Search Results

Search found 80052 results on 3203 pages for 'data load performance'.

Page 76/3203 | < Previous Page | 72 73 74 75 76 77 78 79 80 81 82 83  | Next Page >

  • Bridging the Gap in Cloud, Big Data, and Real-time

    - by Dain C. Hansen
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} With all the buzz of around big data and cloud computing, it is easy to overlook one of your most precious commodities—your data. Today’s businesses cannot stand still when it comes to data. Market success now depends on speed, volume, complexity, and keeping pace with the latest data integration breakthroughs. Are you up to speed with big data, cloud integration, real-time analytics? Join us in this three part blog series where we’ll look at each component in more detail. Meet us online on October 24th where we’ll take your questions about what issues you are facing in this brave new world of integration. Let’s start first with Cloud. What happens with your data when you decide to implement a private cloud architecture? Or public cloud? Data integration solutions play a vital role migrating data simply, efficiently, and reliably to the cloud; they are a necessary ingredient of any platform as a service strategy because they support cloud deployments with data-layer application integration between on-premise and cloud environments of all kinds. For private cloud architectures, consolidation of your databases and data stores is an important step to take to be able to receive the full benefits of cloud computing. Private cloud integration requires bidirectional replication between heterogeneous systems to allow you to perform data consolidation without interrupting your business operations. In addition, integrating data requires bulk load and transformation into and out of your private cloud is a crucial step for those companies moving to private cloud. In addition, the need for managing data services as part of SOA/BPM solutions that enable agile application delivery and help build shared data services for organizations. But what about public Cloud? If you have moved your data to a public cloud application, you may also need to connect your on-premise enterprise systems and the cloud environment by moving data in bulk or as real-time transactions across geographies. For public and private cloud architectures both, Oracle offers a complete and extensible set of integration options that span not only data integration but also service and process integration, security, and management. For those companies investing in Oracle Cloud, you can move your data through Oracle SOA Suite using REST APIs to Oracle Messaging Cloud Service —a new service that lets applications deployed in Oracle Cloud securely and reliably communicate over Java Messaging Service . As an example of loading and transforming data into other public clouds, Oracle Data Integrator supports a knowledge module for Salesforce.com—now available on AppExchange. Other third-party knowledge modules are being developed by customers and partners every day. To learn more about how to leverage Oracle’s Data Integration products for Cloud, join us live: Data Integration Breakthroughs Webcast on October 24th 10 AM PST.

    Read the article

  • How to Secure a Data Role by Multiple Business Units

    - by Elie Wazen
    In this post we will see how a Role can be data secured by multiple Business Units (BUs).  Separate Data Roles are generally created for each BU if a corresponding data template generates roles on the basis of the BU dimension. The advantage of creating a policy with a rule that includes multiple BUs is that while mapping these roles in HCM Role Provisioning Rules, fewer number of entires need to be made. This could facilitate maintenance for enterprises with a large number of Business Units. Note: The example below applies as well if the securing entity is Inventory Organization. Let us take for example the case of a user provisioned with the "Accounts Payable Manager - Vision Operations" Data Role in Fusion Applications. This user will be able to access Invoices in Vision Operations but will not be able to see Invoices in Vision Germany. Figure 1. A User with a Data Role restricting them to Data from BU: Vision Operations With the role granted above, this is what the user will see when they attempt to select Business Units while searching for AP Invoices. Figure 2.The List Of Values of Business Units is limited to single one. This is the effect of the Data Role granted to that user as can be seen in Figure 1 In order to create a data role that secures by multiple BUs,  we need to start by creating a condition that groups those Business Units we want to include in that data role. This is accomplished by creating a new condition against the BU View .  That Condition will later be used to create a data policy for our newly created Role.  The BU View is a Database resource and  is accessed from APM as seen in the search below Figure 3.Viewing a Database Resource in APM The next step is create a new condition,  in which we define a sql predicate that includes 2 BUs ( The ids below refer to Vision Operations and Vision Germany).  At this point we have simply created a standalone condition.  We have not used this condition yet, and security is therefore not affected. Figure 4. Custom Role that inherits the Purchase Order Overview Duty We are now ready to create our Data Policy.  in APM, we search for our newly Created Role and Navigate to “Find Global Policies”.  we query the Role we want to secure and navigate to view its global policies. Figure 5. The Job Role we plan on securing We can see that the role was not defined with a Data Policy . So will create one that uses the condition we created earlier.   Figure 6. Creating a New Data Policy In the General Information tab, we have to specify the DB Resource that the Security Policy applies to:  In our case this is the BU View Figure 7. Data Policy Definition - Selection of the DB Resource we will secure by In the Rules Tab, we  make the rule applicable to multiple values of the DB Resource we selected in the previous tab.  This is where we associate the condition we created against the BU view to this data policy by entering the Condition name in the Condition field Figure 8. Data Policy Rule The last step of Defining the Data Policy, consists of  explicitly selecting  the Actions that are goverened by this Data Policy.  In this case for example we select the Actions displayed below in the right pane. Once the record is saved , we are ready to use our newly secured Data Role. Figure 9. Data Policy Actions We can now see a new Data Policy associated with our Role.  Figure 10. Role is now secured by a Data Policy We now Assign that new Role to the User.  Of course this does not have to be done in OIM and can be done using a Provisioning Rule in HCM. Figure 11. Role assigned to the User who previously was granted the Vision Ops secured role. Once that user accesses the Invoices Workarea this is what they see: In the image below the LOV of Business Unit returns the two values defined in our data policy namely: Vision Operations and Vision Germany Figure 12. The List Of Values of Business Units now includes the two we included in our data policy. This is the effect of the data role granted to that user as can be seen in Figure 11

