Search Results

Search found 26555 results on 1063 pages for 'active directory explorer'.

Page 738/1063 | < Previous Page | 734 735 736 737 738 739 740 741 742 743 744 745  | Next Page >

  • What is the command-line input to produce the javadoc?

    - by Bernard
    After writing all the comments inside the code about the javadoc such as /** * This method compares the student's answer to the standard answer * @param ans The student's answer * @return True for correct answer; False for incorrect answer */ boolean compareAnswer(int ans); I guess it starts with : javadoc [optionss] [packages|files] I'm not sure what is the regular or default [option] and how can I say to produce it in my current home directory?

    Read the article

  • Apache FileUtils listFiles

    - by Marquinio
    Hey everyone I'm trying to get a List of directories. I'm using FileUtils listFiles(). I want to do something like this: listFiles(File,IOFileFilter,false). My real questions is how I can implement the accept() from the IOFileFilter so I can check if current File is a directory? Thank you in advance.

    Read the article

  • Check Directories in C# using Linq

    - by pm_2
    Can someone tell me what I'm doing wrong with the following Linq query? I'm trying to find the directory with the highest aphanumerical value. DirectoryInfo[] diList = currentDirectory.GetDirectories(); var dirs = from eachDir in diList orderby eachDir.FullName descending select eachDir; MessageBox.Show(dirs[0].FullName);

    Read the article

  • localhost remove HTML extension

    - by Cusa John
    I've been trying to clean up my urls with htaccess but I can't seen to get it to work on my localhost. My website url: localhost/index.html This is the default htaccess file that's in my www folder. #------------------------------------------------------------------------------ # To allow execution of cgi scripts in this directory uncomment next two lines. #------------------------------------------------------------------------------ AddType application/x-httpd-php .html .htm .php AddHandler cgi-script .pl .cgi Options +ExecCGI +FollowSymLinks

    Read the article

  • How to move and delte all files and subdirectories with command line in windows7?

    - by user1285419
    I am looking for a way to move all files and subfolders within a given directory to somewhere else and after the movement delete the original folder. For example, suppose in current path, there is a folder called FOLDERA, I am trying to move all files and subfolders from FOLDERA to the current path and then remove FOLDERA, but I need to do this with a command line. I try MOVE command but I find that it can only move the files. Anyway to do that? Thanks.

    Read the article

  • How can i filter the files based on type?

    - by user369218
    I need to list out the names of the files based on given type.Is there any tool to do that or is there any source code so that i can get the list of the files with given extension. example:If ".txt" is given then the output must contain list of all the text files in a specific directory.

    Read the article

  • x-code cannot see my class

    - by dubbeat
    This is pretty strange. I have a class in Classes folder of my project (a .h file and a .m file). When I try to import it like so #import <myClass.h> I get an error saying "no such file or directory". It is definitely there. What could be going on?

    Read the article

  • Restler RC3 Install

    - by user1769713
    Is there a way to 'copy and paste' the RC3 to my host without having to run 'make composer-install'? Unfortunately my host is lousy and doesn't allow for this. Restler 2 was as easy to install as putting the files into a directory and making a few config changes. That doesn't appear to be the case anymore. I love Restler 2 but need the functionality offered in RC3. Any insight is greatly appreciated!

    Read the article

  • Mysql without installer is not working

    - by yyy i 777
    I have downloaded MYSQL without installer suppourt in my windows 64 bit machine . I have followed the guidelines mentioned in this website http://dev.mysql.com/doc/refman/5.0/en/windows-install-archive.html i have installed it inside c: mysql directory . As first step i navigated to c:\mysql\binmysqld , as shown in picture below . This started the Database Then i opened another command Prompt Window and navigated to c:\mysql\bin and typed show databases; With this it it showing an Error in Command Prompt saying

    Read the article

  • In Windows Vista and 7, I can't access the %DEFAULTUSERPROFILE% system variable - it shows as not fo

    - by shifuimam
    If I try to access this system variable from the Run... dialog, Windows tells me the directory doesn't exist. Some system variables, like %SYSTEMROOT% and %USERPROFILE%, do work. Consequently, if I try to use a supposedly nonexistent variable like %DEFAULTUSERPROFILE% or %PROFILESFOLDER% in C#, I get nothing in return. Is there something special I need to do to get access to these variables?

