Search Results

Search found 27232 results on 1090 pages for 'mind mapping software'.

Page 75/1090 | < Previous Page | 71 72 73 74 75 76 77 78 79 80 81 82  | Next Page >

  • SRs @ Oracle: How do I License Thee?

    - by [email protected]
    With the release of the new Sun Ray product last week comes the advent of a different software licensing model. Where Sun had initially taken the approach of '1 desktop device = one license', we later changed things to be '1 concurrent connection to the server software = one license', and while there were ways to tell how many connections there were at a time, it wasn't the easiest thing to do.  And, when should you measure concurrency?  At your busiest time, of course... but when might that be?  9:00 Monday morning this week might yield a different result than 9:00 Monday morning last week.In the acquisition of this desktop virtualization product suite Oracle has changed things to be, in typical Oracle fashion, simpler.  There are now two choices for customers around licensing: Named User licenses and Per Device licenses.Here's how they work, and some examples:The Rules1) A Sun Ray device, and PC running the Desktop Access Client (DAC), are both considered unique devices.OR, 2) Any user running a session on either a Sun Ray or an DAC is still just one user.So, you have a choice of path to go down.Some Examples:Here are 6 use cases I can think of right now that will help you choose the Oracle server software licensing model that is right for your business:Case 1If I have 100 Sun Rays for 100 users, and 20 of them use DAC at home that is 100 user licenses.If I have 100 Sun Rays for 100 users, and 20 of them use DAC at home that is 120 device licenses.Two cases using the same metrics - different licensing models and therefore different results.Case 2If I have 100 Sun Rays for 200 users, and 20 of them use DAC at home that is 200 user licenses.If I have 100 Sun Rays for 200 users, and 20 of them use DAC at home that is 120 device licenses.Same metrics - very different results.Case 3If I have 100 Sun Rays for 50 users, and 20 of them use DAC at home that is 50 user licenses.If I have 100 Sun Rays for 50 users, and 20 of them use DAC at home that is 120 device licenses.Same metrics - but again - very different results.Based on the way your business operates you should be able to see which of the two licensing models is most advantageous to you.Got questions?  I'll try to help.(Thanks to Brad Lackey for the clarifications!)

    Read the article

  • Deferred rendering with VSM - Scaling light depth loses moments

    - by user1423893
    I'm calculating my shadow term using a VSM method. This works correctly when using forward rendered lights but fails with deferred lights. // Shadow term (1 = no shadow) float shadow = 1; // [Light Space -> Shadow Map Space] // Transform the surface into light space and project // NB: Could be done in the vertex shader, but doing it here keeps the // "light shader" abstraction and doesn't limit the number of shadowed lights float4x4 LightViewProjection = mul(LightView, LightProjection); float4 surf_tex = mul(position, LightViewProjection); // Re-homogenize // 'w' component is not used in later calculations so no need to homogenize (it will equal '1' if homogenized) surf_tex.xyz /= surf_tex.w; // Rescale viewport to be [0,1] (texture coordinate system) float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = -surf_tex.y * 0.5f + 0.5f; // Half texel offset //shadow_tex += (0.5 / 512); // Scaled distance to light (instead of 'surf_tex.z') float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; //float rescaled_dist_to_light = surf_tex.z; // [Variance Shadow Map Depth Calculation] // No filtering float2 moments = tex2D(ShadowSampler, shadow_tex).xy; // Flip the moments values to bring them back to their original values moments.x = 1.0 - moments.x; moments.y = 1.0 - moments.y; // Compute variance float E_x2 = moments.y; float Ex_2 = moments.x * moments.x; float variance = E_x2 - Ex_2; variance = max(variance, Bias.y); // Surface is fully lit if the current pixel is before the light occluder (lit_factor == 1) // One-tailed inequality valid if float lit_factor = (rescaled_dist_to_light <= moments.x - Bias.x); // Compute probabilistic upper bound (mean distance) float m_d = moments.x - rescaled_dist_to_light; // Chebychev's inequality float p = variance / (variance + m_d * m_d); p = ReduceLightBleeding(p, Bias.z); // Adjust the light color based on the shadow attenuation shadow *= max(lit_factor, p); This is what I know for certain so far: The lighting is correct if I do not try and calculate the shadow term. (No shadows) The shadow term is correct when calculated using forward rendered lighting. (VSM works with forward rendered lights) With the current rescaled light distance (lightAttenuation.y is the far plane value): float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; The light is correct and the shadow appears to be zoomed in and misses the blurring: When I do not rescale the light and use the homogenized 'surf_tex': float rescaled_dist_to_light = surf_tex.z; the shadows are blurred correctly but the lighting is incorrect and the cube model is no longer lit Why is scaling by the far plane value (LightAttenuation.y) zooming in too far? The only other factor involved is my world pixel position, which is calculated as follows: // [Position] float4 position; // [Screen Position] position.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above position.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component position.z = 1.0 - position.z; position.w = 1.0; // 1.0 = position.w / position.w // [World Position] position = mul(position, CameraViewProjectionInverse); // Re-homogenize position (xyz AND w, otherwise shadows will bend when camera is close) position.xyz /= position.w; position.w = 1.0; Using the inverse matrix of the camera's view x projection matrix does work for lighting but maybe it is incorrect for shadow calculation? EDIT: Light calculations for shadow including 'dist_to_light' // Work out the light position and direction in world space float3 light_position = float3(LightViewInverse._41, LightViewInverse._42, LightViewInverse._43); // Direction might need to be negated float3 light_direction = float3(-LightViewInverse._31, -LightViewInverse._32, -LightViewInverse._33); // Unnormalized light vector float3 dir_to_light = light_position - position; // Direction from vertex float dist_to_light = length(dir_to_light); // Normalise 'toLight' vector for lighting calculations dir_to_light = normalize(dir_to_light); EDIT2: These are the calculations for the moments (depth) //============================================= //---[Vertex Shaders]-------------------------- //============================================= DepthVSOutput depth_VS( float4 Position : POSITION, uniform float4x4 shadow_view, uniform float4x4 shadow_view_projection) { DepthVSOutput output = (DepthVSOutput)0; // First transform position into world space float4 position_world = mul(Position, World); output.position_screen = mul(position_world, shadow_view_projection); output.light_vec = mul(position_world, shadow_view).xyz; return output; } //============================================= //---[Pixel Shaders]--------------------------- //============================================= DepthPSOutput depth_PS(DepthVSOutput input) { DepthPSOutput output = (DepthPSOutput)0; // Work out the depth of this fragment from the light, normalized to [0, 1] float2 depth; depth.x = length(input.light_vec) / FarPlane; depth.y = depth.x * depth.x; // Flip depth values to avoid floating point inaccuracies depth.x = 1.0f - depth.x; depth.y = 1.0f - depth.y; output.depth = depth.xyxy; return output; } EDIT 3: I have tried the folloiwng: float4 pp; pp.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above pp.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component pp.z = 1.0 - pp.z; pp.w = 1.0; // 1.0 = position.w / position.w // Determine the depth of the pixel with respect to the light float4x4 LightViewProjection = mul(LightView, LightProjection); float4x4 matViewToLightViewProj = mul(CameraViewProjectionInverse, LightViewProjection); float4 vPositionLightCS = mul(pp, matViewToLightViewProj); float fLightDepth = vPositionLightCS.z / vPositionLightCS.w; // Transform from light space to shadow map texture space. float2 vShadowTexCoord = 0.5 * vPositionLightCS.xy / vPositionLightCS.w + float2(0.5f, 0.5f); vShadowTexCoord.y = 1.0f - vShadowTexCoord.y; // Offset the coordinate by half a texel so we sample it correctly vShadowTexCoord += (0.5f / 512); //g_vShadowMapSize This suffers the same problem as the second picture. I have tried storing the depth based on the view x projection matrix: output.position_screen = mul(position_world, shadow_view_projection); //output.light_vec = mul(position_world, shadow_view); output.light_vec = output.position_screen; depth.x = input.light_vec.z / input.light_vec.w; This gives a shadow that has lots surface acne due to horrible floating point precision errors. Everything is lit correctly though. EDIT 4: Found an OpenGL based tutorial here I have followed it to the letter and it would seem that the uv coordinates for looking up the shadow map are incorrect. The source uses a scaled matrix to get the uv coordinates for the shadow map sampler /// <summary> /// The scale matrix is used to push the projected vertex into the 0.0 - 1.0 region. /// Similar in role to a * 0.5 + 0.5, where -1.0 < a < 1.0. /// <summary> const float4x4 ScaleMatrix = float4x4 ( 0.5, 0.0, 0.0, 0.0, 0.0, -0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); I had to negate the 0.5 for the y scaling (M22) in order for it to work but the shadowing is still not correct. Is this really the correct way to scale? float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = surf_tex.y * -0.5f + 0.5f; The depth calculations are exactly the same as the source code yet they still do not work, which makes me believe something about the uv calculation above is incorrect.

