.svc/xml/processxmlrequests"); request.Method = "POST"; request.ContentType = "text/xml"; using(var writer = new StreamWriter(request.GetRequestStream())) { writer.WriteLine(GetExampleRequestsString("Category1")); } var response = request.GetResponse(); using(var reader = new StreamReader(response.GetResponseStream())) { Console.WriteLine(reader.ReadToEnd()); } Console.ReadLine(); } static string GetExampleRequestsString(string categoryName) { var data = File.ReadAllText(Path.Combine(Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location), "ExampleRequests.xml")); data = data.Replace("{CategoryName}", categoryName); return data; } }

    Read the article

  • Issue 15: The Benefits of Oracle Exastack

    - by rituchhibber
         SOLUTIONS FOCUS The Benefits of Oracle Exastack Paul ThompsonDirector, Alliances and Solutions Partner ProgramsOracle EMEA Alliances & Channels RESOURCES -- Oracle PartnerNetwork (OPN) Oracle Exastack Program Oracle Exastack Ready Oracle Exastack Optimized Oracle Exastack Labs and Enablement Resources Oracle Exastack Labs Video Tour SUBSCRIBE FEEDBACK PREVIOUS ISSUES Exastack is a revolutionary programme supporting Oracle independent software vendor partners across the entire Oracle technology stack. Oracle's core strategy is to engineer software and hardware together, and our ISV strategy is the same. At Oracle we design engineered systems that are pre-integrated to reduce the cost and complexity of IT infrastructures while increasing productivity and performance. Oracle innovates and optimises performance at every layer of the stack to simplify business operations, drive down costs and accelerate business innovation. Our engineered systems are optimised to achieve enterprise performance levels that are unmatched in the industry. Faster time to production is achieved by implementing pre-engineered and pre-assembled hardware and software bundles. Our strategy of delivering a single-vendor stack simplifies and reduces costs associated with purchasing, deploying, and supporting IT environments for our customers and partners. In parallel to this core engineered systems strategy, the Oracle Exastack Program enables our Oracle ISV partners to leverage a scalable, integrated infrastructure that delivers their applications tuned, tested and optimised for high-performance. Specifically, the Oracle Exastack Program helps ISVs run their solutions on the Oracle Exadata Database Machine, Oracle Exalogic Elastic Cloud, and Oracle SPARC SuperCluster T4-4 - integrated systems products in which the software and hardware are engineered to work together. These products provide OPN members with a lower cost and high performance infrastructure for database and application workloads across on-premise and cloud based environments. Ready and Optimized Oracle Partners can now leverage our new Oracle Exastack Program to become Oracle Exastack Ready and Oracle Exastack Optimized. Partners can achieve Oracle Exastack Ready status through their support for Oracle Solaris, Oracle Linux, Oracle VM, Oracle Database, Oracle WebLogic Server, Oracle Exadata Database Machine, Oracle Exalogic Elastic Cloud, and Oracle SPARC SuperCluster T4-4. By doing this, partners can demonstrate to their customers that their applications are available on the latest major releases of these products. The Oracle Exastack Ready programme helps customers readily differentiate Oracle partners from lesser software developers, and identify applications that support Oracle engineered systems. Achieving Oracle Exastack Optimized status demonstrates that an OPN member has proven itself against goals for performance and scalability on Oracle integrated systems. This status enables end customers to readily identify Oracle partners that have tested and tuned their solutions for optimum performance on an Oracle Exadata Database Machine, Oracle Exalogic Elastic Cloud, and Oracle SPARC SuperCluster T4-4. These ISVs can display the Oracle Exadata Optimized, Oracle Exalogic Optimized or Oracle SPARC SuperCluster Optimized logos on websites and on all their collateral to show that they have tested and tuned their application for optimum performance. Deliver higher value to customers Oracle's investment in engineered systems enables ISV partners to deliver higher value to customer business processes. New innovations are enabled through extreme performance unachievable through traditional best-of-breed multi-vendor server/software approaches. Core product requirements can be launched faster, enabling ISVs to focus research and development investment on core competencies in order to bring value to market as quickly as possible. Through Exastack, partners no longer have to worry about the underlying product stack, which allows greater focus on the development of intellectual property above the stack. Partners are not burdened by platform issues and can concentrate simply on furthering their applications. The advantage to end customers is that partners can focus all efforts on business functionality, rather than bullet-proofing underlying technologies, and so will inevitably deliver application updates faster. Exastack provides ISVs with a number of flexible deployment options, such as on-premise or Cloud, while maintaining one single code base for applications regardless of customer deployment preference. Customers buying their solutions from Exastack ISVs can therefore be confident in deploying on their own networks, on private clouds or into a public cloud. The underlying platform will support all conceivable deployments, enabling a focus on the ISV's application itself that wouldn't be possible with other vendor partners. It stands to reason that Exastack accelerates time to value as well as lowering implementation costs all round. There is a big competitive advantage in partners being able to offer customers an optimised, pre-configured solution rather than an assortment of components and a suggested fit. Once a customer has decided to buy an Oracle Exastack Ready or Optimized partner solution, it will be up and running without any need for the customer to conduct testing of its own. Operational costs and complexity are also reduced, thanks to streamlined customer support through standardised configurations and pro-active monitoring. 'Engineered to Work Together' is a significant statement of Oracle strategy. It guarantees smoother deployment of a single vendor solution, clear ownership with no finger-pointing and the peace of mind of the Oracle Support Centre underpinning the entire product stack. Next steps Every OPN member with packaged applications must seriously consider taking steps to become Exastack Ready, or Exastack Optimized at the first opportunity. That first step down the track is to talk to an expert on the OPN Portal, at the Oracle Partner Business Center or to discuss the next steps with the closest Oracle account manager. Oracle Exastack lab environments and other technical enablement resources are available for OPN members wishing to further their knowledge of Oracle Exastack and qualify their applications for Oracle Exastack Optimized. New Boot Camps and Guided Learning Paths (GLPs), tailored specifically for ISVs, are available for Oracle Exadata Database Machine, Oracle Exalogic Elastic Cloud, Oracle Linux, Oracle Solaris, Oracle Database, and Oracle WebLogic Server. More information about these GLPs and Boot Camps (including delivery dates and locations) are posted on the OPN Competency Center and corresponding OPN Knowledge Zones. Learn more about Oracle Exastack labs and ISV specific enablement resources. "Oracle Specialized partners are of course front-and-centre, with potential customers clearly directed to those partners and to Exadata Ready partners as a matter of priority." --More OpenWorld 2011 highlights for Oracle partners and customers Oracle Application Testing Suite 9.3 application testing solution for Web, SOA and Oracle Applications Oracle Application Express Release 4.1 improving the development of database-centric Web 2.0 applications and reports Oracle Unified Directory 11g helping customers manage the critical identity information that drives their business applications Oracle SOA Suite for healthcare integration Oracle Enterprise Pack for Eclipse 11g demonstrating continued commitment to the developer and open source communities Oracle Coherence 3.7.1, the latest release of the industry's leading distributed in-memory data grid Oracle Process Accelerators helping to simplify and accelerate time-to-value for customers' business process management initiatives Oracle's JD Edwards EnterpriseOne on the iPad meeting the increasingly mobile demands of today's workforces Oracle CRM On Demand Release 19 Innovation Pack introducing industry-leading hosted call centre and enterprise-marketing capabilities designed to drive further revenue and productivity while reducing costs and improving the customer experience Oracle's Primavera Portfolio Management 9 for businesses delivering on project portfolio goals with increased versatility, transparency and accuracy Oracle's PeopleSoft Human Capital Management (HCM) 9.1 On Demand Standard Edition helping customers manage their long-term investment in enterprise-wide business applications New versions of Oracle FLEXCUBE Universal Banking and Oracle FLEXCUBE Investor Servicing for Financial Institutions, as well as Oracle Financial Services Enterprise Case Management, Oracle Financial Services Pricing Management, Oracle Financial Management Analytics and Oracle Tax Analytics Oracle Utilities Network Management System 1.11 offering new modelling and analysis features to improve distribution-grid management for electric utilities Oracle Communications Network Charging and Control 4.4 helping communications service providers (CSPs) offer their customers more flexible charging options Plus many, many more technology announcements, enhancements, momentum news and community updates -- Oracle OpenWorld 2012 A date has already been set for Oracle OpenWorld 2012. Held once again in San Francisco, exhibitors, partners, customers and Oracle people will gather from 30 September until 4 November to meet, network and learn together with the rest of the global Oracle community. Register now for Oracle OpenWorld 2012 and save $$$! We'll reward your early planning for Oracle OpenWorld 2012 with reduced rates. Super Saver deals are now available! -- Back to the welcome page

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Building Great-Looking, Usable Apps: A two-day workshop applying Oracle’s best UX practices in ADF