    Read the article

  • Using FiddlerCore to capture HTTP Requests with .NET

    - by Rick Strahl
    Over the last few weeks I’ve been working on my Web load testing utility West Wind WebSurge. One of the key components of a load testing tool is the ability to capture URLs effectively so that you can play them back later under load. One of the options in WebSurge for capturing URLs is to use its built-in capture tool which acts as an HTTP proxy to capture any HTTP and HTTPS traffic from most Windows HTTP clients, including Web Browsers as well as standalone Windows applications and services. To make this happen, I used Eric Lawrence’s awesome FiddlerCore library, which provides most of the functionality of his desktop Fiddler application, all rolled into an easy to use library that you can plug into your own applications. FiddlerCore makes it almost too easy to capture HTTP content! For WebSurge I needed to capture all HTTP traffic in order to capture the full HTTP request – URL, headers and any content posted by the client. The result of what I ended up creating is this semi-generic capture form: In this post I’m going to demonstrate how easy it is to use FiddlerCore to build this HTTP Capture Form.  If you want to jump right in here are the links to get Telerik’s Fiddler Core and the code for the demo provided here. FiddlerCore Download FiddlerCore on NuGet Show me the Code (WebSurge Integration code from GitHub) Download the WinForms Sample Form West Wind Web Surge (example implementation in live app) Note that FiddlerCore is bound by a license for commercial usage – see license.txt in the FiddlerCore distribution for details. Integrating FiddlerCore FiddlerCore is a library that simply plugs into your application. You can download it from the Telerik site and manually add the assemblies to your project, or you can simply install the NuGet package via:       PM> Install-Package FiddlerCore The library consists of the FiddlerCore.dll as well as a couple of support libraries (CertMaker.dll and BCMakeCert.dll) that are used for installing SSL certificates. I’ll have more on SSL captures and certificate installation later in this post. But first let’s see how easy it is to use FiddlerCore to capture HTTP content by looking at how to build the above capture form. Capturing HTTP Content Once the library is installed it’s super easy to hook up Fiddler functionality. Fiddler includes a number of static class methods on the FiddlerApplication object that can be called to hook up callback events as well as actual start monitoring HTTP URLs. In the following code directly lifted from WebSurge, I configure a few filter options on Form level object, from the user inputs shown on the form by assigning it to a capture options object. In the live application these settings are persisted configuration values, but in the demo they are one time values initialized and set on the form. Once these options are set, I hook up the AfterSessionComplete event to capture every URL that passes through the proxy after the request is completed and start up the Proxy service:void Start() { if (tbIgnoreResources.Checked) CaptureConfiguration.IgnoreResources = true; else CaptureConfiguration.IgnoreResources = false; string strProcId = txtProcessId.Text; if (strProcId.Contains('-')) strProcId = strProcId.Substring(strProcId.IndexOf('-') + 1).Trim(); strProcId = strProcId.Trim(); int procId = 0; if (!string.IsNullOrEmpty(strProcId)) { if (!int.TryParse(strProcId, out procId)) procId = 0; } CaptureConfiguration.ProcessId = procId; CaptureConfiguration.CaptureDomain = txtCaptureDomain.Text; FiddlerApplication.AfterSessionComplete += FiddlerApplication_AfterSessionComplete; FiddlerApplication.Startup(8888, true, true, true); } The key lines for FiddlerCore are just the last two lines of code that include the event hookup code as well as the Startup() method call. Here I only hook up to the AfterSessionComplete event but there are a number of other events that hook various stages of the HTTP request cycle you can also hook into. Other events include BeforeRequest, BeforeResponse, RequestHeadersAvailable, ResponseHeadersAvailable and so on. In my case I want to capture the request data and I actually have several options to capture this data. AfterSessionComplete is the last event that fires in the request sequence and it’s the most common choice to capture all request and response data. I could have used several other events, but AfterSessionComplete is one place where you can look both at the request and response data, so this will be the most common place to hook into if you’re capturing content. The implementation of AfterSessionComplete is responsible for capturing all HTTP request headers and it looks something like this:private void FiddlerApplication_AfterSessionComplete(Session sess) { // Ignore HTTPS connect requests if (sess.RequestMethod == "CONNECT") return; if (CaptureConfiguration.ProcessId > 0) { if (sess.LocalProcessID != 0 && sess.LocalProcessID != CaptureConfiguration.ProcessId) return; } if (!string.IsNullOrEmpty(CaptureConfiguration.CaptureDomain)) { if (sess.hostname.ToLower() != CaptureConfiguration.CaptureDomain.Trim().ToLower()) return; } if (CaptureConfiguration.IgnoreResources) { string url = sess.fullUrl.ToLower(); var extensions = CaptureConfiguration.ExtensionFilterExclusions; foreach (var ext in extensions) { if (url.Contains(ext)) return; } var filters = CaptureConfiguration.UrlFilterExclusions; foreach (var urlFilter in filters) { if (url.Contains(urlFilter)) return; } } if (sess == null || sess.oRequest == null || sess.oRequest.headers == null) return; string headers = sess.oRequest.headers.ToString(); var reqBody = sess.GetRequestBodyAsString(); // if you wanted to capture the response //string respHeaders = session.oResponse.headers.ToString(); //var respBody = session.GetResponseBodyAsString(); // replace the HTTP line to inject full URL string firstLine = sess.RequestMethod + " " + sess.fullUrl + " " + sess.oRequest.headers.HTTPVersion; int at = headers.IndexOf("\r\n"); if (at < 0) return; headers = firstLine + "\r\n" + headers.Substring(at + 1); string output = headers + "\r\n" + (!string.IsNullOrEmpty(reqBody) ? reqBody + "\r\n" : string.Empty) + Separator + "\r\n\r\n"; BeginInvoke(new Action<string>((text) => { txtCapture.AppendText(text); UpdateButtonStatus(); }), output); } The code starts by filtering out some requests based on the CaptureOptions I set before the capture is started. These options/filters are applied when requests actually come in. This is very useful to help narrow down the requests that are captured for playback based on options the user picked. I find it useful to limit requests to a certain domain for captures, as well as filtering out some request types like static resources – images, css, scripts etc. This is of course optional, but I think it’s a common scenario and WebSurge makes good use of this feature. AfterSessionComplete like other FiddlerCore events, provides a Session object parameter which contains all the request and response details. There are oRequest and oResponse objects to hold their respective data. In my case I’m interested in the raw request headers and body only, as you can see in the commented code you can also retrieve the response headers and body. Here the code captures the request headers and body and simply appends the output to the textbox on the screen. Note that the Fiddler events are asynchronous, so in order to display the content in the UI they have to be marshaled back the UI thread with BeginInvoke, which here simply takes the generated headers and appends it to the existing textbox test on the form. As each request is processed, the headers are captured and appended to the bottom of the textbox resulting in a Session HTTP capture in the format that Web Surge internally supports, which is basically raw request headers with a customized 1st HTTP Header line that includes the full URL rather than a server relative URL. When the capture is done the user can either copy the raw HTTP session to the clipboard, or directly save it to file. This raw capture format is the same format WebSurge and also Fiddler use to import/export request data. While this code is application specific, it demonstrates the kind of logic that you can easily apply to the request capture process, which is one of the reasonsof why FiddlerCore is so powerful. You get to choose what content you want to look up as part of your own application logic and you can then decide how to capture or use that data as part of your application. The actual captured data in this case is only a string. The user can edit the data by hand or in the the case of WebSurge, save it to disk and automatically open the captured session as a new load test. Stopping the FiddlerCore Proxy Finally to stop capturing requests you simply disconnect the event handler and call the FiddlerApplication.ShutDown() method:void Stop() { FiddlerApplication.AfterSessionComplete -= FiddlerApplication_AfterSessionComplete; if (FiddlerApplication.IsStarted()) FiddlerApplication.Shutdown(); } As you can see, adding HTTP capture functionality to an application is very straight forward. FiddlerCore offers tons of features I’m not even touching on here – I suspect basic captures are the most common scenario, but a lot of different things can be done with FiddlerCore’s simple API interface. Sky’s the limit! The source code for this sample capture form (WinForms) is provided as part of this article. Adding Fiddler Certificates with FiddlerCore One of the sticking points in West Wind WebSurge has been that if you wanted to capture HTTPS/SSL traffic, you needed to have the full version of Fiddler and have HTTPS decryption enabled. Essentially you had to use Fiddler to configure HTTPS decryption and the associated installation of the Fiddler local client certificate that is used for local decryption of incoming SSL traffic. While this works just fine, requiring to have Fiddler installed and then using a separate application to configure the SSL functionality isn’t ideal. Fortunately FiddlerCore actually includes the tools to register the Fiddler Certificate directly using FiddlerCore. Why does Fiddler need a Certificate in the first Place? Fiddler and FiddlerCore are essentially HTTP proxies which means they inject themselves into the HTTP conversation by re-routing HTTP traffic to a special HTTP port (8888 by default for Fiddler) and then forward the HTTP data to the original client. Fiddler injects itself as the system proxy in using the WinInet Windows settings  which are the same settings that Internet Explorer uses and that are configured in the Windows and Internet Explorer Internet Settings dialog. Most HTTP clients running on Windows pick up and apply these system level Proxy settings before establishing new HTTP connections and that’s why most clients automatically work once Fiddler – or FiddlerCore/WebSurge are running. For plain HTTP requests this just works – Fiddler intercepts the HTTP requests on the proxy port and then forwards them to the original port (80 for HTTP and 443 for SSL typically but it could be any port). For SSL however, this is not quite as simple – Fiddler can easily act as an HTTPS/SSL client to capture inbound requests from the server, but when it forwards the request to the client it has to also act as an SSL server and provide a certificate that the client trusts. This won’t be the original certificate from the remote site, but rather a custom local certificate that effectively simulates an SSL connection between the proxy and the client. If there is no custom certificate configured for Fiddler the SSL request fails with a certificate validation error. The key for this to work is that a custom certificate has to be