Search Results

Search found 2025 results on 81 pages for 'hough transform'.

Page 74/81 | < Previous Page | 70 71 72 73 74 75 76 77 78 79 80 81  | Next Page >

  • 14+ WordPress Portfolio Themes

    - by Edward
    There are various portfolio themes for WordPress out there, with this collection we are trying to help you choose the best one. These themes can be used to create any type of personal, photography, art or corporate portfolio. Display 3 in 1 Display 3 in 1 – Business & Portfolio WordPress Theme. Features a fantastic 3D Image slideshow that can be controlled from your backend with a custom tool. The Theme has a huge wordpress custom backend (8 additional Admin Pages) that make customization of the Theme easy for those who dont know much about coding or wordpress. Price: $40 View Demo Download DeepFocus Tempting features such as automatic separation of blog and portfolio content by template, publishing of most important information on homepage, styles to choose from and many more such features. It also provides for page templates for blog, portfolio, blog archive, tags etc. It has the best feature that helps you to manage everything from one place. Price: $39 (Package includes more than 55 themes) View Demo Download SimplePress Simple, yet awesome. One of the best portfolio theme. Price: $39 (Package includes more than 55 themes) View Demo Download Graphix Graphix is one of best word press portfolio themes. It is most suited to aspiring designers, developers, artists and photographers who’d like a framework theme, which has a great-looking portfolio with a feature-rich blog. It has theme option page, 5-color style, SEO option, featured content blocks, drop down multi-level menu, social profile link custom widgets, custom post, custom page template etc. Price: $69 Single & $149 Developer Package View Demo Download Bizznizz It boasts of many features such as custom homepage, custom post types, custom widgets, portfolio templates, alternative styles and many more. View Demo Download Showtime Ultimate WordPress Theme for you to create your web portfolio, It has 3 different styles for you to choose from. Price: $40 View Demo Download Montana WP Horizontal Portfolio Theme Montana Theme – WP Horizontal Portfolio Theme, best suited for creative studios to showcase design, photography, illustration, paintings and art. Price: $30 View Demo Download OverALL OverALL Premium WordPress Blog & Portfolio Theme, is low priced & has amazing tons of features. Price: $17 View Demo Download Habitat Habitat – Blog and Portfolio Theme. Unique Portfolio Sorting/Filtering with a custom jQuery script (each entry supports multiple images or a video) Multiple Featured Images for each post to generate individual Slideshows per Post, or the option to directly embed video content from youtube, vimeo, hulu etc. Price: $35 View Demo Download Fresh Folio Fresh Folio from WooThemes, can be used as both portfolio and a premium WordPress theme. The theme is a remix of the Fresh News Theme and Proud Folio Theme which combines all the best elements of the respective blog and portfolio style themes. View Demo Download Fresh Folio Features: Can be used to create an impressive portfolio. 7 diverse theme styles to choose from (default, blue, red, grunge light, grunge floral, antique, blue creamer, nightlife) The template will automatically (visually) separate your blog & portfolio content, making this an amazing theme for aspiring designers, developers, artists, photographers etc. Unique page templates types for the portfolio, blog, blog archives, tags & search results. Integrated Theme Options (for WordPress) to tweak the layout, colour scheme etc. for the theme Optional Automatic Image Resize, which is used to dynamically create the thumbnails and featured images Includes Widget enabled Sidebars. eGallery eGallery is a theme made to transform your wordpress blog into a fully functional online portfolio. Theme is perfectly designed to emphasize the artwork you choose to showcase. The design has been greatly enhanced using javascript, and is easy to implement. Price: $39 (Package includes more than 55 themes) View Demo Download ProudFolio ProudFolio is a portfolio premium WordPress theme from Woo Themes. The theme is for designers, developers, artists and photographers who would like a showcase theme which would depict as a portfolio and also serves a purpose of blog. ProudFolio puts a strong emphasis on the portfolio pieces, allowing for decent-sized thumbnails, huge fullscreen views via Lightbox, and full details on the single page. The theme file also contains a choice of three different background images and color schemes. Price: $70 Single $150 Developer License View Demo Download Features: The template will automatically (visually) separate your blog & portfolio content. An unique homepage layout, which publishes only the most important information; Unique page templates for the portfolio, blog, blog archives, tags & search results. Integrated Theme Options (for WordPress) to tweak the layout, colour scheme etc. for the theme; Built-in video panel, which you can use to publish any web-based Flash videos; Automatic Image Resize, which is used to dynamically create the thumbnails and featured images; Custom Page Templates for Archives, Sitemap & Image Gallery; Built-in Gravatar Support for Authors & Comments; Integrated Banner Management script to display randomized banner ads of your choice site-wide; Pretty drop down navigation everywhere; and Widget Enabled Sidebars. Porftolio WordPress Theme A FREE wordpress theme designed for web portfolios and (for now) just for web portfolios. It is coming with an Administrative Panel from where you can edit the head quote text, you can edit all theme colors, font families, font sizes and you can fill a curriculum vitae and display it into a special page. Theme demo and download can be found here Viz | Biz Viz | Biz is a premium WordPress photo gallery and portfolio theme designed specifically for photographers, graphic designers and web designers who want to display their creative work online, market their services, as well as have a typical text blog, using the power and flexibility of WordPress. It is priced for $79.95. Theme Features: Premium quality portfolio template Custom logo uploader to replace the standard graphic with your own unique look from the WP Dashboard Integrated blog component (front images are custom fields and thumbnails, but you can also have a typical blog) Four tabbed feature areas (About Me, Services, Recent Posts, and Tags) Two home page feature photos (You choose which photos to feature using a WP category) Manage your online portfolio through the WordPress CMS Crop two sizes of your work: One for the front page thumbnails and another full size version and upload to WP Search engine optimized. Related posts:14 WordPress Photo Blog & Portfolio Themes 6 PhotoBlog Portfolio WordPress Themes Professional WordPress Business Themes

    Read the article

  • Big Data Matters with ODI12c

    - by Madhu Nair
    contributed by Mike Eisterer On October 17th, 2013, Oracle announced the release of Oracle Data Integrator 12c (ODI12c).  This release signifies improvements to Oracle’s Data Integration portfolio of solutions, particularly Big Data integration. Why Big Data = Big Business Organizations are gaining greater insights and actionability through increased storage, processing and analytical benefits offered by Big Data solutions.  New technologies and frameworks like HDFS, NoSQL, Hive and MapReduce support these benefits now. As further data is collected, analytical requirements increase and the complexity of managing transformations and aggregations of data compounds and organizations are in need for scalable Data Integration solutions. ODI12c provides enterprise solutions for the movement, translation and transformation of information and data heterogeneously and in Big Data Environments through: The ability for existing ODI and SQL developers to leverage new Big Data technologies. A metadata focused approach for cataloging, defining and reusing Big Data technologies, mappings and process executions. Integration between many heterogeneous environments and technologies such as HDFS and Hive. Generation of Hive Query Language. Working with Big Data using Knowledge Modules  ODI12c provides developers with the ability to define sources and targets and visually develop mappings to effect the movement and transformation of data.  As the mappings are created, ODI12c leverages a rich library of prebuilt integrations, known as Knowledge Modules (KMs).  These KMs are contextual to the technologies and platforms to be integrated.  Steps and actions needed to manage the data integration are pre-built and configured within the KMs.  The Oracle Data Integrator Application Adapter for Hadoop provides a series of KMs, specifically designed to integrate with Big Data Technologies.  The Big Data KMs include: Check Knowledge Module Reverse Engineer Knowledge Module Hive Transform Knowledge Module Hive Control Append Knowledge Module File to Hive (LOAD DATA) Knowledge Module File-Hive to Oracle (OLH-OSCH) Knowledge Module  Nothing to beat an Example: To demonstrate the use of the KMs which are part of the ODI Application Adapter for Hadoop, a mapping may be defined to move data between files and Hive targets.  The mapping is defined by dragging the source and target into the mapping, performing the attribute (column) mapping (see Figure 1) and then selecting the KM which will govern the process.  In this mapping example, movie data is being moved from an HDFS source into a Hive table.  Some of the attributes, such as “CUSTID to custid”, have been mapped over. Figure 1  Defining the Mapping Before the proper KM can be assigned to define the technology for the mapping, it needs to be added to the ODI project.  The Big Data KMs have been made available to the project through the KM import process.   Generally, this is done prior to defining the mapping. Figure 2  Importing the Big Data Knowledge Modules Following the import, the KMs are available in the Designer Navigator. v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-US ZH-TW X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Figure 3  The Project View in Designer, Showing Installed IKMs Once the KM is imported, it may be assigned to the mapping target.  This is done by selecting the Physical View of the mapping and examining the Properties of the Target.  In this case MOVIAPP_LOG_STAGE is the target of our mapping. Figure 4  Physical View of the Mapping and Assigning the Big Data Knowledge Module to the Target Alternative KMs may have been selected as well, providing flexibility and abstracting the logical mapping from the physical implementation.  Our mapping may be applied to other technologies as well. The mapping is now complete and is ready to run.  We will see more in a future blog about running a mapping to load Hive. To complete the quick ODI for Big Data Overview, let us take a closer look at what the IKM File to Hive is doing for us.  ODI provides differentiated capabilities by defining the process and steps which normally would have to be manually developed, tested and implemented into the KM.  As shown in figure 5, the KM is preparing the Hive session, managing the Hive tables, performing the initial load from HDFS and then performing the insert into Hive.  HDFS and Hive options are selected graphically, as shown in the properties in Figure 4. Figure 5  Process and Steps Managed by the KM What’s Next Big Data being the shape shifting business challenge it is is fast evolving into the deciding factor between market leaders and others. Now that an introduction to ODI and Big Data has been provided, look for additional blogs coming soon using the Knowledge Modules which make up the Oracle Data Integrator Application Adapter for Hadoop: Importing Big Data Metadata into ODI, Testing Data Stores and Loading Hive Targets Generating Transformations using Hive Query language Loading Oracle from Hadoop Sources For more information now, please visit the Oracle Data Integrator Application Adapter for Hadoop web site, http://www.oracle.com/us/products/middleware/data-integration/hadoop/overview/index.html Do not forget to tune in to the ODI12c Executive Launch webcast on the 12th to hear more about ODI12c and GG12c. Normal 0 false false false EN-US ZH-TW X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";}

    Read the article

  • SQL SERVER – Using expressor Composite Types to Enforce Business Rules

    - by pinaldave
    One of the features that distinguish the expressor Data Integration Platform from other products in the data integration space is its concept of composite types, which provide an effective and easily reusable way to clearly define the structure and characteristics of data within your application.  An important feature of the composite type approach is that it allows you to easily adjust the content of a record to its ultimate purpose.  For example, a record used to update a row in a database table is easily defined to include only the minimum set of columns, that is, a value for the key column and values for only those columns that need to be updated. Much like a class in higher level programming languages, you can also use the composite type as a way to enforce business rules onto your data by encapsulating a datum’s name, data type, and constraints (for example, maximum, minimum, or acceptable values) as a single entity, which ensures that your data can not assume an invalid value.  To what extent you use this functionality is a decision you make when designing your application; the expressor design paradigm does not force this approach on you. Let’s take a look at how these features are used.  Suppose you want to create a group of applications that maintain the employee table in your human resources database. Your table might have a structure similar to the HumanResources.Employee table in the AdventureWorks database.  This table includes two columns, EmployeID and rowguid, that are maintained by the relational database management system; you cannot provide values for these columns when inserting new rows into the table. Additionally, there are columns such as VacationHours and SickLeaveHours that you might choose to update for all employees on a monthly basis, which justifies creation of a dedicated application. By creating distinct composite types for the read, insert and update operations against this table, you can more easily manage this table’s content. When developing this application within expressor Studio, your first task is to create a schema artifact for the database table.  This process is completely driven by a wizard, only requiring that you select the desired database schema and table.  The resulting schema artifact defines the mapping of result set records to a record within the expressor data integration application.  The structure of the record within the expressor application is a composite type that is given the default name CompositeType1.  As you can see in the following figure, all columns from the table are included in the result set and mapped to an identically named attribute in the default composite type. If you are developing an application that needs to read this table, perhaps to prepare a year-end report of employees by department, you would probably not be interested in the data in the rowguid and ModifiedDate columns.  A typical approach would be to drop this unwanted data in a downstream operator.  But using an alternative composite type provides a better approach in which the unwanted data never enters your application. While working in expressor  Studio’s schema editor, simply create a second composite type within the same schema artifact, which you could name ReadTable, and remove the attributes corresponding to the unwanted columns. The value of an alternative composite type is even more apparent when you want to insert into or update the table.  In the composite type used to insert rows, remove the attributes corresponding to the EmployeeID primary key and rowguid uniqueidentifier columns since these values are provided by the relational database management system. And to update just the VacationHours and SickLeaveHours columns, use a composite type that includes only the attributes corresponding to the EmployeeID, VacationHours, SickLeaveHours and ModifiedDate columns. By specifying this schema artifact and composite type in a Write Table operator, your upstream application need only deal with the four required attributes and there is no risk of unintentionally overwriting a value in a column that does not need to be updated. Now, what about the option to use the composite type to enforce business rules?  If you review the composition of the default composite type CompositeType1, you will note that the constraints defined for many of the attributes mirror the table column specifications.  For example, the maximum number of characters in the NationaIDNumber, LoginID and Title attributes is equivalent to the maximum width of the target column, and the size of the MaritalStatus and Gender attributes is limited to a single character as required by the table column definition.  If your application code leads to a violation of these constraints, an error will be raised.  The expressor design paradigm then allows you to handle the error in a way suitable for your application.  For example, a string value could be truncated or a numeric value could be rounded. Moreover, you have the option of specifying additional constraints that support business rules unrelated to the table definition. Let’s assume that the only acceptable values for marital status are S, M, and D.  Within the schema editor, double-click on the MaritalStatus attribute to open the Edit Attribute window.  Then click the Allowed Values checkbox and enter the acceptable values into the Constraint Value text box. The schema editor is updated accordingly. There is one more option that the expressor semantic type paradigm supports.  Since the MaritalStatus attribute now clearly specifies how this type of information should be represented (a single character limited to S, M or D), you can convert this attribute definition into a shared type, which will allow you to quickly incorporate this definition into another composite type or into the description of an output record from a transform operator. Again, double-click on the MaritalStatus attribute and in the Edit Attribute window, click Convert, which opens the Share Local Semantic Type window that you use to name this shared type.  There’s no requirement that you give the shared type the same name as the attribute from which it was derived.  You should supply a name that makes it obvious what the shared type represents. In this posting, I’ve overviewed the expressor semantic type paradigm and shown how it can be used to make your application development process more productive.  The beauty of this feature is that you choose when and to what extent you utilize the functionality, but I’m certain that if you opt to follow this approach your efforts will become more efficient and your work will progress more quickly.  As always, I encourage you to download and evaluate expressor Studio for your current and future data integration needs. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: CodeProject, Pinal Dave, PostADay, SQL, SQL Authority, SQL Documentation, SQL Query, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • More Fun with C# Iterators and Generators