    - by mvaughan
    By Misha Vaughan, Oracle Applications User ExperienceI have been with Oracle for more than 12 years. It is a company that has granted me extraordinary creative freedom to help deliver compelling experiences for customers.I am beyond proud to talk about one of the experiences we just took for a test drive. Recently, we delivered a first-of-its-kind, three-team collaboration, train-the-trainer event in Reading, U.K., on building great-looking, usable apps based on Oracle Fusion Applications -- using the ADF tool kit. A new kind of workshopKevin Li, Platform Product Director, asked the Oracle Applications User Experience VP, Jeremy Ashley, if the team had anything to help partners and customers build applications that looked like Fusion. He was receiving this request from European partners and customers.Some quick conversations ensued, and the idea for the workshop was born: We would conduct an experiment.  We would work with feedback from the key Platform Technology Solutions (PTS) trainers under Andre Pavanello, Director, Platform Technology Solutions, in Europe, Middle East, and Africa. We would partner with the ADF team lead by Grant Ronald, Director of Product Management, title> and leverage the Applications UX expertise in Ashley’s team.The goal: Create a pilot workshop that in two days would explain to an ADF developer how to leverage the next-generation user experience best-practices developed for Fusion Apps. Why? Customers who need integrations with Oracle Fusion Applications, who are looking for custom applications that need to co-exist with Fusion, or who quite simply want a next-generation design for a custom app, need their solutions to reflect the next-generation research and design.Building an event for an ADF developerThe biggest hurdle was figuring out where to start.  How far into user experience country do you take an ADF developer? How far into ADF do you need to go if you are a UX professional?After some time in the UX kitchen, the workshop recipe looked like this: Mix equal parts: Fusion user experience design principles and functional design patterns The art and science behind UX How to wireframe designs that you can build in Fusion How to translate those designs into an ADF application Ultan O’Broin, Director of Global User Experience, explaining the trouble ticket wireframe design exerciseLynn Munsinger, Senior Group Product Manager, explaining the follow-on trouble ticket ADF coding exercise For spice, add:•    Debra Lilley, Fujitsu and ACE director, showcasing some of the latest ADF design work in the new face of Fusion Applications •    Partner show-and-tell of example apps they have built with FMW and ADF that are dynamic, beautiful, and interactive.Debra Lilley, Oracle ACE Director and Fujitsu Fusion Champion on the new face of Fusion built with ADF and Fusion extensibility with composers as a window into “the possible”?The taste testThis first go-round of the workshop was aimed squarely at ADF developers and partners.  We were privileged to have participation and feedback from:•    Sten Vesterli, Scott/Tiger S. A., Denmark•    John Sim, Fishbowl Solutions, UK•    Josef Huber, Primus Delphi Group, Munich•    Thaddaus Weindl, Primus Delphi, Group , Munich•    Praveen Pillalamarri, EiS Technologies, Bangalore•    Balaji Kamepalli, EiS Technologies, Bangalore•    Plinio Arbizu, Services & Processes Solutions S. A., Mexico•    Yannick Ongena, infoMENTUM, UK•    Jakub Ciszek, infoMENTUM, UK•    Mauro Flores, infoMENTUM, UK•    Matteo Formica, infoMENTUM, UKRichard Bingham, Oracle, Mauro Flores and Matteo Formica, infoMENTUMWhy is this so exciting?  Oracle has invested heavily in the research and development of the Oracle Fusion Applications user experience. This investment has been and continues to be applied across the product lines. Now, we finally get to teach customers and partners how to take advantage of this investment for custom solutions.This event was a pilot to test-drive the content, as well as a train-the-trainer event that our EMEA colleagues will be using with partners who want to build with Fusion Apps design patterns.What did attendees think?"I liked most the science stuff, like eye-tracking, design patterns and best-practice (color, contrast),” Josef Huber said. “It was a very good introduction to UI design, and most developers and project managers are very bad in that.  So this course would be good for all developers and even project managers." Team Anonymous: John Sim, Fishbowl Solutions, Flavius Sana, Oracle, Josef Huber, infoMENTUM, Mireille Duroussaud, Oracle. Winners of the wireframing design exercise.  Sten Vesterli, of Scott/Tiger, said he attended to learn techniques he could use in his own projects. He wants to ensure that his applications better meet the needs of his users, and he said sessions during the workshop on user interface design and wireframing were most useful to him.  “Go to this event to learn the art and science of good user interfaces from people who really know how to do it,” he said.Sten Vesterli, Scott/Tiger, Angelo Santagata, Oracle Plinio Arbizu said the workshop fulfilled his goals, thanks to the recommendations given in how to design user interfaces to facilitate the adoption of applications among the final users. “The workshop combined these recommendations with an exercise that improved the technical comprehension, permitting the usage of JDeveloper to set forth our solutions,” he said. He added: “The first session that I really enjoyed was the five Fusion design principles. It was incredible to discover how these simple principles were included in an inherit manner in Fusion Applications, and I had been using many of them applying only ADF components.  Another topic that I enjoyed a lot was the eight recommendations about the visual design of UIs. The issues that were raised in that lesson are unknown to the developers and of great value to achieve an attractive presentation layer to the end users.  Participate in this workshop, and include these usability features in your projects and in this manner not only to facilitate and improve the user productivity, but also to distinguish you as a professional who takes advantage fully of the functionalities offered by Oracle technology. Praveen Pillalamarri came to the workshop to learn about the difficulties faced in UI and UX development, and how this can be resolved with the help of ADF.  He also appreciated the opportunity to talk with other individuals who came to the workshop. Pillalmarri said, “The way we looked at things in terms of work and projects were sharpened.  UI and UX design knowledge shared by you was quite interesting, especially the minute things which we ignored in the UI or UX design.” Plinio Arbizu, Services & Processes Solutions S. A., Richard Bingham, Oracle, Balaji Kamepalli, & Praveen Pillalamarri, EiS TechnologiesReady to spread the wordIn EMEA, Oracle customers and partners have access to three world-class trainers via Platform Technology Solutions: Mireille Duroussaud, Flavius Sana, and Angelo Santagata. Contact Andre Pavanello if you like to experience this workshop firsthand, or you have customers or partners who would benefit from the training.We are looking to bring the event to the U.S. in spring 2013. If you have interest in this kind of a workshop, leave a comment below. For those who want to follow the action, join the ADF Enterprise Methodology Group run by Oracle’s Chris Muir. Ask questions and continue with the conversation in this forum, or check blogs.oracle.com/usableapps for topics emerging from the workshop.

    Read the article

  • FAQ: GridView Calculation with JavaScript - Formatting and Validation

    - by Vincent Maverick Durano
    In my previous post here we've talked about how to calculate the sub-totals and grand total in GridView using JavaScript. In this post I'm going take more step further and will demonstrate how are we going to format the totals into a currency and how to validate the input that would only allow you to enter a whole number in the quantity TextBox. Here are the code blocks below: ASPX Source:   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" > <head runat="server"> <title></title> <script type="text/javascript"> function CalculateTotals() { var gv = document.getElementById("<%= GridView1.ClientID %>"); var tb = gv.getElementsByTagName("input"); var lb = gv.getElementsByTagName("span"); var sub = 0; var total = 0; var indexQ = 1; var indexP = 0; var price = 0; for (var i = 0; i < tb.length; i++) { if (tb[i].type == "text") { ValidateNumber(tb[i]); price = lb[indexP].innerHTML.replace("$", "").replace(",", ""); sub = parseFloat(price) * parseFloat(tb[i].value); if (isNaN(sub)) { lb[i + indexQ].innerHTML = "0.00"; sub = 0; } else { lb[i + indexQ].innerHTML = FormatToMoney(sub, "$", ",", "."); ; } indexQ++; indexP = indexP + 2; total += parseFloat(sub); } } lb[lb.length - 1].innerHTML = FormatToMoney(total, "$", ",", "."); } function ValidateNumber(o) { if (o.value.length > 0) { o.value = o.value.replace(/[^\d]+/g, ''); //Allow only whole numbers } } function isThousands(position) { if (Math.floor(position / 3) * 3 == position) return true; return false; }; function FormatToMoney(theNumber, theCurrency, theThousands, theDecimal) { var theDecimalDigits = Math.round((theNumber * 100) - (Math.floor(theNumber) * 100)); theDecimalDigits = "" + (theDecimalDigits + "0").substring(0, 2); theNumber = "" + Math.floor(theNumber); var theOutput = theCurrency; for (x = 0; x < theNumber.length; x++) { theOutput += theNumber.substring(x, x + 1); if (isThousands(theNumber.length - x - 1) && (theNumber.length - x - 1 != 0)) { theOutput += theThousands; }; }; theOutput += theDecimal + theDecimalDigits; return theOutput; } </script> </head> <body> <form id="form1" runat="server"> <asp:gridview ID="GridView1" runat="server" ShowFooter="true" AutoGenerateColumns="false"> <Columns> <asp:BoundField DataField="RowNumber" HeaderText="Row Number" /> <asp:BoundField DataField="Description" HeaderText="Item Description" /> <asp:TemplateField HeaderText="Item Price"> <ItemTemplate> <asp:Label ID="LBLPrice" runat="server" Text='<%# Eval("Price","{0:C}") %>'></asp:Label> </ItemTemplate> </asp:TemplateField> <asp:TemplateField HeaderText="Quantity"> <ItemTemplate> <asp:TextBox ID="TXTQty" runat="server" onkeyup="CalculateTotals();"></asp:TextBox> </ItemTemplate> <FooterTemplate> <b>Total Amount:</b> </FooterTemplate> </asp:TemplateField> <asp:TemplateField HeaderText="Sub-Total"> <ItemTemplate> <asp:Label ID="LBLSubTotal" runat="server" ForeColor="Green" Text="0.00"></asp:Label> </ItemTemplate> <FooterTemplate> <asp:Label ID="LBLTotal" runat="server" ForeColor="Green" Font-Bold="true" Text="0.00"></asp:Label> </FooterTemplate> </asp:TemplateField> </Columns> </asp:gridview> </form> </body> </html> Code Behind Source:   public partial class GridCalculation : System.Web.UI.Page { private void BindDummyDataToGrid() { DataTable dt = new DataTable(); DataRow dr = null; dt.Columns.Add(new DataColumn("RowNumber", typeof(string))); dt.Columns.Add(new DataColumn("Description", typeof(string))); dt.Columns.Add(new DataColumn("Price", typeof(decimal))); dr = dt.NewRow(); dr["RowNumber"] = 1; dr["Description"] = "Nike"; dr["Price"] = "1000"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 2; dr["Description"] = "Converse"; dr["Price"] = "800"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 3; dr["Description"] = "Adidas"; dr["Price"] = "500"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 4; dr["Description"] = "Reebok"; dr["Price"] = "750"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 5; dr["Description"] = "Vans"; dr["Price"] = "1100"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 6; dr["Description"] = "Fila"; dr["Price"] = "200"; dt.Rows.Add(dr); //Bind the Gridview GridView1.DataSource = dt; GridView1.DataBind(); } protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { BindDummyDataToGrid(); } } } Running the code above will display something like this: On initial load After entering the quantity in the TextBox That's it! I hope someone find this post useful! Technorati Tags: ASP.NET,C#,ADO.NET,JavaScript,GridView

    Read the article

  • Too Many Kittens To Juggle At Once

    - by Bil Simser
    Ahh, the Internet. That crazy, mixed up place where one tweet turns into a conversation between dozens of people and spawns a blogpost. This is the direct result of such an event this morning. It started innocently enough, with this: Then followed up by a blog post by Joel here. In the post, Joel introduces us to the term Business Solutions Architect with mad skillz like InfoPath, Access Services, Excel Services, building Workflows, and SSRS report creation, all while meeting the business needs of users in a SharePoint environment. I somewhat disagreed with Joel that this really wasn’t a new role (at least IMHO) and that a good Architect or BA should really be doing this job. As Joel pointed out when you’re building a SharePoint team this kind of role is often overlooked. Engineers might be able to build workflows but is the right workflow for the right problem? Michael Pisarek wrote about a SharePoint Business Architect a few months ago and it’s a pretty solid assessment. Again, I argue you really shouldn’t be looking for roles that don’t exist and I don’t suggest anyone create roles to hire people to fill them. That’s basically creating a solution looking for problems. Michael’s article does have some great points if you’re lost in the quagmire of SharePoint duties though (and I especially like John Ross’ quote “The coolest shit is worthless if it doesn’t meet business needs”). SharePoinTony summed it up nicely with “SharePoint Solutions knowledge is both lacking and underrated in most environments. Roles help”. Having someone on the team who can dance between a business user and a coder can be difficult. Remember the idea of telling something to someone and them passing it on to the next person. By the time the story comes round the circle it’s a shadow of it’s former self with little resemblance to the original tale. This is very much business requirements as they’re told by the user to a business analyst, written down on paper, read by an architect, tuned into a solution plan, and implemented by a developer. Transformations between what was said, what was heard, what was written down, and what was developed can be distant cousins. Not everyone has the skill of communication and even less have negotiation skills to suit the SharePoint platform. Negotiation is important because not everything can be (or should be) done in SharePoint. Sometimes it’s just not appropriate to build it on the SharePoint platform but someone needs to know enough about the platform and what limitations it might have, then communicate that (and/or negotiate) with a customer or user so it’s not about “You can’t have this” to “Let’s try it this way”. Visualize the possible instead of denying the impossible. So what is the right SharePoint team? My cromag brain came with a fairly simpleton answer (and I’m sure people will just say this is a cop-out). The perfect SharePoint team is just enough people to do the job that know the technology and business problem they’re solving. Bridge the gap between business need and technology platform and you have an architect. Communicate the needs of the business effectively so the entire team understands it and you have a business analyst. Can you get this with full time workers? Maybe but don’t expect miracles out of the gate. Also don’t take a consultant’s word as gospel. Some consultants just don’t have the diversity of the SharePoint platform to be worth their value so be careful. You really need someone who knows enough about SharePoint to be able to validate a consultants knowledge level. This is basically try for any consultant, not just a SharePoint one. Specialization is good and needed. A good, well-balanced SharePoint team is one of people that can solve problems with work with the technology, not against it. Having a top developer is great, but don’t rely on them to solve world hunger if they can’t communicate very well with users. An expert business analyst might be great at gathering requirements so the entire team can understand them, but if it means building 100% custom solutions because they don’t fit inside the SharePoint boundaries isn’t of much value. Just repeat. There is no silver bullet. There is no silver bullet. There is no silver bullet. A few people pointed out Nick Inglis’ article Excluding The Information Professional In SharePoint. It’s a good read too and hits home that maybe some developers and IT pros need some extra help in the information space. If you’re in an organization that needs labels on people, come up with something everyone understands and go with it. If that’s Business Solutions Architect, SharePoint Advisor, or Guy Who Knows A Lot About Portals, make it work for you. We all wish that one person could master all that is SharePoint but we also know that doesn’t scale very well and you quickly get into the hit-by-a-bus syndrome (with the organization coming to a full crawl when the guy or girl goes on vacation, gets sick, or pops out a baby). There are too many gaps in SharePoint knowledge to have any one person know it all and too many kittens to juggle all at once. We like to consider ourselves experts in our field, but trying to tackle too many roles at once and we end up being mediocre jack of all trades, master of none. Don't fall into this pit. It's a deep, dark hole you don't want to try to claw your way out of. Trust me. Been there. Done that. Got the t-shirt. In the end I don’t disagree with Joel. SharePoint is a beast and not something that should be taken on by newbies. If you just read “Teach Yourself SharePoint in 24 Hours” and want to go build your corporate intranet or the next killer business solution with all your new found knowledge plan to pony up consultant dollars a few months later when everything goes to Hell in a handbasket and falls over. I’m not saying don’t build solutions in SharePoint. I’m just saying that building effective ones takes skill like any craft and not something you can just cobble together with a little bit of cursory knowledge. Thanks to *everyone* who participated in this tweet rush. It was fun and educational.