installed that the HTTPS client trusts on the local machine. For a much more detailed description of the process you can check out Eric Lawrence’s blog post on Certificates. If you’re using the desktop version of Fiddler you can install a local certificate into the Windows certificate store. Fiddler proper does this from the Options menu: This operation does several things: It installs the Fiddler Root Certificate It sets trust to this Root Certificate A new client certificate is generated for each HTTPS site monitored Certificate Installation with FiddlerCore You can also provide this same functionality using FiddlerCore which includes a CertMaker class. Using CertMaker is straight forward to use and it provides an easy way to create some simple helpers that can install and uninstall a Fiddler Root certificate:public static bool InstallCertificate() { if (!CertMaker.rootCertExists()) { if (!CertMaker.createRootCert()) return false; if (!CertMaker.trustRootCert()) return false; } return true; } public static bool UninstallCertificate() { if (CertMaker.rootCertExists()) { if (!CertMaker.removeFiddlerGeneratedCerts(true)) return false; } return true; } InstallCertificate() works by first checking whether the root certificate is already installed and if it isn’t goes ahead and creates a new one. The process of creating the certificate is a two step process – first the actual certificate is created and then it’s moved into the certificate store to become trusted. I’m not sure why you’d ever split these operations up since a cert created without trust isn’t going to be of much value, but there are two distinct steps. When you trigger the trustRootCert() method, a message box will pop up on the desktop that lets you know that you’re about to trust a local private certificate. This is a security feature to ensure that you really want to trust the Fiddler root since you are essentially installing a man in the middle certificate. It’s quite safe to use this generated root certificate, because it’s been specifically generated for your machine and thus is not usable from external sources, the only way to use this certificate in a trusted way is from the local machine. IOW, unless somebody has physical access to your machine, there’s no useful way to hijack this certificate and use it for nefarious purposes (see Eric’s post for more details). Once the Root certificate has been installed, FiddlerCore/Fiddler create new certificates for each site that is connected to with HTTPS. You can end up with quite a few temporary certificates in your certificate store. To uninstall you can either use Fiddler and simply uncheck the Decrypt HTTPS traffic option followed by the remove Fiddler certificates button, or you can use FiddlerCore’s CertMaker.removeFiddlerGeneratedCerts() which removes the root cert and any of the intermediary certificates Fiddler created. Keep in mind that when you uninstall you uninstall the certificate for both FiddlerCore and Fiddler, so use UninstallCertificate() with care and realize that you might affect the Fiddler application’s operation by doing so as well. When to check for an installed Certificate Note that the check to see if the root certificate exists is pretty fast, while the actual process of installing the certificate is a relatively slow operation that even on a fast machine takes a few seconds. Further the trust operation pops up a message box so you probably don’t want to install the certificate repeatedly. Since the check for the root certificate is fast, you can easily put a call to InstallCertificate() in any capture startup code – in which case the certificate installation only triggers when a certificate is in fact not installed. Personally I like to make certificate installation explicit – just like Fiddler does, so in WebSurge I use a small drop down option on the menu to install or uninstall the SSL certificate:   This code calls the InstallCertificate and UnInstallCertificate functions respectively – the experience with this is similar to what you get in Fiddler with the extra dialog box popping up to prompt confirmation for installation of the root certificate. Once the cert is installed you can then capture SSL requests. There’s a gotcha however… Gotcha: FiddlerCore Certificates don’t stick by Default When I originally tried to use the Fiddler certificate installation I ran into an odd problem. I was able to install the certificate and immediately after installation was able to capture HTTPS requests. Then I would exit the application and come back in and try the same HTTPS capture again and it would fail due to a missing certificate. CertMaker.rootCertExists() would return false after every restart and if re-installed the certificate a new certificate would get added to the certificate store resulting in a bunch of duplicated root certificates with different keys. What the heck? CertMaker and BcMakeCert create non-sticky CertificatesI turns out that FiddlerCore by default uses different components from what the full version of Fiddler uses. Fiddler uses a Windows utility called MakeCert.exe to create the Fiddler Root certificate. FiddlerCore however installs the CertMaker.dll and BCMakeCert.dll assemblies, which use a different crypto library (Bouncy Castle) for certificate creation than MakeCert.exe which uses the Windows Crypto API. The assemblies provide support for non-windows operation for Fiddler under Mono, as well as support for some non-Windows certificate platforms like iOS and Android for decryption. The bottom line is that the FiddlerCore provided bouncy castle assemblies are not sticky by default as the certificates created with them are not cached as they are in Fiddler proper. To get certificates to ‘stick’ you have to explicitly cache the certificates in Fiddler’s internal preferences. A cache aware version of InstallCertificate looks something like this:public static bool InstallCertificate() { if (!CertMaker.rootCertExists()) { if (!CertMaker.createRootCert()) return false; if (!CertMaker.trustRootCert()) return false; App.Configuration.UrlCapture.Cert = FiddlerApplication.Prefs.GetStringPref("fiddler.certmaker.bc.cert", null); App.Configuration.UrlCapture.Key = FiddlerApplication.Prefs.GetStringPref("fiddler.certmaker.bc.key", null); } return true; } public static bool UninstallCertificate() { if (CertMaker.rootCertExists()) { if (!CertMaker.removeFiddlerGeneratedCerts(true)) return false; } App.Configuration.UrlCapture.Cert = null; App.Configuration.UrlCapture.Key = null; return true; } In this code I store the Fiddler cert and private key in an application configuration settings that’s stored with the application settings (App.Configuration.UrlCapture object). These settings automatically persist when WebSurge is shut down. The values are read out of Fiddler’s internal preferences store which is set after a new certificate has been created. Likewise I clear out the configuration settings when the certificate is uninstalled. In order for these setting to be used you have to also load the configuration settings into the Fiddler preferences *before* a call to rootCertExists() is made. I do this in the capture form’s constructor:public FiddlerCapture(StressTestForm form) { InitializeComponent(); CaptureConfiguration = App.Configuration.UrlCapture; MainForm = form; if (!string.IsNullOrEmpty(App.Configuration.UrlCapture.Cert)) { FiddlerApplication.Prefs.SetStringPref("fiddler.certmaker.bc.key", App.Configuration.UrlCapture.Key); FiddlerApplication.Prefs.SetStringPref("fiddler.certmaker.bc.cert", App.Configuration.UrlCapture.Cert); }} This is kind of a drag to do and not documented anywhere that I could find, so hopefully this will save you some grief if you want to work with the stock certificate logic that installs with FiddlerCore. MakeCert provides sticky Certificates and the same functionality as Fiddler But there’s actually an easier way. If you want to skip the above Fiddler preference configuration code in your application you can choose to distribute MakeCert.exe instead of certmaker.dll and bcmakecert.dll. When you use MakeCert.exe, the certificates settings are stored in Windows so they are available without any custom configuration inside of your application. It’s easier to integrate and as long as you run on Windows and you don’t need to support iOS or Android devices is simply easier to deal with. To integrate into your project, you can remove the reference to CertMaker.dll (and the BcMakeCert.dll assembly) from your project. Instead copy MakeCert.exe into your output folder. To make sure MakeCert.exe gets pushed out, include MakeCert.exe in your project and set the Build Action to None, and Copy to Output Directory to Copy if newer. Note that the CertMaker.dll reference in the project has been removed and on disk the files for Certmaker.dll, as well as the BCMakeCert.dll files on disk. Keep in mind that these DLLs are resources of the FiddlerCore NuGet package, so updating the package may end up pushing those files back into your project. Once MakeCert.exe is distributed FiddlerCore checks for it first before using the assemblies so as long as MakeCert.exe exists it’ll be used for certificate creation (at least on Windows). Summary FiddlerCore is a pretty sweet tool, and it’s absolutely awesome that we get to plug in most of the functionality of Fiddler right into our own applications. A few years back I tried to build this sort of functionality myself for an app and ended up giving up because it’s a big job to get HTTP right – especially if you need to support SSL. FiddlerCore now provides that functionality as a turnkey solution that can be plugged into your own apps easily. The only downside is FiddlerCore’s documentation for more advanced features like certificate installation which is pretty sketchy. While for the most part FiddlerCore’s feature set is easy to work with without any documentation, advanced features are often not intuitive to gleam by just using Intellisense or the FiddlerCore help file reference (which is not terribly useful). While Eric Lawrence is very responsive on his forum and on Twitter, there simply isn’t much useful documentation on Fiddler/FiddlerCore available online. If you run into trouble the forum is probably the first place to look and then ask a question if you can’t find the answer. The best documentation you can find is Eric’s Fiddler Book which covers a ton of functionality of Fiddler and FiddlerCore. The book is a great reference to Fiddler’s feature set as well as providing great insights into the HTTP protocol. The second half of the book that gets into the innards of HTTP is an excellent read for anybody who wants to know more about some of the more arcane aspects and special behaviors of HTTP – it’s well worth the read. While the book has tons of information in a very readable format, it’s unfortunately not a great reference as it’s hard to find things in the book and because it’s not available online you can’t electronically search for the great content in it. But it’s hard to complain about any of this given the obvious effort and love that’s gone into this awesome product for all of these years. A mighty big thanks to Eric Lawrence  for having created this useful tool that so many of us use all the time, and also to Telerik for picking up Fiddler/FiddlerCore and providing Eric the resources to support and improve this wonderful tool full time and keeping it free for all. Kudos! Resources FiddlerCore Download FiddlerCore NuGet Fiddler Capture Sample Form Fiddler Capture Form in West Wind WebSurge (GitHub) Eric Lawrence’s Fiddler Book© Rick Strahl, West Wind Technologies, 2005-2014Posted in .NET  HTTP   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Sending mail with Gmail Account using System.Net.Mail in ASP.NET