    Read the article

  • First Day of Data Integration Track at Oracle OpenWorld 2012

    - by Irem Radzik
    OpenWorld started full speed for us today with a great set of sessions in the Data Integration track. After the exciting keynote session on Oracle Database 12c in the morning; Brad Adelberg, VP of Development for Data Integration products, presented Oracle’s data integration product strategy. His session highlighted the new requirements for data integration to achieve pervasive and continuous access to trusted data. The new requirements and product focus areas presented in this session are: Provide access to any data at any source On premise or on cloud Enable zero downtime operations and maximum performance Leverage real-time data for accurate business insights And ensure high quality data is used across the enterprise During the session Brad walked over how Oracle’s data integration products, Oracle Data Integrator, Oracle GoldenGate, Oracle Enterprise Data Quality, and Oracle Data Service Integrator, deliver on these requirements and how recent product releases build on this strategy. Soon after Brad’s session we heard from a panel of Oracle GoldenGate customers, St. Jude Medical, Equifax, and Bank of America, how they achieved zero downtime operations using Oracle GoldenGate. The panel presented different use cases of GoldenGate, from Active-Active replication to offloading reporting. Especially St. Jude Medical’s implementation, which involves the alert management system for patients that use their pacemakers, reminded me in some cases downtime of mission-critical systems can be a matter of life or death. It is very comforting to hear that GoldenGate delivers highly-reliable continuous availability for life-saving medical systems. In the afternoon, Nick Wagner from the Product Management team and I followed the customer panel with the review of Oracle GoldenGate 11gR2’s New Features.  Many questions we received from audience were about GoldenGate’s new Integrated Capture for Oracle Database and the enhanced Conflict Management features, as well as how GoldenGate compares to Oracle Streams. In addition to giving details on GoldenGate’s unique capability to capture changed data with a direct integration to the Oracle DBMS engine, we reminded the audience that enhancements to Oracle GoldenGate will continue, while Streams will be primarily maintained. Last but not least, Tim Garrod and Ryan Fonnett from Raymond James presented a unified real-time data integration solution using Oracle Data Integrator and GoldenGate for their operational data store (ODS). The ODS supports application services across the enterprise and providing timely data is a critical requirement. In this solution, Oracle GoldenGate does the log-based change data capture for Oracle Data Integrator’s near real-time data integration between heterogeneous systems. As Raymond James’ ODS supports mission-critical services for their advisors, the project team had to set up this integration environment to be highly available. During the session, Ryan and Tim explained how they use ODI to enable automated process execution and “always-on” integration processes. Their presentation included 2 demonstrations that focused on CDC patterns deployed with ODI and the automated multi-instance execution and monitoring. We are very grateful to Tim and Ryan for their very-well prepared presentation at OpenWorld this year. Day 2 (Tuesday) will be also a busy day in our track. In addition to the Fusion Middleware Innovation Awards ceremony at 11:45am at Moscone West 3001, we have the following DI sessions Real-World Operational Reporting Customer Panel 11:45am Moscone West- 3005 Oracle Data Integrator Product Update and Future Strategy 1:15pm Moscone West- 3005 High-volume OLTP with Oracle GoldenGate: Best Practices from Comcast 1:15pm Moscone West- 3005 Everything You need to Know about Monitoring Oracle GoldenGate 5pm Moscone West-3005 If you are at OpenWorld please join us in these sessions. For a full review of data integration track at OpenWorld please see our Focus-On document.

    Read the article

  • ADO.NET Data Services Entity Framework request error when property setter is internal

    - by Jim Straatman
    I receive an error message when exposing an ADO.NET Data Service using an Entity Framework data model that contains an entity (called "Case") with an internal setter on a property. If I modify the setter to be public (using the entity designer), the data services works fine. I don’t need the entity "Case" exposed in the data service, so I tried to limit which entities are exposed using SetEntitySetAccessRule. This didn’t work, and service end point fails with the same error. public static void InitializeService(IDataServiceConfiguration config) { config.SetEntitySetAccessRule("User", EntitySetRights.AllRead); } The error message is reported in a browser when the .svc endpoint is called. It is very generic, and reads “Request Error. The server encountered an error processing the request. See server logs for more details.” Unfortunately, there are no entries in the System and Application event logs. I found this stackoverflow question that shows how to configure tracing on the service. After doing so, the following NullReferenceExceptoin error was reported in the trace log. Does anyone know how to avoid this exception when including an entity with an internal setter? Blockquote 131076 3 0 2 MOTOJIM http://msdn.microsoft.com/en-US/library/System.ServiceModel.Diagnostics.TraceHandledException.aspx Handling an exception. 685a2910-19-128703978432492675 System.NullReferenceException, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 Object reference not set to an instance of an object. at System.Data.Services.Providers.ObjectContextServiceProvider.PopulateMemberMetadata(ResourceType resourceType, MetadataWorkspace workspace, IDictionary2 entitySets, IDictionary2 knownTypes) at System.Data.Services.Providers.ObjectContextServiceProvider.PopulateMetadata(IDictionary2 knownTypes, IDictionary2 entitySets) at System.Data.Services.Providers.BaseServiceProvider.PopulateMetadata() at System.Data.Services.DataService1.CreateProvider(Type dataServiceType, Object dataSourceInstance, DataServiceConfiguration&amp; configuration) at System.Data.Services.DataService1.EnsureProviderAndConfigForRequest() at System.Data.Services.DataService1.ProcessRequestForMessage(Stream messageBody) at SyncInvokeProcessRequestForMessage(Object , Object[] , Object[] ) at System.ServiceModel.Dispatcher.SyncMethodInvoker.Invoke(Object instance, Object[] inputs, Object[]&amp; outputs) at System.ServiceModel.Dispatcher.DispatchOperationRuntime.InvokeBegin(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage5(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage4(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage3(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage2(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage1(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.MessageRpc.Process(Boolean isOperationContextSet) </StackTrace> <ExceptionString>System.NullReferenceException: Object reference not set to an instance of an object. at System.Data.Services.Providers.ObjectContextServiceProvider.PopulateMemberMetadata(ResourceType resourceType, MetadataWorkspace workspace, IDictionary2 entitySets, IDictionary2 knownTypes) at System.Data.Services.Providers.ObjectContextServiceProvider.PopulateMetadata(IDictionary2 knownTypes, IDictionary2 entitySets) at System.Data.Services.Providers.BaseServiceProvider.P