    Read the article

  • Use depth bias for shadows in deferred shading

    - by cubrman
    We are building a deferred shading engine and we have a problem with shadows. To add shadows we use two maps: the first one stores the depth of the scene captured by the player's camera and the second one stores the depth of the scene captured by the light's camera. We then ran a shader that analyzes the two maps and outputs the third one with the ready shadow areas for the current frame. The problem we face is a classic one: Self-Shadowing: A standard way to solve this is to use the slope-scale depth bias and depth offsets, however as we are doing things in a deferred way we cannot employ this algorithm. Any attempts to set depth bias when capturing light's view depth produced no or unsatisfying results. So here is my question: MSDN article has a convoluted explanation of the slope-scale: bias = (m × SlopeScaleDepthBias) + DepthBias Where m is the maximum depth slope of the triangle being rendered, defined as: m = max( abs(delta z / delta x), abs(delta z / delta y) ) Could you explain how I can implement this algorithm manually in a shader? Maybe there are better ways to fix this problem for deferred shadows?

    Read the article

  • ubuntu 12.10 not updating

    - by gunjan parashar
    i have upgrade to ubuntu 12.10 from ubuntu 12.04 after that it is not updating software updater gives the following error : W:Failed to fetch http://archive.canonical.com/ubuntu/dists/precise/Release.gpg Unable to connect to 10.4.42.15:8080: W:Failed to fetch http://extras.ubuntu.com/ubuntu/dists/quantal/Release.gpg Unable to connect to 10.4.42.15:8080: W:Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/quantal/Release.gpg Unable to connect to 10.4.42.15:8080: W:Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/quantal-updates/Release.gpg Unable to connect to 10.4.42.15:8080: W:Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/quantal-backports/Release.gpg Unable to connect to 10.4.42.15:8080: W:Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/quantal-security/Release.gpg Unable to connect to 10.4.42.15:8080: W:Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/quantal-proposed/Release.gpg Unable to connect to 10.4.42.15:8080: W:Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/quantal/restricted/source/Sources Unable to connect to 10.4.42.15:8080: W:Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/quantal/main/source/Sources Unable to connect to 10.4.42.15:8080: W:Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/quantal/multiverse/source/Sources Unable to connect to 10.4.42.15:8080: W:Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/quantal/universe/source/Sources Unable to connect to 10.4.42.15:8080: : W:Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/quantal-proposed/universe/i18n/Translation-en Unable to connect to 10.4.42.15:8080: E:Some index files failed to download. They have been ignored, or old ones used instead. along with this i am not able to install any thing from software center , it just asks to use this source and after that it just keeps on quering software sources and nothing happens after that plz help me out , this 12.10 has became a great problem for me and forgive for my poor engish

    Read the article

  • How can I find the right UV coordinates for interpolating a bezier curve?