    - by Jalpesh P. Vadgama
    Any web application is in complete without mail functionality you should have to write send mail functionality. Like if there is shopping cart application for example then when a order created on the shopping cart you need to send an email to administrator of website for Order notification and for customer you need to send an email of receipt of order. So any web application is not complete without sending email. This post is also all about sending email. In post I will explain that how we can send emails from our Gmail Account without purchasing any smtp server etc. There are some limitations for sending email from Gmail Account. Please note following things. Gmail will have fixed number of quota for sending emails per day. So you can not send more then that emails for the day. Your from email address always will be your account email address which you are using for sending email. You can not send an email to unlimited numbers of people. Gmail ant spamming policy will restrict this. Gmail provide both Popup and SMTP settings both should be active in your account where you testing. You can enable that via clicking on setting link in gmail account and go to Forwarding and POP/Imap. So if you are using mail functionality for limited emails then Gmail is Best option. But if you are sending thousand of email daily then it will not be Good Idea. Here is the code for sending mail from Gmail Account. using System.Net.Mail; namespace Experiement { public partial class WebForm1 : System.Web.UI.Page { protected void Page_Load(object sender,System.EventArgs e) { MailMessage mailMessage = new MailMessage(new MailAddress("[email protected]") ,new MailAddress("[email protected]")); mailMessage.Subject = "Sending mail through gmail account"; mailMessage.IsBodyHtml = true; mailMessage.Body = "<B>Sending mail thorugh gmail from asp.net</B>"; System.Net.NetworkCredential networkCredentials = new System.Net.NetworkCredential("[email protected]", "yourpassword"); SmtpClient smtpClient = new SmtpClient(); smtpClient.EnableSsl = true; smtpClient.UseDefaultCredentials = false; smtpClient.Credentials = networkCredentials; smtpClient.Host = "smtp.gmail.com"; smtpClient.Port = 587; smtpClient.Send(mailMessage); Response.Write("Mail Successfully sent"); } } } That’s run this application and you will get like below in your account. Technorati Tags: Gmail,System.NET.Mail,ASP.NET