    - by James Michael Hare
    In my last post, I talked quite a bit about iterators and how they can be really powerful tools for filtering a list of items down to a subset of items.  This had both pros and cons over returning a full collection, which, in summary, were:   Pros: If traversal is only partial, does not have to visit rest of collection. If evaluation method is costly, only incurs that cost on elements visited. Adds little to no garbage collection pressure.    Cons: Very slight performance impact if you know caller will always consume all items in collection. And as we saw in the last post, that con for the cost was very, very small and only really became evident on very tight loops consuming very large lists completely.    One of the key items to note, though, is the garbage!  In the traditional (return a new collection) method, if you have a 1,000,000 element collection, and wish to transform or filter it in some way, you have to allocate space for that copy of the collection.  That is, say you have a collection of 1,000,000 items and you want to double every item in the collection.  Well, that means you have to allocate a collection to hold those 1,000,000 items to return, which is a lot especially if you are just going to use it once and toss it.   Iterators, though, don't have this problem.  Each time you visit the node, it would return the doubled value of the node (in this example) and not allocate a second collection of 1,000,000 doubled items.  Do you see the distinction?  In both cases, we're consuming 1,000,000 items.  But in one case we pass back each doubled item which is just an int (for example's sake) on the stack and in the other case, we allocate a list containing 1,000,000 items which then must be garbage collected.   So iterators in C# are pretty cool, eh?  Well, here's one more thing a C# iterator can do that a traditional "return a new collection" transformation can't!   It can return **unbounded** collections!   I know, I know, that smells a lot like an infinite loop, eh?  Yes and no.  Basically, you're relying on the caller to put the bounds on the list, and as long as the caller doesn't you keep going.  Consider this example:   public static class Fibonacci {     // returns the infinite fibonacci sequence     public static IEnumerable<int> Sequence()     {         int iteration = 0;         int first = 1;         int second = 1;         int current = 0;         while (true)         {             if (iteration++ < 2)             {                 current = 1;             }             else             {                 current = first + second;                 second = first;                 first = current;             }             yield return current;         }     } }   Whoa, you say!  Yes, that's an infinite loop!  What the heck is going on there?  Yes, that was intentional.  Would it be better to have a fibonacci sequence that returns only a specific number of items?  Perhaps, but that wouldn't give you the power to defer the execution to the caller.   The beauty of this function is it is as infinite as the sequence itself!  The fibonacci sequence is unbounded, and so is this method.  It will continue to return fibonacci numbers for as long as you ask for them.  Now that's not something you can do with a traditional method that would return a collection of ints representing each number.  In that case you would eventually run out of memory as you got to higher and higher numbers.  This method, though, never runs out of memory.   Now, that said, you do have to know when you use it that it is an infinite collection and bound it appropriately.  Fortunately, Linq provides a lot of these extension methods for you!   Let's say you only want the first 10 fibonacci numbers:       foreach(var fib in Fibonacci.Sequence().Take(10))     {         Console.WriteLine(fib);     }   Or let's say you only want the fibonacci numbers that are less than 100:       foreach(var fib in Fibonacci.Sequence().TakeWhile(f => f < 100))     {         Console.WriteLine(fib);     }   So, you see, one of the nice things about iterators is their power to work with virtually any size (even infinite) collections without adding the garbage collection overhead of making new collections.    You can also do fun things like this to make a more "fluent" interface for for loops:   // A set of integer generator extension methods public static class IntExtensions {     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> Every(this int start)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; ++i)         {             yield return i;         }     }     // Begins counting to infinity by the given step value, use To() to     public static IEnumerable<int> Every(this int start, int byEvery)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; i += byEvery)         {             yield return i;         }     }     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> To(this int start, int end)     {         for (var i = start; i <= end; ++i)         {             yield return i;         }     }     // Ranges the count by specifying the upper range of the count.     public static IEnumerable<int> To(this IEnumerable<int> collection, int end)     {         return collection.TakeWhile(item => item <= end);     } }   Note that there are two versions of each method.  One that starts with an int and one that starts with an IEnumerable<int>.  This is to allow more power in chaining from either an existing collection or from an int.  This lets you do things like:   // count from 1 to 30 foreach(var i in 1.To(30)) {     Console.WriteLine(i); }     // count from 1 to 10 by 2s foreach(var i in 0.Every(2).To(10)) {     Console.WriteLine(i); }     // or, if you want an infinite sequence counting by 5s until something inside breaks you out... foreach(var i in 0.Every(5)) {     if (someCondition)     {         break;     }     ... }     Yes, those are kinda play functions and not particularly useful, but they show some of the power of generators and extension methods to form a fluid interface.   So what do you think?  What are some of your favorite generators and iterators?

    Read the article

  • Using Apache FOP from .NET level

    - by Lukasz Kurylo
    In one of my previous posts I was talking about FO.NET which I was using to generate a pdf documents from XSL-FO. FO.NET is one of the .NET ports of Apache FOP. Unfortunatelly it is no longer maintained. I known it when I decidec to use it, because there is a lack of available (free) choices for .NET to render a pdf form XSL-FO. I hoped in this implementation I will find all I need to create a pdf file with my really simple requirements. FO.NET is a port from some old version of Apache FOP and I found really quickly that there is a lack of some features that I needed, like dotted borders, double borders or support for margins. So I started to looking for some alternatives. I didn’t try the NFOP, another port of Apache FOP, because I found something I think much more better, the IKVM.NET project.   IKVM.NET it is not a pdf renderer. So what it is? From the project site:   IKVM.NET is an implementation of Java for Mono and the Microsoft .NET Framework. It includes the following components: a Java Virtual Machine implemented in .NET a .NET implementation of the Java class libraries tools that enable Java and .NET interoperability   In the simplest form IKVM.NET allows to use a Java code library in the C# code and vice versa.   I tried to use an Apache FOP, the best I think open source pdf –> XSL-FO renderer written in Java from my project written in C# using an IKVM.NET and it work like a charm. In the rest of the post I want to show, how to prepare a .NET *.dll class library from Apache FOP *.jar’s with IKVM.NET and generate a simple Hello world pdf document.   To start playing with IKVM.NET and Apache FOP we need to download their packages: IKVM.NET Apache FOP and then unpack them.   From the FOP directory copy all the *.jar’s files from lib and build catalogs to some location, e.g. d:\fop. Second step is to build the *.dll library from these files. On the console execute the following comand:   ikvmc –target:library –out:d:\fop\fop.dll –recurse:d:\fop   The ikvmc is located in the bin subdirectory where you unpacked the IKVM.NET. You must execute this command from this catalog, add this path to the global variable PATH or specify the full path to the bin subdirectory.   In no error occurred during this process, the fop.dll library should be created. Right now we can create a simple project to test if we can create a pdf file.   So let’s create a simple console project application and add reference to the fop.dll and the IKVM dll’s: IKVM.OpenJDK.Core and IKVM.OpenJDK.XML.API.   Full code to generate a pdf file from XSL-FO template:   static void Main(string[] args)         {             //initialize the Apache FOP             FopFactory fopFactory = FopFactory.newInstance();               //in this stream we will get the generated pdf file             OutputStream o = new DotNetOutputMemoryStream();             try             {                 Fop fop = fopFactory.newFop("application/pdf", o);                 TransformerFactory factory = TransformerFactory.newInstance();                 Transformer transformer = factory.newTransformer();                   //read the template from disc                 Source src = new StreamSource(new File("HelloWorld.fo"));                 Result res = new SAXResult(fop.getDefaultHandler());                 transformer.transform(src, res);             }             finally             {                 o.close();             }             using (System.IO.FileStream fs = System.IO.File.Create("HelloWorld.pdf"))             {                 //write from the .NET MemoryStream stream to disc the generated pdf file                 var data = ((DotNetOutputMemoryStream)o).Stream.GetBuffer();                 fs.Write(data, 0, data.Length);             }             Process.Start("HelloWorld.pdf");             System.Console.ReadLine();         }   Apache FOP be default using a Java’s Xalan to work with XML files. I didn’t find a way to replace this piece of code with equivalent from .NET standard library. If any error or warning will occure during generating the pdf file, on the console will ge shown, that’s why I inserted the last line in the sample above. The DotNetOutputMemoryStream this is my wrapper for the Java OutputStream. I have created it to have the possibility to exchange data between the .NET <-> Java objects. It’s implementation:   class DotNetOutputMemoryStream : OutputStream     {         private System.IO.MemoryStream ms = new System.IO.MemoryStream();         public System.IO.MemoryStream Stream         {             get             {                 return ms;             }         }         public override void write(int i)         {             ms.WriteByte((byte)i);         }         public override void write(byte[] b, int off, int len)         {             ms.Write(b, off, len);         }         public override void write(byte[] b)         {             ms.Write(b, 0, b.Length);         }         public override void close()         {             ms.Close();         }         public override void flush()         {             ms.Flush();         }     } The last thing we need, this is the HelloWorld.fo template.   <?xml version="1.0" encoding="utf-8"?> <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format"          xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">   <fo:layout-master-set>     <fo:simple-page-master master-name="simple"                   page-height="29.7cm"                   page-width="21cm"                   margin-top="1.8cm"                   margin-bottom="0.8cm"                   margin-left="1.6cm"                   margin-right="1.2cm">       <fo:region-body margin-top="3cm"/>       <fo:region-before extent="3cm"/>       <fo:region-after extent="1.5cm"/>     </fo:simple-page-master>   </fo:layout-master-set>   <fo:page-sequence master-reference="simple">     <fo:flow flow-name="xsl-region-body">       <fo:block font-size="18pt" color="black" text-align="center">         Hello, World!       </fo:block>     </fo:flow>   </fo:page-sequence> </fo:root>   I’m not going to explain how how this template is created, because this will be covered in the near future posts.   Generated pdf file should look that:

    Read the article

  • ASP.NET WebAPI Security 3: Extensible Authentication Framework

    - by Your DisplayName here!
    In my last post, I described the identity architecture of ASP.NET Web API. The short version was, that Web API (beta 1) does not really have an authentication system on its own, but inherits the client security context from its host. This is fine in many situations (e.g. AJAX style callbacks with an already established logon session). But there are many cases where you don’t use the containing web application for authentication, but need to do it yourself. Examples of that would be token based authentication and clients that don’t run in the context of the web application (e.g. desktop clients / mobile). Since Web API provides a nice extensibility model, it is easy to implement whatever security framework you want on top of it. My design goals were: Easy to use. Extensible. Claims-based. ..and of course, this should always behave the same, regardless of the hosting environment. In the rest of the post I am outlining some of the bits and pieces, So you know what you are dealing with, in case you want to try the code. At the very heart… is a so called message handler. This is a Web API extensibility point that gets to see (and modify if needed) all incoming and outgoing requests. Handlers run after the conversion from host to Web API, which means that handler code deals with HttpRequestMessage and HttpResponseMessage. See Pedro’s post for more information on the processing pipeline. This handler requires a configuration object for initialization. Currently this is very simple, it contains: Settings for the various authentication and credential types Settings for claims transformation Ability to block identity inheritance from host The most important part here is the credential type support, but I will come back to that later. The logic of the message handler is simple: Look at the incoming request. If the request contains an authorization header, try to authenticate the client. If this is successful, create a claims principal and populate the usual places. If not, return a 401 status code and set the Www-Authenticate header. Look at outgoing response, if the status code is 401, set the Www-Authenticate header. Credential type support Under the covers I use the WIF security token handler infrastructure to validate credentials and to turn security tokens into claims. The idea is simple: an authorization header consists of two pieces: the schema and the actual “token”. My configuration object allows to associate a security token handler with a scheme. This way you only need to implement support for a specific credential type, and map that to the incoming scheme value. The current version supports HTTP Basic Authentication as well as SAML and SWT tokens. (I needed to do some surgery on the standard security token handlers, since WIF does not directly support string-ified tokens. The next version of .NET will fix that, and the code should become simpler then). You can e.g. use this code to hook up a username/password handler to the Basic scheme (the default scheme name for Basic Authentication). config.Handler.AddBasicAuthenticationHandler( (username, password) => username == password); You simply have to provide a password validation function which could of course point back to your existing password library or e.g. membership. The following code maps a token handler for Simple Web Tokens (SWT) to the Bearer scheme (the currently favoured scheme name for OAuth2). You simply have to specify the issuer name, realm and shared signature key: config.Handler.AddSimpleWebTokenHandler(     "Bearer",     http://identity.thinktecture.com/trust,     Constants.Realm,     "Dc9Mpi3jaaaUpBQpa/4R7XtUsa3D/ALSjTVvK8IUZbg="); For certain integration scenarios it is very useful if your Web API can consume SAML tokens. This is also easily accomplishable. The following code uses the standard WIF API to configure the usual SAMLisms like issuer, audience, service certificate and certificate validation. Both SAML 1.1 and 2.0 are supported. var registry = new ConfigurationBasedIssuerNameRegistry(); registry.AddTrustedIssuer( "d1 c5 b1 25 97 d0 36 94 65 1c e2 64 fe 48 06 01 35 f7 bd db", "ADFS"); var adfsConfig = new SecurityTokenHandlerConfiguration(); adfsConfig.AudienceRestriction.AllowedAudienceUris.Add( new Uri(Constants.Realm)); adfsConfig.IssuerNameRegistry = registry; adfsConfig.CertificateValidator = X509CertificateValidator.None; // token decryption (read from configuration section) adfsConfig.ServiceTokenResolver = FederatedAuthentication.ServiceConfiguration.CreateAggregateTokenResolver(); config.Handler.AddSaml11SecurityTokenHandler("SAML", adfsConfig); Claims Transformation After successful authentication, if configured, the standard WIF ClaimsAuthenticationManager is called to run claims transformation and validation logic. This stage is used to transform the “technical” claims from the security token into application claims. You can either have a separate transformation logic, or share on e.g. with the containing web application. That’s just a matter of configuration. Adding the authentication handler to a Web API application In the spirit of Web API this is done in code, e.g. global.asax for web hosting: protected void Application_Start() {     AreaRegistration.RegisterAllAreas();     ConfigureApis(GlobalConfiguration.Configuration);     RegisterGlobalFilters(GlobalFilters.Filters);     RegisterRoutes(RouteTable.Routes);     BundleTable.Bundles.RegisterTemplateBundles(); } private void ConfigureApis(HttpConfiguration configuration) {     configuration.MessageHandlers.Add( new AuthenticationHandler(ConfigureAuthentication())); } private AuthenticationConfiguration ConfigureAuthentication() {     var config = new AuthenticationConfiguration     {         // sample claims transformation for consultants sample, comment out to see raw claims         ClaimsAuthenticationManager = new ApiClaimsTransformer(),         // value of the www-authenticate header, // if not set, the first scheme added to the handler collection is used         DefaultAuthenticationScheme = "Basic"     };     // add token handlers - see above     return config; } You can find the full source code and some samples here. In the next post I will describe some of the samples in the download, and then move on to authorization. HTH

    Read the article

  • Using SSIS to send a HTML E-Mail Message with built-in table of Counts.

    - by Kevin Shyr
    For the record, this can be just as easily done with a .NET class with a DLL call.  The two major reasons for this ending up as a SSIS package are: There are a lot of SQL resources for maintenance, but not as many .NET developers. There is an existing automated process that links up SQL Jobs (more on that in the next post), and this is part of that process.   To start, this is what the SSIS looks like: The first part of the control flow is just for the override scenario.   In the Execute SQL Task, it calls a stored procedure, which already formats the result into XML by using "FOR XML PATH('Row'), ROOT(N'FieldingCounts')".  The result XML string looks like this: <FieldingCounts>   <Row>     <CellId>M COD</CellId>     <Mailed>64</Mailed>     <ReMailed>210</ReMailed>     <TotalMail>274</TotalMail>     <EMailed>233</EMailed>     <TotalSent>297</TotalSent>   </Row>   <Row>     <CellId>M National</CellId>     <Mailed>11</Mailed>     <ReMailed>59</ReMailed>     <TotalMail>70</TotalMail>     <EMailed>90</EMailed>     <TotalSent>101</TotalSent>   </Row>   <Row>     <CellId>U COD</CellId>     <Mailed>91</Mailed>     <ReMailed>238</ReMailed>     <TotalMail>329</TotalMail>     <EMailed>291</EMailed>     <TotalSent>382</TotalSent>   </Row>   <Row>     <CellId>U National</CellId>     <Mailed>63</Mailed>     <ReMailed>286</ReMailed>     <TotalMail>349</TotalMail>     <EMailed>374</EMailed>     <TotalSent>437</TotalSent>   </Row> </FieldingCounts>  This result is saved into an internal SSIS variable with the following settings on the General tab and the Result Set tab:   Now comes the trickier part.  We need to use the XML Task to format the XML string result into an HTML table, and I used Direct input XSLT And here is the code of XSLT: <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:output method="html" indent="yes"/>   <xsl:template match="/ROOT">         <table border="1" cellpadding="6">           <tr>             <td></td>             <td>Mailed</td>             <td>Re-mailed</td>             <td>Total Mail (Mailed, Re-mailed)</td>             <td>E-mailed</td>             <td>Total Sent (Mailed, E-mailed)</td>           </tr>           <xsl:for-each select="FieldingCounts/Row">             <tr>               <xsl:for-each select="./*">                 <td>                   <xsl:value-of select="." />                 </td>               </xsl:for-each>             </tr>           </xsl:for-each>         </table>   </xsl:template> </xsl:stylesheet>    Then a script task is used to send out an HTML email (as we are all painfully aware that SSIS Send Mail Task only sends plain text) Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 using System; using System.Data; using Microsoft.SqlServer.Dts.Runtime; using System.Windows.Forms; using System.Net.Mail; using System.Net;   namespace ST_b829a2615e714bcfb55db0ce97be3901.csproj {     [System.AddIn.AddIn("ScriptMain", Version = "1.0", Publisher = "", Description = "")]     public partial class ScriptMain : Microsoft.SqlServer.Dts.Tasks.ScriptTask.VSTARTScriptObjectModelBase     {           #region VSTA generated code         enum ScriptResults         {             Success = Microsoft.SqlServer.Dts.Runtime.DTSExecResult.Success,             Failure = Microsoft.SqlServer.Dts.Runtime.DTSExecResult.Failure         };         #endregion           public void Main()         {             String EmailMsgBody = String.Format("<HTML><BODY><P>{0}</P><P>{1}</P></BODY></HTML>"                                                 , Dts.Variables["Config_SMTP_MessageSourceText"].Value.ToString()                                                 , Dts.Variables["InternalStr_CountResultAfterXSLT"].Value.ToString());             MailMessage EmailCountMsg = new MailMessage(Dts.Variables["Config_SMTP_From"].Value.ToString().Replace(";", ",")                                                         , Dts.Variables["Config_SMTP_Success_To"].Value.ToString().Replace(";", ",")                                                         , Dts.Variables["Config_SMTP_SubjectLinePrefix"].Value.ToString() + " " + Dts.Variables["InternalStr_FieldingDate"].Value.ToString()                                                         , EmailMsgBody);             //EmailCountMsg.From.             EmailCountMsg.CC.Add(Dts.Variables["Config_SMTP_Success_CC"].Value.ToString().Replace(";", ","));             EmailCountMsg.IsBodyHtml = true;               SmtpClient SMTPForCount = new SmtpClient(Dts.Variables["Config_SMTP_ServerAddress"].Value.ToString());             SMTPForCount.Credentials = CredentialCache.DefaultNetworkCredentials;               SMTPForCount.Send(EmailCountMsg);               Dts.TaskResult = (int)ScriptResults.Success;         }     } } Note on this code: notice the email list has Replace(";", ",").  This is only here because the list is configurable in the SQL Job Step at Set Values, which does not react well with colons as email separator, but system.Net.Mail only handles comma as email separator, hence the extra replace in the string. The result is a nicely formatted email message with count information:

    Read the article

  • Consuming the Amazon S3 service from a Win8 Metro Application

    - by cibrax
    As many of the existing Http APIs for Cloud Services, AWS also provides a set of different platform SDKs for hiding many of complexities present in the APIs. While there is a platform SDK for .NET, which is open source and available in C#, that SDK does not work in Win8 Metro Applications for the changes introduced in WinRT. WinRT offers a complete different set of APIs for doing I/O operations such as doing http calls or using cryptography for signing or encrypting data, two aspects that are absolutely necessary for consuming AWS. All the I/O APIs available as part of WinRT are asynchronous, and uses the TPL model for .NET applications (HTML and JavaScript Metro applications use a model based in promises, which is similar concept).  In the case of S3, the http Authorization header is used for two purposes, authenticating clients and make sure the messages were not altered while they were in transit. For doing that, it uses a signature or hash of the message content and some of the headers using a symmetric key (That's just one of the available mechanisms). Windows Azure for example also uses the same mechanism in many of its APIs. There are three challenges that any developer working for first time in Metro will have to face to consume S3, the new WinRT APIs, the asynchronous nature of them and the complexity introduced for generating the Authorization header. Having said that, I decided to write this post with some of the gotchas I found myself trying to consume this Amazon service. 1. Generating the signature for the Authorization header All the cryptography APIs in WinRT are available under Windows.Security.Cryptography namespace. Many of operations available in these APIs uses the concept of buffers (IBuffer) for representing a chunk of binary data. As you will see in the example below, these buffers are mainly generated with the use of static methods in a WinRT class CryptographicBuffer available as part of the namespace previously mentioned. private string DeriveAuthToken(string resource, string httpMethod, string timestamp) { var stringToSign = string.Format("{0}\n" + "\n" + "\n" + "\n" + "x-amz-date:{1}\n" + "/{2}/", httpMethod, timestamp, resource); var algorithm = MacAlgorithmProvider.OpenAlgorithm("HMAC_SHA1"); var keyMaterial = CryptographicBuffer.CreateFromByteArray(Encoding.UTF8.GetBytes(this.secret)); var hmacKey = algorithm.CreateKey(keyMaterial); var signature = CryptographicEngine.Sign( hmacKey, CryptographicBuffer.CreateFromByteArray(Encoding.UTF8.GetBytes(stringToSign)) ); return CryptographicBuffer.EncodeToBase64String(signature); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The algorithm that determines the information or content you need to use for generating the signature is very well described as part of the AWS documentation. In this case, this method is generating a signature required for creating a new bucket. A HmacSha1 hash is computed using a secret or symetric key provided by AWS in the management console. 2. Sending an Http Request to the S3 service WinRT also ships with the System.Net.Http.HttpClient that was first introduced some months ago with ASP.NET Web API. This client provides a rich interface on top the traditional WebHttpRequest class, and also solves some of limitations found in this last one. There are a few things that don't work with a raw WebHttpRequest such as setting the Host header, which is something absolutely required for consuming S3. Also, HttpClient is more friendly for doing unit tests, as it receives a HttpMessageHandler as part of the constructor that can fake to emulate a real http call. This is how the code for consuming the service with HttpClient looks like, public async Task<S3Response> CreateBucket(string name, string region = null, params string[] acl) { var timestamp = string.Format("{0:r}", DateTime.UtcNow); var auth = DeriveAuthToken(name, "PUT", timestamp); var request = new HttpRequestMessage(HttpMethod.Put, "http://s3.amazonaws.com/"); request.Headers.Host = string.Format("{0}.s3.amazonaws.com", name); request.Headers.TryAddWithoutValidation("Authorization", "AWS " + this.key + ":" + auth); request.Headers.Add("x-amz-date", timestamp); var client = new HttpClient(); var response = await client.SendAsync(request); return new S3Response { Succeed = response.StatusCode == HttpStatusCode.OK, Message = (response.Content != null) ? await response.Content.ReadAsStringAsync() : null }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You will notice a few additional things in this code. By default, HttpClient validates the values for some well-know headers, and Authorization is one of them. It won't allow you to set a value with ":" on it, which is something that S3 expects. However, that's not a problem at all, as you can skip the validation by using the TryAddWithoutValidation method. Also, the code is heavily relying on the new async and await keywords to transform all the asynchronous calls into synchronous ones. In case you would want to unit test this code and faking the call to the real S3 service, you should have to modify it to inject a custom HttpMessageHandler into the HttpClient. The following implementation illustrates this concept, In case you would want to unit test this code and faking the call to the real S3 service, you should have to modify it to inject a custom HttpMessageHandler into the HttpClient. The following implementation illustrates this concept, public class FakeHttpMessageHandler : HttpMessageHandler { HttpResponseMessage response; public FakeHttpMessageHandler(HttpResponseMessage response) { this.response = response; } protected override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, System.Threading.CancellationToken cancellationToken) { var tcs = new TaskCompletionSource<HttpResponseMessage>(); tcs.SetResult(response); return tcs.Task; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You can use this handler for injecting any response while you are unit testing the code.

    Read the article

  • Consuming the Amazon S3 service from a Win8 Metro Application

    - by cibrax
    As many of the existing Http APIs for Cloud Services, AWS also provides a set of different platform SDKs for hiding many of complexities present in the APIs. While there is a platform SDK for .NET, which is open source and available in C#, that SDK does not work in Win8 Metro Applications for the changes introduced in WinRT. WinRT offers a complete different set of APIs for doing I/O operations such as doing http calls or using cryptography for signing or encrypting data, two aspects that are absolutely necessary for consuming AWS. All the I/O APIs available as part of WinRT are asynchronous, and uses the TPL model for .NET applications (HTML and JavaScript Metro applications use a model based in promises, which is similar concept).  In the case of S3, the http Authorization header is used for two purposes, authenticating clients and make sure the messages were not altered while they were in transit. For doing that, it uses a signature or hash of the message content and some of the headers using a symmetric key (That's just one of the available mechanisms). Windows Azure for example also uses the same mechanism in many of its APIs. There are three challenges that any developer working for first time in Metro will have to face to consume S3, the new WinRT APIs, the asynchronous nature of them and the complexity introduced for generating the Authorization header. Having said that, I decided to write this post with some of the gotchas I found myself trying to consume this Amazon service. 1. Generating the signature for the Authorization header All the cryptography APIs in WinRT are available under Windows.Security.Cryptography namespace. Many of operations available in these APIs uses the concept of buffers (IBuffer) for representing a chunk of binary data. As you will see in the example below, these buffers are mainly generated with the use of static methods in a WinRT class CryptographicBuffer available as part of the namespace previously mentioned. private string DeriveAuthToken(string resource, string httpMethod, string timestamp) { var stringToSign = string.Format("{0}\n" + "\n" + "\n" + "\n" + "x-amz-date:{1}\n" + "/{2}/", httpMethod, timestamp, resource); var algorithm = MacAlgorithmProvider.OpenAlgorithm("HMAC_SHA1"); var keyMaterial = CryptographicBuffer.CreateFromByteArray(Encoding.UTF8.GetBytes(this.secret)); var hmacKey = algorithm.CreateKey(keyMaterial); var signature = CryptographicEngine.Sign( hmacKey, CryptographicBuffer.CreateFromByteArray(Encoding.UTF8.GetBytes(stringToSign)) ); return CryptographicBuffer.EncodeToBase64String(signature); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The algorithm that determines the information or content you need to use for generating the signature is very well described as part of the AWS documentation. In this case, this method is generating a signature required for creating a new bucket. A HmacSha1 hash is computed using a secret or symetric key provided by AWS in the management console. 2. Sending an Http Request to the S3 service WinRT also ships with the System.Net.Http.HttpClient that was first introduced some months ago with ASP.NET Web API. This client provides a rich interface on top the traditional WebHttpRequest class, and also solves some of limitations found in this last one. There are a few things that don't work with a raw WebHttpRequest such as setting the Host header, which is something absolutely required for consuming S3. Also, HttpClient is more friendly for doing unit tests, as it receives a HttpMessageHandler as part of the constructor that can fake to emulate a real http call. This is how the code for consuming the service with HttpClient looks like, public async Task<S3Response> CreateBucket(string name, string region = null, params string[] acl) { var timestamp = string.Format("{0:r}", DateTime.UtcNow); var auth = DeriveAuthToken(name, "PUT", timestamp); var request = new HttpRequestMessage(HttpMethod.Put, "http://s3.amazonaws.com/"); request.Headers.Host = string.Format("{0}.s3.amazonaws.com", name); request.Headers.TryAddWithoutValidation("Authorization", "AWS " + this.key + ":" + auth); request.Headers.Add("x-amz-date", timestamp); var client = new HttpClient(); var response = await client.SendAsync(request); return new S3Response { Succeed = response.StatusCode == HttpStatusCode.OK, Message = (response.Content != null) ? await response.Content.ReadAsStringAsync() : null }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You will notice a few additional things in this code. By default, HttpClient validates the values for some well-know headers, and Authorization is one of them. It won't allow you to set a value with ":" on it, which is something that S3 expects. However, that's not a problem at all, as you can skip the validation by using the TryAddWithoutValidation method. Also, the code is heavily relying on the new async and await keywords to transform all the asynchronous calls into synchronous ones. In case you would want to unit test this code and faking the call to the real S3 service, you should have to modify it to inject a custom HttpMessageHandler into the HttpClient. The following implementation illustrates this concept, In case you would want to unit test this code and faking the call to the real S3 service, you should have to modify it to inject a custom HttpMessageHandler into the HttpClient. The following implementation illustrates this concept, public class FakeHttpMessageHandler : HttpMessageHandler { HttpResponseMessage response; public FakeHttpMessageHandler(HttpResponseMessage response) { this.response = response; } protected override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, System.Threading.CancellationToken cancellationToken) { var tcs = new TaskCompletionSource<HttpResponseMessage>(); tcs.SetResult(response); return tcs.Task; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You can use this handler for injecting any response while you are unit testing the code.

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5: Part 2 – Table per Type (TPT)

    - by mortezam
    In the previous blog post you saw that there are three different approaches to representing an inheritance hierarchy and I explained Table per Hierarchy (TPH) as the default mapping strategy in EF Code First. We argued that the disadvantages of TPH may be too serious for our design since it results in denormalized schemas that can become a major burden in the long run. In today’s blog post we are going to learn about Table per Type (TPT) as another inheritance mapping strategy and we'll see that TPT doesn’t expose us to this problem. Table per Type (TPT)Table per Type is about representing inheritance relationships as relational foreign key associations. Every class/subclass that declares persistent properties—including abstract classes—has its own table. The table for subclasses contains columns only for each noninherited property (each property declared by the subclass itself) along with a primary key that is also a foreign key of the base class table. This approach is shown in the following figure: For example, if an instance of the CreditCard subclass is made persistent, the values of properties declared by the BillingDetail base class are persisted to a new row of the BillingDetails table. Only the values of properties declared by the subclass (i.e. CreditCard) are persisted to a new row of the CreditCards table. The two rows are linked together by their shared primary key value. Later, the subclass instance may be retrieved from the database by joining the subclass table with the base class table. TPT Advantages The primary advantage of this strategy is that the SQL schema is normalized. In addition, schema evolution is straightforward (modifying the base class or adding a new subclass is just a matter of modify/add one table). Integrity constraint definition are also straightforward (note how CardType in CreditCards table is now a non-nullable column). Another much more important advantage is the ability to handle polymorphic associations (a polymorphic association is an association to a base class, hence to all classes in the hierarchy with dynamic resolution of the concrete class at runtime). A polymorphic association to a particular subclass may be represented as a foreign key referencing the table of that particular subclass. Implement TPT in EF Code First We can create a TPT mapping simply by placing Table attribute on the subclasses to specify the mapped table name (Table attribute is a new data annotation and has been added to System.ComponentModel.DataAnnotations namespace in CTP5): public abstract class BillingDetail {     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } } [Table("BankAccounts")] public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } [Table("CreditCards")] public class CreditCard : BillingDetail {     public int CardType { get; set; }     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } If you prefer fluent API, then you can create a TPT mapping by using ToTable() method: protected override void OnModelCreating(ModelBuilder modelBuilder) {     modelBuilder.Entity<BankAccount>().ToTable("BankAccounts");     modelBuilder.Entity<CreditCard>().ToTable("CreditCards"); } Generated SQL For QueriesLet’s take an example of a simple non-polymorphic query that returns a list of all the BankAccounts: var query = from b in context.BillingDetails.OfType<BankAccount>() select b; Executing this query (by invoking ToList() method) results in the following SQL statements being sent to the database (on the bottom, you can also see the result of executing the generated query in SQL Server Management Studio): Now, let’s take an example of a very simple polymorphic query that requests all the BillingDetails which includes both BankAccount and CreditCard types: projects some properties out of the base class BillingDetail, without querying for anything from any of the subclasses: var query = from b in context.BillingDetails             select new { b.BillingDetailId, b.Number, b.Owner }; -- var query = from b in context.BillingDetails select b; This LINQ query seems even more simple than the previous one but the resulting SQL query is not as simple as you might expect: -- As you can see, EF Code First relies on an INNER JOIN to detect the existence (or absence) of rows in the subclass tables CreditCards and BankAccounts so it can determine the concrete subclass for a particular row of the BillingDetails table. Also the SQL CASE statements that you see in the beginning of the query is just to ensure columns that are irrelevant for a particular row have NULL values in the returning flattened table. (e.g. BankName for a row that represents a CreditCard type) TPT ConsiderationsEven though this mapping strategy is deceptively simple, the experience shows that performance can be unacceptable for complex class hierarchies because queries always require a join across many tables. In addition, this mapping strategy is more difficult to implement by hand— even ad-hoc reporting is more complex. This is an important consideration if you plan to use handwritten SQL in your application (For ad hoc reporting, database views provide a way to offset the complexity of the TPT strategy. A view may be used to transform the table-per-type model into the much simpler table-per-hierarchy model.) SummaryIn this post we learned about Table per Type as the second inheritance mapping in our series. So far, the strategies we’ve discussed require extra consideration with regard to the SQL schema (e.g. in TPT, foreign keys are needed). This situation changes with the Table per Concrete Type (TPC) that we will discuss in the next post. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • My vertex shader doesn't affect texture coords or diffuse info but works for position