    Read the article

  • The blocking nature of aggregates

    - by Rob Farley
    I wrote a post recently about how query tuning isn’t just about how quickly the query runs – that if you have something (such as SSIS) that is consuming your data (and probably introducing a bottleneck), then it might be more important to have a query which focuses on getting the first bit of data out. You can read that post here.  In particular, we looked at two operators that could be used to ensure that a query returns only Distinct rows. and The Sort operator pulls in all the data, sorts it (discarding duplicates), and then pushes out the remaining rows. The Hash Match operator performs a Hashing function on each row as it comes in, and then looks to see if it’s created a Hash it’s seen before. If not, it pushes the row out. The Sort method is quicker, but has to wait until it’s gathered all the data before it can do the sort, and therefore blocks the data flow. But that was my last post. This one’s a bit different. This post is going to look at how Aggregate functions work, which ties nicely into this month’s T-SQL Tuesday. I’ve frequently explained about the fact that DISTINCT and GROUP BY are essentially the same function, although DISTINCT is the poorer cousin because you have less control over it, and you can’t apply aggregate functions. Just like the operators used for Distinct, there are different flavours of Aggregate operators – coming in blocking and non-blocking varieties. The example I like to use to explain this is a pile of playing cards. If I’m handed a pile of cards and asked to count how many cards there are in each suit, it’s going to help if the cards are already ordered. Suppose I’m playing a game of Bridge, I can easily glance at my hand and count how many there are in each suit, because I keep the pile of cards in order. Moving from left to right, I could tell you I have four Hearts in my hand, even before I’ve got to the end. By telling you that I have four Hearts as soon as I know, I demonstrate the principle of a non-blocking operation. This is known as a Stream Aggregate operation. It requires input which is sorted by whichever columns the grouping is on, and it will release a row as soon as the group changes – when I encounter a Spade, I know I don’t have any more Hearts in my hand. Alternatively, if the pile of cards are not sorted, I won’t know how many Hearts I have until I’ve looked through all the cards. In fact, to count them, I basically need to put them into little piles, and when I’ve finished making all those piles, I can count how many there are in each. Because I don’t know any of the final numbers until I’ve seen all the cards, this is blocking. This performs the aggregate function using a Hash Match. Observant readers will remember this from my Distinct example. You might remember that my earlier Hash Match operation – used for Distinct Flow – wasn’t blocking. But this one is. They’re essentially doing a similar operation, applying a Hash function to some data and seeing if the set of values have been seen before, but before, it needs more information than the mere existence of a new set of values, it needs to consider how many of them there are. A lot is dependent here on whether the data coming out of the source is sorted or not, and this is largely determined by the indexes that are being used. If you look in the Properties of an Index Scan, you’ll be able to see whether the order of the data is required by the plan. A property called Ordered will demonstrate this. In this particular example, the second plan is significantly faster, but is dependent on having ordered data. In fact, if I force a Stream Aggregate on unordered data (which I’m doing by telling it to use a different index), a Sort operation is needed, which makes my plan a lot slower. This is all very straight-forward stuff, and information that most people are fully aware of. I’m sure you’ve all read my good friend Paul White (@sql_kiwi)’s post on how the Query Optimizer chooses which type of aggregate function to apply. But let’s take a look at SQL Server Integration Services. SSIS gives us a Aggregate transformation for use in Data Flow Tasks, but it’s described as Blocking. The definitive article on Performance Tuning SSIS uses Sort and Aggregate as examples of Blocking Transformations. I’ve just shown you that Aggregate operations used by the Query Optimizer are not always blocking, but that the SSIS Aggregate component is an example of a blocking transformation. But is it always the case? After all, there are plenty of SSIS Performance Tuning talks out there that describe the value of sorted data in Data Flow Tasks, describing the IsSorted property that can be set through the Advanced Editor of your Source component. And so I set about testing the Aggregate transformation in SSIS, to prove for sure whether providing Sorted data would let the Aggregate transform behave like a Stream Aggregate. (Of course, I knew the answer already, but it helps to be able to demonstrate these things). A query that will produce a million rows in order was in order. Let me rephrase. I used a query which produced the numbers from 1 to 1000000, in a single field, ordered. The IsSorted flag was set on the source output, with the only column as SortKey 1. Performing an Aggregate function over this (counting the number of rows per distinct number) should produce an additional column with 1 in it. If this were being done in T-SQL, the ordered data would allow a Stream Aggregate to be used. In fact, if the Query Optimizer saw that the field had a Unique Index on it, it would be able to skip the Aggregate function completely, and just insert the value 1. This is a shortcut I wouldn’t be expecting from SSIS, but certainly the Stream behaviour would be nice. Unfortunately, it’s not the case. As you can see from the screenshots above, the data is pouring into the Aggregate function, and not being released until all million rows have been seen. It’s not doing a Stream Aggregate at all. This is expected behaviour. (I put that in bold, because I want you to realise this.) An SSIS transformation is a piece of code that runs. It’s a physical operation. When you write T-SQL and ask for an aggregation to be done, it’s a logical operation. The physical operation is either a Stream Aggregate or a Hash Match. In SSIS, you’re telling the system that you want a generic Aggregation, that will have to work with whatever data is passed in. I’m not saying that it wouldn’t be possible to make a sometimes-blocking aggregation component in SSIS. A Custom Component could be created which could detect whether the SortKeys columns of the input matched the Grouping columns of the Aggregation, and either call the blocking code or the non-blocking code as appropriate. One day I’ll make one of those, and publish it on my blog. I’ve done it before with a Script Component, but as Script components are single-use, I was able to handle the data knowing everything about my data flow already. As per my previous post – there are a lot of aspects in which tuning SSIS and tuning execution plans use similar concepts. In both situations, it really helps to have a feel for what’s going on behind the scenes. Considering whether an operation is blocking or not is extremely relevant to performance, and that it’s not always obvious from the surface. In a future post, I’ll show the impact of blocking v non-blocking and synchronous v asynchronous components in SSIS, using some of LobsterPot’s Script Components and Custom Components as examples. When I get that sorted, I’ll make a Stream Aggregate component available for download.