    Read the article

  • Uninstalling Reporting Server 2008 on Windows Server 2008

    - by Piotr Rodak
    Ha. I had quite disputable pleasure of installing and reinstalling and reinstalling and reinstalling – I think about 5 times before it worked – Reporting Server 2008 on Windows Server with the same year number in name. During my struggle I came across an error which seems to be not quite unfamiliar to some more unfortunate developers and admins who happen to uninstall SSRS 2008 from the server. I had the SSRS 2008 installed as named instance, SQL2008. I wanted to uninstall the server and install it to default instance. And this is when it bit me – not the first time and not the last that day . The setup complained that it couldn’t access a DLL: Error message: TITLE: Microsoft SQL Server 2008 Setup ------------------------------ The following error has occurred: Access to the path 'C:\Windows\SysWOW64\perf-ReportServer$SQL2008-rsctr.dll' is denied. For help, click: http://go.microsoft.com/fwlink?LinkID=20476&ProdName=Microsoft+SQL+Server&EvtSrc=setup.rll&EvtID=50000&ProdVer=10.0.1600.22&EvtType=0x60797DC7%25400x84E8D3C0 ------------------------------ BUTTONS: OK This is a screenshot that shows the above error: This issue seems to have a bit of literature dedicated to it and even seemingly a KB article http://support.microsoft.com/kb/956173 and a similar Connect item: http://connect.microsoft.com/SQLServer/feedback/details/363653/error-messages-when-upgrading-from-sql-2008-rc0-to-rtm The article describes issue as following: When you try to uninstall Microsoft SQL Server 2008 Reporting Services from the server, you may receive the following error message: An error has occurred: Access to the path 'Drive_Letter:\WINDOWS\system32\perf-ReportServer-rsctr.dll' is denied. Note Drive_Letter refers to the disc drive into which the SQL Server installation media is inserted. In my case, the Note was not true; the error pointed to a dll that was located in Windows folder on C:\, not where the installation media were. Despite this difference I tried to identify any processes that might be keeping lock on the dll. I downloaded Sysinternals process explorer and ran it to find any processes I could stop. Unfortunately, there was no such process. I tried to rerun the installation, but it failed at the same step. Eventually I decided to remove the dll before the setup was executed. I changed name of the dll to be able to restore it in case of some issues. Interestingly, Windows let me do it, which means that indeed, it was not locked by any process. I ran the setup and this time it uninstalled the instance without any problems:   To summarize my experience I should say – be very careful, don’t leave any leftovers after uninstallation – remove/rename any folders that are left after setup has finished. For some reason, setup doesn’t remove folders and certain files. Installation on Windows Server 2008 requires more attention than on Windows 2003 because of the changed security model, some actions can be executed only by administrator in elevated execution mode. In general, you have to get used to UAC and a bit different experience than with Windows Server 2003. Technorati Tags: SQL Server 2008,Windows Server 2008,SRS,Reporting Services