    - by tina nyaa
    I am new to 3D and DirectX - in the past I have only used abstractions for 2D drawing. Over the past month I've been studying really hard and I'm trying to modify and adapt some of the shaders as part of my personal 'study project'. Below I have a shader, modified from one of the Microsoft samples. I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? // // Skinned Mesh Effect file // Copyright (c) 2000-2002 Microsoft Corporation. All rights reserved. // float4 lhtDir = {0.0f, 0.0f, -1.0f, 1.0f}; //light Direction float4 lightDiffuse = {0.6f, 0.6f, 0.6f, 1.0f}; // Light Diffuse float4 MaterialAmbient : MATERIALAMBIENT = {0.1f, 0.1f, 0.1f, 1.0f}; float4 MaterialDiffuse : MATERIALDIFFUSE = {0.8f, 0.8f, 0.8f, 1.0f}; // Matrix Pallette static const int MAX_MATRICES = 100; float4x3 mWorldMatrixArray[MAX_MATRICES] : WORLDMATRIXARRAY; float4x4 mViewProj : VIEWPROJECTION; /////////////////////////////////////////////////////// struct VS_INPUT { float4 Pos : POSITION; float4 BlendWeights : BLENDWEIGHT; float4 BlendIndices : BLENDINDICES; float3 Normal : NORMAL; float3 Tex0 : TEXCOORD0; }; struct VS_OUTPUT { float4 Pos : POSITION; float4 Diffuse : COLOR; float2 Tex0 : TEXCOORD0; }; float3 Diffuse(float3 Normal) { float CosTheta; // N.L Clamped CosTheta = max(0.0f, dot(Normal, lhtDir.xyz)); // propogate scalar result to vector return (CosTheta); } VS_OUTPUT VShade(VS_INPUT i, uniform int NumBones) { VS_OUTPUT o; float3 Pos = 0.0f; float3 Normal = 0.0f; float LastWeight = 0.0f; // Compensate for lack of UBYTE4 on Geforce3 int4 IndexVector = D3DCOLORtoUBYTE4(i.BlendIndices); // cast the vectors to arrays for use in the for loop below float BlendWeightsArray[4] = (float[4])i.BlendWeights; int IndexArray[4] = (int[4])IndexVector; // calculate the pos/normal using the "normal" weights // and accumulate the weights to calculate the last weight for (int iBone = 0; iBone < NumBones-1; iBone++) { LastWeight = LastWeight + BlendWeightsArray[iBone]; Pos += mul(i.Pos, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; Normal += mul(i.Normal, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; } LastWeight = 1.0f - LastWeight; // Now that we have the calculated weight, add in the final influence Pos += (mul(i.Pos, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); Normal += (mul(i.Normal, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); // transform position from world space into view and then projection space //o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Diffuse.x = 0.0f; o.Diffuse.y = 0.0f; o.Diffuse.z = 0.0f; o.Diffuse.w = 0.0f; o.Tex0 = float2(0,0); return o; } technique t0 { pass p0 { VertexShader = compile vs_3_0 VShade(4); } } I am currently using the SlimDX .NET wrapper around DirectX, but the API is extremely similar: public void Draw() { var device = vertexBuffer.Device; device.Clear(ClearFlags.Target | ClearFlags.ZBuffer, Color.White, 1.0f, 0); device.SetRenderState(RenderState.Lighting, true); device.SetRenderState(RenderState.DitherEnable, true); device.SetRenderState(RenderState.ZEnable, true); device.SetRenderState(RenderState.CullMode, Cull.Counterclockwise); device.SetRenderState(RenderState.NormalizeNormals, true); device.SetSamplerState(0, SamplerState.MagFilter, TextureFilter.Anisotropic); device.SetSamplerState(0, SamplerState.MinFilter, TextureFilter.Anisotropic); device.SetTransform(TransformState.World, Matrix.Identity * Matrix.Translation(0, -50, 0)); device.SetTransform(TransformState.View, Matrix.LookAtLH(new Vector3(-200, 0, 0), Vector3.Zero, Vector3.UnitY)); device.SetTransform(TransformState.Projection, Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); var material = new Material(); material.Ambient = material.Diffuse = material.Emissive = material.Specular = new Color4(Color.White); material.Power = 1f; device.SetStreamSource(0, vertexBuffer, 0, vertexSize); device.VertexDeclaration = vertexDeclaration; device.Indices = indexBuffer; device.Material = material; device.SetTexture(0, texture); var param = effect.GetParameter(null, "mWorldMatrixArray"); var boneWorldTransforms = bones.OrderedBones.OrderBy(x => x.Id).Select(x => x.CombinedTransformation).ToArray(); effect.SetValue(param, boneWorldTransforms); effect.SetValue(effect.GetParameter(null, "mViewProj"), Matrix.Identity);// Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); effect.SetValue(effect.GetParameter(null, "MaterialDiffuse"), material.Diffuse); effect.SetValue(effect.GetParameter(null, "MaterialAmbient"), material.Ambient); effect.Technique = effect.GetTechnique(0); var passes = effect.Begin(FX.DoNotSaveState); for (var i = 0; i < passes; i++) { effect.BeginPass(i); device.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, skin.Vertices.Length, 0, skin.Indicies.Length / 3); effect.EndPass(); } effect.End(); } Again, I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? Also, whatever I set in the bone transformation matrices doesn't seem to have an effect on my model. If I set every bone transformation to a zero matrix, the model still shows up as if nothing had happened, but changing the Pos field in shader output makes the model disappear. I don't understand why I'm getting this kind of behaviour. Thank you!

    Read the article

  • The Sensemaking Spectrum for Business Analytics: Translating from Data to Business Through Analysis

    - by Joe Lamantia
    One of the most compelling outcomes of our strategic research efforts over the past several years is a growing vocabulary that articulates our cumulative understanding of the deep structure of the domains of discovery and business analytics. Modes are one example of the deep structure we’ve found.  After looking at discovery activities across a very wide range of industries, question types, business needs, and problem solving approaches, we've identified distinct and recurring kinds of sensemaking activity, independent of context.  We label these activities Modes: Explore, compare, and comprehend are three of the nine recognizable modes.  Modes describe *how* people go about realizing insights.  (Read more about the programmatic research and formal academic grounding and discussion of the modes here: https://www.researchgate.net/publication/235971352_A_Taxonomy_of_Enterprise_Search_and_Discovery) By analogy to languages, modes are the 'verbs' of discovery activity.  When applied to the practical questions of product strategy and development, the modes of discovery allow one to identify what kinds of analytical activity a product, platform, or solution needs to support across a spread of usage scenarios, and then make concrete and well-informed decisions about every aspect of the solution, from high-level capabilities, to which specific types of information visualizations better enable these scenarios for the types of data users will analyze. The modes are a powerful generative tool for product making, but if you've spent time with young children, or had a really bad hangover (or both at the same time...), you understand the difficult of communicating using only verbs.  So I'm happy to share that we've found traction on another facet of the deep structure of discovery and business analytics.  Continuing the language analogy, we've identified some of the ‘nouns’ in the language of discovery: specifically, the consistently recurring aspects of a business that people are looking for insight into.  We call these discovery Subjects, since they identify *what* people focus on during discovery efforts, rather than *how* they go about discovery as with the Modes. Defining the collection of Subjects people repeatedly focus on allows us to understand and articulate sense making needs and activity in more specific, consistent, and complete fashion.  In combination with the Modes, we can use Subjects to concretely identify and define scenarios that describe people’s analytical needs and goals.  For example, a scenario such as ‘Explore [a Mode] the attrition rates [a Measure, one type of Subject] of our largest customers [Entities, another type of Subject] clearly captures the nature of the activity — exploration of trends vs. deep analysis of underlying factors — and the central focus — attrition rates for customers above a certain set of size criteria — from which follow many of the specifics needed to address this scenario in terms of data, analytical tools, and methods. We can also use Subjects to translate effectively between the different perspectives that shape discovery efforts, reducing ambiguity and increasing impact on both sides the perspective divide.  For example, from the language of business, which often motivates analytical work by asking questions in business terms, to the perspective of analysis.  The question posed to a Data Scientist or analyst may be something like “Why are sales of our new kinds of potato chips to our largest customers fluctuating unexpectedly this year?” or “Where can innovate, by expanding our product portfolio to meet unmet needs?”.  Analysts translate questions and beliefs like these into one or more empirical discovery efforts that more formally and granularly indicate the plan, methods, tools, and desired outcomes of analysis.  From the perspective of analysis this second question might become, “Which customer needs of type ‘A', identified and measured in terms of ‘B’, that are not directly or indirectly addressed by any of our current products, offer 'X' potential for ‘Y' positive return on the investment ‘Z' required to launch a new offering, in time frame ‘W’?  And how do these compare to each other?”.  Translation also happens from the perspective of analysis to the perspective of data; in terms of availability, quality, completeness, format, volume, etc. By implication, we are proposing that most working organizations — small and large, for profit and non-profit, domestic and international, and in the majority of industries — can be described for analytical purposes using this collection of Subjects.  This is a bold claim, but simplified articulation of complexity is one of the primary goals of sensemaking frameworks such as this one.  (And, yes, this is in fact a framework for making sense of sensemaking as a category of activity - but we’re not considering the recursive aspects of this exercise at the moment.) Compellingly, we can place the collection of subjects on a single continuum — we call it the Sensemaking Spectrum — that simply and coherently illustrates some of the most important relationships between the different types of Subjects, and also illuminates several of the fundamental dynamics shaping business analytics as a domain.  As a corollary, the Sensemaking Spectrum also suggests innovation opportunities for products and services related to business analytics. The first illustration below shows Subjects arrayed along the Sensemaking Spectrum; the second illustration presents examples of each kind of Subject.  Subjects appear in colors ranging from blue to reddish-orange, reflecting their place along the Spectrum, which indicates whether a Subject addresses more the viewpoint of systems and data (Data centric and blue), or people (User centric and orange).  This axis is shown explicitly above the Spectrum.  Annotations suggest how Subjects align with the three significant perspectives of Data, Analysis, and Business that shape business analytics activity.  This rendering makes explicit the translation and bridging function of Analysts as a role, and analysis as an activity. Subjects are best understood as fuzzy categories [http://georgelakoff.files.wordpress.com/2011/01/hedges-a-study-in-meaning-criteria-and-the-logic-of-fuzzy-concepts-journal-of-philosophical-logic-2-lakoff-19731.pdf], rather than tightly defined buckets.  For each Subject, we suggest some of the most common examples: Entities may be physical things such as named products, or locations (a building, or a city); they could be Concepts, such as satisfaction; or they could be Relationships between entities, such as the variety of possible connections that define linkage in social networks.  Likewise, Events may indicate a time and place in the dictionary sense; or they may be Transactions involving named entities; or take the form of Signals, such as ‘some Measure had some value at some time’ - what many enterprises understand as alerts.   The central story of the Spectrum is that though consumers of analytical insights (represented here by the Business perspective) need to work in terms of Subjects that are directly meaningful to their perspective — such as Themes, Plans, and Goals — the working realities of data (condition, structure, availability, completeness, cost) and the changing nature of most discovery efforts make direct engagement with source data in this fashion impossible.  Accordingly, business analytics as a domain is structured around the fundamental assumption that sense making depends on analytical transformation of data.  Analytical activity incrementally synthesizes more complex and larger scope Subjects from data in its starting condition, accumulating insight (and value) by moving through a progression of stages in which increasingly meaningful Subjects are iteratively synthesized from the data, and recombined with other Subjects.  The end goal of  ‘laddering’ successive transformations is to enable sense making from the business perspective, rather than the analytical perspective.Synthesis through laddering is typically accomplished by specialized Analysts using dedicated tools and methods. Beginning with some motivating question such as seeking opportunities to increase the efficiency (a Theme) of fulfillment processes to reach some level of profitability by the end of the year (Plan), Analysts will iteratively wrangle and transform source data Records, Values and Attributes into recognizable Entities, such as Products, that can be combined with Measures or other data into the Events (shipment of orders) that indicate the workings of the business.  More complex Subjects (to the right of the Spectrum) are composed of or make reference to less complex Subjects: a business Process such as Fulfillment will include Activities such as confirming, packing, and then shipping orders.  These Activities occur within or are conducted by organizational units such as teams of staff or partner firms (Networks), composed of Entities which are structured via Relationships, such as supplier and buyer.  The fulfillment process will involve other types of Entities, such as the products or services the business provides.  The success of the fulfillment process overall may be judged according to a sophisticated operating efficiency Model, which includes tiered Measures of business activity and health for the transactions and activities included.  All of this may be interpreted through an understanding of the operational domain of the businesses supply chain (a Domain).   We'll discuss the Spectrum in more depth in succeeding posts.

    Read the article

  • MapReduce in DryadLINQ and PLINQ

    - by JoshReuben
    MapReduce See http://en.wikipedia.org/wiki/Mapreduce The MapReduce pattern aims to handle large-scale computations across a cluster of servers, often involving massive amounts of data. "The computation takes a set of input key/value pairs, and produces a set of output key/value pairs. The developer expresses the computation as two Func delegates: Map and Reduce. Map - takes a single input pair and produces a set of intermediate key/value pairs. The MapReduce function groups results by key and passes them to the Reduce function. Reduce - accepts an intermediate key I and a set of values for that key. It merges together these values to form a possibly smaller set of values. Typically just zero or one output value is produced per Reduce invocation. The intermediate values are supplied to the user's Reduce function via an iterator." the canonical MapReduce example: counting word frequency in a text file.     MapReduce using DryadLINQ see http://research.microsoft.com/en-us/projects/dryadlinq/ and http://connect.microsoft.com/Dryad DryadLINQ provides a simple and straightforward way to implement MapReduce operations. This The implementation has two primary components: A Pair structure, which serves as a data container. A MapReduce method, which counts word frequency and returns the top five words. The Pair Structure - Pair has two properties: Word is a string that holds a word or key. Count is an int that holds the word count. The structure also overrides ToString to simplify printing the results. The following example shows the Pair implementation. public struct Pair { private string word; private int count; public Pair(string w, int c) { word = w; count = c; } public int Count { get { return count; } } public string Word { get { return word; } } public override string ToString() { return word + ":" + count.ToString(); } } The MapReduce function  that gets the results. the input data could be partitioned and distributed across the cluster. 1. Creates a DryadTable<LineRecord> object, inputTable, to represent the lines of input text. For partitioned data, use GetPartitionedTable<T> instead of GetTable<T> and pass the method a metadata file. 2. Applies the SelectMany operator to inputTable to transform the collection of lines into collection of words. The String.Split method converts the line into a collection of words. SelectMany concatenates the collections created by Split into a single IQueryable<string> collection named words, which represents all the words in the file. 3. Performs the Map part of the operation by applying GroupBy to the words object. The GroupBy operation groups elements with the same key, which is defined by the selector delegate. This creates a higher order collection, whose elements are groups. In this case, the delegate is an identity function, so the key is the word itself and the operation creates a groups collection that consists of groups of identical words. 4. Performs the Reduce part of the operation by applying Select to groups. This operation reduces the groups of words from Step 3 to an IQueryable<Pair> collection named counts that represents the unique words in the file and how many instances there are of each word. Each key value in groups represents a unique word, so Select creates one Pair object for each unique word. IGrouping.Count returns the number of items in the group, so each Pair object's Count member is set to the number of instances of the word. 5. Applies OrderByDescending to counts. This operation sorts the input collection in descending order of frequency and creates an ordered collection named ordered. 6. Applies Take to ordered to create an IQueryable<Pair> collection named top, which contains the 100 most common words in the input file, and their frequency. Test then uses the Pair object's ToString implementation to print the top one hundred words, and their frequency.   public static IQueryable<Pair> MapReduce( string directory, string fileName, int k) { DryadDataContext ddc = new DryadDataContext("file://" + directory); DryadTable<LineRecord> inputTable = ddc.GetTable<LineRecord>(fileName); IQueryable<string> words = inputTable.SelectMany(x => x.line.Split(' ')); IQueryable<IGrouping<string, string>> groups = words.GroupBy(x => x); IQueryable<Pair> counts = groups.Select(x => new Pair(x.Key, x.Count())); IQueryable<Pair> ordered = counts.OrderByDescending(x => x.Count); IQueryable<Pair> top = ordered.Take(k);   return top; }   To Test: IQueryable<Pair> results = MapReduce(@"c:\DryadData\input", "TestFile.txt", 100); foreach (Pair words in results) Debug.Print(words.ToString());   Note: DryadLINQ applications can use a more compact way to represent the query: return inputTable         .SelectMany(x => x.line.Split(' '))         .GroupBy(x => x)         .Select(x => new Pair(x.Key, x.Count()))         .OrderByDescending(x => x.Count)         .Take(k);     MapReduce using PLINQ The pattern is relevant even for a single multi-core machine, however. We can write our own PLINQ MapReduce in a few lines. the Map function takes a single input value and returns a set of mapped values àLINQ's SelectMany operator. These are then grouped according to an intermediate key à LINQ GroupBy operator. The Reduce function takes each intermediate key and a set of values for that key, and produces any number of outputs per key à LINQ SelectMany again. We can put all of this together to implement MapReduce in PLINQ that returns a ParallelQuery<T> public static ParallelQuery<TResult> MapReduce<TSource, TMapped, TKey, TResult>( this ParallelQuery<TSource> source, Func<TSource, IEnumerable<TMapped>> map, Func<TMapped, TKey> keySelector, Func<IGrouping<TKey, TMapped>, IEnumerable<TResult>> reduce) { return source .SelectMany(map) .GroupBy(keySelector) .SelectMany(reduce); } the map function takes in an input document and outputs all of the words in that document. The grouping phase groups all of the identical words together, such that the reduce phase can then count the words in each group and output a word/count pair for each grouping: var files = Directory.EnumerateFiles(dirPath, "*.txt").AsParallel(); var counts = files.MapReduce( path => File.ReadLines(path).SelectMany(line => line.Split(delimiters)), word => word, group => new[] { new KeyValuePair<string, int>(group.Key, group.Count()) });