    - by ssb
    I'll let this picture do the talking. I'm trying to create a mesh from a bezier curve and then add a texture to it. The problem here is that the interpolation points along the curve do not increase linearly, so points farther from the control point (near the endpoints) stretch and those in the bend contract, causing the texture to be uneven across the curve, which can be problematic when using a pattern like stripes on a road. How can I determine how far along the curve the vertices actually are so I can give a proper UV coordinate? EDIT: Allow me to clarify that I'm not talking about the trapezoidal distortion of the roads. That I know is normal and I'm not concerned about. I've updated the image to show more clearly where my concerns are. Interpolating over the curve I get 10 segments, but each of these 10 segments is not spaced at an equal point along the curve, so I have to account for this in assigning UV data to vertices or else the road texture will stretch/shrink depending on how far apart vertices are at that particular part of the curve.

    Read the article

  • Is there any difference between storing textures and baked lighting for environment meshes?

    - by Ben Hymers
    I assume that when texturing environments, one or several textures will be used, and the UVs of the environment geometry will likely overlap on these textures, so that e.g. a tiling brick texture can be used by many parts of the environment, rather than UV unwrapping the entire thing, and having several areas of the texture be identical. If my assumption is wrong, please let me know! Now, when thinking about baking lighting, clearly this can't be done the same way - lighting in general will be unique to every face so the environment must be UV unwrapped without overlap, and lighting must be baked onto unique areas of one or several textures, to give each surface its own texture space to store its lighting. My questions are: Have I got this wrong? If so, how? Isn't baking lighting going to use a lot of texture space? Will the geometry need two UV sets, one used for the colour/normal texture and one for the lighting texture? Anything else you'd like to add? :)

    Read the article

  • Normal maps red in OpenGL?

    - by KaiserJohaan
    I am using Assimp to import 3d models, and FreeImage to parse textures. The problem I am having is that the normal maps are actually red rather than blue when I try to render them as normal diffuse textures. http://i42.tinypic.com/289ing3.png When I open the images in a image-viewing program they do indeed show up as blue. Heres when I create the texture; OpenGLTexture::OpenGLTexture(const std::vector<uint8_t>& textureData, uint32_t textureWidth, uint32_t textureHeight, TextureType textureType, Logger& logger) : mLogger(logger), mTextureID(gNextTextureID++), mTextureType(textureType) { glGenTextures(1, &mTexture); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, mTexture); CHECK_GL_ERROR(mLogger); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, textureWidth, textureHeight, 0, glTextureFormat, GL_UNSIGNED_BYTE, &textureData[0]); CHECK_GL_ERROR(mLogger); glGenerateMipmap(GL_TEXTURE_2D); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, 0); CHECK_GL_ERROR(mLogger); } Here is my fragment shader. You can see I just commented out the normal-map parsing and treated the normal map texture as the diffuse texture to display it and illustrate the problem. As for the rest of the code it interacts as expected with the diffuse textures so I dont see a obvious problem there. "#version 330 \n \ \n \ layout(std140) uniform; \n \ \n \ const int MAX_LIGHTS = 8; \n \ \n \ struct Light \n \ { \n \ vec4 mLightColor; \n \ vec4 mLightPosition; \n \ vec4 mLightDirection; \n \ \n \ int mLightType; \n \ float mLightIntensity; \n \ float mLightRadius; \n \ float mMaxDistance; \n \ }; \n \ \n \ uniform UnifLighting \n \ { \n \ vec4 mGamma; \n \ vec3 mViewDirection; \n \ int mNumLights; \n \ \n \ Light mLights[MAX_LIGHTS]; \n \ } Lighting; \n \ \n \ uniform UnifMaterial \n \ { \n \ vec4 mDiffuseColor; \n \ vec4 mAmbientColor; \n \ vec4 mSpecularColor; \n \ vec4 mEmissiveColor; \n \ \n \ bool mHasDiffuseTexture; \n \ bool mHasNormalTexture; \n \ bool mLightingEnabled; \n \ float mSpecularShininess; \n \ } Material; \n \ \n \ uniform sampler2D unifDiffuseTexture; \n \ uniform sampler2D unifNormalTexture; \n \ \n \ in vec3 frag_position; \n \ in vec3 frag_normal; \n \ in vec2 frag_texcoord; \n \ in vec3 frag_tangent; \n \ in vec3 frag_bitangent; \n \ \n \ out vec4 finalColor; " " \n \ \n \ void CalcGaussianSpecular(in vec3 dirToLight, in vec3 normal, out float gaussianTerm) \n \ { \n \ vec3 viewDirection = normalize(Lighting.mViewDirection); \n \ vec3 halfAngle = normalize(dirToLight + viewDirection); \n \ \n \ float angleNormalHalf = acos(dot(halfAngle, normalize(normal))); \n \ float exponent = angleNormalHalf / Material.mSpecularShininess; \n \ exponent = -(exponent * exponent); \n \ \n \ gaussianTerm = exp(exponent); \n \ } \n \ \n \ vec4 CalculateLighting(in Light light, in vec4 diffuseTexture, in vec3 normal) \n \ { \n \ if (light.mLightType == 1) // point light \n \ { \n \ vec3 positionDiff = light.mLightPosition.xyz - frag_position; \n \ float dist = max(length(positionDiff) - light.mLightRadius, 0); \n \ \n \ float attenuation = 1 / ((dist/light.mLightRadius + 1) * (dist/light.mLightRadius + 1)); \n \ attenuation = max((attenuation - light.mMaxDistance) / (1 - light.mMaxDistance), 0); \n \ \n \ vec3 dirToLight = normalize(positionDiff); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (attenuation * angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (attenuation * gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 2) // directional light \n \ { \n \ vec3 dirToLight = normalize(light.mLightDirection.xyz); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 4) // ambient light \n \ return diffuseTexture * Material.mAmbientColor * light.mLightIntensity * light.mLightColor; \n \ else \n \ return vec4(0.0); \n \ } \n \ \n \ void main() \n \ { \n \ vec4 diffuseTexture = vec4(1.0); \n \ if (Material.mHasDiffuseTexture) \n \ diffuseTexture = texture(unifDiffuseTexture, frag_texcoord); \n \ \n \ vec3 normal = frag_normal; \n \ if (Material.mHasNormalTexture) \n \ { \n \ diffuseTexture = vec4(normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0), 1.0); \n \ // vec3 normalTangentSpace = normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0); \n \ //mat3 tangentToWorldSpace = mat3(normalize(frag_tangent), normalize(frag_bitangent), normalize(frag_normal)); \n \ \n \ // normal = tangentToWorldSpace * normalTangentSpace; \n \ } \n \ \n \ if (Material.mLightingEnabled) \n \ { \n \ vec4 accumLighting = vec4(0.0); \n \ \n \ for (int lightIndex = 0; lightIndex < Lighting.mNumLights; lightIndex++) \n \ accumLighting += Material.mEmissiveColor * diffuseTexture + \n \ CalculateLighting(Lighting.mLights[lightIndex], diffuseTexture, normal); \n \ \n \ finalColor = pow(accumLighting, Lighting.mGamma); \n \ } \n \ else { \n \ finalColor = pow(diffuseTexture, Lighting.mGamma); \n \ } \n \ } \n"; Why is this? does normal-map textures need some sort of special treatment in opengl?