    Read the article

  • Top things web developers should know about the Visual Studio 2013 release

    - by Jon Galloway
    ASP.NET and Web Tools for Visual Studio 2013 Release NotesASP.NET and Web Tools for Visual Studio 2013 Release NotesSummary for lazy readers: Visual Studio 2013 is now available for download on the Visual Studio site and on MSDN subscriber downloads) Visual Studio 2013 installs side by side with Visual Studio 2012 and supports round-tripping between Visual Studio versions, so you can try it out without committing to a switch Visual Studio 2013 ships with the new version of ASP.NET, which includes ASP.NET MVC 5, ASP.NET Web API 2, Razor 3, Entity Framework 6 and SignalR 2.0 The new releases ASP.NET focuses on One ASP.NET, so core features and web tools work the same across the platform (e.g. adding ASP.NET MVC controllers to a Web Forms application) New core features include new templates based on Bootstrap, a new scaffolding system, and a new identity system Visual Studio 2013 is an incredible editor for web files, including HTML, CSS, JavaScript, Markdown, LESS, Coffeescript, Handlebars, Angular, Ember, Knockdown, etc. Top links: Visual Studio 2013 content on the ASP.NET site are in the standard new releases area: http://www.asp.net/vnext ASP.NET and Web Tools for Visual Studio 2013 Release Notes Short intro videos on the new Visual Studio web editor features from Scott Hanselman and Mads Kristensen Announcing release of ASP.NET and Web Tools for Visual Studio 2013 post on the official .NET Web Development and Tools Blog Scott Guthrie's post: Announcing the Release of Visual Studio 2013 and Great Improvements to ASP.NET and Entity Framework Okay, for those of you who are still with me, let's dig in a bit. Quick web dev notes on downloading and installing Visual Studio 2013 I found Visual Studio 2013 to be a pretty fast install. According to Brian Harry's release post, installing over pre-release versions of Visual Studio is supported.  I've installed the release version over pre-release versions, and it worked fine. If you're only going to be doing web development, you can speed up the install if you just select Web Developer tools. Of course, as a good Microsoft employee, I'll mention that you might also want to install some of those other features, like the Store apps for Windows 8 and the Windows Phone 8.0 SDK, but they do download and install a lot of other stuff (e.g. the Windows Phone SDK sets up Hyper-V and downloads several GB's of VM's). So if you're planning just to do web development for now, you can pick just the Web Developer Tools and install the other stuff later. If you've got a fast internet connection, I recommend using the web installer instead of downloading the ISO. The ISO includes all the features, whereas the web installer just downloads what you're installing. Visual Studio 2013 development settings and color theme When you start up Visual Studio, it'll prompt you to pick some defaults. These are totally up to you -whatever suits your development style - and you can change them later. As I said, these are completely up to you. I recommend either the Web Development or Web Development (Code Only) settings. The only real difference is that Code Only hides the toolbars, and you can switch between them using Tools / Import and Export Settings / Reset. Web Development settings Web Development (code only) settings Usually I've just gone with Web Development (code only) in the past because I just want to focus on the code, although the Standard toolbar does make it easier to switch default web browsers. More on that later. Color theme Sigh. Okay, everyone's got their favorite colors. I alternate between Light and Dark depending on my mood, and I personally like how the low contrast on the window chrome in those themes puts the emphasis on my code rather than the tabs and toolbars. I know some people got pretty worked up over that, though, and wanted the blue theme back. I personally don't like it - it reminds me of ancient versions of Visual Studio that I don't want to think about anymore. So here's the thing: if you install Visual Studio Ultimate, it defaults to Blue. The other versions default to Light. If you use Blue, I won't criticize you - out loud, that is. You can change themes really easily - either Tools / Options / Environment / General, or the smart way: ctrl+q for quick launch, then type Theme and hit enter. Signing in During the first run, you'll be prompted to sign in. You don't have to - you can click the "Not now, maybe later" link at the bottom of that dialog. I recommend signing in, though. It's not hooked in with licensing or tracking the kind of code you write to sell you components. It is doing good things, like  syncing your Visual Studio settings between computers. More about that here. So, you don't have to, but I sure do. Overview of shiny new things in ASP.NET land There are a lot of good new things in ASP.NET. I'll list some of my favorite here, but you can read more on the ASP.NET site. One ASP.NET You've heard us talk about this for a while. The idea is that options are good, but choice can be a burden. When you start a new ASP.NET project, why should you have to make a tough decision - with long-term consequences - about how your application will work? If you want to use ASP.NET Web Forms, but have the option of adding in ASP.NET MVC later, why should that be hard? It's all ASP.NET, right? Ideally, you'd just decide that you want to use ASP.NET to build sites and services, and you could use the appropriate tools (the green blocks below) as you needed them. So, here it is. When you create a new ASP.NET application, you just create an ASP.NET application. Next, you can pick from some templates to get you started... but these are different. They're not "painful decision" templates, they're just some starting pieces. And, most importantly, you can mix and match. I can pick a "mostly" Web Forms template, but include MVC and Web API folders and core references. If you've tried to mix and match in the past, you're probably aware that it was possible, but not pleasant. ASP.NET MVC project files contained special project type GUIDs, so you'd only get controller scaffolding support in a Web Forms project if you manually edited the csproj file. Features in one stack didn't work in others. Project templates were painful choices. That's no longer the case. Hooray! I just did a demo in a presentation last week where I created a new Web Forms + MVC + Web API site, built a model, scaffolded MVC and Web API controllers with EF Code First, add data in the MVC view, viewed it in Web API, then added a GridView to the Web Forms Default.aspx page and bound it to the Model. In about 5 minutes. Sure, it's a simple example, but it's great to be able to share code and features across the whole ASP.NET family. Authentication In the past, authentication was built into the templates. So, for instance, there was an ASP.NET MVC 4 Intranet Project template which created a new ASP.NET MVC 4 application that was preconfigured for Windows Authentication. All of that authentication stuff was built into each template, so they varied between the stacks, and you couldn't reuse them. You didn't see a lot of changes to the authentication options, since they required big changes to a bunch of project templates. Now, the new project dialog includes a common authentication experience. When you hit the Change Authentication button, you get some common options that work the same way regardless of the template or reference settings you've made. These options work on all ASP.NET frameworks, and all hosting environments (IIS, IIS Express, or OWIN for self-host) The default is Individual User Accounts: This is the standard "create a local account, using username / password or OAuth" thing; however, it's all built on the new Identity system. More on that in a second. The one setting that has some configuration to it is Organizational Accounts, which lets you configure authentication using Active Directory, Windows Azure Active Directory, or Office 365. Identity There's a new identity system. We've taken the best parts of the previous ASP.NET Membership and Simple Identity systems, rolled in a lot of feedback and made big enhancements to support important developer concerns like unit testing and extensiblity. I've written long posts about ASP.NET identity, and I'll do it again. Soon. This is not that post. The short version is that I think we've finally got just the right Identity system. Some of my favorite features: There are simple, sensible defaults that work well - you can File / New / Run / Register / Login, and everything works. It supports standard username / password as well as external authentication (OAuth, etc.). It's easy to customize without having to re-implement an entire provider. It's built using pluggable pieces, rather than one large monolithic system. It's built using interfaces like IUser and IRole that allow for unit testing, dependency injection, etc. You can easily add user profile data (e.g. URL, twitter handle, birthday). You just add properties to your ApplicationUser model and they'll automatically be persisted. Complete control over how the identity data is persisted. By default, everything works with Entity Framework Code First, but it's built to support changes from small (modify the schema) to big (use another ORM, store your data in a document database or in the cloud or in XML or in the EXIF data of your desktop background or whatever). It's configured via OWIN. More on OWIN and Katana later, but the fact that it's built using OWIN means it's portable. You can find out more in the Authentication and Identity section of the ASP.NET site (and lots more content will be going up there soon). New Bootstrap based project templates The new project templates are built using Bootstrap 3. Bootstrap (formerly Twitter Bootstrap) is a front-end framework that brings a lot of nice benefits: It's responsive, so your projects will automatically scale to device width using CSS media queries. For example, menus are full size on a desktop browser, but on narrower screens you automatically get a mobile-friendly menu. The built-in Bootstrap styles make your standard page elements (headers, footers, buttons, form inputs, tables etc.) look nice and modern. Bootstrap is themeable, so you can reskin your whole site by dropping in a new Bootstrap theme. Since Bootstrap is pretty popular across the web development community, this gives you a large and rapidly growing variety of templates (free and paid) to choose from. Bootstrap also includes a lot of very useful things: components (like progress bars and badges), useful glyphicons, and some jQuery plugins for tooltips, dropdowns, carousels, etc.). Here's a look at how the responsive part works. When the page is full screen, the menu and header are optimized for a wide screen display: When I shrink the page down (this is all based on page width, not useragent sniffing) the menu turns into a nice mobile-friendly dropdown: For a quick example, I grabbed a new free theme off bootswatch.com. For simple themes, you just need to download the boostrap.css file and replace the /content/bootstrap.css file in your project. Now when I refresh the page, I've got a new theme: Scaffolding The big change in scaffolding is that it's one system that works across ASP.NET. You can create a new Empty Web project or Web Forms project and you'll get the Scaffold context menus. For release, we've got MVC 5 and Web API 2 controllers. We had a preview of Web Forms scaffolding in the preview releases, but they weren't fully baked for RTM. Look for them in a future update, expected pretty soon. This scaffolding system wasn't just changed to work across the ASP.NET frameworks, it's also built to enable future extensibility. That's not in this release, but should also hopefully be out soon. Project Readme page This is a small thing, but I really like it. When you create a new project, you get a Project_Readme.html page that's added to the root of your project and opens in the Visual Studio built-in browser. I love it. A long time ago, when you created a new project we just dumped it on you and left you scratching your head about what to do next. Not ideal. Then we started adding a bunch of Getting Started information to the new project templates. That told you what to do next, but you had to delete all of that stuff out of your website. It doesn't belong there. Not ideal. This is a simple HTML file that's not integrated into your project code at all. You can delete it if you want. But, it shows a lot of helpful links that are current for the project you just created. In the future, if we add new wacky project types, they can create readme docs with specific information on how to do appropriately wacky things. Side note: I really like that they used the internal browser in Visual Studio to show this content rather than popping open an HTML page in the default browser. I hate that. It's annoying. If you're doing that, I hope you'll stop. What if some unnamed person has 40 or 90 tabs saved in their browser session? When you pop open your "Thanks for installing my Visual Studio extension!" page, all eleventy billion tabs start up and I wish I'd never installed your thing. Be like these guys and pop stuff Visual Studio specific HTML docs in the Visual Studio browser. ASP.NET MVC 5 The biggest change with ASP.NET MVC 5 is that it's no longer a separate project type. It integrates well with the rest of ASP.NET. In addition to that and the other common features we've already looked at (Bootstrap templates, Identity, authentication), here's what's new for ASP.NET MVC. Attribute routing ASP.NET MVC now supports attribute routing, thanks to a contribution by Tim McCall, the author of http://attributerouting.net. With attribute routing you can specify your routes by annotating your actions and controllers. This supports some pretty complex, customized routing scenarios, and it allows you to keep your route information right with your controller actions if you'd like. Here's a controller that includes an action whose method name is Hiding, but I've used AttributeRouting to configure it to /spaghetti/with-nesting/where-is-waldo public class SampleController : Controller { [Route("spaghetti/with-nesting/where-is-waldo")] public string Hiding() { return "You found me!"; } } I enable that in my RouteConfig.cs, and I can use that in conjunction with my other MVC routes like this: public class RouteConfig { public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapMvcAttributeRoutes(); routes.MapRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); } } You can read more about Attribute Routing in ASP.NET MVC 5 here. Filter enhancements There are two new additions to filters: Authentication Filters and Filter Overrides. Authentication filters are a new kind of filter in ASP.NET MVC that run prior to authorization filters in the ASP.NET MVC pipeline and allow you to specify authentication logic per-action, per-controller, or globally for all controllers. Authentication filters process credentials in the request and provide a corresponding principal. Authentication filters can also add authentication challenges in response to unauthorized requests. Override filters let you change which filters apply to a given action method or controller. Override filters specify a set of filter types that should not be run for a given scope (action or controller). This allows you to configure filters that apply globally but then exclude certain global filters from applying to specific actions or controllers. ASP.NET Web API 2 ASP.NET Web API 2 includes a lot of new features. Attribute Routing ASP.NET Web API supports the same attribute routing system that's in ASP.NET MVC 5. You can read more about the Attribute Routing features in Web API in this article. OAuth 2.0 ASP.NET Web API picks up OAuth 2.0 support, using security middleware running on OWIN (discussed below). This is great for features like authenticated Single Page Applications. OData Improvements ASP.NET Web API now has full OData support. That required adding in some of the most powerful operators: $select, $expand, $batch and $value. You can read more about OData operator support in this article by Mike Wasson. Lots more There's a huge list of other features, including CORS (cross-origin request sharing), IHttpActionResult, IHttpRequestContext, and more. I think the best overview is in the release notes. OWIN and Katana I've written about OWIN and Katana recently. I'm a big fan. OWIN is the Open Web Interfaces for .NET. It's a spec, like HTML or HTTP, so you can't install OWIN. The benefit of OWIN is that it's a community specification, so anyone who implements it can plug into the ASP.NET stack, either as middleware or as a host. Katana is the Microsoft implementation of OWIN. It leverages OWIN to wire up things like authentication, handlers, modules, IIS hosting, etc., so ASP.NET can host OWIN components and Katana components can run in someone else's OWIN implementation. Howard Dierking just wrote a cool article in MSDN magazine describing Katana in depth: Getting Started with the Katana Project. He had an interesting example showing an OWIN based pipeline which leveraged SignalR, ASP.NET Web API and NancyFx components in the same stack. If this kind of thing makes sense to you, that's great. If it doesn't, don't worry, but keep an eye on it. You're going to see some cool things happen as a result of ASP.NET becoming more and more pluggable. Visual Studio Web Tools Okay, this stuff's just crazy. Visual Studio has been adding some nice web dev features over the past few years, but they've really cranked it up for this release. Visual Studio is by far my favorite code editor for all web files: CSS, HTML, JavaScript, and lots of popular libraries. Stop thinking of Visual Studio as a big editor that you only use to write back-end code. Stop editing HTML and CSS in Notepad (or Sublime, Notepad++, etc.). Visual Studio starts up in under 2 seconds on a modern computer with an SSD. Misspelling HTML attributes or your CSS classes or jQuery or Angular syntax is stupid. It doesn't make you a better developer, it makes you a silly person who wastes time. Browser Link Browser Link is a real-time, two-way connection between Visual Studio and all connected browsers. It's only attached when you're running locally, in debug, but it applies to any and all connected browser, including emulators. You may have seen demos that showed the browsers refreshing based on changes in the editor, and I'll agree that's pretty cool. But it's really just the start. It's a two-way connection, and it's built for extensiblity. That means you can write extensions that push information from your running application (in IE, Chrome, a mobile emulator, etc.) back to Visual Studio. Mads and team have showed off some demonstrations where they enabled edit mode in the browser which updated the source HTML back on the browser. It's also possible to look at how the rendered HTML performs, check for compatibility issues, watch for unused CSS classes, the sky's the limit. New HTML editor The previous HTML editor had a lot of old code that didn't allow for improvements. The team rewrote the HTML editor to take advantage of the new(ish) extensibility features in Visual Studio, which then allowed them to add in all kinds of features - things like CSS Class and ID IntelliSense (so you type style="" and get a list of classes and ID's for your project), smart indent based on how your document is formatted, JavaScript reference auto-sync, etc. Here's a 3 minute tour from Mads Kristensen. The previous HTML editor had a lot of old code that didn't allow for improvements. The team rewrote the HTML editor to take advantage of the new(ish) extensibility features in Visual Studio, which then allowed them to add in all kinds of features - things like CSS Class and ID IntelliSense (so you type style="" and get a list of classes and ID's for your project), smart indent based on how your document is formatted, JavaScript reference auto-sync, etc. Lots more Visual Studio web dev features That's just a sampling - there's a ton of great features for JavaScript editing, CSS editing, publishing, and Page Inspector (which shows real-time rendering of your page inside Visual Studio). Here are some more short videos showing those features. Lots, lots more Okay, that's just a summary, and it's still quite a bit. Head on over to http://asp.net/vnext for more information, and download Visual Studio 2013 now to get started!