    Read the article

  • BI Applications overview

    - by sv744
    Welcome to Oracle BI applications blog! This blog will talk about various features, general roadmap, description of functionality and implementation steps related to Oracle BI applications. In the first post we start with an overview of the BI apps and will delve deeper into some of the topics below in the upcoming weeks and months. If there are other topics you would like us to talk about, pl feel free to provide feedback on that. The Oracle BI applications are a set of pre-built applications that enable pervasive BI by providing role-based insight for each functional area, including sales, service, marketing, contact center, finance, supplier/supply chain, HR/workforce, and executive management. For example, Sales Analytics includes role-based applications for sales executives, sales management, as well as front-line sales reps, each of whom have different needs. The applications integrate and transform data from a range of enterprise sources—including Siebel, Oracle, PeopleSoft, SAP, and others—into actionable intelligence for each business function and user role. This blog  starts with the key benefits and characteristics of Oracle BI applications. In a series of subsequent blogs, each of these points will be explained in detail. Why BI apps? Demonstrate the value of BI to a business user, show reports / dashboards / model that can answer their business questions as part of the sales cycle. Demonstrate technical feasibility of BI project and significantly lower risk and improve success Build Vs Buy benefit Don’t have to start with a blank sheet of paper. Help consolidate disparate systems Data integration in M&A situations Insulate BI consumers from changes in the OLTP Present OLTP data and highlight issues of poor data / missing data – and improve data quality and accuracy Prebuilt Integrations BI apps support prebuilt integrations against leading ERP sources: Fusion Applications, E- Business Suite, Peoplesoft, JD Edwards, Siebel, SAP Co-developed with inputs from functional experts in BI and Applications teams. Out of the box dimensional model to source model mappings Multi source and Multi Instance support Rich Data Model    BI apps have a very rich dimensionsal data model built over 10 years that incorporates best practises from BI modeling perspective as well as reflect the source system complexities  Thanks for reading a long post, and be on the lookout for future posts.  We will look forward to your valuable feedback on these topics as well as suggestions on what other topics would you like us to cover. I Conformed dimensional model across all business subject areas allows cross functional reporting, e.g. customer / supplier 360 Over 360 fact tables across 7 product areas CRM – 145, SCM – 47, Financials – 28, Procurement – 20, HCM – 27, Projects – 18, Campus Solutions – 21, PLM - 56 Supported by 300 physical dimensions Support for extensive calendars; Gregorian, enterprise and ledger based Conformed data model and metrics for real time vs warehouse based reporting  Multi-tenant enabled Extensive BI related transformations BI apps ETL and data integration support various transformations required for dimensional models and reporting requirements. All these have been distilled into common patterns and abstracted logic which can be readily reused across different modules Slowly Changing Dimension support Hierarchy flattening support Row / Column Hybrid Hierarchy Flattening As Is vs. As Was hierarchy support Currency Conversion :-  Support for 3 corporate, CRM, ledger and transaction currencies UOM conversion Internationalization / Localization Dynamic Data translations Code standardization (Domains) Historical Snapshots Cycle and process lifecycle computations Balance Facts Equalization of GL accounting chartfields/segments Standardized values for categorizing GL accounts Reconciliation between GL and subledgers to track accounted/transferred/posted transactions to GL Materialization of data only available through costly and complex APIs e.g. Fusion Payroll, EBS / Fusion Accruals Complex event Interpretation of source data – E.g. o    What constitutes a transfer o    Deriving supervisors via position hierarchy o    Deriving primary assignment in PSFT o    Categorizing and transposition to measures of Payroll Balances to specific metrics to support side by side comparison of measures of for example Fixed Salary, Variable Salary, Tax, Bonus, Overtime Payments. o    Counting of Events – E.g. converting events to fact counters so that for example the number of hires can easily be added up and compared alongside the total transfers and terminations. Multi pass processing of multiple sources e.g. headcount, salary, promotion, performance to allow side to side comparison. Adding value to data to aid analysis through banding, additional domain classifications and groupings to allow higher level analytical reporting and data discovery Calculation of complex measures examples: o    COGs, DSO, DPO, Inventory turns  etc o    Transfers within a Hierarchy or out of / into a hierarchy relative to view point in hierarchy. Configurability and Extensibility support  BI apps offer support for extensibility for various entities as automated extensibility or part of extension methodology Key Flex fields and Descriptive Flex support  Extensible attribute support (JDE)  Conformed Domains ETL Architecture BI apps offer a modular adapter architecture which allows support of multiple product lines into a single conformed model Multi Source Multi Technology Orchestration – creates load plan taking into account task dependencies and customers deployment to generate a plan based on a customers of multiple complex etl tasks Plan optimization allowing parallel ETL tasks Oracle: Bit map indexes and partition management High availability support    Follow the sun support. TCO BI apps support several utilities / capabilities that help with overall total cost of ownership and ensure a rapid implementation Improved cost of ownership – lower cost to deploy On-going support for new versions of the source application Task based setups flows Data Lineage Functional setup performed in Web UI by Functional person Configuration Test to Production support Security BI apps support both data and object security enabling implementations to quickly configure the application as per the reporting security needs Fine grain object security at report / dashboard and presentation catalog level Data Security integration with source systems  Extensible to support external data security rules Extensive Set of KPIs Over 7000 base and derived metrics across all modules Time series calculations (YoY, % growth etc) Common Currency and UOM reporting Cross subject area KPIs (analyzing HR vs GL data, drill from GL to AP/AR, etc) Prebuilt reports and dashboards 3000+ prebuilt reports supporting a large number of industries Hundreds of role based dashboards Dynamic currency conversion at dashboard level Highly tuned Performance The BI apps have been tuned over the years for both a very performant ETL and dashboard performance. The applications use best practises and advanced database features to enable the best possible performance. Optimized data model for BI and analytic queries Prebuilt aggregates& the ability for customers to create their own aggregates easily on warehouse facts allows for scalable end user performance Incremental extracts and loads Incremental Aggregate build Automatic table index and statistics management Parallel ETL loads Source system deletes handling Low latency extract with Golden Gate Micro ETL support Bitmap Indexes Partitioning support Modularized deployment, start small and add other subject areas seamlessly Source Specfic Staging and Real Time Schema Support for source specific operational reporting schema for EBS, PSFT, Siebel and JDE Application Integrations The BI apps also allow for integration with source systems as well as other applications that provide value add through BI and enable BI consumption during operational decision making Embedded dashboards for Fusion, EBS and Siebel applications Action Link support Marketing Segmentation Sales Predictor Dashboard Territory Management External Integrations The BI apps data integration choices include support for loading extenral data External data enrichment choices : UNSPSC, Item class etc. Extensible Spend Classification Broad Deployment Choices Exalytics support Databases :  Oracle, Exadata, Teradata, DB2, MSSQL ETL tool of choice : ODI (coming), Informatica Extensible and Customizable Extensible architecture and Methodology to add custom and external content Upgradable across releases

    Read the article

  • Simplifying Human Capital Management with Mobile Applications

    - by HCM-Oracle
    By Aaron Green If you're starting to think 'mobility' is a recurring theme in your reading, you'd be right. For those who haven't started to build organisational capabilities to leverage it, it's fair to say you're late to the party. The good news: better late than never. Research firm eMarketer says the worldwide smartphone audience will total 1.75 billion this year, while communications technology and services provider Ericsson suggests smartphones will triple to 5.6 billion globally by 2019. It should be no surprise, smart phone adoption is reaching the farthest corners of the globe; the subsequent impact of enterprise applications enabled by these devices is driving business performance improvement and will continue to do so. Companies using advanced workforce analytics can add significantly to the bottom line, while impacting customer satisfaction, quality and productivity. It's a statement that makes most business leaders sit forward in their chairs. Achieving these three standards is like sipping The Golden Elixir for the business world. No-one would argue their importance. So what are 'advanced workforce analytics?' Simply, they're unprecedented access to workforce trends and performance markers. Many are made possible by a mobile world and the enterprise applications that come with it on smart devices. Some refer to it as 'the consumerisation of IT'. As this phenomenon has matured and become more widely appreciated it has impacted the spectrum of functional units within an enterprise differently, but powerfully. Whether it's sales, HR, marketing, IT, or operations, all have benefited from a more mobile approach. It has been the catalyst for improvement in, and management of, the employee experience. The net result of which is happier customers. The obvious benefits but the lesser realised impact Most people understand that mobility allows for greater efficiency and productivity, collaboration and flexibility, but how that translates into business outcomes within the various functional groups is lesser known. In actuality mobility has helped galvanise partnerships between cross-functional groups within the enterprise. Where in some quarters it was once feared mobility could fragment a workforce, its rallying cry of support is coming from what you might describe as an unlikely source - HR. As the bedrock of an enterprise, it is conceivable HR might contemplate the possible negative impact of a mobile workforce that no-longer sits in an office, at the same desks every day. After all, who would know what they were doing or saying? How would they collaborate? It's reasonable to see why HR might have a legitimate claim to try and retain as much 'perceived control' as possible. The reality however is mobility has emancipated human capital and its management. Mobility and enterprise applications are expediting decision making. Google calls it Zero Moment of Truth, or ZMOT. It enables smoother operation and can contribute to faster growth. From a collaborative perspective, with the growing use of enterprise social media, which in many cases is being driven by HR, workforce planning and the tangible impact of change is much easier to map. This in turn provides a platform from which individuals and teams can thrive. With more agility and ability to anticipate, staff satisfaction and retention is higher, and real time feedback constant. The management team can save time, energy and costs with more accurate data, which is then intelligently applied across the workforce to truly engage with staff, customers and partners. From a human capital management (HCM) perspective, mobility can help you close the loop on true talent management. It can enhance what managers can offer and what employees can provide in return. It can create nested relationships and powerful partnerships. IT and HR - partners and stewards of mobility One effect of enterprise mobility is an evolution in the nature of the relationship between HR and IT from one of service provision to partnership. The reason for the dynamic shift is largely due to the 'bring your own device' (BYOD) movement, which is transitioning to a 'bring your own application' (BYOA) scenario. As enterprise technology has in some ways reverse-engineered its solutions to help manage this situation, the partnership between IT (the functional owner) and HR (the strategic enabler) is deeply entrenched. And it has to be. The CIO and the HR leader are faced with compliance and regulatory issues and concerns around information security and personal privacy on a daily basis, complicated by global reach and varied domestic legislation. There are tens of thousands of new mobile apps entering the market each month and, unlike many consumer applications which get downloaded but are often never opened again after initial perusal, enterprise applications are being relied upon by functional groups, not least by HR to enhance people management. It requires a systematic approach across all applications in use within the enterprise in order to ensure they're used to best effect. No turning back, and no desire to With real time analytics on performance and the ability for immediate feedback, there is no turning back for managers. In my experience with Oracle, our customers' operational efficiency is at record levels. It's clear as a result of the combination of individual KPIs and organisational goals, CIOs have been able to give HR leaders the ability to build predictive models that feed into an enterprise organisations' evolving strategy. It also helps them ensure regulatory compliance much more easily. Once an arduous task, with mobile enabled automation and quality data, compliance is simpler. Their world has changed for the better. For the CIO, mobility also assists them to optimise performance. While it doesn't come without challenges, mobile-enabled applications and the native experience users have with them means employees don't need high-level technical expertise to train users. It reduces the training and engagement required from the IT team so they can focus on other things that deliver value to the bottom line; all the while lowering the cost of assets and related maintenance work by simplifying processes. Rewards of a mobile enterprise outweigh risks With mobile tools allowing us to increasingly integrate our personal and professional lives, terms like "office hours" are becoming irrelevant, so work/life balance is a cultural must. Enterprises are expected to offer tools that enable workers to access information from anywhere, at any time, from any device. Employees want simplicity and convenience but it doesn't stop at private enterprise. This is a societal shift. Governments, which traditionally have been known to be slower to adopt newer technology, are also offering support for local businesses to go mobile. Several state government websites have advice on how to create mobile apps and more. And as recently as last week the Victorian Minister for Technology Gordon Rich-Phillips unveiled his State government's ICT roadmap for the next two years, which details an increased use of the public cloud, as well as mobile communications, and improved access to online data-sets. Tech giants are investing significantly in solutions designed to simplify mobile deployment and enablement. The mobility trend is creating a wave of change in the industry and driving transformation in the enterprise. If you're not on that wave, the business risk continues to rise as your competitiveness drops. Aaron is the Vice President of HCM Strategy at Oracle Corporation where he is responsible for researching and identifying emerging trends in the practice of Human Resources and works to deliver industry-leading technology solutions. Other responsibilities include, ownership of Oracle's innovative HCM solutions across JAPAC and enabling organisations to transform and modernise their workforce tools. Follow him on Twitter @aaronjgreen

    Read the article

  • FFmpeg audio dont work in converted videos

    - by Juddy Swaft
    NOTICE: when i convert videos via terminal and download them from ftp into pc the audio works fine. I use: if($ext == "avi" && $convert_avi == true) { $convert_source = _VIDEOS_DIR_PATH.$new_name; $conv_name = substr(md5($file['name'].rand(1,888)), 2, 10).".mp4"; $converted_file = _VIDEOS_DIR_PATH.$conv_name; $ffmpeg_command = 'ffmpeg -i '.$convert_source.' -acodec libmp3lame -vcodec libx264 -s 1280x720 -ar 44100 -async 44100 -r 29.970 -ac 2 -qscale 5 '.$converted_file; echo exec($ffmpeg_command); $sql = "UPDATE pm_temp SET url = '".$conv_name."' WHERE url = '".$new_name."' LIMIT 1"; $result = @mysql_query($sql); unlink($convert_source); } This code to convert avi to mp4 ffmpeg concole output: root@1tb:~# ffmpeg -i sample.avi -acodec libmp3lame -vcodec libx264 -s 1280x720 -ar 44100 -async 44100 -r 29.970 -ac 2 -qscale 5 goodsample.mp4 ffmpeg version 0.7.15, Copyright (c) 2000-2013 the FFmpeg developers built on Feb 22 2013 07:18:58 with gcc 4.4.5 configuration: --enable-libdc1394 --prefix=/usr --extra-cflags='-Wall -g ' --cc='ccache cc' --enable-shared --enable-libmp3lame --enable-gpl --enable-libvorbis --enable-pthreads --enable-libfaac --enable-libxvid --enable-postproc --enable-x11grab --enable-libgsm --enable-libtheora --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libx264 --enable-libspeex --enable-nonfree --disable-stripping --enable-avfilter --enable-libdirac --disable-decoder=libdirac --enable-libfreetype --enable-libschroedinger --disable-encoder=libschroedinger - s libavutil 50. 43. 0 / 50. 43. 0 libavcodec 52.123. 0 / 52.123. 0 libavformat 52.111. 0 / 52.111. 0 libavdevice 52. 5. 0 / 52. 5. 0 libavfilter 1. 80. 0 / 1. 80. 0 libswscale 0. 14. 1 / 0. 14. 1 libpostproc 51. 2. 0 / 51. 2. 0 [mp3 @ 0x191d4100] Header missing [mpeg4 @ 0x191d1dc0] Invalid and inefficient vfw-avi packed B frames detected Input #0, avi, from 'sample.avi': Metadata: encoder : VirtualDubMod 1.5.10.2 (build 2540/release) Duration: 00:01:01.81, start: 0.000000, bitrate: 1194 kb/s Stream #0.0: Video: mpeg4, yuv420p, 640x352 [PAR 1:1 DAR 20:11], 23.98 tbr, Stream #0.1: Audio: mp3, 48000 Hz, stereo, s16, 128 kb/s [buffer @ 0x191d1c80] w:640 h:352 pixfmt:yuv420p tb:1/1000000 sar:1/1 sws_param: [scale @ 0x191d6880] w:640 h:352 fmt:yuv420p -> w:1280 h:720 fmt:yuv420p flags:0 [libx264 @ 0x191ce5a0] Default settings detected, using medium profile [libx264 @ 0x191ce5a0] using SAR=45/44 [libx264 @ 0x191ce5a0] using cpu capabilities: MMX2 SSE2Fast SSSE3 FastShuffle S [libx264 @ 0x191ce5a0] profile High, level 3.1 [libx264 @ 0x191ce5a0] 264 - core 118 - H.264/MPEG-4 AVC codec - Copyleft 2003-2 6 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_off 1 open_gop=0 weightp=2 keyint=250 keyint_min=25 scenecut=40 intra_refresh=0 rc_l Output #0, mp4, to 'goodsample.mp4': Metadata: encoder : Lavf52.111.0 Stream #0.0: Video: libx264, yuv420p, 1280x720 [PAR 45:44 DAR 20:11], q=2-31 Stream #0.1: Audio: libmp3lame, 44100 Hz, stereo, s16, 64 kb/s Stream mapping: Stream #0.0 -> #0.0 Stream #0.1 -> #0.1 Press [q] to stop, [?] for help [mp3 @ 0x191d4100] Header missing Error while decoding stream #0.1 [mpeg4 @ 0x191d1dc0] Invalid and inefficient vfw-avi packed B frames detected [mp3 @ 0x191d4100] incomplete frame 9467kB time=00:01:00.32 bitrate=1285.5kbits/ Error while decoding stream #0.1 frame= 1852 fps= 20 q=29.0 Lsize= 9652kB time=00:01:01.72 bitrate=1280.9kbits video:9121kB audio:483kB global headers:0kB muxing overhead 0.499688% frame I:11 Avg QP:16.78 size: 51456 [libx264 @ 0x191ce5a0] frame P:784 Avg QP:20.81 size: 8954 [libx264 @ 0x191ce5a0] frame B:1057 Avg QP:26.06 size: 1659 [libx264 @ 0x191ce5a0] consecutive B-frames: 22.0% 3.1% 7.5% 67.4% [libx264 @ 0x191ce5a0] mb I I16..4: 31.1% 59.8% 9.1% [libx264 @ 0x191ce5a0] mb P I16..4: 1.8% 2.6% 0.2% P16..4: 24.3% 7.0% 4.0 [libx264 @ 0x191ce5a0] mb B I16..4: 0.1% 0.1% 0.0% B16..8: 22.7% 0.8% 0.2 [libx264 @ 0x191ce5a0] 8x8 transform intra:57.0% inter:72.6% [libx264 @ 0x191ce5a0] coded y,uvDC,uvAC intra: 44.4% 33.3% 10.3% inter: 7.6% 5. [libx264 @ 0x191ce5a0] i16 v,h,dc,p: 68% 14% 8% 10% [libx264 @ 0x191ce5a0] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 21% 14% 27% 5% 7% 7% 6 [libx264 @ 0x191ce5a0] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 28% 14% 14% 6% 10% 9% 7 [libx264 @ 0x191ce5a0] i8c dc,h,v,p: 67% 13% 17% 3% [libx264 @ 0x191ce5a0] Weighted P-Frames: Y:1.9% UV:0.4% [libx264 @ 0x191ce5a0] ref P L0: 62.2% 12.8% 10.3% 14.5% 0.2% [libx264 @ 0x191ce5a0] ref B L0: 88.1% 5.5% 6.4% [libx264 @ 0x191ce5a0] ref B L1: 95.7% 4.3% [libx264 @ 0x191ce5a0] kb/s:1209.03 I know there is couple errors tough, but i dont know hot to fix it. Also i would be very thankfull if someone can help reduce video size but is not main problem video weights as original avi but sill.