    Read the article

  • The blocking nature of aggregates

    - by Rob Farley
    I wrote a post recently about how query tuning isn’t just about how quickly the query runs – that if you have something (such as SSIS) that is consuming your data (and probably introducing a bottleneck), then it might be more important to have a query which focuses on getting the first bit of data out. You can read that post here.  In particular, we looked at two operators that could be used to ensure that a query returns only Distinct rows. and The Sort operator pulls in all the data, sorts it (discarding duplicates), and then pushes out the remaining rows. The Hash Match operator performs a Hashing function on each row as it comes in, and then looks to see if it’s created a Hash it’s seen before. If not, it pushes the row out. The Sort method is quicker, but has to wait until it’s gathered all the data before it can do the sort, and therefore blocks the data flow. But that was my last post. This one’s a bit different. This post is going to look at how Aggregate functions work, which ties nicely into this month’s T-SQL Tuesday. I’ve frequently explained about the fact that DISTINCT and GROUP BY are essentially the same function, although DISTINCT is the poorer cousin because you have less control over it, and you can’t apply aggregate functions. Just like the operators used for Distinct, there are different flavours of Aggregate operators – coming in blocking and non-blocking varieties. The example I like to use to explain this is a pile of playing cards. If I’m handed a pile of cards and asked to count how many cards there are in each suit, it’s going to help if the cards are already ordered. Suppose I’m playing a game of Bridge, I can easily glance at my hand and count how many there are in each suit, because I keep the pile of cards in order. Moving from left to right, I could tell you I have four Hearts in my hand, even before I’ve got to the end. By telling you that I have four Hearts as soon as I know, I demonstrate the principle of a non-blocking operation. This is known as a Stream Aggregate operation. It requires input which is sorted by whichever columns the grouping is on, and it will release a row as soon as the group changes – when I encounter a Spade, I know I don’t have any more Hearts in my hand. Alternatively, if the pile of cards are not sorted, I won’t know how many Hearts I have until I’ve looked through all the cards. In fact, to count them, I basically need to put them into little piles, and when I’ve finished making all those piles, I can count how many there are in each. Because I don’t know any of the final numbers until I’ve seen all the cards, this is blocking. This performs the aggregate function using a Hash Match. Observant readers will remember this from my Distinct example. You might remember that my earlier Hash Match operation – used for Distinct Flow – wasn’t blocking. But this one is. They’re essentially doing a similar operation, applying a Hash function to some data and seeing if the set of values have been seen before, but before, it needs more information than the mere existence of a new set of values, it needs to consider how many of them there are. A lot is dependent here on whether the data coming out of the source is sorted or not, and this is largely determined by the indexes that are being used. If you look in the Properties of an Index Scan, you’ll be able to see whether the order of the data is required by the plan. A property called Ordered will demonstrate this. In this particular example, the second plan is significantly faster, but is dependent on having ordered data. In fact, if I force a Stream Aggregate on unordered data (which I’m doing by telling it to use a different index), a Sort operation is needed, which makes my plan a lot slower. This is all very straight-forward stuff, and information that most people are fully aware of. I’m sure you’ve all read my good friend Paul White (@sql_kiwi)’s post on how the Query Optimizer chooses which type of aggregate function to apply. But let’s take a look at SQL Server Integration Services. SSIS gives us a Aggregate transformation for use in Data Flow Tasks, but it’s described as Blocking. The definitive article on Performance Tuning SSIS uses Sort and Aggregate as examples of Blocking Transformations. I’ve just shown you that Aggregate operations used by the Query Optimizer are not always blocking, but that the SSIS Aggregate component is an example of a blocking transformation. But is it always the case? After all, there are plenty of SSIS Performance Tuning talks out there that describe the value of sorted data in Data Flow Tasks, describing the IsSorted property that can be set through the Advanced Editor of your Source component. And so I set about testing the Aggregate transformation in SSIS, to prove for sure whether providing Sorted data would let the Aggregate transform behave like a Stream Aggregate. (Of course, I knew the answer already, but it helps to be able to demonstrate these things). A query that will produce a million rows in order was in order. Let me rephrase. I used a query which produced the numbers from 1 to 1000000, in a single field, ordered. The IsSorted flag was set on the source output, with the only column as SortKey 1. Performing an Aggregate function over this (counting the number of rows per distinct number) should produce an additional column with 1 in it. If this were being done in T-SQL, the ordered data would allow a Stream Aggregate to be used. In fact, if the Query Optimizer saw that the field had a Unique Index on it, it would be able to skip the Aggregate function completely, and just insert the value 1. This is a shortcut I wouldn’t be expecting from SSIS, but certainly the Stream behaviour would be nice. Unfortunately, it’s not the case. As you can see from the screenshots above, the data is pouring into the Aggregate function, and not being released until all million rows have been seen. It’s not doing a Stream Aggregate at all. This is expected behaviour. (I put that in bold, because I want you to realise this.) An SSIS transformation is a piece of code that runs. It’s a physical operation. When you write T-SQL and ask for an aggregation to be done, it’s a logical operation. The physical operation is either a Stream Aggregate or a Hash Match. In SSIS, you’re telling the system that you want a generic Aggregation, that will have to work with whatever data is passed in. I’m not saying that it wouldn’t be possible to make a sometimes-blocking aggregation component in SSIS. A Custom Component could be created which could detect whether the SortKeys columns of the input matched the Grouping columns of the Aggregation, and either call the blocking code or the non-blocking code as appropriate. One day I’ll make one of those, and publish it on my blog. I’ve done it before with a Script Component, but as Script components are single-use, I was able to handle the data knowing everything about my data flow already. As per my previous post – there are a lot of aspects in which tuning SSIS and tuning execution plans use similar concepts. In both situations, it really helps to have a feel for what’s going on behind the scenes. Considering whether an operation is blocking or not is extremely relevant to performance, and that it’s not always obvious from the surface. In a future post, I’ll show the impact of blocking v non-blocking and synchronous v asynchronous components in SSIS, using some of LobsterPot’s Script Components and Custom Components as examples. When I get that sorted, I’ll make a Stream Aggregate component available for download.