    Read the article

  • Understanding normal maps on terrain

    - by JohnB
    I'm having trouble understanding some of the math behind normal map textures even though I've got it to work using borrowed code, I want to understand it. I have a terrain based on a heightmap. I'm generating a mesh of triangles at load time and rendering that mesh. Now for each vertex I need to calculate a normal, a tangent, and a bitangent. My understanding is as follows, have I got this right? normal is a unit vector facing outwards from the surface of the triangle. For a vertex I take the average of the normals of the triangles using that vertex. tangent is a unit vector in the direction of the 'u' coordinates of the texture map. As my texture u,v coordinates follow the x and y coordinates of the terrain, then my understanding is that this vector is simply the vector along the surface in the x direction. So should be able to calculate this as simply the difference between vertices in the x direction to get a vector, (and normalize it). bitangent is a unit vector in the direction of the 'v' coordinates of the texture map. As my texture u,v coordinates follow the x and y coordinates of the terrain, then my understanding is that this vector is simply the vector along the surface in the y direction. So should be able to calculate this as simply the difference between vertices in the y direction to get a vector, (and normalize it). However the code I have borrowed seems much more complicated than this and takes into account the actual values of u, and v at each vertex which I don't understand the need for as they increase in exactly the same direction as x, and y. I implemented what I thought from above, and it simply doesn't work, the normals are clearly not working for lighting. Have I misunderstood something? Or can someone explain to me the physical meaning of the tangent and bitangent vectors when applied to a mesh generated from a hightmap like this, when u and v texture coordinates map along the x and y directions. Thanks for any help understanding this.

    Read the article

  • Compute directional light frustum from view furstum points and light direction

    - by Fabian
    I'm working on a friends engine project and my task is to construct a new frustum from the light direction that overlaps the view frustum and possible shadow casters. The project already has a function that creates a frustum for this but its way to big and includes way to many casters (shadows) which can't be seen in the view frustum. Now the only parameter of this function are the normalized light direction vector and a view class which lets me extract the 8 view frustum points in world space. I don't have any additional infos about the scene. I have read some of the related Questions here but non seem to fit very well to my problem as they often just point to cascaded shadow maps. Sadly i can't use DX or openGl functions directly because this engine has a dedicated math library. From what i've read so far the steps are: Transform view frustum points into light space and find min/max x and y values (or sometimes minima and maxima of all three axis) and create a AABB using the min/max vectors. But what comes after this step? How do i transform this new AABB back to world space? What i've done so far: CVector3 Points[8], MinLight = CVector3(FLT_MAX), MaxLight = CVector3(FLT_MAX); for(int i = 0; i<8;++i){ Points[i] = Points[i] * WorldToShadowMapMatrix; MinLight = Math::Min(Points[i],MinLight); MaxLight = Math::Max(Points[i],MaxLight); } AABox box(MinLight,MaxLight); I don't think this is the right way to do it. The near plain probably has to extend into the direction of the light source to include potentional shadow casters. I've read the Microsoft article about cascaded shadow maps http://msdn.microsoft.com/en-us/library/windows/desktop/ee416307%28v=vs.85%29.aspx which also includes some sample code. But they seem to use the scenes AABB to determine the near and far plane which I can't since i cant access this information from the funtion I'm working in. Could you guys please link some example code which shows the calculation of such frustum? Thanks in advance! Additional questio: is there a way to construct a WorldToFrustum matrix that represents the above transformation?

    Read the article

  • Drawing a textured triangle with CPU instead of GPU

    - by Jenko
    I understand the benefits of GPU rendering and such, but for a certain limited application I need to render textured triangles purely using CPU. I've built a 3D engine capable of object handling, transform, projection, culling and the likes ... now all I need is a little code snippet that draws a single textured triangle onto a bitmap... any language accepted! Inputs: Texture bitmap, Triangle U/V/W coords, Triangle X/Y screen coords Output: The textured triangle drawn at the given screen coords I've currently been using a platform function to draw triangles to screen, but I'm looking to handle it myself to speeden up the process.

    Read the article

  • Why aren't tangent space normal maps completely blue?