    Read the article

  • Rendering ASP.NET MVC Views to String

    - by Rick Strahl
    It's not uncommon in my applications that I require longish text output that does not have to be rendered into the HTTP output stream. The most common scenario I have for 'template driven' non-Web text is for emails of all sorts. Logon confirmations and verifications, email confirmations for things like orders, status updates or scheduler notifications - all of which require merged text output both within and sometimes outside of Web applications. On other occasions I also need to capture the output from certain views for logging purposes. Rather than creating text output in code, it's much nicer to use the rendering mechanism that ASP.NET MVC already provides by way of it's ViewEngines - using Razor or WebForms views - to render output to a string. This is nice because it uses the same familiar rendering mechanism that I already use for my HTTP output and it also solves the problem of where to store the templates for rendering this content in nothing more than perhaps a separate view folder. The good news is that ASP.NET MVC's rendering engine is much more modular than the full ASP.NET runtime engine which was a real pain in the butt to coerce into rendering output to string. With MVC the rendering engine has been separated out from core ASP.NET runtime, so it's actually a lot easier to get View output into a string. Getting View Output from within an MVC Application If you need to generate string output from an MVC and pass some model data to it, the process to capture this output is fairly straight forward and involves only a handful of lines of code. The catch is that this particular approach requires that you have an active ControllerContext that can be passed to the view. This means that the following approach is limited to access from within Controller methods. Here's a class that wraps the process and provides both instance and static methods to handle the rendering:/// <summary> /// Class that renders MVC views to a string using the /// standard MVC View Engine to render the view. /// /// Note: This class can only be used within MVC /// applications that have an active ControllerContext. /// </summary> public class ViewRenderer { /// <summary> /// Required Controller Context /// </summary> protected ControllerContext Context { get; set; } public ViewRenderer(ControllerContext controllerContext) { Context = controllerContext; } /// <summary> /// Renders a full MVC view to a string. Will render with the full MVC /// View engine including running _ViewStart and merging into _Layout /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to render the view with</param> /// <returns>String of the rendered view or null on error</returns> public string RenderView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, false); } /// <summary> /// Renders a partial MVC view to string. Use this method to render /// a partial view that doesn't merge with _Layout and doesn't fire /// _ViewStart. /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to pass to the viewRenderer</param> /// <returns>String of the rendered view or null on error</returns> public string RenderPartialView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, true); } public static string RenderView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderView(viewPath, model); } public static string RenderPartialView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderPartialView(viewPath, model); } protected string RenderViewToStringInternal(string viewPath, object model, bool partial = false) { // first find the ViewEngine for this view ViewEngineResult viewEngineResult = null; if (partial) viewEngineResult = ViewEngines.Engines.FindPartialView(Context, viewPath); else viewEngineResult = ViewEngines.Engines.FindView(Context, viewPath, null); if (viewEngineResult == null) throw new FileNotFoundException(Properties.Resources.ViewCouldNotBeFound); // get the view and attach the model to view data var view = viewEngineResult.View; Context.Controller.ViewData.Model = model; string result = null; using (var sw = new StringWriter()) { var ctx = new ViewContext(Context, view, Context.Controller.ViewData, Context.Controller.TempData, sw); view.Render(ctx, sw); result = sw.ToString(); } return result; } } The key is the RenderViewToStringInternal method. The method first tries to find the view to render based on its path which can either be in the current controller's view path or the shared view path using its simple name (PasswordRecovery) or alternately by its full virtual path (~/Views/Templates/PasswordRecovery.cshtml). This code should work both for Razor and WebForms views although I've only tried it with Razor Views. Note that WebForms Views might actually be better for plain text as Razor adds all sorts of white space into its output when there are code blocks in the template. The Web Forms engine provides more accurate rendering for raw text scenarios. Once a view engine is found the view to render can be retrieved. Views in MVC render based on data that comes off the controller like the ViewData which contains the model along with the actual ViewData and ViewBag. From the View and some of the Context data a ViewContext is created which is then used to render the view with. The View picks up the Model and other data from the ViewContext internally and processes the View the same it would be processed if it were to send its output into the HTTP output stream. The difference is that we can override the ViewContext's output stream which we provide and capture into a StringWriter(). After rendering completes the result holds the output string. If an error occurs the error behavior is similar what you see with regular MVC errors - you get a full yellow screen of death including the view error information with the line of error highlighted. It's your responsibility to handle the error - or let it bubble up to your regular Controller Error filter if you have one. To use the simple class you only need a single line of code if you call the static methods. Here's an example of some Controller code that is used to send a user notification to a customer via email in one of my applications:[HttpPost] public ActionResult ContactSeller(ContactSellerViewModel model) { InitializeViewModel(model); var entryBus = new busEntry(); var entry = entryBus.LoadByDisplayId(model.EntryId); if ( string.IsNullOrEmpty(model.Email) ) entryBus.ValidationErrors.Add("Email address can't be empty.","Email"); if ( string.IsNullOrEmpty(model.Message)) entryBus.ValidationErrors.Add("Message can't be empty.","Message"); model.EntryId = entry.DisplayId; model.EntryTitle = entry.Title; if (entryBus.ValidationErrors.Count > 0) { ErrorDisplay.AddMessages(entryBus.ValidationErrors); ErrorDisplay.ShowError("Please correct the following:"); } else { string message = ViewRenderer.RenderView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); string title = entry.Title + " (" + entry.DisplayId + ") - " + App.Configuration.ApplicationName; AppUtils.SendEmail(title, message, model.Email, entry.User.Email, false, false)) } return View(model); } Simple! The view in this case is just a plain MVC view and in this case it's a very simple plain text email message (edited for brevity here) that is created and sent off:@model ContactSellerViewModel @{ Layout = null; }re: @Model.EntryTitle @Model.ListingUrl @Model.Message ** SECURITY ADVISORY - AVOID SCAMS ** Avoid: wiring money, cross-border deals, work-at-home ** Beware: cashier checks, money orders, escrow, shipping ** More Info: @(App.Configuration.ApplicationBaseUrl)scams.html Obviously this is a very simple view (I edited out more from this page to keep it brief) -  but other template views are much more complex HTML documents or long messages that are occasionally updated and they are a perfect fit for Razor rendering. It even works with nested partial views and _layout pages. Partial Rendering Notice that I'm rendering a full View here. In the view I explicitly set the Layout=null to avoid pulling in _layout.cshtml for this view. This can also be controlled externally by calling the RenderPartial method instead: string message = ViewRenderer.RenderPartialView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); with this line of code no layout page (or _viewstart) will be loaded, so the output generated is just what's in the view. I find myself using Partials most of the time when rendering templates, since the target of templates usually tend to be emails or other HTML fragment like output, so the RenderPartialView() method is definitely useful to me. Rendering without a ControllerContext The preceding class is great when you're need template rendering from within MVC controller actions or anywhere where you have access to the request Controller. But if you don't have a controller context handy - maybe inside a utility function that is static, a non-Web application, or an operation that runs asynchronously in ASP.NET - which makes using the above code impossible. I haven't found a way to manually create a Controller context to provide the ViewContext() what it needs from outside of the MVC infrastructure. However, there are ways to accomplish this,  but they are a bit more complex. It's possible to host the RazorEngine on your own, which side steps all of the MVC framework and HTTP and just deals with the raw rendering engine. I wrote about this process in Hosting the Razor Engine in Non-Web Applications a long while back. It's quite a process to create a custom Razor engine and runtime, but it allows for all sorts of flexibility. There's also a RazorEngine CodePlex project that does something similar. I've been meaning to check out the latter but haven't gotten around to it since I have my own code to do this. The trick to hosting the RazorEngine to have it behave properly inside of an ASP.NET application and properly cache content so templates aren't constantly rebuild and reparsed. Anyway, in the same app as above I have one scenario where no ControllerContext is available: I have a background scheduler running inside of the app that fires on timed intervals. This process could be external but because it's lightweight we decided to fire it right inside of the ASP.NET app on a separate thread. In my app the code that renders these templates does something like this:var model = new SearchNotificationViewModel() { Entries = entries, Notification = notification, User = user }; // TODO: Need logging for errors sending string razorError = null; var result = AppUtils.RenderRazorTemplate("~/views/template/SearchNotificationTemplate.cshtml", model, razorError); which references a couple of helper functions that set up my RazorFolderHostContainer class:public static string RenderRazorTemplate(string virtualPath, object model,string errorMessage = null) { var razor = AppUtils.CreateRazorHost(); var path = virtualPath.Replace("~/", "").Replace("~", "").Replace("/", "\\"); var merged = razor.RenderTemplateToString(path, model); if (merged == null) errorMessage = razor.ErrorMessage; return merged; } /// <summary> /// Creates a RazorStringHostContainer and starts it /// Call .Stop() when you're done with it. /// /// This is a static instance /// </summary> /// <param name="virtualPath"></param> /// <param name="binBasePath"></param> /// <param name="forceLoad"></param> /// <returns></returns> public static RazorFolderHostContainer CreateRazorHost(string binBasePath = null, bool forceLoad = false) { if (binBasePath == null) { if (HttpContext.Current != null) binBasePath = HttpContext.Current.Server.MapPath("~/"); else binBasePath = AppDomain.CurrentDomain.BaseDirectory; } if (_RazorHost == null || forceLoad) { if (!binBasePath.EndsWith("\\")) binBasePath += "\\"; //var razor = new RazorStringHostContainer(); var razor = new RazorFolderHostContainer(); razor.TemplatePath = binBasePath; binBasePath += "bin\\"; razor.BaseBinaryFolder = binBasePath; razor.UseAppDomain = false; razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsBusiness.dll"); razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsWeb.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Utilities.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.Mvc.dll"); razor.ReferencedAssemblies.Add("System.Web.dll"); razor.ReferencedNamespaces.Add("System.Web"); razor.ReferencedNamespaces.Add("ClassifiedsBusiness"); razor.ReferencedNamespaces.Add("ClassifiedsWeb"); razor.ReferencedNamespaces.Add("Westwind.Web"); razor.ReferencedNamespaces.Add("Westwind.Utilities"); _RazorHost = razor; _RazorHost.Start(); //_RazorHost.Engine.Configuration.CompileToMemory = false; } return _RazorHost; } The RazorFolderHostContainer essentially is a full runtime that mimics a folder structure like a typical Web app does including caching semantics and compiling code only if code changes on disk. It maps a folder hierarchy to views using the ~/ path syntax. The host is then configured to add assemblies and namespaces. Unfortunately the engine is not exactly like MVC's Razor - the expression expansion and code execution are the same, but some of the support methods like sections, helpers etc. are not all there so templates have to be a bit simpler. There are other folder hosts provided as well to directly execute templates from strings (using RazorStringHostContainer). The following is an example of an HTML email template @inherits RazorHosting.RazorTemplateFolderHost <ClassifiedsWeb.SearchNotificationViewModel> <html> <head> <title>Search Notifications</title> <style> body { margin: 5px;font-family: Verdana, Arial; font-size: 10pt;} h3 { color: SteelBlue; } .entry-item { border-bottom: 1px solid grey; padding: 8px; margin-bottom: 5px; } </style> </head> <body> Hello @Model.User.Name,<br /> <p>Below are your Search Results for the search phrase:</p> <h3>@Model.Notification.SearchPhrase</h3> <small>since @TimeUtils.ShortDateString(Model.Notification.LastSearch)</small> <hr /> You can see that the syntax is a little different. Instead of the familiar @model header the raw Razor  @inherits tag is used to specify the template base class (which you can extend). I took a quick look through the feature set of RazorEngine on CodePlex (now Github I guess) and the template implementation they use is closer to MVC's razor but there are other differences. In the end don't expect exact behavior like MVC templates if you use an external Razor rendering engine. This is not what I would consider an ideal solution, but it works well enough for this project. My biggest concern is the overhead of hosting a second razor engine in a Web app and the fact that here the differences in template rendering between 'real' MVC Razor views and another RazorEngine really are noticeable. You win some, you lose some It's extremely nice to see that if you have a ControllerContext handy (which probably addresses 99% of Web app scenarios) rendering a view to string using the native MVC Razor engine is pretty simple. Kudos on making that happen - as it solves a problem I see in just about every Web application I work on. But it is a bummer that a ControllerContext is required to make this simple code work. It'd be really sweet if there was a way to render views without being so closely coupled to the ASP.NET or MVC infrastructure that requires a ControllerContext. Alternately it'd be nice to have a way for an MVC based application to create a minimal ControllerContext from scratch - maybe somebody's been down that path. I tried for a few hours to come up with a way to make that work but gave up in the soup of nested contexts (MVC/Controller/View/Http). I suspect going down this path would be similar to hosting the ASP.NET runtime requiring a WorkerRequest. Brrr…. The sad part is that it seems to me that a View should really not require much 'context' of any kind to render output to string. Yes there are a few things that clearly are required like paths to the virtual and possibly the disk paths to the root of the app, but beyond that view rendering should not require much. But, no such luck. For now custom RazorHosting seems to be the only way to make Razor rendering go outside of the MVC context… Resources Full ViewRenderer.cs source code from Westwind.Web.Mvc library Hosting the Razor Engine for Non-Web Applications RazorEngine on GitHub© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET   ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Dynamic connection for LINQ to SQL DataContext