    Read the article

  • Simple Self Join Query Bad Performance

    - by user1514042
    Could anyone advice on how do I improve the performance of the following query. Note, the problem seems to be caused by where clause. Data (table contains a huge set of rows - 500K+, the set of parameters it's called with assums the return of 2-5K records per query, which takes 8-10 minutes currently): USE [SomeDb] GO SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO CREATE TABLE [dbo].[Data]( [x] [money] NOT NULL, [y] [money] NOT NULL, CONSTRAINT [PK_Data] PRIMARY KEY CLUSTERED ( [x] ASC )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] ) ON [PRIMARY] GO The Query select top 10000 s.x as sx, e.x as ex, s.y as sy, e.y as ey, e.y - s.y as y_delta, e.x - s.x as x_delta from Data s inner join Data e on e.x > s.x and e.x - s.x between xFrom and xTo --where e.y - s.y > @yDelta -- when uncommented causes a huge delay Update 1 - Execution Plan <?xml version="1.0" encoding="utf-16"?> <ShowPlanXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" Version="1.2" Build="11.0.2100.60" xmlns="http://schemas.microsoft.com/sqlserver/2004/07/showplan"> <BatchSequence> <Batch> <Statements> <StmtSimple StatementCompId="1" StatementEstRows="100" StatementId="1" StatementOptmLevel="FULL" StatementOptmEarlyAbortReason="GoodEnoughPlanFound" StatementSubTreeCost="0.0263655" StatementText="select top 100&#xD;&#xA;s.x as sx,&#xD;&#xA;e.x as ex,&#xD;&#xA;s.y as sy,&#xD;&#xA;e.y as ey,&#xD;&#xA;e.y - s.y as y_delta,&#xD;&#xA;e.x - s.x as x_delta&#xD;&#xA;from Data s &#xD;&#xA; inner join Data e&#xD;&#xA; on e.x &gt; s.x and e.x - s.x between 100 and 105&#xD;&#xA;where e.y - s.y &gt; 0.01&#xD;&#xA;" StatementType="SELECT" QueryHash="0xAAAC02AC2D78CB56" QueryPlanHash="0x747994153CB2D637" RetrievedFromCache="true"> <StatementSetOptions ANSI_NULLS="true" ANSI_PADDING="true" ANSI_WARNINGS="true" ARITHABORT="true" CONCAT_NULL_YIELDS_NULL="true" NUMERIC_ROUNDABORT="false" QUOTED_IDENTIFIER="true" /> <QueryPlan DegreeOfParallelism="0" NonParallelPlanReason="NoParallelPlansInDesktopOrExpressEdition" CachedPlanSize="24" CompileTime="13" CompileCPU="13" CompileMemory="424"> <MemoryGrantInfo SerialRequiredMemory="0" SerialDesiredMemory="0" /> <OptimizerHardwareDependentProperties EstimatedAvailableMemoryGrant="52199" EstimatedPagesCached="14561" EstimatedAvailableDegreeOfParallelism="4" /> <RelOp AvgRowSize="55" EstimateCPU="1E-05" EstimateIO="0" EstimateRebinds="0" EstimateRewinds="0" EstimatedExecutionMode="Row" EstimateRows="100" LogicalOp="Compute Scalar" NodeId="0" Parallel="false" PhysicalOp="Compute Scalar" EstimatedTotalSubtreeCost="0.0263655"> <OutputList> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> <ColumnReference Column="Expr1004" /> <ColumnReference Column="Expr1005" /> </OutputList> <ComputeScalar> <DefinedValues> <DefinedValue> <ColumnReference Column="Expr1004" /> <ScalarOperator ScalarString="[SomeDb].[dbo].[Data].[y] as [e].[y]-[SomeDb].[dbo].[Data].[y] as [s].[y]"> <Arithmetic Operation="SUB"> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </Identifier> </ScalarOperator> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> </Identifier> </ScalarOperator> </Arithmetic> </ScalarOperator> </DefinedValue> <DefinedValue> <ColumnReference Column="Expr1005" /> <ScalarOperator ScalarString="[SomeDb].[dbo].[Data].[x] as [e].[x]-[SomeDb].[dbo].[Data].[x] as [s].[x]"> <Arithmetic Operation="SUB"> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> </Identifier> </ScalarOperator> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> </Identifier> </ScalarOperator> </Arithmetic> </ScalarOperator> </DefinedValue> </DefinedValues> <RelOp AvgRowSize="39" EstimateCPU="1E-05" EstimateIO="0" EstimateRebinds="0" EstimateRewinds="0" EstimatedExecutionMode="Row" EstimateRows="100" LogicalOp="Top" NodeId="1" Parallel="false" PhysicalOp="Top" EstimatedTotalSubtreeCost="0.0263555"> <OutputList> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </OutputList> <RunTimeInformation> <RunTimeCountersPerThread Thread="0" ActualRows="100" ActualEndOfScans="1" ActualExecutions="1" /> </RunTimeInformation> <Top RowCount="false" IsPercent="false" WithTies="false"> <TopExpression> <ScalarOperator ScalarString="(100)"> <Const ConstValue="(100)" /> </ScalarOperator> </TopExpression> <RelOp AvgRowSize="39" EstimateCPU="151828" EstimateIO="0" EstimateRebinds="0" EstimateRewinds="0" EstimatedExecutionMode="Row" EstimateRows="100" LogicalOp="Inner Join" NodeId="2" Parallel="false" PhysicalOp="Nested