    - by seahorse
    Why aren't normal maps just blue? I would think that normal maps should be predominantly blue in color because the Z component of the normal is represented by blue. Normals point out of the surface in the Z direction so we should see blue as the predominant colour since the Z component is dominant. By definition tangent space is perpendicular to the surface. At any point we should have the normal always pointing in the Z (blue direction) with no X (red direction) or Y (green direction). Thus the normal map (since it is a "normal map") should have the colour of the normals which is just blue (R = x = 0, G = y = 0, B = z = 1) with no shades in between. But normal maps are not so, and they have gradients of shades in them. Why is this so?

    Read the article

  • Why does multiplying texture coordinates scale the texture?

    - by manning18
    I'm having trouble visualizing this geometrically - why is it that multiplying the U,V coordinates of a texture coordinate has the effect of scaling that texture by that factor? eg if you scaled the texture coordinates by a factor of 3 ..then doesn't this mean that if you had texture coordinates 0,1 and 0,2 ...you'd be sampling 0,3 and 0,6 in the U,V texture space of 0..1? How does that make it bigger eg HLSL: tex2D(textureSampler, TexCoords*3) Integers make it smaller, decimals make it bigger I mean I understand intuitively if you added to the U,V coordinates, as that is simply an offset into the sampling range, but what's the case with multiplication? I have a feeling when someone explains this to me I'm going to be feeling mighty stupid

    Read the article

  • CSM shadow errors when models are split

    - by KaiserJohaan
    I'm getting closer to fixing CSM, but there seems to be one more issue at hand. At certain angles, the models will be caught/split between two shadow map cascades, like below. first depth split second depth split - here you can see the model is caught between the splits How does one fix this? Increase the overlapping boundaries between the splits? Or is the frustrum erronous? CameraFrustrum CalculateCameraFrustrum(const float fovDegrees, const float aspectRatio, const float minDist, const float maxDist, const Mat4& cameraViewMatrix, Mat4& outFrustrumMat) { CameraFrustrum ret = { Vec4(1.0f, -1.0f, 0.0f, 1.0f), Vec4(1.0f, 1.0f, 0.0f, 1.0f), Vec4(-1.0f, 1.0f, 0.0f, 1.0f), Vec4(-1.0f, -1.0f, 0.0f, 1.0f), Vec4(1.0f, -1.0f, 1.0f, 1.0f), Vec4(1.0f, 1.0f, 1.0f, 1.0f), Vec4(-1.0f, 1.0f, 1.0f, 1.0f), Vec4(-1.0f, -1.0f, 1.0f, 1.0f), }; const Mat4 perspectiveMatrix = PerspectiveMatrixFov(fovDegrees, aspectRatio, minDist, maxDist); const Mat4 invMVP = glm::inverse(perspectiveMatrix * cameraViewMatrix); outFrustrumMat = invMVP; for (Vec4& corner : ret) { corner = invMVP * corner; corner /= corner.w; } return ret; } Mat4 CreateDirLightVPMatrix(const CameraFrustrum& cameraFrustrum, const Vec3& lightDir) { Mat4 lightViewMatrix = glm::lookAt(Vec3(0.0f), -glm::normalize(lightDir), Vec3(0.0f, -1.0f, 0.0f)); Vec4 transf = lightViewMatrix * cameraFrustrum[0]; float maxZ = transf.z, minZ = transf.z; float maxX = transf.x, minX = transf.x; float maxY = transf.y, minY = transf.y; for (uint32_t i = 1; i < 8; i++) { transf = lightViewMatrix * cameraFrustrum[i]; if (transf.z > maxZ) maxZ = transf.z; if (transf.z < minZ) minZ = transf.z; if (transf.x > maxX) maxX = transf.x; if (transf.x < minX) minX = transf.x; if (transf.y > maxY) maxY = transf.y; if (transf.y < minY) minY = transf.y; } Mat4 viewMatrix(lightViewMatrix); viewMatrix[3][0] = -(minX + maxX) * 0.5f; viewMatrix[3][1] = -(minY + maxY) * 0.5f; viewMatrix[3][2] = -(minZ + maxZ) * 0.5f; viewMatrix[0][3] = 0.0f; viewMatrix[1][3] = 0.0f; viewMatrix[2][3] = 0.0f; viewMatrix[3][3] = 1.0f; Vec3 halfExtents((maxX - minX) * 0.5, (maxY - minY) * 0.5, (maxZ - minZ) * 0.5); return OrthographicMatrix(-halfExtents.x, halfExtents.x, halfExtents.y, -halfExtents.y, halfExtents.z, -halfExtents.z) * viewMatrix; }

    Read the article

  • Normals vs Normal maps

    - by KaiserJohaan
    I am using Assimp asset importer (http://assimp.sourceforge.net/lib_html/index.html) to parse 3d models. So far, I've simply pulled out the normal vectors which are defined for each vertex in my meshes. Yet I have also found various tutorials on normal maps... As I understand it for normal maps, the normal vectors are stored in each texel of a normal map, and you pull these out of the normal texture in the shader. Why is there two ways to get the normals, which one is considered best-practice and why?

    Read the article

  • Center directional light shadow to the cameras eye

    - by Caesar
    I'm currently drawing my directional light shadow using this view and projection: XMFLOAT3 dir((float)pitch, (float)yaw, (float)roll); XMFLOAT3 center(0.0f, 0.0f, 0.0f); XMVECTOR lightDir = XMLoadFloat3(&dir); XMVECTOR lightPos = radius * lightDir; XMVECTOR targetPos = XMLoadFloat3(&center); XMVECTOR up = XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f); XMMATRIX V = XMMatrixLookAtLH(lightPos, targetPos, up); // This is the view // Transform bounding sphere to light space. XMFLOAT3 sphereCenterLS; XMStoreFloat3(&sphereCenterLS, XMVector3TransformCoord(targetPos, V)); // Ortho frustum in light space encloses scene. float l = sphereCenterLS.x - radius; float b = sphereCenterLS.y - radius; float n = sphereCenterLS.z - radius; float r = sphereCenterLS.x + radius; float t = sphereCenterLS.y + radius; float f = sphereCenterLS.z + radius; XMMATRIX P = XMMatrixOrthographicOffCenterLH(l, r, b, t, n, f); // This is the projection Which works prefect if the center of my scene is at 0.0, 0.0, 0.0. What I would like to do is move the center of the scene relative to the cameras position. How can I do that?