    - by Steve Clements
    If for some reason you need to specify a specific connection string for a DataContext, you can of course pass the connection string when you initialise you DataContext object.  A common scenario could be a dev/test/stage/live connection string, but in my case its for either a live or archive database.   I however want the connection string to be handled by the DataContext, there are probably lots of different reasons someone would want to do this…but here are mine. I want the same connection string for all instances of DataContext, but I don’t know what it is yet! I prefer the clean code and ease of not using a constructor parameter. The refactoring of using a constructor parameter could be a nightmare.   So my approach is to create a new partial class for the DataContext and handle empty constructor in there. First from within the LINQ to SQL designer I changed the connection property to None.  This will remove the empty constructor code from the auto generated designer.cs file. Right click on the .dbml file, click View Code and a file and class is created for you! You’ll see the new class created in solutions explorer and the file will open. We are going to be playing with constructors so you need to add the inheritance from System.Data.Linq.DataContext public partial class DataClasses1DataContext : System.Data.Linq.DataContext    {    }   Add the empty constructor and I have added a property that will get my connection string, you will have whatever logic you need to decide and get the connection string you require.  In my case I will be hitting a database, but I have omitted that code. public partial class DataClasses1DataContext : System.Data.Linq.DataContext {    // Connection String Keys - stored in web.config    static string LiveConnectionStringKey = "LiveConnectionString";    static string ArchiveConnectionStringKey = "ArchiveConnectionString";      protected static string ConnectionString    {       get       {          if (DoIWantToUseTheLiveConnection) {             return global::System.Configuration.ConfigurationManager.ConnectionStrings[LiveConnectionStringKey].ConnectionString;          }          else {             return global::System.Configuration.ConfigurationManager.ConnectionStrings[ArchiveConnectionStringKey].ConnectionString;          }       }    }      public DataClasses1DataContext() :       base(ConnectionString, mappingSource)    {       OnCreated();    } }   Now when I new up my DataContext, I can just leave the constructor empty and my partial class will decide which one i need to use. Nice, clean code that can be easily refractored and tested.   Share this post :

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • ARM TechCon 2013: Oracle, ARM expand collaboration on servers, Internet of Things

    - by Henrik Stahl
    If you have been following Java news, you are already aware of the fact that there has been a lot of investment in Java for ARM-based devices and servers over the last couple of years (news, more news, even more, and lots more). We have released Java ME Embedded binaries for ARM Cortex-M micro controllers, Java SE Embedded for ARM application processors, and a port of the Oracle JDK for ARM-based servers. We have been making Java available to the Beagleboard, Raspberry Pi and Lego Mindstorms/LeJOS communities and worked with them and the Java User Groups to evangelize Java as a great development environment for IoT devices. We have announced commercial relationships with Freescale, Qualcomm, Gemalto M2M, SIMCom to name a few. ARM and Freescale on their side have joined the JCP, recently been voted in as members of the Executive Committee, and have worked with Oracle to evangelize Java in their ecosystem. It is with this background, Nandini Ramani, Vice President, Java Platform at Oracle, announced a expanded collaboration with ARM in a TechCon 2013 keynote titled "Enabling Compelling Services for IoT". To summarize the announcement: ARM and Oracle will work together on interoperability between the ARM Sensinode communications stack (based on CoAP, DTLS and 6LoWPAN) and Oracle's Java ME, Java SE and middleware products. ARM will donate the Sensinode CoAP protocol engine to OpenJDK to stimulate broad adoption of the CoAP protocol, and work with Oracle to extend the relevant Java specifications with CoAP support. CoAP (Constrained Application Protocol) is an IETF specification that provides a low-bandwidth request/response protocol suitable for IoT applications. ARM will work with Oracle and Freescale to enable the mbed Hardware Abstraction Layer (HAL) to act as a portability layer for Java ME Embedded. Oracle will enable mbed as a tier one platform for Java ME Embedded. Over time, this effort will allow any mbed-enabled platforms (mostly based on Cortex-M microcontrollers) to work with off the shelf Java ME Embedded binaries, extending the reach of Java ME into IoT edge nodes. In Nandini's keynote, Oracle showed a roadmap to port the Oracle JDK for Linux on 64-bit ARMv8 servers in the 2015 time frame, preceded by an extended early access program. We expect this binary to have full feature parity with Oracle JDK on other platforms, and be available under the same royalty-free license. This effort has been going on for some time, but is now accelerated due to availability of hardware from Applied Micro. Oracle will be working with Applied Micro on the ARMv8 port, and on optimizing Java for their X-Gene products. Oracle and ARM will work closely on IoT architecture, and on evangelizing Java on ARM for both servers and IoT devices. These announcements reinforce Java's position as a first-class citizen in the ARM ecosystem, and signal a commitment from us to collaborate on driving standards and open ecosystem for the Internet of Things. If you are active in this area and not already in touch with us, or interested in learning more - please reach out to us!

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

< Previous Page | 734 735 736 737 738 739 740 741 742 743 744 745  | Next Page >