    Read the article

  • Video on Architecture and Code Quality using Visual Studio 2012&ndash;interview with Marcel de Vries and Terje Sandstrom by Adam Cogan

    - by terje
    Find the video HERE. Adam Cogan did a great Web TV interview with Marcel de Vries and myself on the topics of architecture and code quality.  It was real fun participating in this session.  Although we know each other from the MVP ALM community,  Marcel, Adam and I haven’t worked together before. It was very interesting to see how we agreed on so many terms, and how alike we where thinking.  The basics of ensuring you have a good architecture and how you could document it is one thing.  Also, the same agreement on the importance of having a high quality code base, and how we used the Visual Studio 2012 tools, and some others (NDepend for example)  to measure and ensure that the code quality was where it should be.  As the tools, methods and thinking popped up during the interview it was a lot of “Hey !  I do that too!”.  The tools are not only for “after the fact” work, but we use them during the coding.  That way the tools becomes an integrated part of our coding work, and helps us to find issues we may have overlooked.  The video has a bunch of call outs, pinpointing important things to remember. These are also listed on the corresponding web page. I haven’t seen that touch before, but really liked this way of doing it – it makes it much easier to spot the highlights.  Titus Maclaren and Raj Dhatt from SSW have done a terrific job producing this video.  And thanks to Lei Xu for doing the camera and recording job.  Thanks guys ! Also, if you are at TechEd Amsterdam 2012, go and listen to Adam Cogan in his session on “A modern architecture review: Using the new code review tools” Friday 29th, 10.15-11.30 and Marcel de Vries session on “Intellitrace, what is it and how can I use it to my benefit” Wednesday 27th, 5-6.15 The highlights points out some important practices.  I’ll elaborate on a few of them here: Add instructions on how to compile the solution.  You do this by adding a text file with instructions to the solution, and keep it under source control.  These instructions should contain what is needed on top of a standard install of Visual Studio.  I do a lot of code reviews, and more often that not, I am not even able to compile the program, because they have used some tool or library that needs to be installed.  The same applies to any new developer who enters into the team, so do this to increase your productivity when the team changes, or a team member switches computer. Don’t forget to document what you have to configure on the computer, the IIS being a common one. The more automatic you can do this, the better.  Use NuGet to get down libraries. When the text document gets more than say, half a page, with a bunch of different things to do, convert it into a powershell script instead.  The metrics warning levels.  These are very conservatively set by Microsoft.  You rarely see anything but green, and besides, you should have color scales for each of the metrics.  I have a blog post describing a more appropriate set of levels, based on both research work and industry “best practices”.  The essential limits are: Cyclomatic complexity and coupling:  Higher numbers are worse On method levels: Green :  From 0 to 10 Yellow:  From 10 to 20  (some say 15).   Acceptable, but have a look to see if there is something unneeded here. Red: From 20 to 40:   Action required, get these down. Bleeding Red: Above 40   This is the real red alert.  Immediate action!  (My invention, as people have asked what do I do when I have cyclomatic complexity of 150.  The only answer I could think of was: RUN! ) Maintainability index:  Lower numbers are worse, scale from 0 to 100. On method levels: Green:  60 to 100 Yellow:  40 – 60.    You will always have methods here too, accept the higher ones, take a look at those who are down to the lower limit.  Check up against the other metrics.) Red:  20 – 40:  Action required, fix these. Bleeding red:  Below 20.  Immediate action required. When doing metrics analysis, you should leave the generated code out.  You do this by adding attributes, unfortunately Microsoft has “forgotten” to add these to all their stuff, so you might have to add them to some of the code.  It most cases it can be done so that it is not overwritten by a new round of code generation.  Take a look a my blog post here for details on how to do that. Class level metrics might also be useful, at least for coupling and maintenance.  But it is much more difficult to set any fixed limits on those.  Any metric aggregations on higher level tend to be pretty useless, as the number of methods vary pretty much, and there are little science on what number of methods can be regarded as good or bad.  NDepend have a recommendation, but they say it may vary too.  And in these days of data binding, the number might be pretty high, as properties counts as methods.  However, if you take the worst case situations, classes with more than 20 methods are suspicious, and coupling and cyclomatic complexity go red above 20, so any classes with more than 20x20 = 400 for these measures should be checked over. In the video we mention the SOLID principles, coined by “Uncle Bob” (Richard Martin). One of them, the Dependency Inversion principle we discuss in the video.  It is important to note that this principle is NOT on whether you should use a Dependency Inversion Container or not, it is about how you design the interfaces and interactions between your classes.  The Dependency Inversion Container is just one technique which is based on this principle, but which main purpose is to isolate things you would like to change at runtime, for example if you implement a plug in architecture.  Overuse of a Dependency Inversion Container is however, NOT a good thing.  It should be used for a purpose and not as a general DI solution.  The general DI solution and thinking however is useful far beyond the DIC.   You should always “program to an abstraction”, and not to the concreteness.  We also talk a bit about the GRASP patterns, a term coined by Craig Larman in his book Applying UML and design patterns. GRASP patterns stand for General Responsibility Assignment Software Patterns and describe fundamental principles of object design and responsibility assignment.  What I find great with these patterns is that they is another way to focus on the responsibility of a class.  One of the things I most often found that is broken in software designs, is that the class lack responsibility, and as a result there are a lot of classes mucking around in the internals of the other classes.  We also discuss the term “Code Smells”.  This term was invented by Kent Beck and Martin Fowler when they worked with Fowler’s “Refactoring” book. A code smell is a set of “bad” coding practices, which are the drivers behind a corresponding set of refactorings.  Here is a good list of the smells, and their corresponding refactor patterns. See also this.

    Read the article

  • Personal Development : Time, Planning , Repairs & Maintenance

    - by Rajesh Pillai
    Personal Development : Time, Planning, Repairs & Maintenance These are just my thoughts, but some you may find something interesting in it. Please think over it. We may know many things, but still we always keeps procrastinating it. I have written this as I have heard many people coming back and saying they don’t have time to do things they like. These are my thoughts buy may be useful to someone else too. Certain things in life needs periodic repairs and maintenance. To cite some examples , your CAR, your HOUSE, your personal laptop/desktop, your health etc. Likewise there are certain other things in professional life that requires repair/ maintenance /or some kind of polishing, so that you always stay on top of it. But they are not always obvious. Some of them are - Improving your communication skills - Increasing your vocabulary - Upgrading your technical skills - Pursuing your hobby - Increasing your knowledge/awareness etc… etc… And then there are certain things that we are always short of…. one is TIME. We all know TIME is one of the most precious things in life and yet we all are very miserable at managing it. Remember you can only manage it and not control it. You can only control which you own or which you create. In theory time is infinite. So, there should be abundant of it. But remember one thing, you know this, it’s not reversible. Once it has elapsed you cannot live it again. Think over it. So, how do find that golden 25th hour every day. To find the 25th hour you need to reflect back on your current daily activities. Analyze them and see where you are spending most of your time and is it really important. Even the 8 hours that you spent in the office, is it spent fruitfully. At the end of the day is the 8 precious hour that you spent was worth it. Just reflect back on your activities. Did you learn something? If yes did you make a point to NOTE IT. If you didn’t NOTED it then was the time you spent really worth it. Just ponder over it. Some calculations of your daily activities where most of the time is spent. Let’s start (in no particular order though) - Sleep (6.5 hours) [Remember you only require 6 good hours of sleep every day]. Some may thing it is 8, but it’s a myth.   o To achive 6 hours of sleep and be in good health you can practice 15 minutes of daily meditation. So effectively you can    round it to 6.5 hours. - Morning chores(2 hours) : Some may need to prepare breakfast and all other things. - Office commuting (avg. to and fro 3 hours) - Office Work (avg 9.5 hours) Total Hours: 21 hours effective time which is spent irrespective of what you do. There may be some variations here and there. Still you have 3 hours EXTRA. Where do these 3 hours go? If you can find it, then you may get that golden 25th hour out of these 3 hours. Let’s discount 2 hours for contingencies, still you have 1 hour with you. If you can’t find it then you are living a direction less life. As you can see, the 25th Hour lies within the 24 hours of the day. It’s upto each one of us to find and make use of it. Now what can you do with that 25th hour i.e. 1 hour extra of your life. Imagine the possibility. Again some calculations 1 hour daily * 30 days = 30 hours every month 30 hours pm * 12 month = 360 hours every year. 360 hours every year seems very promising. Let’s add some contingencies, say, let’s be optimistic and say 50 % contingency. Still you have 180 hours every year. That leaves with 30 minutes every day of extra time. That’s hell a lot of time, if you could manage it. These may sound like a high talk [yes, it is, unless you apply these simple rules and rationalize your everyday living and stop procrastinating]. NOTE: I haven’t taken weekend, holidays and leaves into account. So, that leaves us with a lot of buffer time. You can meet family friends, relatives, other tasks, and yet have these 180 pure hours of joy every year. Do whatever you want to do with it. So, how important is this 180 hours per year to you? Just think over it. You may use it the way you like - 50 hours [pursue your hobby like drawing, crafting, learn dance, learn juggling, learn swimming, travelling hmm.. anything you like doing and you didn’t had time to do it.] - 30 hours you can learn a new programming language or technology (i.e. you can get comfortable with it) - 50 hours [improve existing skills] - 20 hours [improve you communication skill]. Do some light reading. - 30 hours [YOU DECIDE WHAT TO DO]? So, if you had done this for one year you would have learnt a new programming language, upgraded existing skills, improved you communication etc.. If you had done this for two years.. imagine the level of personal development or growth which you may have attained….. If you had done this for three years….. NOW I think I don’t need to mention this… So, you still have TIME, as they say TIME is infinite. So, make judicious use of this precious thing. And never ever comeback saying “I don’t have time”. So, if you are RICH in TIME, everything else will be automatically taken care of, as those things may just be a byproduct of how you spend your time… So, happy TIMING your TIME everyday.