Loops" EstimatedTotalSubtreeCost="0.0263455"> <OutputList> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </OutputList> <RunTimeInformation> <RunTimeCountersPerThread Thread="0" ActualRows="100" ActualEndOfScans="0" ActualExecutions="1" /> </RunTimeInformation> <NestedLoops Optimized="false"> <OuterReferences> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </OuterReferences> <RelOp AvgRowSize="23" EstimateCPU="1.80448" EstimateIO="3.76461" EstimateRebinds="0" EstimateRewinds="0" EstimatedExecutionMode="Row" EstimateRows="1" LogicalOp="Clustered Index Scan" NodeId="3" Parallel="false" PhysicalOp="Clustered Index Scan" EstimatedTotalSubtreeCost="0.0032831" TableCardinality="1640290"> <OutputList> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </OutputList> <RunTimeInformation> <RunTimeCountersPerThread Thread="0" ActualRows="15225" ActualEndOfScans="0" ActualExecutions="1" /> </RunTimeInformation> <IndexScan Ordered="false" ForcedIndex="false" ForceScan="false" NoExpandHint="false"> <DefinedValues> <DefinedValue> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> </DefinedValue> <DefinedValue> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </DefinedValue> </DefinedValues> <Object Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Index="[PK_Data]" Alias="[e]" IndexKind="Clustered" /> </IndexScan> </RelOp> <RelOp AvgRowSize="23" EstimateCPU="0.902317" EstimateIO="1.88387" EstimateRebinds="1" EstimateRewinds="0" EstimatedExecutionMode="Row" EstimateRows="100" LogicalOp="Clustered Index Seek" NodeId="4" Parallel="false" PhysicalOp="Clustered Index Seek" EstimatedTotalSubtreeCost="0.0263655" TableCardinality="1640290"> <OutputList> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> </OutputList> <RunTimeInformation> <RunTimeCountersPerThread Thread="0" ActualRows="100" ActualEndOfScans="15224" ActualExecutions="15225" /> </RunTimeInformation> <IndexScan Ordered="true" ScanDirection="FORWARD" ForcedIndex="false" ForceSeek="false" ForceScan="false" NoExpandHint="false" Storage="RowStore"> <DefinedValues> <DefinedValue> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> </DefinedValue> <DefinedValue> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> </DefinedValue> </DefinedValues> <Object Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Index="[PK_Data]" Alias="[s]" IndexKind="Clustered" /> <SeekPredicates> <SeekPredicateNew> <SeekKeys> <EndRange ScanType="LT"> <RangeColumns> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> </RangeColumns> <RangeExpressions> <ScalarOperator ScalarString="[SomeDb].[dbo].[Data].[x] as [e].[x]"> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> </Identifier> </ScalarOperator> </RangeExpressions> </EndRange> </SeekKeys> </SeekPredicateNew> </SeekPredicates> <Predicate> <ScalarOperator ScalarString="([SomeDb].[dbo].[Data].[x] as [e].[x]-[SomeDb].[dbo].[Data].[x] as [s].[x])&gt;=($100.0000) AND ([SomeDb].[dbo].[Data].[x] as [e].[x]-[SomeDb].[dbo].[Data].[x] as [s].[x])&lt;=($105.0000) AND ([SomeDb].[dbo].[Data].[y] as [e].[y]-[SomeDb].[dbo].[Data].[y] as [s].[y])&gt;(0.01)"> <Logical Operation="AND"> <ScalarOperator> <Compare CompareOp="GE"> <ScalarOperator> <Arithmetic Operation="SUB"> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> </Identifier> </ScalarOperator> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> </Identifier> </ScalarOperator> </Arithmetic> </ScalarOperator> <ScalarOperator> <Const ConstValue="($100.0000)" /> </ScalarOperator> </Compare> </ScalarOperator> <ScalarOperator> <Compare CompareOp="LE"> <ScalarOperator> <Arithmetic Operation="SUB"> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> </Identifier> </ScalarOperator> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> </Identifier> </ScalarOperator> </Arithmetic> </ScalarOperator> <ScalarOperator> <Const ConstValue="($105.0000)" /> </ScalarOperator> </Compare> </ScalarOperator> <ScalarOperator> <Compare CompareOp="GT"> <ScalarOperator> <Arithmetic Operation="SUB"> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </Identifier> </ScalarOperator> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> </Identifier> </ScalarOperator> </Arithmetic> </ScalarOperator> <ScalarOperator> <Const ConstValue="(0.01)" /> </ScalarOperator> </Compare> </ScalarOperator> </Logical> </ScalarOperator> </Predicate> </IndexScan> </RelOp> </NestedLoops> </RelOp> </Top> </RelOp> </ComputeScalar> </RelOp> </QueryPlan> </StmtSimple> </Statements> </Batch> </BatchSequence> </ShowPlanXML>