    Read the article

  • FFMPEG Segfault Solutions

    - by Brentley_11
    I'm trying to convert a bunch of movies into h.264 mp4's using FFMPEG. These movies are sourced from various portable camcorders such as the Flip Mino HD and the Kodak ZI8. One issue I'm having with video from the ZI8 is it seems to be causing FFMPEG to segfault. Here is my command: ffmpeg -i 'XmasSailor720p60fps.MOV' -threads 2 -acodec libfaac -ab 96kb -vcodec libx264 -vpre hq -b 500kb -s 484x272 XmasSailor.mp4 Here is the output: FFmpeg version SVN-r20668, Copyright (c) 2000-2009 Fabrice Bellard, et al. built on Dec 2 2009 18:37:34 with gcc 4.2.4 (Ubuntu 4.2.4-1ubuntu4) configuration: --enable-libfaac --enable-libfaad --enable-libmp3lame --enable-libx264 --enable-gpl --enable-nonfree --enable-postproc --enable-pthreads --enable-shared libavutil 50. 5. 1 / 50. 5. 1 libavcodec 52.42. 0 / 52.42. 0 libavformat 52.39. 2 / 52.39. 2 libavdevice 52. 2. 0 / 52. 2. 0 libswscale 0. 7. 2 / 0. 7. 2 libpostproc 51. 2. 0 / 51. 2. 0 Seems stream 0 codec frame rate differs from container frame rate: 59.94 (60000/1001) -> 29.97 (30000/1001) Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'XmasSailor720p60fps.MOV': Duration: 00:00:05.37, start: 0.000000, bitrate: 12021 kb/s Stream #0.0(eng): Video: h264, yuv420p, 1280x720 [PAR 1:1 DAR 16:9], 11994 kb/s, 29.97 tbr, 90k tbn, 59.94 tbc Stream #0.1(eng): Audio: aac, 48000 Hz, stereo, s16, 128 kb/s Metadata major_brand : qt minor_version : 0 compatible_brands: qt comment : KODAK Zi8 Pocket Video Camera comment-eng : KODAK Zi8 Pocket Video Camera [libx264 @ 0x99e1020]using SAR=1/1 [libx264 @ 0x99e1020]using cpu capabilities: MMX2 SSE2Fast SSSE3 FastShuffle SSE4.1 Cache64 [libx264 @ 0x99e1020]profile High, level 2.1 Output #0, mp4, to 'XmasSailor.mp4': Stream #0.0(eng): Video: libx264, yuv420p, 484x272 [PAR 1:1 DAR 121:68], q=10-51, 500 kb/s, 30k tbn, 29.97 tbc Stream #0.1(eng): Audio: aac, 48000 Hz, stereo, s16, 96 kb/s Metadata comment : Encoded with the Statusfirm Video Transcoder Stream mapping: Stream #0.0 -> #0.0 Stream #0.1 -> #0.1 Press [q] to stop encoding [h264 @ 0x99de950]B picture before any references, skipping [h264 @ 0x99de950]decode_slice_header error [h264 @ 0x99de950]no frame! Error while decoding stream #0.0 [h264 @ 0x99de950]B picture before any references, skipping [h264 @ 0x99de950]decode_slice_header error [h264 @ 0x99de950]no frame! Error while decoding stream #0.0 frame= 20 fps= 0 q=13797729.0 size= 0kB time=0.66 bitrate= 0.6kbits/s frame= 39 fps= 37 q=13797729.0 size= 0kB time=1.30 bitrate= 0.3kbits/s frame= 48 fps= 30 q=33.0 size= 11kB time=0.10 bitrate= 903.0kbits/s frame= 58 fps= 27 q=31.0 size= 22kB time=0.43 bitrate= 421.0kbits/s frame= 67 fps= 25 q=29.0 size= 41kB time=0.73 bitrate= 462.6kbits/s frame= 75 fps= 23 q=29.0 size= 59kB time=1.00 bitrate= 486.7kbits/s frame= 83 fps= 22 q=29.0 size= 81kB time=1.27 bitrate= 521.9kbits/s frame= 90 fps= 21 q=29.0 size= 97kB time=1.50 bitrate= 530.1kbits/s frame= 98 fps= 20 q=29.0 size= 114kB time=1.77 bitrate= 526.9kbits/s frame= 106 fps= 20 q=29.0 size= 134kB time=2.04 bitrate= 537.7kbits/s frame= 114 fps= 19 q=29.0 size= 150kB time=2.30 bitrate= 533.7kbits/s frame= 122 fps= 19 q=29.0 size= 172kB time=2.57 bitrate= 547.8kbits/s frame= 130 fps= 19 q=29.0 size= 193kB time=2.84 bitrate= 557.5kbits/s frame= 136 fps= 18 q=29.0 size= 211kB time=3.04 bitrate= 570.0kbits/s frame= 144 fps= 18 q=29.0 size= 242kB time=3.30 bitrate= 599.5kbits/s frame= 152 fps= 17 q=30.0 size= 261kB time=3.57 bitrate= 598.6kbits/s frame= 157 fps= 15 q=-1.0 Lsize= 368kB time=5.21 bitrate= 579.3kbits/s video:302kB audio:61kB global headers:0kB muxing overhead 1.416371% [libx264 @ 0x99e1020]frame I:1 Avg QP:27.22 size: 8720 [libx264 @ 0x99e1020]frame P:48 Avg QP:25.15 size: 3759 [libx264 @ 0x99e1020]frame B:108 Avg QP:30.10 size: 1105 [libx264 @ 0x99e1020]consecutive B-frames: 0.6% 11.5% 28.8% 59.0% [libx264 @ 0x99e1020]mb I I16..4: 28.5% 47.6% 23.9% [libx264 @ 0x99e1020]mb P I16..4: 0.8% 1.3% 0.5% P16..4: 50.6% 17.7% 13.1% 0.0% 0.0% skip:15.9% [libx264 @ 0x99e1020]mb B I16..4: 0.2% 0.3% 0.1% B16..8: 44.0% 1.2% 2.6% direct: 5.1% skip:46.5% L0:45.5% L1:51.0% BI: 3.5% [libx264 @ 0x99e1020]final ratefactor: 23.51 [libx264 @ 0x99e1020]8x8 transform intra:49.9% inter:67.9% [libx264 @ 0x99e1020]direct mvs spatial:98.1% temporal:1.9% [libx264 @ 0x99e1020]coded y,uvDC,uvAC intra: 54.7% 76.1% 41.4% inter: 17.1% 24.4% 7.8% [libx264 @ 0x99e1020]i16 v,h,dc,p: 18% 52% 5% 25% [libx264 @ 0x99e1020]i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 12% 22% 9% 7% 10% 10% 9% 8% 13% [libx264 @ 0x99e1020]i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 13% 18% 8% 8% 10% 13% 10% 9% 12% [libx264 @ 0x99e1020]Weighted P-Frames: Y:10.4% [libx264 @ 0x99e1020]ref P L0: 60.2% 15.3% 11.0% 7.6% 5.2% 0.7% [libx264 @ 0x99e1020]ref B L0: 72.6% 15.6% 11.8% [libx264 @ 0x99e1020]kb/s:471.17 Segmentation fault I'm wondering if anyone else has ran into similar issues. I wasn't able to find anything helpful via Google. Another question I have is if anyone knows of a company that offers paid support for FFMPEG. Thank you for your time.

    Read the article

  • FFMPEG Segfault Solutions

    - by Brentley_11
    I'm trying to convert a bunch of movies into h.264 mp4's using FFMPEG. These movies are sourced from various portable camcorders such as the Flip Mino HD and the Kodak ZI8. One issue I'm having with video from the ZI8 is it seems to be causing FFMPEG to segfault. Here is my command: ffmpeg -i 'XmasSailor720p60fps.MOV' -threads 2 -acodec libfaac -ab 96kb -vcodec libx264 -vpre hq -b 500kb -s 484x272 XmasSailor.mp4 Here is the output: FFmpeg version SVN-r20668, Copyright (c) 2000-2009 Fabrice Bellard, et al. built on Dec 2 2009 18:37:34 with gcc 4.2.4 (Ubuntu 4.2.4-1ubuntu4) configuration: --enable-libfaac --enable-libfaad --enable-libmp3lame --enable-libx264 --enable-gpl --enable-nonfree --enable-postproc --enable-pthreads --enable-shared libavutil 50. 5. 1 / 50. 5. 1 libavcodec 52.42. 0 / 52.42. 0 libavformat 52.39. 2 / 52.39. 2 libavdevice 52. 2. 0 / 52. 2. 0 libswscale 0. 7. 2 / 0. 7. 2 libpostproc 51. 2. 0 / 51. 2. 0 Seems stream 0 codec frame rate differs from container frame rate: 59.94 (60000/1001) -> 29.97 (30000/1001) Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'XmasSailor720p60fps.MOV': Duration: 00:00:05.37, start: 0.000000, bitrate: 12021 kb/s Stream #0.0(eng): Video: h264, yuv420p, 1280x720 [PAR 1:1 DAR 16:9], 11994 kb/s, 29.97 tbr, 90k tbn, 59.94 tbc Stream #0.1(eng): Audio: aac, 48000 Hz, stereo, s16, 128 kb/s Metadata major_brand : qt minor_version : 0 compatible_brands: qt comment : KODAK Zi8 Pocket Video Camera comment-eng : KODAK Zi8 Pocket Video Camera [libx264 @ 0x99e1020]using SAR=1/1 [libx264 @ 0x99e1020]using cpu capabilities: MMX2 SSE2Fast SSSE3 FastShuffle SSE4.1 Cache64 [libx264 @ 0x99e1020]profile High, level 2.1 Output #0, mp4, to 'XmasSailor.mp4': Stream #0.0(eng): Video: libx264, yuv420p, 484x272 [PAR 1:1 DAR 121:68], q=10-51, 500 kb/s, 30k tbn, 29.97 tbc Stream #0.1(eng): Audio: aac, 48000 Hz, stereo, s16, 96 kb/s Metadata comment : Encoded with the Statusfirm Video Transcoder Stream mapping: Stream #0.0 -> #0.0 Stream #0.1 -> #0.1 Press [q] to stop encoding [h264 @ 0x99de950]B picture before any references, skipping [h264 @ 0x99de950]decode_slice_header error [h264 @ 0x99de950]no frame! Error while decoding stream #0.0 [h264 @ 0x99de950]B picture before any references, skipping [h264 @ 0x99de950]decode_slice_header error [h264 @ 0x99de950]no frame! Error while decoding stream #0.0 frame= 20 fps= 0 q=13797729.0 size= 0kB time=0.66 bitrate= 0.6kbits/s frame= 39 fps= 37 q=13797729.0 size= 0kB time=1.30 bitrate= 0.3kbits/s frame= 48 fps= 30 q=33.0 size= 11kB time=0.10 bitrate= 903.0kbits/s frame= 58 fps= 27 q=31.0 size= 22kB time=0.43 bitrate= 421.0kbits/s frame= 67 fps= 25 q=29.0 size= 41kB time=0.73 bitrate= 462.6kbits/s frame= 75 fps= 23 q=29.0 size= 59kB time=1.00 bitrate= 486.7kbits/s frame= 83 fps= 22 q=29.0 size= 81kB time=1.27 bitrate= 521.9kbits/s frame= 90 fps= 21 q=29.0 size= 97kB time=1.50 bitrate= 530.1kbits/s frame= 98 fps= 20 q=29.0 size= 114kB time=1.77 bitrate= 526.9kbits/s frame= 106 fps= 20 q=29.0 size= 134kB time=2.04 bitrate= 537.7kbits/s frame= 114 fps= 19 q=29.0 size= 150kB time=2.30 bitrate= 533.7kbits/s frame= 122 fps= 19 q=29.0 size= 172kB time=2.57 bitrate= 547.8kbits/s frame= 130 fps= 19 q=29.0 size= 193kB time=2.84 bitrate= 557.5kbits/s frame= 136 fps= 18 q=29.0 size= 211kB time=3.04 bitrate= 570.0kbits/s frame= 144 fps= 18 q=29.0 size= 242kB time=3.30 bitrate= 599.5kbits/s frame= 152 fps= 17 q=30.0 size= 261kB time=3.57 bitrate= 598.6kbits/s frame= 157 fps= 15 q=-1.0 Lsize= 368kB time=5.21 bitrate= 579.3kbits/s video:302kB audio:61kB global headers:0kB muxing overhead 1.416371% [libx264 @ 0x99e1020]frame I:1 Avg QP:27.22 size: 8720 [libx264 @ 0x99e1020]frame P:48 Avg QP:25.15 size: 3759 [libx264 @ 0x99e1020]frame B:108 Avg QP:30.10 size: 1105 [libx264 @ 0x99e1020]consecutive B-frames: 0.6% 11.5% 28.8% 59.0% [libx264 @ 0x99e1020]mb I I16..4: 28.5% 47.6% 23.9% [libx264 @ 0x99e1020]mb P I16..4: 0.8% 1.3% 0.5% P16..4: 50.6% 17.7% 13.1% 0.0% 0.0% skip:15.9% [libx264 @ 0x99e1020]mb B I16..4: 0.2% 0.3% 0.1% B16..8: 44.0% 1.2% 2.6% direct: 5.1% skip:46.5% L0:45.5% L1:51.0% BI: 3.5% [libx264 @ 0x99e1020]final ratefactor: 23.51 [libx264 @ 0x99e1020]8x8 transform intra:49.9% inter:67.9% [libx264 @ 0x99e1020]direct mvs spatial:98.1% temporal:1.9% [libx264 @ 0x99e1020]coded y,uvDC,uvAC intra: 54.7% 76.1% 41.4% inter: 17.1% 24.4% 7.8% [libx264 @ 0x99e1020]i16 v,h,dc,p: 18% 52% 5% 25% [libx264 @ 0x99e1020]i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 12% 22% 9% 7% 10% 10% 9% 8% 13% [libx264 @ 0x99e1020]i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 13% 18% 8% 8% 10% 13% 10% 9% 12% [libx264 @ 0x99e1020]Weighted P-Frames: Y:10.4% [libx264 @ 0x99e1020]ref P L0: 60.2% 15.3% 11.0% 7.6% 5.2% 0.7% [libx264 @ 0x99e1020]ref B L0: 72.6% 15.6% 11.8% [libx264 @ 0x99e1020]kb/s:471.17 Segmentation fault I'm wondering if anyone else has ran into similar issues. I wasn't able to find anything helpful via Google. Another question I have is if anyone knows of a company that offers paid support for FFMPEG. Thank you for your time.