    Read the article

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

  • ASP.NET WebAPI Security 5: JavaScript Clients

    - by Your DisplayName here!
    All samples I showed in my last post were in C#. Christian contributed another client sample in some strange language that is supposed to work well in browsers ;) JavaScript client scenarios There are two fundamental scenarios when it comes to JavaScript clients. The most common is probably that the JS code is originating from the same web application that also contains the web APIs. Think a web page that does some AJAX style callbacks to an API that belongs to that web app – Validation, data access etc. come to mind. Single page apps often fall in that category. The good news here is that this scenario just works. The typical course of events is that the user first logs on to the web application – which will result in an authentication cookie of some sort. That cookie will get round-tripped with your AJAX calls and ASP.NET does its magic to establish a client identity context. Since WebAPI inherits the security context from its (web) host, the client identity is also available here. The other fundamental scenario is JavaScript code *not* running in the context of the WebAPI hosting application. This is more or less just like a normal desktop client – either running in the browser, or if you think of Windows 8 Metro style apps as “real” desktop apps. In that scenario we do exactly the same as the samples did in my last post – obtain a token, then use it to call the service. Obtaining a token from IdentityServer’s resource owner credential OAuth2 endpoint could look like this: thinktectureIdentityModel.BrokeredAuthentication = function (stsEndpointAddress, scope) {     this.stsEndpointAddress = stsEndpointAddress;     this.scope = scope; }; thinktectureIdentityModel.BrokeredAuthentication.prototype = function () {     getIdpToken = function (un, pw, callback) {         $.ajax({             type: 'POST',             cache: false,             url: this.stsEndpointAddress,             data: { grant_type: "password", username: un, password: pw, scope: this.scope },             success: function (result) {                 callback(result.access_token);             },             error: function (error) {                 if (error.status == 401) {                     alert('Unauthorized');                 }                 else {                     alert('Error calling STS: ' + error.responseText);                 }             }         });     };     createAuthenticationHeader = function (token) {         var tok = 'IdSrv ' + token;         return tok;     };     return {         getIdpToken: getIdpToken,         createAuthenticationHeader: createAuthenticationHeader     }; } (); Calling the service with the requested token could look like this: function getIdentityClaimsFromService() {     authHeader = authN.createAuthenticationHeader(token);     $.ajax({         type: 'GET',         cache: false,         url: serviceEndpoint,         beforeSend: function (req) {             req.setRequestHeader('Authorization', authHeader);         },         success: function (result) {              $.each(result.Claims, function (key, val) {                 $('#claims').append($('<li>' + val.Value + '</li>'))             });         },         error: function (error) {             alert('Error: ' + error.responseText);         }     }); I updated the github repository, you can can play around with the code yourself.

    Read the article

  • Guide to MySQL & NoSQL, Webinar Q&A

    - by Mat Keep
    0 0 1 959 5469 Homework 45 12 6416 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Yesterday we ran a webinar discussing the demands of next generation web services and how blending the best of relational and NoSQL technologies enables developers and architects to deliver the agility, performance and availability needed to be successful. Attendees posted a number of great questions to the MySQL developers, serving to provide additional insights into areas like auto-sharding and cross-shard JOINs, replication, performance, client libraries, etc. So I thought it would be useful to post those below, for the benefit of those unable to attend the webinar. Before getting to the Q&A, there are a couple of other resources that maybe useful to those looking at NoSQL capabilities within MySQL: - On-Demand webinar (coming soon!) - Slides used during the webinar - Guide to MySQL and NoSQL whitepaper  - MySQL Cluster demo, including NoSQL interfaces, auto-sharing, high availability, etc.  So here is the Q&A from the event  Q. Where does MySQL Cluster fit in to the CAP theorem? A. MySQL Cluster is flexible. A single Cluster will prefer consistency over availability in the presence of network partitions. A pair of Clusters can be configured to prefer availability over consistency. A full explanation can be found on the MySQL Cluster & CAP Theorem blog post.  Q. Can you configure the number of replicas? (the slide used a replication factor of 1) Yes. A cluster is configured by an .ini file. The option NoOfReplicas sets the number of originals and replicas: 1 = no data redundancy, 2 = one copy etc. Usually there's no benefit in setting it >2. Q. Interestingly most (if not all) of the NoSQL databases recommend having 3 copies of data (the replication factor).    Yes, with configurable quorum based Reads and writes. MySQL Cluster does not need a quorum of replicas online to provide service. Systems that require a quorum need > 2 replicas to be able to tolerate a single failure. Additionally, many NoSQL systems take liberal inspiration from the original GFS paper which described a 3 replica configuration. MySQL Cluster avoids the need for a quorum by using a lightweight arbitrator. You can configure more than 2 replicas, but this is a tradeoff between incrementally improved availability, and linearly increased cost. Q. Can you have cross node group JOINS? Wouldn't that run into the risk of flooding the network? MySQL Cluster 7.2 supports cross nodegroup joins. A full cross-join can require a large amount of data transfer, which may bottleneck on network bandwidth. However, for more selective joins, typically seen with OLTP and light analytic applications, cross node-group joins give a great performance boost and network bandwidth saving over having the MySQL Server perform the join. Q. Are the details of the benchmark available anywhere? According to my calculations it results in approx. 350k ops/sec per processor which is the largest number I've seen lately The details are linked from Mikael Ronstrom's blog The benchmark uses a benchmarking tool we call flexAsynch which runs parallel asynchronous transactions. It involved 100 byte reads, of 25 columns each. Regarding the per-processor ops/s, MySQL Cluster is particularly efficient in terms of throughput/node. It uses lock-free minimal copy message passing internally, and maximizes ID cache reuse. Note also that these are in-memory tables, there is no need to read anything from disk. Q. Is access control (like table) planned to be supported for NoSQL access mode? Currently we have not seen much need for full SQL-like access control (which has always been overkill for web apps and telco apps). So we have no plans, though especially with memcached it is certainly possible to turn-on connection-level access control. But specifically table level controls are not planned. Q. How is the performance of memcached APi with MySQL against memcached+MySQL or any other Object Cache like Ecache with MySQL DB? With the memcache API we generally see a memcached response in less than 1 ms. and a small cluster with one memcached server can handle tens of thousands of operations per second. Q. Can .NET can access MemcachedAPI? Yes, just use a .Net memcache client such as the enyim or BeIT memcache libraries. Q. Is the row level locking applicable when you update a column through memcached API? An update that comes through memcached uses a row lock and then releases it immediately. Memcached operations like "INCREMENT" are actually pushed down to the data nodes. In most cases the locks are not even held long enough for a network round trip. Q. Has anyone published an example using something like PHP? I am assuming that you just use the PHP memcached extension to hook into the memcached API. Is that correct? Not that I'm aware of but absolutely you can use it with php or any of the other drivers Q. For beginner we need more examples. Take a look here for a fully worked example Q. Can I access MySQL using Cobol (Open Cobol) or C and if so where can I find the coding libraries etc? A. There is a cobol implementation that works well with MySQL, but I do not think it is Open Cobol. Also there is a MySQL C client library that is a standard part of every mysql distribution Q. Is there a place to go to find help when testing and/implementing the NoSQL access? If using Cluster then you can use the [email protected] alias or post on the MySQL Cluster forum Q. Are there any white papers on this?  Yes - there is more detail in the MySQL Guide to NoSQL whitepaper If you have further questions, please don’t hesitate to use the comments below!

    Read the article

  • FAQ: GridView Calculation with JavaScript - Editable Price Field

    - by Vincent Maverick Durano
    Recently I wrote a series of blog posts that demonstrates how to do calculation in GridView using JavaScripts. You can check the series of posts below: FAQ: GridView Calculation with JavaScript FAQ: GridView Calculation with JavaScript - Formatting and Validation FAQ: GridView Calculation with JavaScript - Displaying Quantity Total Recently a user in the forums is asking how to calculate the total quantity, sub-totals and total amout in GridView  when a user enters the price and quantity in the TextBox field. Obviously the series of post  that I wrote will not work in this case because the price field in those examples are Label (read-only) and not TextBox fields. In this post I'm going to demonstrate how to accomplish this using the same method used in my previous examples. Basically I'm just going to modify the GridView declaration and replace the Label price field with a TextBox so that users can type on it. And finally modify the CalculateTotals() javascript function. Here are the code blocks below: <html xmlns="http://www.w3.org/1999/xhtml" > <head runat="server"> <title></title> <script type="text/javascript"> function CalculateTotals() { var gv = document.getElementById("<%= GridView1.ClientID %>"); var tb = gv.getElementsByTagName("input"); var lb = gv.getElementsByTagName("span"); var sub = 0; var total = 0; var indexQ = 1; var indexP = 0; var price = 0; var qty = 0; var totalQty = 0; var tbCount = tb.length / 2; for (var i = 0; i < tbCount; i++) { if (tb[i].type == "text") { ValidateNumber(tb[i + indexQ]); sub = parseFloat(tb[i + indexP].value) * parseFloat(tb[i + indexQ].value); if (isNaN(sub)) { lb[i].innerHTML = "0.00"; sub = 0; } else { lb[i].innerHTML = FormatToMoney(sub, "$", ",", "."); ; } if (isNaN(tb[i + indexQ].value) || tb[i + indexQ].value == "") { qty = 0; } else { qty = tb[i + indexQ].value; } totalQty += parseInt(qty); total += parseFloat(sub); indexQ++; indexP++; } } lb[lb.length - 2].innerHTML = totalQty; lb[lb.length -1].innerHTML = FormatToMoney(total, "$", ",", "."); } function ValidateNumber(o) { if (o.value.length > 0) { o.value = o.value.replace(/[^\d]+/g, ''); //Allow only whole numbers } } function isThousands(position) { if (Math.floor(position / 3) * 3 == position) return true; return false; }; function FormatToMoney(theNumber, theCurrency, theThousands, theDecimal) { var theDecimalDigits = Math.round((theNumber * 100) - (Math.floor(theNumber) * 100)); theDecimalDigits = "" + (theDecimalDigits + "0").substring(0, 2); theNumber = "" + Math.floor(theNumber); var theOutput = theCurrency; for (x = 0; x < theNumber.length; x++) { theOutput += theNumber.substring(x, x + 1); if (isThousands(theNumber.length - x - 1) && (theNumber.length - x - 1 != 0)) { theOutput += theThousands; }; }; theOutput += theDecimal + theDecimalDigits; return theOutput; } </script> </head> <body> <form id="form1" runat="server"> <asp:gridview ID="GridView1" runat="server" ShowFooter="true" AutoGenerateColumns="false"> <Columns> <asp:BoundField DataField="RowNumber" HeaderText="Row Number" /> <asp:BoundField DataField="Description" HeaderText="Item Description" /> <asp:TemplateField HeaderText="Item Price"> <ItemTemplate> <asp:TextBox ID="TXTPrice" runat="server" onkeyup="CalculateTotals();"></asp:TextBox> </ItemTemplate> <FooterTemplate> <b>Total Qty:</b> </FooterTemplate> </asp:TemplateField> <asp:TemplateField HeaderText="Quantity"> <ItemTemplate> <asp:TextBox ID="TXTQty" runat="server" onkeyup="CalculateTotals();"></asp:TextBox> </ItemTemplate> <FooterTemplate> <asp:Label ID="LBLQtyTotal" runat="server" Font-Bold="true" ForeColor="Blue" Text="0" ></asp:Label>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <b>Total Amount:</b> </FooterTemplate> </asp:TemplateField> <asp:TemplateField HeaderText="Sub-Total"> <ItemTemplate> <asp:Label ID="LBLSubTotal" runat="server" ForeColor="Green" Text="0.00"></asp:Label> </ItemTemplate> <FooterTemplate> <asp:Label ID="LBLTotal" runat="server" ForeColor="Green" Font-Bold="true" Text="0.00"></asp:Label> </FooterTemplate> </asp:TemplateField> </Columns> </asp:gridview> </form> </body> </html>   That's it! I hope someone find this post useful! Technorati Tags: ASP.NET,GridView,JavaScript