    Read the article

  • How do large blobs affect SQL delete performance, and how can I mitigate the impact?

    - by Max Pollack
    I'm currently experiencing a strange issue that my understanding of SQL Server doesn't quite mesh with. We use SQL as our file storage for our internal storage service, and our database has about half a million rows in it. Most of the files (86%) are 1mb or under, but even on fresh copies of our database where we simply populate the table with data for the purposes of a test, it appears that rows with large amounts of data stored in a BLOB frequently cause timeouts when our SQL Server is under load. My understanding of how SQL Server deletes rows is that it's a garbage collection process, i.e. the row is marked as a ghost and the row is later deleted by the ghost cleanup process after the changes are copied to the transaction log. This suggests to me that regardless of the size of the data in the blob, row deletion should be close to instantaneous. However when deleting these rows we are definitely experiencing large numbers of timeouts and astoundingly low performance. In our test data set, its files over 30mb that cause this issue. This is an edge case, we don't frequently encounter these, and even though we're looking into SQL filestream as a solution to some of our problems, we're trying to narrow down where these issues are originating from. We ARE performing our deletes inside of a transaction. We're also performing updates to metadata such as file size stats, but these exist in a separate table away from the file data itself. Hierarchy data is stored in the table that contains the file information. Really, in the end it's not so much what we're doing around the deletes that matters, we just can't find any references to low delete performance on rows that contain a large amount of data in a BLOB. We are trying to determine if this is even an avenue worth exploring, or if it has to be one of our processes around the delete that's causing the issue. Are there any situations in which this could occur? Is it common for a database server to come to the point of complete timeouts when many of these deletes are occurring simultaneously? Is there a way to combat this issue if it exists? (cross-posted from StackOverflow )

    Read the article

  • Import exponetial fixed width format data into Excel

    - by Tom Daniel
    I've received a bunch of text data files consiting of Lots of records (30K/file) of 3 fields each of 5-place numbers in exponential format: s0.nnnnnEsee (where s is +/-, n is a digit and ee is the exponent (always 2 digit). When I open the file in Notepad, the format is perfectly uniform throughout each file, but when I import it to Excel using Data|Import|Fixed Width, many of the data values get messed up, no matter what format (text, exponential, various custom tries) I assign to the cells. Looking at the Notepad version, it appears that leading + signs were replaced with a space in the data file, but the sign of the exponential is always there. This means that some fields begin with a space, and this appears to confuse the Excel import routine. I get the same result in Excel 2003 and 2007. I'm sure there's a straightforward solution (hopefully without a messy VBA routine), but I can't figure out what to try next. :-) To clarify (hopefully), here are some input records and the corresponding text input to Excel: Notepad Excel -0.11311E+01 0.10431E-04 0.27018E-03 -0.11311E 1.0431E-05 2.7018E-04 0.19608E+00-0.81414E-02-0.89553E-02 0.19608E -8.1414E-03 8.9553E-03 etc. Whoopee! Solved my own problem - in the spirit of Jeopardy, now that I've begun the question, here's the answer - Use a different "File Origin" - several other than the default "Unicode UTF..." work fine! What a pain. Hope this helps somebody else avoid a few unpleasant hours! Aloha from Kona, Tom

    Read the article

  • Recover data from quick formatted DVD-R

    - by Andrii Kalytiiuk
    I need to recover data from quick-formatted DVD-R. Please advise a free of charge option (cheap commercial tools will be ok either). Disk was partially recorded with Windows built in disk recorder and recording most likely was not complete. Afterwards I have inserted partially recorded DVD again and on Windows recorder's message box 'How to use this disk?' selected - 'use for CD/DVD player' and data was completely lost - as new recording session was started. Files of photos were recorded on disk. What I have tried so far: DiskInternals CD-DVD recovery - sees 5 jpg files but can't show preview. Tool is commercial - trial version does not allow to recover files. CDCheck - doesn't see any files and reports errors at attempt to scand DVD CD Recovery Toolbox Free - does not even recognize DVD drive ISO Buster - recognizes two files - one MP3 file for 99% of recorded size and one ARC file for about 100 KB MiniTool Power Data Recovery - Free Edition - does not see any files on DVD Stellar Phoenix CD DVD Data Recovery - does not see any files BinaryBiz Virtual Lab - sees DVD disk but needs license to browse content Please advise how is it possible to recover files from DVD.