    Read the article

  • How do you calculate UVW coordinates?

    - by Jenko
    I'm working on a 3d engine and I'm calculating UVT coordinates, where U and V represent pixels on the texture measured in 0-1, and T is: T = perspective / Z But I'm trying to use this perspective-correct triangle rasteriser, which requires a W, per vertex. How do I calculate the W for each vertex for the drawPerspectiveTexturedPolygon() function? Hint: The code comments refer to W as the "homogenous coordinate" ... does that mean anything?

    Read the article

  • Normal map applied as diffuse textures looks wrong

    - by KaiserJohaan
    Diffuse textures works fine, but I am having problem with normal maps, so I thought I'd tried to apply the normal maps as the diffuse map in my fragment shader so I could see everything is OK. I comment-out my normal map code and just set the diffuse map to the normal map and I get this: http://postimg.org/image/j9gudjl7r/ Looks like a smurf! This is the actual normal map of the main body: http://postimg.org/image/sbkyr6fg9/ Here is my fragment shader, notice I commented out normal map code so I could debug the normal map as a diffuse texture "#version 330 \n \ \n \ layout(std140) uniform; \n \ \n \ const int MAX_LIGHTS = 8; \n \ \n \ struct Light \n \ { \n \ vec4 mLightColor; \n \ vec4 mLightPosition; \n \ vec4 mLightDirection; \n \ \n \ int mLightType; \n \ float mLightIntensity; \n \ float mLightRadius; \n \ float mMaxDistance; \n \ }; \n \ \n \ uniform UnifLighting \n \ { \n \ vec4 mGamma; \n \ vec3 mViewDirection; \n \ int mNumLights; \n \ \n \ Light mLights[MAX_LIGHTS]; \n \ } Lighting; \n \ \n \ uniform UnifMaterial \n \ { \n \ vec4 mDiffuseColor; \n \ vec4 mAmbientColor; \n \ vec4 mSpecularColor; \n \ vec4 mEmissiveColor; \n \ \n \ bool mHasDiffuseTexture; \n \ bool mHasNormalTexture; \n \ bool mLightingEnabled; \n \ float mSpecularShininess; \n \ } Material; \n \ \n \ uniform sampler2D unifDiffuseTexture; \n \ uniform sampler2D unifNormalTexture; \n \ \n \ in vec3 frag_position; \n \ in vec3 frag_normal; \n \ in vec2 frag_texcoord; \n \ in vec3 frag_tangent; \n \ in vec3 frag_bitangent; \n \ \n \ out vec4 finalColor; " " \n \ \n \ void CalcGaussianSpecular(in vec3 dirToLight, in vec3 normal, out float gaussianTerm) \n \ { \n \ vec3 viewDirection = normalize(Lighting.mViewDirection); \n \ vec3 halfAngle = normalize(dirToLight + viewDirection); \n \ \n \ float angleNormalHalf = acos(dot(halfAngle, normalize(normal))); \n \ float exponent = angleNormalHalf / Material.mSpecularShininess; \n \ exponent = -(exponent * exponent); \n \ \n \ gaussianTerm = exp(exponent); \n \ } \n \ \n \ vec4 CalculateLighting(in Light light, in vec4 diffuseTexture, in vec3 normal) \n \ { \n \ if (light.mLightType == 1) // point light \n \ { \n \ vec3 positionDiff = light.mLightPosition.xyz - frag_position; \n \ float dist = max(length(positionDiff) - light.mLightRadius, 0); \n \ \n \ float attenuation = 1 / ((dist/light.mLightRadius + 1) * (dist/light.mLightRadius + 1)); \n \ attenuation = max((attenuation - light.mMaxDistance) / (1 - light.mMaxDistance), 0); \n \ \n \ vec3 dirToLight = normalize(positionDiff); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (attenuation * angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (attenuation * gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 2) // directional light \n \ { \n \ vec3 dirToLight = normalize(light.mLightDirection.xyz); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 4) // ambient light \n \ return diffuseTexture * Material.mAmbientColor * light.mLightIntensity * light.mLightColor; \n \ else \n \ return vec4(0.0); \n \ } \n \ \n \ void main() \n \ { \n \ vec4 diffuseTexture = vec4(1.0); \n \ if (Material.mHasDiffuseTexture) \n \ diffuseTexture = texture(unifDiffuseTexture, frag_texcoord); \n \ \n \ vec3 normal = frag_normal; \n \ if (Material.mHasNormalTexture) \n \ { \n \ diffuseTexture = vec4(normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0), 1.0); \n \ // vec3 normalTangentSpace = normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0); \n \ //mat3 tangentToWorldSpace = mat3(normalize(frag_tangent), normalize(frag_bitangent), normalize(frag_normal)); \n \ \n \ // normal = tangentToWorldSpace * normalTangentSpace; \n \ } \n \ \n \ if (Material.mLightingEnabled) \n \ { \n \ vec4 accumLighting = vec4(0.0); \n \ \n \ for (int lightIndex = 0; lightIndex < Lighting.mNumLights; lightIndex++) \n \ accumLighting += Material.mEmissiveColor * diffuseTexture + \n \ CalculateLighting(Lighting.mLights[lightIndex], diffuseTexture, normal); \n \ \n \ finalColor = pow(accumLighting, Lighting.mGamma); \n \ } \n \ else { \n \ finalColor = pow(diffuseTexture, Lighting.mGamma); \n \ } \n \ } \n"; Here is my wrapper around a texture OpenGLTexture::OpenGLTexture(const std::vector<uint8_t>& textureData, uint32_t textureWidth, uint32_t textureHeight, TextureFormat textureFormat, TextureType textureType, Logger& logger) : mLogger(logger), mTextureID(gNextTextureID++), mTextureType(textureType) { glGenTextures(1, &mTexture); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, mTexture); CHECK_GL_ERROR(mLogger); GLint glTextureFormat = (textureFormat == TextureFormat::TEXTURE_FORMAT_RGB ? GL_RGB : textureFormat == TextureFormat::TEXTURE_FORMAT_RGBA ? GL_RGBA : GL_RED); glTexImage2D(GL_TEXTURE_2D, 0, glTextureFormat, textureWidth, textureHeight, 0, glTextureFormat, GL_UNSIGNED_BYTE, &textureData[0]); CHECK_GL_ERROR(mLogger); glGenerateMipmap(GL_TEXTURE_2D); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, 0); CHECK_GL_ERROR(mLogger); } OpenGLTexture::~OpenGLTexture() { glDeleteBuffers(1, &mTexture); CHECK_GL_ERROR(mLogger); } And here is the sampler I create which is shared between Diffuse and normal textures // texture sampler setup glGenSamplers(1, &mTextureSampler); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_S, GL_REPEAT); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_T, GL_REPEAT); CHECK_GL_ERROR(mLogger); glSamplerParameterf(mTextureSampler, GL_TEXTURE_MAX_ANISOTROPY_EXT, mCurrentAnisotropy); CHECK_GL_ERROR(mLogger); glUniform1i(glGetUniformLocation(mDefaultProgram.GetHandle(), "unifDiffuseTexture"), OpenGLTexture::TEXTURE_UNIT_DIFFUSE); CHECK_GL_ERROR(mLogger); glUniform1i(glGetUniformLocation(mDefaultProgram.GetHandle(), "unifNormalTexture"), OpenGLTexture::TEXTURE_UNIT_NORMAL); CHECK_GL_ERROR(mLogger); glBindSampler(OpenGLTexture::TEXTURE_UNIT_DIFFUSE, mTextureSampler); CHECK_GL_ERROR(mLogger); glBindSampler(OpenGLTexture::TEXTURE_UNIT_NORMAL, mTextureSampler); CHECK_GL_ERROR(mLogger); SetAnisotropicFiltering(mCurrentAnisotropy); The diffuse textures looks like they should, but the normal looks so wierd. Why is this?