    Read the article

  • ASP.NET MVC: Using ProfileRequiredAttribute to restrict access to pages

    - by DigiMortal
    If you are using AppFabric Access Control Services to authenticate users when they log in to your community site using Live ID, Google or some other popular identity provider, you need more than AuthorizeAttribute to make sure that users can access the content that is there for authenticated users only. In this posting I will show you hot to extend the AuthorizeAttribute so users must also have user profile filled. Semi-authorized users When user is authenticated through external identity provider then not all identity providers give us user name or other information we ask users when they join with our site. What all identity providers have in common is unique ID that helps you identify the user. Example. Users authenticated through Windows Live ID by AppFabric ACS have no name specified. Google’s identity provider is able to provide you with user name and e-mail address if user agrees to publish this information to you. They both give you unique ID of user when user is successfully authenticated in their service. There is logical shift between ASP.NET and my site when considering user as authorized. For ASP.NET MVC user is authorized when user has identity. For my site user is authorized when user has profile and row in my users table. Having profile means that user has unique username in my system and he or she is always identified by this username by other users. My solution is simple: I created my own action filter attribute that makes sure if user has profile to access given method and if user has no profile then browser is redirected to join page. Illustrating the problem Usually we restrict access to page using AuthorizeAttribute. Code is something like this. [Authorize] public ActionResult Details(string id) {     var profile = _userRepository.GetUserByUserName(id);     return View(profile); } If this page is only for site users and we have user profiles then all users – the ones that have profile and all the others that are just authenticated – can access the information. It is okay because all these users have successfully logged in in some service that is supported by AppFabric ACS. In my site the users with no profile are in grey spot. They are on half way to be users because they have no username and profile on my site yet. So looking at the image above again we need something that adds profile existence condition to user-only content. [ProfileRequired] public ActionResult Details(string id) {     var profile = _userRepository.GetUserByUserName(id);     return View(profile); } Now, this attribute will solve our problem as soon as we implement it. ProfileRequiredAttribute: Profiles are required to be fully authorized Here is my implementation of ProfileRequiredAttribute. It is pretty new and right now it is more like working draft but you can already play with it. public class ProfileRequiredAttribute : AuthorizeAttribute {     private readonly string _redirectUrl;       public ProfileRequiredAttribute()     {         _redirectUrl = ConfigurationManager.AppSettings["JoinUrl"];         if (string.IsNullOrWhiteSpace(_redirectUrl))             _redirectUrl = "~/";     }              public override void OnAuthorization(AuthorizationContext filterContext)     {         base.OnAuthorization(filterContext);           var httpContext = filterContext.HttpContext;         var identity = httpContext.User.Identity;           if (!identity.IsAuthenticated || identity.GetProfile() == null)             if(filterContext.Result == null)                 httpContext.Response.Redirect(_redirectUrl);          } } All methods with this attribute work as follows: if user is not authenticated then he or she is redirected to AppFabric ACS identity provider selection page, if user is authenticated but has no profile then user is by default redirected to main page of site but if you have application setting with name JoinUrl then user is redirected to this URL. First case is handled by AuthorizeAttribute and the second one is handled by custom logic in ProfileRequiredAttribute class. GetProfile() extension method To get user profile using less code in places where profiles are needed I wrote GetProfile() extension method for IIdentity interface. There are some more extension methods that read out user and identity provider identifier from claims and based on this information user profile is read from database. If you take this code with copy and paste I am sure it doesn’t work for you but you get the idea. public static User GetProfile(this IIdentity identity) {     if (identity == null)         return null;       var context = HttpContext.Current;     if (context.Items["UserProfile"] != null)         return context.Items["UserProfile"] as User;       var provider = identity.GetIdentityProvider();     var nameId = identity.GetNameIdentifier();       var rep = ObjectFactory.GetInstance<IUserRepository>();     var profile = rep.GetUserByProviderAndNameId(provider, nameId);       context.Items["UserProfile"] = profile;       return profile; } To avoid round trips to database I cache user profile to current request because the chance that profile gets changed meanwhile is very minimal. The other reason is maybe more tricky – profile objects are coming from Entity Framework context and context has also HTTP request as lifecycle. Conclusion This posting gave you some ideas how to finish user profiles stuff when you use AppFabric ACS as external authentication provider. Although there was little shift between us and ASP.NET MVC with interpretation of “authorized” we were easily able to solve the problem by extending AuthorizeAttribute to get all our requirements fulfilled. We also write extension method for IIdentity that returns as user profile based on username and caches the profile in HTTP request scope.

    Read the article

  • Christmas in the Clouds

    - by andrewbrust
    I have been spending the last 2 weeks immersing myself in a number of Windows Azure and SQL Azure technologies.  And in setting up a new business (I’ll speak more about that in the future), I have also become a customer of Microsoft’s BPOS (Business Productivity Online Services).  In short, it has been a fortnight of Microsoft cloud computing. On the Azure side, I’ve looked, of course, at Web Roles and Worker Roles.  But I’ve also looked at Azure Storage’s REST API (including coding to it directly), I’ve looked at Azure Drive and the new VM Role; I’ve looked quite a bit at SQL Azure (including the project “Houston” Silverlight UI) and I’ve looked at SQL Azure labs’ OData service too. I’ve also looked at DataMarket and its integration with both PowerPivot and native Excel.  Then there’s AppFabric Caching, SQL Azure Reporting (what I could learn of it) and the Visual Studio tooling for Azure, including the storage of certificate-based credentials.  And to round it out with some user stuff, on the BPOS side, I’ve been working with Exchange Online, SharePoint Online and LiveMeeting. I have to say I like a lot of what I’ve been seeing.  Azure’s not perfect, and BPOS certainly isn’t either.  But there’s good stuff in all these products, and there’s a lot of value. Azure Goes Deep Most people know that Web and Worker roles put the platform in charge of spinning virtual machines up and down, and keeping them up to date. But you can go way beyond that now.  The still-in-beta VM Role gives you the power to craft the machine (much as does Amazon’s EC2), though it takes away the platform’s self-managing attributes.  It still spins instances up and down, making drive storage non-durable, but Azure Drive gives you the ability to store VHD files as blobs and mount them as virtual hard drives that are readable and writeable.  Whether with Azure Storage or SQL Azure, Azure does data.  And OData is everywhere.  Azure Table Storage supports an OData Interface.  So does SQL Azure and so does DataMarket (the former project “Dallas”).  That means that Azure data repositories aren’t just straightforward to provision and configure…they’re also easy to program against, from just about any programming environment, in a RESTful manner.  And for more .NET-centric implementations, Azure AppFabric caching takes the technology formerly known as “Velocity” and throws it up into the cloud, speeding data access even more. Snapping in Place Once you get the hang of it, this stuff just starts to work in a way that becomes natural to understand.  I wasn’t expecting that, and I was really happy to discover it. In retrospect, I am not surprised, because I think the various Azure teams are the center of gravity for Redmond’s innovation right now.  The products belie this and so do my observations of the product teams’ motivation and high morale.  It is really good to see this; Microsoft needs to lead somewhere, and they need to be seen as the underdog while doing so.  With Azure, both requirements are in place.   BPOS: Bad Acronym, Easy Setup BPOS is about products you already know; Exchange, SharePoint, Live Meeting and Office Communications Server.  As such, it’s hard not to be underwhelmed by BPOS.  Until you realize how easy it makes it to get all that stuff set up.  I would say that from sign-up to productive use took me about 45 minutes…and that included the time necessary to wrestle with my DNS provider, set up Outlook and my SmartPhone up to talk to the Exchange account, create my SharePoint site collection, and configure the Outlook Conferencing add-in to talk to the provisioned Live Meeting account. Never before did I think setting up my own Exchange mail could come anywhere close to the simplicity of setting up an SMTP/POP account, and yet BPOS actually made it faster.   What I want from my Azure Christmas Next Year Not everything about Microsoft’s cloud is good.  I close this post with a list of things I’d like to see addressed: BPOS offerings are still based on the 2007 Wave of Microsoft server technologies.  We need to get to 2010, and fast.  Arguably, the 2010 products should have been released to the off-premises channel before the on-premise sone.  Office 365 can’t come fast enough. Azure’s Internet tooling and domain naming, is scattered and confusing.  Deployed ASP.NET applications go to cloudapp.net; SQL Azure and Azure storage work off windows.net.  The Azure portal and Project Houston are at azure.com.  Then there’s appfabriclabs.com and sqlazurelabs.com.  There is a new Silverlight portal that replaces most, but not all of the HTML ones.  And Project Houston is Silvelright-based too, though separate from the Silverlight portal tooling. Microsoft is the king off tooling.  They should not make me keep an entire OneNote notebook full of portal links, account names, access keys, assemblies and namespaces and do so much CTRL-C/CTRL-V work.  I’d like to see more project templates, have them automatically reference the appropriate assemblies, generate the right using/Imports statements and prime my config files with the right markup.  Then I want a UI that lets me log in with my Live ID and pick the appropriate project, database, namespace and key string to get set up fast. Beta programs, if they’re open, should onboard me quickly.  I know the process is difficult and everyone’s going as fast as they can.  But I don’t know why it’s so difficult or why it takes so long.  Getting developers up to speed on new features quickly helps popularize the platform.  Make this a priority. Make Azure accessible from the simplicity platforms, i.e. ASP.NET Web Pages (Razor) and LightSwitch.  Support .NET 4 now.  Make WebMatrix, IIS Express and SQL Compact work with the Azure development fabric. Have HTML helpers make Azure programming easier.  Have LightSwitch work with SQL Azure and not require SQL Express.  LightSwitch has some promising Azure integration now.  But we need more.  WebMatrix has none and that’s just silly, now that the Extra Small Instance is being introduced. The Windows Azure Platform Training Kit is great.  But I want Microsoft to make it even better and I want them to evangelize it much more aggressively.  There’s a lot of good material on Azure development out there, but it’s scattered in the same way that the platform is.   The Training Kit ties a lot of disparate stuff together nicely.  Make it known. Should Old Acquaintance Be Forgot All in all, diving deep into Azure was a good way to end the year.  Diving deeper into Azure should a great way to spend next year, not just for me, but for Microsoft too.

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

  • It was a figure of speech!