    Read the article

  • FFmpeg creates emtpy (black) frames

    - by resamsel
    I have a set of images from a timelapse shot (172 JPG files) that I want to convert into a movie. I tried several parameters with FFmpeg, but all I get is a video with black frames (though it has the expected length). ffmpeg -f image2 -vcodec mjpeg -y -i img_%03d.jpg timelapse2.mpg The command above creates this video: http://sdm-net.org/data/timelapse2.mpg What I'm expecting is something like this (created with Time Lapse Assembler.app): https://vimeo.com/39038362 - This is my fallback option, but I'd really like to create timelapse movies from a script. I'm on OSX Lion (10.7.3) with FFmpeg version (0.10) installed via Homebrew. I also tried to find a proper version of mencoder for OSX, but this doesn't seem to be an easy task. Also, ImageMagick's convert doesn't seem to work nicely, it creates really bad output and it seems there's not much I can do about it... Edit: With libx264 and an mp4 container: ffmpeg -f image2 -y -i img_%03d.jpg -vcodec libx264 timelapse4.mp4 Output: ffmpeg version 0.10 Copyright (c) 2000-2012 the FFmpeg developers built on Mar 26 2012 13:47:02 with clang 3.0 (tags/Apple/clang-211.12) configuration: --prefix=/usr/local/Cellar/ffmpeg/0.10 --enable-shared --enable-gpl --enable-version3 --enable-nonfree --enable-hardcoded-tables --enable-libfreetype --cc=/usr/bin/clang --enable-libx264 --enable-libfaac --enable-libmp3lame --enable-librtmp --enable-libtheora --enable-libvorbis --enable-libvpx --enable-libxvid --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libass --disable-ffplay libavutil 51. 34.101 / 51. 34.101 libavcodec 53. 60.100 / 53. 60.100 libavformat 53. 31.100 / 53. 31.100 libavdevice 53. 4.100 / 53. 4.100 libavfilter 2. 60.100 / 2. 60.100 libswscale 2. 1.100 / 2. 1.100 libswresample 0. 6.100 / 0. 6.100 libpostproc 52. 0.100 / 52. 0.100 Input #0, image2, from 'img_%03d.jpg': Duration: 00:00:06.88, start: 0.000000, bitrate: N/A Stream #0:0: Video: mjpeg, yuvj420p, 3888x2592 [SAR 72:72 DAR 3:2], 25 fps, 25 tbr, 25 tbn, 25 tbc [buffer @ 0x7f8ec9415f20] w:3888 h:2592 pixfmt:yuvj420p tb:1/1000000 sar:72/72 sws_param: [libx264 @ 0x7f8ec981d800] using SAR=1/1 [libx264 @ 0x7f8ec981d800] frame MB size (243x162) > level limit (36864) [libx264 @ 0x7f8ec981d800] MB rate (984150) > level limit (983040) [libx264 @ 0x7f8ec981d800] using cpu capabilities: MMX2 SSE2Fast SSSE3 FastShuffle SSE4.2 AVX [libx264 @ 0x7f8ec981d800] profile High, level 5.1 [libx264 @ 0x7f8ec981d800] 264 - core 120 - H.264/MPEG-4 AVC codec - Copyleft 2003-2011 - http://www.videolan.org/x264.html - options: cabac=1 ref=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=12 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=25 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=crf mbtree=1 crf=23.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00 Output #0, mp4, to 'timelapse4.mp4': Metadata: encoder : Lavf53.31.100 Stream #0:0: Video: h264 (![0][0][0] / 0x0021), yuvj420p, 3888x2592 [SAR 72:72 DAR 3:2], q=-1--1, 25 tbn, 25 tbc Stream mapping: Stream #0:0 -> #0:0 (mjpeg -> libx264) Press [q] to stop, [?] for help frame= 172 fps= 18 q=-1.0 Lsize= 259kB time=00:00:06.80 bitrate= 312.3kbits/s video:256kB audio:0kB global headers:0kB muxing overhead 1.089647% [libx264 @ 0x7f8ec981d800] frame I:1 Avg QP: 9.60 size:212820 [libx264 @ 0x7f8ec981d800] frame P:43 Avg QP:30.50 size: 291 [libx264 @ 0x7f8ec981d800] frame B:128 Avg QP:31.00 size: 285 [libx264 @ 0x7f8ec981d800] consecutive B-frames: 0.6% 0.0% 1.7% 97.7% [libx264 @ 0x7f8ec981d800] mb I I16..4: 22.5% 77.2% 0.3% [libx264 @ 0x7f8ec981d800] mb P I16..4: 0.0% 0.0% 0.0% P16..4: 0.0% 0.0% 0.0% 0.0% 0.0% skip:100.0% [libx264 @ 0x7f8ec981d800] mb B I16..4: 0.0% 0.0% 0.0% B16..8: 0.0% 0.0% 0.0% direct: 0.0% skip:100.0% L0: 1.2% L1:98.8% BI: 0.0% [libx264 @ 0x7f8ec981d800] 8x8 transform intra:77.2% inter:100.0% [libx264 @ 0x7f8ec981d800] coded y,uvDC,uvAC intra: 41.2% 23.4% 0.6% inter: 0.0% 0.0% 0.0% [libx264 @ 0x7f8ec981d800] i16 v,h,dc,p: 40% 25% 35% 1% [libx264 @ 0x7f8ec981d800] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 36% 32% 30% 1% 0% 0% 0% 0% 0% [libx264 @ 0x7f8ec981d800] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 51% 40% 6% 1% 1% 0% 1% 0% 1% [libx264 @ 0x7f8ec981d800] i8c dc,h,v,p: 60% 21% 19% 0% [libx264 @ 0x7f8ec981d800] Weighted P-Frames: Y:0.0% UV:0.0% [libx264 @ 0x7f8ec981d800] ref P L0: 92.3% 0.0% 0.0% 7.7% [libx264 @ 0x7f8ec981d800] ref B L0: 50.0% 0.0% 50.0% [libx264 @ 0x7f8ec981d800] ref B L1: 99.4% 0.6% [libx264 @ 0x7f8ec981d800] kb/s:304.49 Output timelapse4.mp4 (beacause of spam protection I can only post two links with my reputation): http sdm-net.org/data/timelapse4.mp4

    Read the article

  • Screen Casting using ffmpeg (too fast)

    - by rowman
    I can use ffmpeg to make screen casts: ffmpeg -f x11grab -s 1280x800 -i :0.0 -c:v libx264 -framerate 30 -r 30 -crf 18 out.mkv However the output comes out to be too fast paced. It also happens with GTK RecordMyDesktop if I enable the encode on the fly. So, the questions is how to get a normal video pace. Also in order to capture the sound with ffmpeg what option should be used? FFmpeg Output: ffmpeg -f x11grab -s 1280x800 -r 30 -i :0.0 -c:v libx264 -framerate 30 -r 30 -crf 18 out.mkv ffmpeg version N-35162-g87244c8 Copyright (c) 2000-2012 the FFmpeg developers built on Oct 7 2012 15:56:19 with gcc 4.6 (Ubuntu/Linaro 4.6.3-1ubuntu5) configuration: --enable-gpl --enable-libfaac --enable-libfdk-aac --enable-libmp3lame --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-librtmp --enable-libtheora --enable-libvorbis --enable-libvpx --enable-x11grab --enable-libx264 --enable-nonfree --enable-version3 libavutil 51. 73.102 / 51. 73.102 libavcodec 54. 64.100 / 54. 64.100 libavformat 54. 29.105 / 54. 29.105 libavdevice 54. 3.100 / 54. 3.100 libavfilter 3. 19.102 / 3. 19.102 libswscale 2. 1.101 / 2. 1.101 libswresample 0. 16.100 / 0. 16.100 libpostproc 52. 1.100 / 52. 1.100 [x11grab @ 0xab896a0] device: :0.0 -> display: :0.0 x: 0 y: 0 width: 1280 height: 800 [x11grab @ 0xab896a0] shared memory extension found [x11grab @ 0xab896a0] Estimating duration from bitrate, this may be inaccurate Input #0, x11grab, from ':0.0': Duration: N/A, start: 1350136942.608988, bitrate: 983040 kb/s Stream #0:0: Video: rawvideo (BGR[0] / 0x524742), bgr0, 1280x800, 983040 kb/s, 30 tbr, 1000k tbn, 30 tbc [libx264 @ 0xab87320] using cpu capabilities: MMX2 SSE2Fast SSSE3 Cache64 SlowCTZ SlowAtom [libx264 @ 0xab87320] profile High 4:4:4 Predictive, level 3.2, 4:4:4 8-bit [libx264 @ 0xab87320] 264 - core 128 r2 198a7ea - H.264/MPEG-4 AVC codec - Copyleft 2003-2012 - http://www.videolan.org/x264.html - options: cabac=1 ref=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=4 threads=6 lookahead_threads=1 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=25 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=crf mbtree=1 crf=18.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00 Output #0, matroska, to 'out.mkv': Metadata: encoder : Lavf54.29.105 Stream #0:0: Video: h264, yuv444p, 1280x800, q=-1--1, 1k tbn, 30 tbc Stream mapping: Stream #0:0 -> #0:0 (rawvideo -> libx264) Press [q] to stop, [?] for help frame= 10 fps=0.0 q=0.0 size= 1kB time=00:00:00.00 bitrate= 0.0kbits/sframe= 19 fps= 17 q=0.0 size= 1kB time=00:00:00.00 bitrate= 0.0kbits/sframe= 28 fps= 17 q=0.0 size= 1kB time=00:00:00.00 bitrate= 0.0kbits/sframe= 37 fps= 17 q=0.0 size= 1kB time=00:00:00.00 bitrate= 0.0kbits/sframe= 45 fps= 16 q=0.0 size= 1kB time=00:00:00.00 bitrate= 0.0kbits/sframe= 47 fps= 14 q=0.0 size= 1kB time=00:00:00.00 bitrate= 0.0kbits/sframe= 52 fps= 13 q=24.0 size= 257kB time=00:00:00.00 bitrate=2101632.0kbiframe= 55 fps= 12 q=24.0 size= 257kB time=00:00:00.10 bitrate=20808.2kbitsframe= 59 fps= 11 q=24.0 size= 289kB time=00:00:00.23 bitrate=10145.0kbitsframe= 64 fps= 11 q=24.0 size= 289kB time=00:00:00.40 bitrate=5894.7kbits/frame= 70 fps= 11 q=24.0 size= 289kB time=00:00:00.60 bitrate=3933.1kbits/frame= 72 fps= 10 q=24.0 size= 289kB time=00:00:00.66 bitrate=3549.2kbits/frame= 77 fps=9.8 q=24.0 size= 289kB time=00:00:00.83 bitrate=2837.7kbits/frame= 80 fps=9.6 q=24.0 size= 289kB time=00:00:00.93 bitrate=2533.5kbits/frame= 85 fps=9.3 q=24.0 size= 289kB time=00:00:01.10 bitrate=2146.9kbits/frame= 89 fps=9.3 q=24.0 size= 289kB time=00:00:01.23 bitrate=1917.1kbits/frame= 92 fps=9.1 q=24.0 size= 289kB time=00:00:01.33 bitrate=1773.3kbits/frame= 96 fps=9.0 q=24.0 size= 289kB time=00:00:01.46 bitrate=1612.4kbits/frame= 99 fps=8.8 q=24.0 size= 321kB time=00:00:01.56 bitrate=1676.8kbits/frame= 104 fps=8.7 q=24.0 size= 321kB time=00:00:01.73 bitrate=1515.2kbits/frame= 109 fps=5.3 q=24.0 Lsize= 1093kB time=00:00:03.56 bitrate=2511.5kbits/s video:1092kB audio:0kB subtitle:0 global headers:0kB muxing overhead 0.120198% [libx264 @ 0xab87320] frame I:3 Avg QP:18.93 size:142610 [libx264 @ 0xab87320] frame P:43 Avg QP:20.79 size: 15751 [libx264 @ 0xab87320] frame B:63 Avg QP:23.75 size: 195 [libx264 @ 0xab87320] consecutive B-frames: 21.1% 1.8% 11.0% 66.1% [libx264 @ 0xab87320] mb I I16..4: 50.0% 21.1% 28.9% [libx264 @ 0xab87320] mb P I16..4: 6.1% 0.9% 3.2% P16..4: 5.5% 1.2% 0.6% 0.0% 0.0% skip:82.5% [libx264 @ 0xab87320] mb B I16..4: 0.4% 0.1% 0.0% B16..8: 2.9% 0.1% 0.0% direct: 0.0% skip:96.5% L0:40.7% L1:57.0% BI: 2.3% [libx264 @ 0xab87320] 8x8 transform intra:14.5% inter:46.1% [libx264 @ 0xab87320] coded y,u,v intra: 33.5% 24.1% 25.4% inter: 0.9% 0.4% 0.4% [libx264 @ 0xab87320] i16 v,h,dc,p: 70% 26% 1% 3% [libx264 @ 0xab87320] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 11% 21% 30% 5% 7% 5% 7% 4% 10% [libx264 @ 0xab87320] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 32% 35% 12% 2% 4% 3% 4% 3% 5% [libx264 @ 0xab87320] Weighted P-Frames: Y:0.0% UV:0.0% [libx264 @ 0xab87320] ref P L0: 57.0% 5.6% 26.8% 10.6% [libx264 @ 0xab87320] ref B L0: 69.4% 22.6% 8.0% [libx264 @ 0xab87320] ref B L1: 93.7% 6.3% [libx264 @ 0xab87320] kb/s:2460.40

    Read the article

  • Own DataFormWebPart: Unable to display this Web Part.

    - by user307852
    Hi, What I want is to display a paginable list from my custom data source. All came from the fact that I needed some logical relationships between seach scopes and some dates. I considered ContentQueryWebpart, but CAML is too complicated as I have plenty of different conditions, CoreResults webpart is too limited as it uses KeyWordQuery so I inherited from DataFormWebPart to display my own custom search results from my own custom xml source. Thats the best way i am aware of... I knew I needed some configuration to write in my pageLayout like MyWebParts:MyCustomWebPart etc so I went to Designer, put DataFormWebPart on a page, linked it to list of pages, and set multiple item view and that gave me some configuration.. Firstly i checked if DataFormWebPart works when put on pageLayout and it sucessfully displayed my pages list in pages library. But that was not what I wanted, i needed to set my own XML data source... I then changed the configuration of WebPartPages:DataFormWebPart to match mine and detach from any listName or listId and I change the XSL tag to much simplier to display all results and now I am getting: Unable to display this Web Part. To troubleshoot the problem, open this Web page in a Microsoft SharePoint Foundation-compatible HTML editor such as Microsoft SharePoint Designer. If the problem persists, contact your Web server administrator. and there is no way to know what is wrong:/ The webpart public class MyCustomWebPart : DataFormWebPart{ public override void DataBind() { ...... XmlDataSource source = new XmlDataSource(); source.Data = doc.InnerXml; this.DataSource=source; base.DataBind(); } } The doc XML: <dsQueryResponse><Rows><Row URL="http://myserver/sites/sc/myDoc.doc" TITLE="Specification.doc" AUTHOR="System.String[]" /></Rows></dsQueryResponse> The webpart is in PageLayout, inserted without webpartzone: <MyWebParts:MyCustomWebPart runat="server" Description="" ListDisplayName="" PartOrder="2" HelpLink="" AllowRemove="True" IsVisible="True" AllowHide="True" UseSQLDataSourcePaging="True" ExportControlledProperties="True" DataSourceID="" Title="" ViewFlag="0" NoDefaultStyle="TRUE" AllowConnect="True" FrameState="Normal" PageSize="10" PartImageLarge="" AsyncRefresh="True" ExportMode="All" Dir="Default" DetailLink="" ShowWithSampleData="False" FrameType="None" PartImageSmall="" IsIncluded="True" SuppressWebPartChrome="False" AllowEdit="True" ManualRefresh="False" ChromeType="None" AutoRefresh="False" AutoRefreshInterval="60" AllowMinimize="True" ViewContentTypeId="" InitialAsyncDataFetch="False" MissingAssembly="Cannot import this Web Part." HelpMode="Modeless" ListUrl="" ID="g_c2180fb9_c667_42f3_aab3_c3340cb0ac5a" ConnectionID="00000000-0000-0000-0000-000000000000" AllowZoneChange="True" IsIncludedFilter="" __MarkupType="vsattributemarkup" __WebPartId="{C2233FB9-C667-42F3-AAB3-C334223C5A}" __AllowXSLTEditing="true" WebPart="true" Height="" Width=""> <Xsl> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/> <xsl:template match="/"> <xmp> <xsl:copy-of select="*"/> </xmp> </xsl:template> </xsl:stylesheet> </Xsl> <DataSources> <SharePoint:SPDataSource runat="server" DataSourceMode="List" SelectCommand="<View></View>" UpdateCommand="" InsertCommand="" DeleteCommand="" UseInternalName="True" ID="spdatasource3"> <SelectParameters> <asp:Parameter DefaultValue="0" Name="StartRowIndex"></asp:Parameter><asp:Parameter DefaultValue="0" Name="nextpagedata"> </asp:Parameter><asp:Parameter DefaultValue="10" Name="MaximumRows"></asp:Parameter> </SelectParameters> </SharePoint:SPDataSource> </DataSources> </MyWebParts:MyCustomWebPart>