    Read the article

  • How common is prototyping as the first stage of development?

    - by EpsilonVector
    I've been taking some software design courses in the past few semesters, and while I see the benefit in a lot of the formalism, I still feel like it doesn't tell me anything about the program itself. You can't tell how the program is going to operate from the Use Case spec, even though it discusses what the program can do, and you can't tell anything about the user experience from the requirements document, even though it can include QA requirements. ...sequence diagrams are as good a description of how the software works as the call stack, in other words- very limited, highly partial view of the overall system, and a class diagram is great for describing how the system is built, but is utterly useless in helping you figure out what the software needs to be. Where in all this formalism is the bottom line- how the program looks, operates, and what experience it gives? Doesn't it make more sense to design off of that? Isn't it better to figure out how the program should work via a prototype and strive to implement it for real? I know that I'm probably suffering from being taught engineering by theoreticians, but I got to ask, do they do this in the industry? How do people figure out what the program actually is, not what it should conform to? Do people prototype a lot? ...or do they mostly use the formal tools like UML and I just didn't get the hang of using them yet?

    Read the article

  • Where can I find free or buy "next-gen" 3D Assets?

    - by Valmond
    Usually I buy 3D Assets from sites like turbosquid.com or similar. My problem is that I have lately implemented glow, normal maps, specular (and specular power) maps and reflection maps and I can't find any models that use those techniques. So where can I find / buy "next gen" assets (at least models/items with a normal map)? I have checked for similar posts but those I found are about either free only or 2D or 'ordinary' 3D so I hope this is not a duplicate.

    Read the article

  • Effective versus efficient code

    - by Todd Williamson
    TL;DR: Quick and dirty code, or "correct" (insert your definition of this term) code? There is often a tension between "efficient" and "effective" in software development. "Efficient" often means code that is "correct" from the point of view of adhering to standards, using widely-accepted patterns/approaches for structures, regardless of project size, budget, etc. "Effective" is not about being "right", but about getting things done. This often results in code that falls outside the bounds of commonly accepted "correct" standards, usage, etc. Usually the people paying for the development effort have dictated ahead of time what it is that they value more. An organization that lives in a technical space will tend towards the efficient end, others will tend towards the effective. Developers often refuse to compromise their favored approach for the other. In my own experience I have found that people with formal education in software development tend towards the Efficient camp. Those that picked up software development more or less as a tool to get things done tend towards the Effective camp. These camps don't get along very well. When managing a team of developers who are not all in one camp it is challenging. In your own experience, which camp do you land in, and do you find yourself having to justify your approach to others? To management? To other developers?