    - by Ratman21
    Yesterday I posted the following as attention getter / advertisement (as well as my feelings). In the groups, (I am in) on the social networking site, LinkedIn and boy did I get responses.    I am fighting mad about (a figure of speech, really) not having a job! Look just because I am over 55 and have gray hair. It does not mean, my brain is dead or I can no longer trouble shoot a router or circuit or LAN issue. Or that I can do “IT” work at all. And I could prove this if; some one would give me at job. Come on try me for 90 days at min. wage. I know you will end up keeping me (hope fully at normal pay) around. Is any one hearing me…come on take up the challenge!     This was the responses I got.   I hear you. We just need to retrain and get our skills up to speed is all. That is what I am doing. I have not given up. Just got to stay on top of the game. Experience is on our side if we have the credentials and we are reasonable about our salaries this should not be an issue.   Already on it, going back to school and have got three certifications (CompTIA A+, Security+ and Network+. I am now studying for my CISCO CCNA certification. As to my salary, I am willing to work at very reasonable rate.   You need to re-brand yourself like a product, market and sell yourself. You need to smarten up, look and feel a million dollars, re-energize yourself, regain your confidents. Either start your own business, or re-write your CV so it stands out from the rest, get the template off the internet. Contact every recruitment agent in your town, state, country and overseas, and on the web. Apply to every job you think you could do, you may not get it but you will make a contact for your network, which may lead to a job at the end of the tunnel. Get in touch with everyone you know from past jobs. Do charity work. I maintain the IT Network, stage electrical and the Telecom equipment in my church,   Again already on it. I have email the world is seems with my resume and cover letters. So far, I have rewritten or had it rewrote, my resume and cover letters; over seven times so far. Re-energize? I never lost my energy level or my self-confidents in my work (now if could get some HR personal to see the same). I also volunteer at my church, I created and maintain the church web sit.   I share your frustration. Sucks being over 50 and looking for work. Please don't sell yourself short at min wage because the employer will think that’s your worth. Keep trying!!   I never stop trying and min wage is only for 90 days. If some one takes up the challenge. Some post asked if I am keeping up technology.   Do you keep up with the latest technology and can speak the language fluidly?   Yep to that and as to speaking it also a yep! I am a geek you know. I heard from others over the 50 year mark and younger too.   I'm with you! I keep getting told that I don't have enough experience because I just recently completed a Masters level course in Microsoft SQL Server, which gave me a project-intensive equivalent of between 2 and 3 years of experience. On top of that training, I have 19 years as an applications programmer and database administrator. I can normalize rings around experienced DBAs and churn out effective code with the best of them. But my 19 years is worthless as far as most recruiters and HR people are concerned because it is not the specific experience for which they're looking. HR AND RECRUITERS TAKE NOTE: Experience, whatever the language, translates across platforms and technology! By the way, I'm also over 55 and still have "got it"!   I never lost it and I also can work rings round younger techs.   I'm 52 and female and seem to be having the same issues. I have over 10 years experience in tech support (with a BS in CIS) and can't get hired either.   Ow, I only have an AS in computer science along with my certifications.   Keep the faith, I have been unemployed since August of 2008. I agree with you...I am willing to return to the beginning of my retail career and work myself back through the ranks, if someone will look past the grey and realize the knowledge I would bring to the table.   I also would like some one to look past the gray.   Interesting approach, volunteering to work for minimum wage for 90 days. I'm in the same situation as you, being 55 & balding w/white hair, so I know where you're coming from. I've been out of work now for a year. I'm in Michigan, where the unemployment rate is estimated to be 15% (the worst in the nation) & even though I've got 30+ years of IT experience ranging from mainframe to PC desktop support, it's difficult to even get a face-to-face interview. I had one prospective employer tell me flat out that I "didn't have the energy required for this position". Mostly I never get any feedback. All I can say is good luck & try to remain optimistic.   He said WHAT! Yes remaining optimistic is key. Along with faith in God. Then there was this (for lack of better word) jerk.   Give it up already. You were too old to work in high tech 10 years ago. Scratch that, 20 years ago! Try selling hot dogs in front of Fry's Electronics. At least you would get a chance to eat lunch with your previous colleagues....   You know funny thing on this person is that I checked out his profile. He is older than I am.

    Read the article

  • Developing Schema Compare for Oracle (Part 1)

    - by Simon Cooper
    SQL Compare is one of Red Gate's most successful SQL Server tools; it allows developers and DBAs to compare and synchronize the contents of their databases. Although similar tools exist for Oracle, they are quite noticeably lacking in the usability and stability that SQL Compare is known for in the SQL Server world. We could see a real need for a usable schema comparison tools for Oracle, and so the Schema Compare for Oracle project was born. Over the next few weeks, as we come up to release of v1, I'll be doing a series of posts on the development of Schema Compare for Oracle. For the first post, I thought I would start with the main pitfalls that we stumbled across when developing the product, especially from a SQL Server background. 1. Schemas and Databases The most obvious difference is that the concept of a 'database' is quite different between Oracle and SQL Server. On SQL Server, one server instance has multiple databases, each with separate schemas. There is typically little communication between separate databases, and most databases are no more than about 1000-2000 objects. This means SQL Compare can register an entire database in a reasonable amount of time, and cross-database dependencies probably won't be an issue. It is a quite different scene under Oracle, however. The terms 'database' and 'instance' are used interchangeably, (although technically 'database' refers to the datafiles on disk, and 'instance' the running Oracle process that reads & writes to the database), and a database is a single conceptual entity. This immediately presents problems, as it is infeasible to register an entire database as we do in SQL Compare; in my Oracle install, using the standard recommended options, there are 63975 system objects. If we tried to register all those, not only would it take hours, but the client would probably run out of memory before we finished. As a result, we had to allow people to specify what schemas they wanted to register. This decision had quite a few knock-on effects for the design, which I will cover in a future post. 2. Connecting to Oracle The next obvious difference is in actually connecting to Oracle – in SQL Server, you can specify a server and database, and off you go. On Oracle things are slightly more complicated. SIDs, Service Names, and TNS A database (the files on disk) must have a unique identifier for the databases on the system, called the SID. It also has a global database name, which consists of a name (which doesn't have to match the SID) and a domain. Alternatively, you can identify a database using a service name, which normally has a 1-to-1 relationship with instances, but may not if, for example, using RAC (Real Application Clusters) for redundancy and failover. You specify the computer and instance you want to connect to using TNS (Transparent Network Substrate). The user-visible parts are a config file (tnsnames.ora) on the client machine that specifies how to connect to an instance. For example, the entry for one of my test instances is: SC_11GDB1 = (DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)(HOST = simonctest)(PORT = 1521)) ) (CONNECT_DATA = (SID = 11gR1db1) ) ) This gives the hostname, port, and SID of the instance I want to connect to, and associates it with a name (SC_11GDB1). The tnsnames syntax also allows you to specify failover, multiple descriptions and address lists, and client load balancing. You can then specify this TNS identifier as the data source in a connection string. Although using ODP.NET (the .NET dlls provided by Oracle) was fine for internal prototype builds, once we released the EAP we discovered that this simply wasn't an acceptable solution for installs on other people's machines. Due to .NET assembly strong naming, users had to have installed on their machines the exact same version of the ODP.NET dlls as we had on our build server. We couldn't ship the ODP.NET dlls with our installer as the Oracle license agreement prohibited this, and we didn't want to force users to install another Oracle client just so they can run our program. To be able to list the TNS entries in the connection dialog, we also had to locate and parse the tnsnames.ora file, which was complicated by users with several Oracle client installs and intricate TNS entries. After much swearing at our computers, we eventually decided to use a third party Oracle connection library from Devart that we could ship with our program; this could use whatever client version was installed, parse the TNS entries for us, and also had the nice feature of being able to connect to an Oracle server without having any client installed at all. Unfortunately, their current license agreement prevents us from shipping an Oracle SDK, but that's a bridge we'll cross when we get to it. 3. Running synchronization scripts The most important difference is that in Oracle, DDL is non-transactional; you cannot rollback DDL statements like you can on SQL Server. Although we considered various solutions to this, including using the flashback archive or recycle bin, or generating an undo script, no reliable method of completely undoing a half-executed sync script has yet been found; so in this case we simply have to trust that the DBA or developer will check and verify the script before running it. However, before we got to that stage, we had to get the scripts to run in the first place... To run a synchronization script from SQL Compare we essentially pass the script over to the SqlCommand.ExecuteNonQuery method. However, when we tried to do the same for an OracleConnection we got a very strange error – 'ORA-00911: invalid character', even when running the most basic CREATE TABLE command. After much hair-pulling and Googling, we discovered that Oracle has got some very strange behaviour with semicolons at the end of statements. To understand what's going on, we need to take a quick foray into SQL and PL/SQL. PL/SQL is not T-SQL In SQL Server, T-SQL is the language used to interface with the database. It has DDL, DML, control flow, and many other nice features (like Turing-completeness) that you can mix and match in the same script. In Oracle, DDL SQL and PL/SQL are two completely separate languages, with different syntax, different datatypes and different execution engines within the instance. Oracle SQL is much more like 'pure' ANSI SQL, with no state, no control flow, and only the basic DML commands. PL/SQL is the Turing-complete language, but can only do DML and DCL (i.e. BEGIN TRANSATION commands). Any DDL or SQL commands that aren't recognised by the PL/SQL engine have to be passed back to the SQL engine via an EXECUTE IMMEDIATE command. In PL/SQL, a semicolons is a valid token used to delimit the end of a statement. In SQL, a semicolon is not a valid token (even though the Oracle documentation gives them at the end of the syntax diagrams) . When you execute the command CREATE TABLE table1 (COL1 NUMBER); in SQL*Plus the semicolon on the end is a command to SQL*Plus to execute the preceding statement on the server; it strips off the semicolon before passing it on. SQL Developer does a similar thing. When executing a PL/SQL block, however, the syntax is like so: BEGIN INSERT INTO table1 VALUES (1); INSERT INTO table1 VALUES (2); END; / In this case, the semicolon is accepted by the PL/SQL engine as a statement delimiter, and instead the / is the command to SQL*Plus to execute the current block. This explains the ORA-00911 error we got when trying to run the CREATE TABLE command – the server is complaining about the semicolon on the end. This also means that there is no SQL syntax to execute more than one DDL command in the same OracleCommand. Therefore, we would have to do a round-trip to the server for every command we want to execute. Obviously, this would cause lots of network traffic and be very slow on slow or congested networks. Our first attempt at a solution was to wrap every SQL statement (without semicolon) inside an EXECUTE IMMEDIATE command in a PL/SQL block and pass that to the server to execute. One downside of this solution is that we get no feedback as to how the script execution is going; we're currently evaluating better solutions to this thorny issue. Next up: Dependencies; how we solved the problem of being unable to register the entire database, and the knock-on effects to the whole product.