    Read the article

  • "Content is not allowed in prolog" when parsing perfectly valid XML on GAE

    - by Adrian Petrescu
    Hey guys, I've been beating my head against this absolutely infuriating bug for the last 48 hours, so I thought I'd finally throw in the towel and try asking here before I throw my laptop out the window. I'm trying to parse the response XML from a call I made to AWS SimpleDB. The response is coming back on the wire just fine; for example, it may look like: <?xml version="1.0" encoding="utf-8"?> <ListDomainsResponse xmlns="http://sdb.amazonaws.com/doc/2009-04-15/"> <ListDomainsResult> <DomainName>Audio</DomainName> <DomainName>Course</DomainName> <DomainName>DocumentContents</DomainName> <DomainName>LectureSet</DomainName> <DomainName>MetaData</DomainName> <DomainName>Professors</DomainName> <DomainName>Tag</DomainName> </ListDomainsResult> <ResponseMetadata> <RequestId>42330b4a-e134-6aec-e62a-5869ac2b4575</RequestId> <BoxUsage>0.0000071759</BoxUsage> </ResponseMetadata> </ListDomainsResponse> I pass in this XML to a parser with XMLEventReader eventReader = xmlInputFactory.createXMLEventReader(response.getContent()); and call eventReader.nextEvent(); a bunch of times to get the data I want. Here's the bizarre part -- it works great inside the local server. The response comes in, I parse it, everyone's happy. The problem is that when I deploy the code to Google App Engine, the outgoing request still works, and the response XML seems 100% identical and correct to me, but the response fails to parse with the following exception: com.amazonaws.http.HttpClient handleResponse: Unable to unmarshall response (ParseError at [row,col]:[1,1] Message: Content is not allowed in prolog.): <?xml version="1.0" encoding="utf-8"?> <ListDomainsResponse xmlns="http://sdb.amazonaws.com/doc/2009-04-15/"><ListDomainsResult><DomainName>Audio</DomainName><DomainName>Course</DomainName><DomainName>DocumentContents</DomainName><DomainName>LectureSet</DomainName><DomainName>MetaData</DomainName><DomainName>Professors</DomainName><DomainName>Tag</DomainName></ListDomainsResult><ResponseMetadata><RequestId>42330b4a-e134-6aec-e62a-5869ac2b4575</RequestId><BoxUsage>0.0000071759</BoxUsage></ResponseMetadata></ListDomainsResponse> javax.xml.stream.XMLStreamException: ParseError at [row,col]:[1,1] Message: Content is not allowed in prolog. at com.sun.org.apache.xerces.internal.impl.XMLStreamReaderImpl.next(Unknown Source) at com.sun.xml.internal.stream.XMLEventReaderImpl.nextEvent(Unknown Source) at com.amazonaws.transform.StaxUnmarshallerContext.nextEvent(StaxUnmarshallerContext.java:153) ... (rest of lines omitted) I have double, triple, quadruple checked this XML for 'invisible characters' or non-UTF8 encoded characters, etc. I looked at it byte-by-byte in an array for byte-order-marks or something of that nature. Nothing; it passes every validation test I could throw at it. Even stranger, it happens if I use a Saxon-based parser as well -- but ONLY on GAE, it always works fine in my local environment. It makes it very hard to trace the code for problems when I can only run the debugger on an environment that works perfectly (I haven't found any good way to remotely debug on GAE). Nevertheless, using the primitive means I have, I've tried a million approaches including: XML with and without the prolog With and without newlines With and without the "encoding=" attribute in the prolog Both newline styles With and without the chunking information present in the HTTP stream And I've tried most of these in multiple combinations where it made sense they would interact -- nothing! I'm at my wit's end. Has anyone seen an issue like this before that can hopefully shed some light on it? Thanks!

    Read the article

  • Tapestry / JDBC - Storing Date

    - by Ben
    So Im using Tapestry and trying to store a date from a beaneditform into a simple Access database. It wont work, Im getting Null pointer exceptions and I cannot understand why. String onSuccess() { System.out.println("in on success!"); String nextPage = null; try { Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); connection = DriverManager.getConnection("jdbc:odbc:FYP_Users"); DateFormat df = new SimpleDateFormat("dd/MM/yyyy"); Date ed = occasion.getEventDate(); String reportDate = df.format(ed); statement.executeUpdate("INSERT INTO Events (UserName, EventName, EventDate, EventTime, EventDetails, People, Rating) " + "VALUES ('" + login.getUserName() + "', '" + occasion.getEventName()+ "', '" + reportDate + "', '" + occasion.getEventTime() + "', '" + occasion.getEventDetails() + "', '" + occasion.getPeople() + "', '"+ "1" +"')"); connection.close(); occasion = new Occasion(); //occasion.setUserName(occasion.getUserName()); occasion.setEventName(occasion.getEventName()); occasion.setEventDate(occasion.getEventDate()); occasion.setEventTime(occasion.getEventTime()); occasion.setEventDetails(occasion.getEventDetails()); occasion.setPeople(occasion.getPeople()); //occasion.setRating(occasion.getRating()); nextPage = "UserIndex"; } catch (SQLException e) {e.printStackTrace();} catch (ClassNotFoundException e) {e.printStackTrace();} return nextPage; } Stack trace java.util.Calendar.setTime(Unknown Source) java.text.SimpleDateFormat.format(Unknown Source) java.text.SimpleDateFormat.format(Unknown Source) java.text.DateFormat.format(Unknown Source) myappj.pages.CreateOccasion.onSuccess(CreateOccasion.java:61) myappj.pages.CreateOccasion.dispatchComponentEvent(CreateOccasion.java) org.apache.tapestry5.internal.structure.ComponentPageElementImpl.dispatchEvent(ComponentPageElementImpl.java:902) org.apache.tapestry5.internal.structure.ComponentPageElementImpl.triggerContextEvent(ComponentPageElementImpl.java:1081) org.apache.tapestry5.internal.structure.InternalComponentResourcesImpl.triggerContextEvent(InternalComponentResourcesImpl.java:263) org.apache.tapestry5.corelib.components.Form._$advised$onAction(Form.java:398) org.apache.tapestry5.corelib.components.Form$onAction$invocation_128ef468876.invokeAdvisedMethod(Form$onAction$invocation_128ef468876.java) org.apache.tapestry5.internal.services.AbstractComponentMethodInvocation.proceed(AbstractComponentMethodInvocation.java:71) org.apache.tapestry5.ioc.internal.services.LoggingAdvice.advise(LoggingAdvice.java:37) org.apache.tapestry5.internal.transform.LogWorker$1.advise(LogWorker.java:54) org.apache.tapestry5.internal.services.AbstractComponentMethodInvocation.proceed(AbstractComponentMethodInvocation.java:80) org.apache.tapestry5.corelib.components.Form.onAction(Form.java) org.apache.tapestry5.corelib.components.Form.dispatchComponentEvent(Form.java) org.apache.tapestry5.internal.structure.ComponentPageElementImpl.dispatchEvent(ComponentPageElementImpl.java:910) org.apache.tapestry5.internal.structure.ComponentPageElementImpl.triggerContextEvent(ComponentPageElementImpl.java:1081) org.apache.tapestry5.internal.services.ComponentEventRequestHandlerImpl.handle(ComponentEventRequestHandlerImpl.java:75) org.apache.tapestry5.internal.services.ImmediateActionRenderResponseFilter.handle(ImmediateActionRenderResponseFilter.java:42) $ComponentEventRequestHandler_128ef45bf4a.handle($ComponentEventRequestHandler_128ef45bf4a.java) org.apache.tapestry5.internal.services.AjaxFilter.handle(AjaxFilter.java:42) $ComponentEventRequestHandler_128ef45bf4a.handle($ComponentEventRequestHandler_128ef45bf4a.java) org.apache.tapestry5.services.TapestryModule$36.handle(TapestryModule.java:2164) $ComponentEventRequestHandler_128ef45bf4a.handle($ComponentEventRequestHandler_128ef45bf4a.java) $ComponentEventRequestHandler_128ef45bea5.handle($ComponentEventRequestHandler_128ef45bea5.java) org.apache.tapestry5.internal.services.ComponentRequestHandlerTerminator.handleComponentEvent(ComponentRequestHandlerTerminator.java:43) $ComponentRequestHandler_128ef45be99.handleComponentEvent($ComponentRequestHandler_128ef45be99.java) org.apache.tapestry5.internal.services.ComponentEventDispatcher.dispatch(ComponentEventDispatcher.java:46) $Dispatcher_128ef45be9b.dispatch($Dispatcher_128ef45be9b.java) $Dispatcher_128ef45be92.dispatch($Dispatcher_128ef45be92.java) org.apache.tapestry5.services.TapestryModule$RequestHandlerTerminator.service(TapestryModule.java:245) org.apache.tapestry5.internal.services.RequestErrorFilter.service(RequestErrorFilter.java:26) $RequestHandler_128ef45be93.service($RequestHandler_128ef45be93.java) org.apache.tapestry5.services.TapestryModule$4.service(TapestryModule.java:778) $RequestHandler_128ef45be93.service($RequestHandler_128ef45be93.java) org.apache.tapestry5.services.TapestryModule$3.service(TapestryModule.java:767) $RequestHandler_128ef45be93.service($RequestHandler_128ef45be93.java) org.apache.tapestry5.internal.services.StaticFilesFilter.service(StaticFilesFilter.java:85) $RequestHandler_128ef45be93.service($RequestHandler_128ef45be93.java) myappj.services.AppModule$1.service(AppModule.java:90) $RequestFilter_128ef45be8e.service($RequestFilter_128ef45be8e.java) $RequestHandler_128ef45be93.service($RequestHandler_128ef45be93.java) org.apache.tapestry5.internal.services.CheckForUpdatesFilter$2.invoke(CheckForUpdatesFilter.java:90) org.apache.tapestry5.internal.services.CheckForUpdatesFilter$2.invoke(CheckForUpdatesFilter.java:81) org.apache.tapestry5.ioc.internal.util.ConcurrentBarrier.withRead(ConcurrentBarrier.java:85) org.apache.tapestry5.internal.services.CheckForUpdatesFilter.service(CheckForUpdatesFilter.java:103) $RequestHandler_128ef45be93.service($RequestHandler_128ef45be93.java) $RequestHandler_128ef45be88.service($RequestHandler_128ef45be88.java) org.apache.tapestry5.services.TapestryModule$HttpServletRequestHandlerTerminator.service(TapestryModule.java:197) org.apache.tapestry5.internal.gzip.GZipFilter.service(GZipFilter.java:53) $HttpServletRequestHandler_128ef45be8a.service($HttpServletRequestHandler_128ef45be8a.java) org.apache.tapestry5.internal.services.IgnoredPathsFilter.service(IgnoredPathsFilter.java:62) $HttpServletRequestFilter_128ef45be87.service($HttpServletRequestFilter_128ef45be87.java) $HttpServletRequestHandler_128ef45be8a.service($HttpServletRequestHandler_128ef45be8a.java) org.apache.tapestry5.services.TapestryModule$2.service(TapestryModule.java:726) $HttpServletRequestHandler_128ef45be8a.service($HttpServletRequestHandler_128ef45be8a.java) $HttpServletRequestHandler_128ef45be85.service($HttpServletRequestHandler_128ef45be85.java) org.apache.tapestry5.TapestryFilter.doFilter(TapestryFilter.java:127) org.mortbay.jetty.servlet.ServletHandler$CachedChain.doFilter(ServletHandler.java:1084) org.mortbay.jetty.servlet.ServletHandler.handle(ServletHandler.java:360) org.mortbay.jetty.security.SecurityHandler.handle(SecurityHandler.java:216) org.mortbay.jetty.servlet.SessionHandler.handle(SessionHandler.java:181) org.mortbay.jetty.handler.ContextHandler.handle(ContextHandler.java:722) org.mortbay.jetty.webapp.WebAppContext.handle(WebAppContext.java:404) org.mortbay.jetty.handler.HandlerWrapper.handle(HandlerWrapper.java:139) org.mortbay.jetty.Server.handle(Server.java:324) org.mortbay.jetty.HttpConnection.handleRequest(HttpConnection.java:505) org.mortbay.jetty.HttpConnection$RequestHandler.content(HttpConnection.java:842) org.mortbay.jetty.HttpParser.parseNext(HttpParser.java:648) org.mortbay.jetty.HttpParser.parseAvailable(HttpParser.java:211) org.mortbay.jetty.HttpConnection.handle(HttpConnection.java:380) org.mortbay.io.nio.SelectChannelEndPoint.run(SelectChannelEndPoint.java:395) org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool.java:450)

    Read the article

  • Calling the same xsl:template for different node names of the same complex type

    - by CraftyFella
    Hi, I'm trying to keep my xsl DRY and as a result I wanted to call the same template for 2 sections of an XML document which happen to be the same complex type (ContactDetails and AltContactDetails). Given the following XML: <?xml version="1.0" encoding="UTF-8"?> <RootNode> <Name>Bob</Name> <ContactDetails> <Address> <Line1>1 High Street</Line1> <Town>TownName</Town> <Postcode>AB1 1CD</Postcode> </Address> <Email>[email protected]</Email> </ContactDetails> <AltContactDetails> <Address> <Line1>3 Market Square</Line1> <Town>TownName</Town> <Postcode>EF2 2GH</Postcode> </Address> <Email>[email protected]</Email> </AltContactDetails> </RootNode> I wrote an XSL Stylesheet as follows: <?xml version="1.0" encoding="UTF-8"?> <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"> <xsl:template match="/"> <PersonsName> <xsl:value-of select="RootNode/Name"/> </PersonsName> <xsl:call-template name="ContactDetails"> <xsl:with-param name="data"><xsl:value-of select="RootNode/ContactDetails"/></xsl:with-param> <xsl:with-param name="elementName"><xsl:value-of select="'FirstAddress'"/></xsl:with-param> </xsl:call-template> <xsl:call-template name="ContactDetails"> <xsl:with-param name="data"><xsl:value-of select="RootNode/AltContactDetails"/></xsl:with-param> <xsl:with-param name="elementName"><xsl:value-of select="'SecondAddress'"/></xsl:with-param> </xsl:call-template> </xsl:template> <xsl:template name="ContactDetails"> <xsl:param name="data"></xsl:param> <xsl:param name="elementName"></xsl:param> <xsl:element name="{$elementName}"> <FirstLine> <xsl:value-of select="$data/Address/Line1"/> </FirstLine> <Town> <xsl:value-of select="$data/Address/Town"/> </Town> <PostalCode> <xsl:value-of select="$data/Address/Postcode"/> </PostalCode> </xsl:element> </xsl:template> </xsl:stylesheet> When i try to run the style sheet it's complaining to me that I need to: To use a result tree fragment in a path expression, either use exsl:node-set() or specify version 1.1 I don't want to go to version 1.1.. So does anyone know how to get the exsl:node-set() working for the above example? Or if someone knows of a better way to apply the same template to 2 different sections then that would also really help me out? Thanks Dave

    Read the article

  • rendering a grid from a table: "this.mainBody is undefined"

    - by farhad
    Hello! I have a static html table on a page and i would like to transform it to a grid; so i applied this function after loading the table: function createTable() { // create the grid var grid = new Ext.ux.grid.TableGrid("tabella-colocazioni", { stripeRows: true // stripe alternate rows }); grid.render(); } I got this piece of code from here: http://www.java2s.com/Code/JavaScript/Ext-JS/CreateagridwithfromanexistingunformattedHTMLtable.htm . The result is the error "this.mainBody is undefined on ext-all-debug.js" on FireBug and the grid is empty. The html code of the table is this: <table cellspacing="0" id="tabella-colocazioni"> <thead> <tr style="background:#eeeeee;"> <th>Colocazione</th> <th>Frequenza</th> </tr> </thead> <tbody> <tr> <td>plusquam patria</td> <td>1</td> </tr> <tr> <td>patria pietate</td> <td>1</td> </tr> <tr> <td>Et patria</td> <td>1</td> </tr> <tr> <td>patria prohibet</td> <td>1</td> </tr> <tr> <td>Multos patria</td> <td>1</td> </tr> <tr> <td>patria reddidit</td> <td>1</td> </tr> <tr> <td>patronum patria</td> <td>1</td> </tr> <tr> <td>patria moesta</td> <td>1</td> </tr> </tbody> </table> What is the problem? Thank you very much.

    Read the article

< Previous Page | 70 71 72 73 74 75 76 77 78 79 80 81  | Next Page >