    Read the article

  • PCF shadow shader math causing artifacts

    - by user2971069
    For a while now I used PCSS for my shadow technique of choice until I discovered a type of percentage closer filtering. This method creates really smooth shadows and with hopes of improving performance, with only a fraction of texture samples, I tried to implement PCF into my shader. This is the relevant code: float c0, c1, c2, c3; float f = blurFactor; float2 coord = ProjectedTexCoords; if (receiverDistance - tex2D(lightSampler, coord + float2(0, 0)).x > 0.0007) c0 = 1; if (receiverDistance - tex2D(lightSampler, coord + float2(f, 0)).x > 0.0007) c1 = 1; if (receiverDistance - tex2D(lightSampler, coord + float2(0, f)).x > 0.0007) c2 = 1; if (receiverDistance - tex2D(lightSampler, coord + float2(f, f)).x > 0.0007) c3 = 1; coord = (coord % f) / f; return 1 - (c0 * (1 - coord.x) * (1 - coord.y) + c1 * coord.x * (1 - coord.y) + c2 * (1 - coord.x) * coord.y + c3 * coord.x * coord.y); This is a very basic implementation. blurFactor is initialized with 1 / LightTextureSize. So the if statements fetch the occlusion values for the four adjacent texels. I now want to weight each value based on the actual position of the texture coordinate. If it's near the bottom-right pixel, that occlusion value should be preferred. The weighting itself is done with a simple bilinear interpolation function, however this function takes a 2d vector in the range [0..1] so I have to convert my texture coordinate to get the distance from my first pixel to the second one in range [0..1]. For that I used the mod operator to get it into [0..f] range and then divided by f. This code makes sense to me, and for specific blurFactors it works, producing really smooth one pixel wide shadows, but not for all blurFactors. Initially blurFactor is (1 / LightTextureSize) to sample the 4 adjacent texels. I now want to increase the blurFactor by factor x to get a smooth interpolation across maybe 4 or so pixels. But that is when weird artifacts show up. Here is an image: Using a 1x on blurFactor produces a good result, 0.5 is as expected not so smooth. 2x however doesn't work at all. I found that only a factor of 1/2^n produces an good result, every other factor produces artifacts. I'm pretty sure the error lies here: coord = (coord % f) / f; Maybe the modulo is not calculated correctly? I have no idea how to fix that. Is it even possible for pixel that are further than 1 pixel away?

    Read the article

  • Why don't Normal maps in tangent space have a single blue color?

    - by seahorse
    Normal maps are predominantly blue in color because the z component maps to Blue and since normals point out of the surface in the z direction we see Blue as the predominant component. If the above is true then why are normal maps just of one color i.e. blue and they should not be having any other shades(not even shades of blue) Since by definition tangent space is perpendicular to normal at any point we should have the normal always pointing in the Z (Blue direction) with no X(Red component) and Y(Green component). Thus the normal map(since it is a "normal map") should have had color of normals which is just the Blue(Z =Blue compoennt = 1, R=0, G=0) and the normal map should have been of only Blue color with no shades in between. But even then normal maps are not so, and they have gradients of shades in them, why is this so?

    Read the article

  • How can I prevent seams from showing up on objects using lower mipmap levels?

    - by Shivan Dragon
    Disclaimer: kindly right click on the images and open them separately so that they're at full size, as there are fine details which don't show up otherwise. Thank you. I made a simple Blender model, it's a cylinder with the top cap removed: I've exported the UVs: Then imported them into Photoshop, and painted the inner area in yellow and the outer area in red. I made sure I cover well the UV lines: I then save the image and load it as texture on the model in Blender. Actually, I just reload it as the image where the UVs are exported, and change the viewport view mode to textured. When I look at the mesh up-close, there's yellow everywhere, everything seems fine: However, if I start zooming out, I start seeing red (literally and metaphorically) where the texture edges are: And the more I zoom, the more I see it: Same thing happends in Unity, though the effect seems less pronounced. Up close is fine and yellow: Zoom out and you see red at the seams: Now, obviously, for this simple example a workaround is to spread the yellow well outside the UV margins, and its fine from all distances. However this is an issue when you try making a complex texture that should tile seamlessly at the edges. In this situation I either make a few lines of pixels overlap (in which case it looks bad from upclose and ok from far away), or I leave them seamless and then I have those seams when seeing it from far away. So my question is, is there something I'm missing, or some extra thing I must do to have my texture look seamless from all distances?

    Read the article

  • samplerCubeShadow and texture offset

    - by Irbis
    I use sampler2DShadow when accessing a single shadow map. I create PCF in this way: result += textureProjOffset(ShadowSampler, ShadowCoord, ivec2(-1,-1)); result += textureProjOffset(ShadowSampler, ShadowCoord, ivec2(-1,1)); result += textureProjOffset(ShadowSampler, ShadowCoord, ivec2(1,1)); result += textureProjOffset(ShadowSampler, ShadowCoord, ivec2(1,-1)); result = result * 0.25; For a cube map I use samplerCubeShadow: result = texture(ShadowCubeSampler, vec4(normalize(position), depth)); How to adopt above PCF when accessing a cube map ?

    Read the article

  • How should I describe the process of learning someone else's code? (In an invoicing situation.)

    - by MattyG
    I have a contract to upgrade some in-house software for a large company. The company has requested multiple feature additions and a few bug fixes. This is my first freelance style job. First, I needed to become familiar with how the application worked - I learnt it as if I was a user. Next, I had to learn how the software worked. I started with broad concepts, and then narrowed down into necessary detail before working on each bug fix and feature. At least at the start of the project, it took me a lot longer to learn the existing code than it did to write the additional features. How can I describe the process of learning the existing code on the invoice? (This part of the company usually does things in-house, so doesn't have much experience dealing with software contractors like me, and I fear they may not understand the overhead of learning someone else's code). I don't want to just tack the learning time onto the actual feature upgrade, because in some cases this would make a 'simple task' look like it took me way too long. I want break the invoice into relevant steps, and communicate that I'm charging for the large overhead of learning someone else's code before being able to add my own to it. Is there a standard way of describing this sort of activity when billing for a job?

    Read the article

< Previous Page | 71 72 73 74 75 76 77 78 79 80 81 82  | Next Page >