    Read the article

  • CodePlex Daily Summary for Saturday, June 16, 2012

    CodePlex Daily Summary for Saturday, June 16, 2012Popular ReleasesCosmos (C# Open Source Managed Operating System): Release 92560: Prerequisites Visual Studio 2010 - Any version including Express. Express users must also install Visual Studio 2010 Integrated Shell runtime VMWare - Cosmos can run on real hardware as well as other virtualization environments but our default debug setup is configured for VMWare. VMWare Player (Free). or Workstation VMWare VIX API 1.11AutoUpdaterdotNET : Autoupdate for VB.NET and C# Developer: AutoUpdater.NET 1.1: Release Notes *New feature added that allows user to select remind later interval.Sumzlib: API document: API documentMicrosoft SQL Server Product Samples: Database: AdventureWorks 2008 OLTP Script: Install AdventureWorks2008 OLTP database from script The AdventureWorks database can be created by running the instawdb.sql DDL script contained in the AdventureWorks 2008 OLTP Script.zip file. The instawdb.sql script depends on two path environment variables: SqlSamplesDatabasePath and SqlSamplesSourceDataPath. The SqlSamplesDatabasePath environment variable is set to the default Microsoft ® SQL Server 2008 path. You will need to change the SqlSamplesSourceDataPath environment variable to th...HigLabo: HigLabo_20120613: Bug fix HigLabo.Mail Decode header encoded by CP1252Jasc (just another script compressor): 1.3.1: Updated Ajax Minifier to 4.55.WipeTouch, a jQuery touch plugin: 1.2.0: Changes since 1.1.0: New: wipeMove event, triggered while moving the mouse/finger. New: added "source" to the result object. Bug fix: sometimes vertical wipe events would not trigger correctly. Bug fix: improved tapToClick handler. General code refactoring. Windows Phone 7 is not supported, yet! Its behaviour is completely broken and would require some special tricks to make it work. Maybe in the future...Phalanger - The PHP Language Compiler for the .NET Framework: 3.0.0.3026 (June 2012): Fixes: round( 0.0 ) local TimeZone name TimeZone search compiling multi-script-assemblies PhpString serialization DocDocument::loadHTMLFile() token_get_all() parse_url()BlackJumboDog: Ver5.6.4: 2012.06.13 Ver5.6.4  (1) Web???????、???POST??????????????????Yahoo! UI Library: YUI Compressor for .Net: Version 2.0.0.0 - Ferret: - Merging both 3.5 and 2.0 codebases to a single .NET 2.0 assembly. - MSBuild Task. - NAnt Task.Bumblebee: Version 0.3.1: Changed default config values to decent ones. Restricted visibility of Hive.fs to internal. Added some XML documentation. Added Array.shuffle utility. The dll is also available on NuGet My apologies, the initial source code referenced was missing one file which prevented it from building The source code contains two examples, one in C#, one in F#, illustrating the usage of the framework on the Travelling Salesman Problem: Source CodeSharePoint XSL Templates: SPXSLT 0.0.9: Added new template FixAmpersands. Fixed the contents of the MultiSelectValueCheck.xsl file, which was missing the stylesheet wrapper.ExcelFileEditor: .CS File: nothingBizTalk Scheduled Task Adapter: Release 4.0: Works with BizTalk Server 2010. Compiled in .NET Framework 4.0. In this new version are available small improvements compared to the current version (3.0). We can highlight the following improvements or changes: 24 hours support in “start time” property. Previous versions had an issue with setting the start time, as it shown 12 hours watch but no AM/PM. Daily scheduler review. Solved a small bug on Daily Properties: unable to switch between “Every day” and “on these days” Installation e...Weapsy - ASP.NET MVC CMS: 1.0.0 RC: - Upgrade to Entity Framework 4.3.1 - Added AutoMapper custom version (by nopCommerce Team) - Added missed model properties and localization resources of Plugin Definitions - Minor changes - Fixed some bugsXenta Framework - extensible enterprise n-tier application framework: Xenta Framework 1.8.0 Beta: Catalog and Publication reviews and ratings Store language packs in data base Improve reporting system Improve Import/Export system A lot of WebAdmin app UI improvements Initial implementation of the WebForum app DB indexes Improve and simplify architecture Less abstractions Modernize architecture Improve, simplify and unify API Simplify and improve testing A lot of new unit tests Codebase refactoring and ReSharpering Utilize Castle Windsor Utilize NHibernate ORM ...Microsoft Ajax Minifier: Microsoft Ajax Minifier 4.55: Properly handle IE extension to CSS3 grammar that allows for multiple parameters to functional pseudo-class selectors. add new switch -braces:(new|same) that affects where opening braces are placed in multi-line output. The default, "new" puts them on their own new line; "same" outputs them at the end of the previous line. add new optional values to the -inline switch: -inline:(force|noforce), which can be combined with the existing boolean value via comma-separators; value "force" (which...Microsoft Media Platform: Player Framework: MMP Player Framework 2.7 (Silverlight and WP7): Additional DownloadsSMFv2.7 Full Installer (MSI) - This will install everything you need in order to develop your own SMF player application, including the IIS Smooth Streaming Client. It only includes the assemblies. If you want the source code please follow the link above. Smooth Streaming Sample Player - This is a pre-built player that includes support for IIS Smooth Streaming. You can configure the player to playback your content by simplying editing a configuration file - no need to co...Liberty: v3.2.1.0 Release 10th June 2012: Change Log -Added -Liberty is now digitally signed! If the certificate on Liberty.exe is missing, invalid, or does not state that it was developed by "Xbox Chaos, Open Source Developer," your copy of Liberty may have been altered in some (possibly malicious) way. -Reach Mass biped max health and shield changer -Fixed -H3/ODST Fixed all of the glitches that users kept reporting (also reverted the changes made in 3.2.0.2) -Reach Made some tag names clearer and more consistent between m...Media Companion: Media Companion 3.503b: It has been a while, so it's about time we release another build! Major effort has been for fixing trailer downloads, plus a little bit of work for episode guide tag in TV show NFOs.New Projects.NinJa (dotNinja): An extensive JavaScript Framework revolving around principles found in .NET and aiming to integrate full Intellisense support. bab-rizg: solve unemployment problemBizTalk Multi-part Message Attachments Zipper Pipeline Component: This pipeline component replaces all attachments of a multi-part message, in a send pipeline, for its zipped equivalent.Boggle.Net: A basic implementation of Boggle for WPF.CFScript: CFScript is an ANT-like scripting system for Compact Framework. Tasks like copying files, setting registry values o install CAB files can be done with CFScript.Diablo3: Diablo3Dygraphs.NET: Dygraphs.NETDynamics CRM plugin for nopCommerce: This plugins is a bridge between nopCommerce and Dynamics CRM. nms.gaming: Place holderProject Bright Star: Project Bright Star. Deal with it.RDFSharp: RDFSharp is a library designed to ease the development of .NET applications based on the RDF and Semantic Web data model.SlamCMS: An application framework that allows you to build content managed sites leveraging SharePoint 2010 for publishing with tools to query and manifest your data.test02: no

    Read the article

  • DTracing TCP congestion control

    - by user12820842
    In a previous post, I showed how we can use DTrace to probe TCP receive and send window events. TCP receive and send windows are in effect both about flow-controlling how much data can be received - the receive window reflects how much data the local TCP is prepared to receive, while the send window simply reflects the size of the receive window of the peer TCP. Both then represent flow control as imposed by the receiver. However, consider that without the sender imposing flow control, and a slow link to a peer, TCP will simply fill up it's window with sent segments. Dealing with multiple TCP implementations filling their peer TCP's receive windows in this manner, busy intermediate routers may drop some of these segments, leading to timeout and retransmission, which may again lead to drops. This is termed congestion, and TCP has multiple congestion control strategies. We can see that in this example, we need to have some way of adjusting how much data we send depending on how quickly we receive acknowledgement - if we get ACKs quickly, we can safely send more segments, but if acknowledgements come slowly, we should proceed with more caution. More generally, we need to implement flow control on the send side also. Slow Start and Congestion Avoidance From RFC2581, let's examine the relevant variables: "The congestion window (cwnd) is a sender-side limit on the amount of data the sender can transmit into the network before receiving an acknowledgment (ACK). Another state variable, the slow start threshold (ssthresh), is used to determine whether the slow start or congestion avoidance algorithm is used to control data transmission" Slow start is used to probe the network's ability to handle transmission bursts both when a connection is first created and when retransmission timers fire. The latter case is important, as the fact that we have effectively lost TCP data acts as a motivator for re-probing how much data the network can handle from the sending TCP. The congestion window (cwnd) is initialized to a relatively small value, generally a low multiple of the sending maximum segment size. When slow start kicks in, we will only send that number of bytes before waiting for acknowledgement. When acknowledgements are received, the congestion window is increased in size until cwnd reaches the slow start threshold ssthresh value. For most congestion control algorithms the window increases exponentially under slow start, assuming we receive acknowledgements. We send 1 segment, receive an ACK, increase the cwnd by 1 MSS to 2*MSS, send 2 segments, receive 2 ACKs, increase the cwnd by 2*MSS to 4*MSS, send 4 segments etc. When the congestion window exceeds the slow start threshold, congestion avoidance is used instead of slow start. During congestion avoidance, the congestion window is generally updated by one MSS for each round-trip-time as opposed to each ACK, and so cwnd growth is linear instead of exponential (we may receive multiple ACKs within a single RTT). This continues until congestion is detected. If a retransmit timer fires, congestion is assumed and the ssthresh value is reset. It is reset to a fraction of the number of bytes outstanding (unacknowledged) in the network. At the same time the congestion window is reset to a single max segment size. Thus, we initiate slow start until we start receiving acknowledgements again, at which point we can eventually flip over to congestion avoidance when cwnd ssthresh. Congestion control algorithms differ most in how they handle the other indication of congestion - duplicate ACKs. A duplicate ACK is a strong indication that data has been lost, since they often come from a receiver explicitly asking for a retransmission. In some cases, a duplicate ACK may be generated at the receiver as a result of packets arriving out-of-order, so it is sensible to wait for multiple duplicate ACKs before assuming packet loss rather than out-of-order delivery. This is termed fast retransmit (i.e. retransmit without waiting for the retransmission timer to expire). Note that on Oracle Solaris 11, the congestion control method used can be customized. See here for more details. In general, 3 or more duplicate ACKs indicate packet loss and should trigger fast retransmit . It's best not to revert to slow start in this case, as the fact that the receiver knew it was missing data suggests it has received data with a higher sequence number, so we know traffic is still flowing. Falling back to slow start would be excessive therefore, so fast recovery is used instead. Observing slow start and congestion avoidance The following script counts TCP segments sent when under slow start (cwnd ssthresh). #!/usr/sbin/dtrace -s #pragma D option quiet tcp:::connect-request / start[args[1]-cs_cid] == 0/ { start[args[1]-cs_cid] = 1; } tcp:::send / start[args[1]-cs_cid] == 1 && args[3]-tcps_cwnd tcps_cwnd_ssthresh / { @c["Slow start", args[2]-ip_daddr, args[4]-tcp_dport] = count(); } tcp:::send / start[args[1]-cs_cid] == 1 && args[3]-tcps_cwnd args[3]-tcps_cwnd_ssthresh / { @c["Congestion avoidance", args[2]-ip_daddr, args[4]-tcp_dport] = count(); } As we can see the script only works on connections initiated since it is started (using the start[] associative array with the connection ID as index to set whether it's a new connection (start[cid] = 1). From there we simply differentiate send events where cwnd ssthresh (congestion avoidance). Here's the output taken when I accessed a YouTube video (where rport is 80) and from an FTP session where I put a large file onto a remote system. # dtrace -s tcp_slow_start.d ^C ALGORITHM RADDR RPORT #SEG Slow start 10.153.125.222 20 6 Slow start 138.3.237.7 80 14 Slow start 10.153.125.222 21 18 Congestion avoidance 10.153.125.222 20 1164 We see that in the case of the YouTube video, slow start was exclusively used. Most of the segments we sent in that case were likely ACKs. Compare this case - where 14 segments were sent using slow start - to the FTP case, where only 6 segments were sent before we switched to congestion avoidance for 1164 segments. In the case of the FTP session, the FTP data on port 20 was predominantly sent with congestion avoidance in operation, while the FTP session relied exclusively on slow start. For the default congestion control algorithm - "newreno" - on Solaris 11, slow start will increase the cwnd by 1 MSS for every acknowledgement received, and by 1 MSS for each RTT in congestion avoidance mode. Different pluggable congestion control algorithms operate slightly differently. For example "highspeed" will update the slow start cwnd by the number of bytes ACKed rather than the MSS. And to finish, here's a neat oneliner to visually display the distribution of congestion window values for all TCP connections to a given remote port using a quantization. In this example, only port 80 is in use and we see the majority of cwnd values for that port are in the 4096-8191 range. # dtrace -n 'tcp:::send { @q[args[4]-tcp_dport] = quantize(args[3]-tcps_cwnd); }' dtrace: description 'tcp:::send ' matched 10 probes ^C 80 value ------------- Distribution ------------- count -1 | 0 0 |@@@@@@ 5 1 | 0 2 | 0 4 | 0 8 | 0 16 | 0 32 | 0 64 | 0 128 | 0 256 | 0 512 | 0 1024 | 0 2048 |@@@@@@@@@ 8 4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@ 23 8192 | 0

    Read the article

  • Why Is Vertical Resolution Monitor Resolution so Often a Multiple of 360?

    - by Jason Fitzpatrick
    Stare at a list of monitor resolutions long enough and you might notice a pattern: many of the vertical resolutions, especially those of gaming or multimedia displays, are multiples of 360 (720, 1080, 1440, etc.) But why exactly is this the case? Is it arbitrary or is there something more at work? Today’s Question & Answer session comes to us courtesy of SuperUser—a subdivision of Stack Exchange, a community-driven grouping of Q&A web sites. The Question SuperUser reader Trojandestroy recently noticed something about his display interface and needs answers: YouTube recently added 1440p functionality, and for the first time I realized that all (most?) vertical resolutions are multiples of 360. Is this just because the smallest common resolution is 480×360, and it’s convenient to use multiples? (Not doubting that multiples are convenient.) And/or was that the first viewable/conveniently sized resolution, so hardware (TVs, monitors, etc) grew with 360 in mind? Taking it further, why not have a square resolution? Or something else unusual? (Assuming it’s usual enough that it’s viewable). Is it merely a pleasing-the-eye situation? So why have the display be a multiple of 360? The Answer SuperUser contributor User26129 offers us not just an answer as to why the numerical pattern exists but a history of screen design in the process: Alright, there are a couple of questions and a lot of factors here. Resolutions are a really interesting field of psychooptics meeting marketing. First of all, why are the vertical resolutions on youtube multiples of 360. This is of course just arbitrary, there is no real reason this is the case. The reason is that resolution here is not the limiting factor for Youtube videos – bandwidth is. Youtube has to re-encode every video that is uploaded a couple of times, and tries to use as little re-encoding formats/bitrates/resolutions as possible to cover all the different use cases. For low-res mobile devices they have 360×240, for higher res mobile there’s 480p, and for the computer crowd there is 360p for 2xISDN/multiuser landlines, 720p for DSL and 1080p for higher speed internet. For a while there were some other codecs than h.264, but these are slowly being phased out with h.264 having essentially ‘won’ the format war and all computers being outfitted with hardware codecs for this. Now, there is some interesting psychooptics going on as well. As I said: resolution isn’t everything. 720p with really strong compression can and will look worse than 240p at a very high bitrate. But on the other side of the spectrum: throwing more bits at a certain resolution doesn’t magically make it better beyond some point. There is an optimum here, which of course depends on both resolution and codec. In general: the optimal bitrate is actually proportional to the resolution. So the next question is: what kind of resolution steps make sense? Apparently, people need about a 2x increase in resolution to really see (and prefer) a marked difference. Anything less than that and many people will simply not bother with the higher bitrates, they’d rather use their bandwidth for other stuff. This has been researched quite a long time ago and is the big reason why we went from 720×576 (415kpix) to 1280×720 (922kpix), and then again from 1280×720 to 1920×1080 (2MP). Stuff in between is not a viable optimization target. And again, 1440P is about 3.7MP, another ~2x increase over HD. You will see a difference there. 4K is the next step after that. Next up is that magical number of 360 vertical pixels. Actually, the magic number is 120 or 128. All resolutions are some kind of multiple of 120 pixels nowadays, back in the day they used to be multiples of 128. This is something that just grew out of LCD panel industry. LCD panels use what are called line drivers, little chips that sit on the sides of your LCD screen that control how bright each subpixel is. Because historically, for reasons I don’t really know for sure, probably memory constraints, these multiple-of-128 or multiple-of-120 resolutions already existed, the industry standard line drivers became drivers with 360 line outputs (1 per subpixel). If you would tear down your 1920×1080 screen, I would be putting money on there being 16 line drivers on the top/bottom and 9 on one of the sides. Oh hey, that’s 16:9. Guess how obvious that resolution choice was back when 16:9 was ‘invented’. Then there’s the issue of aspect ratio. This is really a completely different field of psychology, but it boils down to: historically, people have believed and measured that we have a sort of wide-screen view of the world. Naturally, people believed that the most natural representation of data on a screen would be in a wide-screen view, and this is where the great anamorphic revolution of the ’60s came from when films were shot in ever wider aspect ratios. Since then, this kind of knowledge has been refined and mostly debunked. Yes, we do have a wide-angle view, but the area where we can actually see sharply – the center of our vision – is fairly round. Slightly elliptical and squashed, but not really more than about 4:3 or 3:2. So for detailed viewing, for instance for reading text on a screen, you can utilize most of your detail vision by employing an almost-square screen, a bit like the screens up to the mid-2000s. However, again this is not how marketing took it. Computers in ye olden days were used mostly for productivity and detailed work, but as they commoditized and as the computer as media consumption device evolved, people didn’t necessarily use their computer for work most of the time. They used it to watch media content: movies, television series and photos. And for that kind of viewing, you get the most ‘immersion factor’ if the screen fills as much of your vision (including your peripheral vision) as possible. Which means widescreen. But there’s more marketing still. When detail work was still an important factor, people cared about resolution. As many pixels as possible on the screen. SGI was selling almost-4K CRTs! The most optimal way to get the maximum amount of pixels out of a glass substrate is to cut it as square as possible. 1:1 or 4:3 screens have the most pixels per diagonal inch. But with displays becoming more consumery, inch-size became more important, not amount of pixels. And this is a completely different optimization target. To get the most diagonal inches out of a substrate, you want to make the screen as wide as possible. First we got 16:10, then 16:9 and there have been moderately successful panel manufacturers making 22:9 and 2:1 screens (like Philips). Even though pixel density and absolute resolution went down for a couple of years, inch-sizes went up and that’s what sold. Why buy a 19″ 1280×1024 when you can buy a 21″ 1366×768? Eh… I think that about covers all the major aspects here. There’s more of course; bandwidth limits of HDMI, DVI, DP and of course VGA played a role, and if you go back to the pre-2000s, graphics memory, in-computer bandwdith and simply the limits of commercially available RAMDACs played an important role. But for today’s considerations, this is about all you need to know. Have something to add to the explanation? Sound off in the the comments. Want to read more answers from other tech-savvy Stack Exchange users? Check out the full discussion thread here.     

    Read the article

  • 5 Lessons learnt in localization / multi language support in WPF

    - by MarkPearl
    For the last few months I have been secretly working away at the second version of an application that we initially released a few years ago. It’s called MaxCut and it is a free panel/cut optimizer for the woodwork, glass and metal industry. One of the motivations for writing MaxCut was to get an end to end experience in developing an application for general consumption. From the early days of v1 of MaxCut I would get the odd email thanking me for the software and then listing a few suggestions on how to improve it. Two of the most dominant suggestions that we received were… Support for imperial measurements (the original program only supported the metric system) Multi language support (we had someone who volunteered to translate the program into Japanese for us). I am not going to dive into the Imperial to Metric support in todays blog post, but I would like to cover a few brief lessons we learned in adding support for multi-language functionality in the software. I have sectioned them below under different lessons. Lesson 1 – Build multi-language support in from the start So the first lesson I learnt was if you know you are going to do multi language support – build it in from the very beginning! One of the power points of WPF/Silverlight is data binding in XAML and so while it wasn’t to painful to retro fit multi language support into the programing, it was still time consuming and a bit tedious to go through mounds and mounds of views and would have been a minor job to have implemented this while the form was being designed. Lesson 2 – Accommodate for varying word lengths using Grids The next lesson was a little harder to learn and was learnt a bit further down the road in the development cycle. We developed everything in English, assuming that other languages would have similar character length words for equivalent meanings… don’t!. A word that is short in your language may be of varying character lengths in other languages. Some language like Dutch and German allow for concatenation of nouns which has the potential to create really long words. We picked up a few places where our views had been structured incorrectly so that if a word was to long it would get clipped off or cut out. To get around this we began using the WPF grid extensively with column widths that would automatically expand if they needed to. Generally speaking the grid replacement got round this hurdle, and if in future you have a choice between a stack panel or a grid – think twice before going for the easier option… often the grid will be a bit more work to setup, but will be more flexible. Lesson 3 – Separate the separators Our initial run through moving the words to a resource dictionary led us to make what I thought was one potential mistake. If we had a label like the following… “length : “ In the resource dictionary we put it as a single entry. This is fine until you start using a word more than once. For instance in our scenario we used the word “length’ frequently. with different variations of the word with grammar and separators included in the resource we ended up having what I would consider a bloated dictionary. When we removed the separators from the words and put them as their own resources we saw a dramatic reduction in dictionary size… so something that looked like this… “length : “ “length. “ “length?” Was reduced to… “length” “:” “?” “.” While this may not seem like a reduction at first glance, consider that the separators “:?.” are used everywhere and suddenly you see a real reduction in bloat. Lesson 4 – Centralize the Language Dictionary This lesson was learnt at the very end of the project after we had already had a release candidate out in the wild. Because our translations would be done on a volunteer basis and remotely, we wanted it to be really simple for someone to translate our program into another language. As a common design practice we had tiered the application so that we had a business logic layer, a ui layer, etc. The problem was in several of these layers we had resource files specific for that layer. What this resulted in was us having multiple resource files that we would need to send to our translators. To add to our problems, some of the wordings were duplicated in different resource files, which would result in additional frustration from our translators as they felt they were duplicating work. Eventually the workaround was to make a separate project in VS2010 with just the language translations. We then exposed the dictionary as public within this project and made it as a reference to the other projects within the solution. This solved out problem as now we had a central dictionary and could remove any duplication's. Lesson 5 – Make a dummy translation file to test that you haven’t missed anything The final lesson learnt about multi language support in WPF was when checking if you had forgotten to translate anything in the inline code, make a test resource file with dummy data. Ideally you want the data for each word to be identical. In our instance we made one which had all the resource key values pointing to a value of test. This allowed us point the language file to our test resource file and very quickly browse through the program and see if we had missed any linking. The alternative to this approach is to have two language files and swap between the two while running the program to make sure that you haven’t missed anything, but the downside of dual language file approach is that it is much a lot harder spotting a mistake if everything is different – almost like playing Where’s Wally / Waldo. It is much easier spotting variance in uniformity – meaning when you put the “test’ keyword for everything, anything that didn’t say “test” stuck out like a sore thumb. So these are my top five lessons learnt on implementing multi language support in WPF. Feel free to make any suggestions in the comments section if you feel maybe something is more important than one of these or if I got it wrong!

    Read the article

< Previous Page | 69 70 71 72 73 74 75 76 77 78 79  | Next Page >