    Read the article

  • Linux disk IO load breakdown, by filesystem path and/or process?

    - by Ryan B. Lynch
    Does anyone have experience with a tool that can provide an indication of disk IO load by filesystem path. I use to 'iostat' utility, frequently, to learn how much disk activity is taking place on a Linux host. 'iostat' provides a per-device breakdown, so you can see activity on a particular block device. But it doesn't go any deeper than that--you can't, for instance, query the write load generated by 'httpd' in the directory '/var/log/httpd/'.

    Read the article

  • SQL SERVER – What is Page Life Expectancy (PLE) Counter

    - by pinaldave
    During performance tuning consultation there are plenty of counters and values, I often come across. Today we will quickly talk about Page Life Expectancy counter, which is commonly known as PLE as well. You can find the value of the PLE by running following query. SELECT [object_name], [counter_name], [cntr_value] FROM sys.dm_os_performance_counters WHERE [object_name] LIKE '%Manager%' AND [counter_name] = 'Page life expectancy' The recommended value of the PLE counter is 300 seconds. I have seen on busy system this value to be as low as even 45 seconds and on unused system as high as 1250 seconds. Page Life Expectancy is number of seconds a page will stay in the buffer pool without references. In simple words, if your page stays longer in the buffer pool (area of the memory cache) your PLE is higher, leading to higher performance as every time request comes there are chances it may find its data in the cache itself instead of going to hard drive to read the data. Now check your system and post back what is this counter value for you during various time of the day. Is this counter any way relates to performance issues for your system? Note: There are various other counters which are important to discuss during the performance tuning and this counter is not everything. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • Oracle SQL Developer Data Modeler: What Tables Aren’t In At Least One SubView?

    - by thatjeffsmith
    Organizing your data model makes the information easier to consume. One of the organizational tools provided by Oracle SQL Developer Data Modeler is the ‘SubView.’ In a nutshell, a SubView is a subset of your model. The Challenge: I’ve just created a model which represents my entire ____________ application. We’ll call it ‘residential lending.’ Instead of having all 100+ tables in a single model diagram, I want to break out the tables by module, e.g. appraisals, credit reports, work histories, customers, etc. I’ve spent several hours breaking out the tables to one or more SubViews, but I think i may have missed a few. Is there an easy way to see what tables aren’t in at least ONE subview? The Answer Yes, mostly. The mostly comes about from the way I’m going to accomplish this task. It involves querying the SQL Developer Data Modeler Reporting Schema. So if you don’t have the Reporting Schema setup, you’ll need to do so. Got it? Good, let’s proceed. Before you start querying your Reporting Schema, you might need a data model for the actual reporting schema…meta-meta data! You could reverse engineer the data modeler reporting schema to a new data model, or you could just reference the PDFs in \datamodeler\reports\Reporting Schema diagrams directory. Here’s a hint, it’s THIS one The Query Well, it’s actually going to be at least 2 queries. We need to get a list of distinct designs stored in your repository. For giggles, I’m going to get a listing including each version of the model. So I can query based on design and version, or in this case, timestamp of when it was added to the repository. We’ll get that from the DMRS_DESIGNS table: SELECT DISTINCT design_name, design_ovid, date_published FROM DMRS_designs Then I’m going to feed the design_ovid, down to a subquery for my child report. select name, count(distinct diagram_id) from DMRS_DIAGRAM_ELEMENTS where design_ovid = :dESIGN_OVID and type = 'Table' group by name having count(distinct diagram_id) < 2 order by count(distinct diagram_id) desc Each diagram element has an entry in this table, so I need to filter on type=’Table.’ Each design has AT LEAST one diagram, the master diagram. So any relational table in this table, only having one listing means it’s not in any SubViews. If you have overloaded object names, which is VERY possible, you’ll want to do the report off of ‘OBJECT_ID’, but then you’ll need to correlate that to the NAME, as I doubt you’re so intimate with your designs that you recognize the GUIDs So I’m going to cheat and just stick with names, but I think you get the gist. My Model Of my almost 90 tables, how many of those have I not added to at least one SubView? Now let’s run my report! Voila! My ‘BEER2′ table isn’t in any SubView! It says ’1′ because the main model diagram counts as a view. So if the count came back as ’2′, that would mean the table was in the main model diagram and in 1 SubView diagram. And I know what you’re thinking, what kind of residential lending program would have a table called ‘BEER2?’ Let’s just say, that my business model has some kinks to work out!

    Read the article

  • EPM 11.1.1 - EPM Infrastructure Tuning Guide v11.1.1.3

    - by Ahmed Awan
    This edition applies to EPM 9.3.1, 11.1.1.1, 11.1.1.2 & 11.1.1.3 only. INTRODUCTION:One of the most challenging aspects of performance tuning is knowing where to begin. To maximize Oracle EPM System performance, all components need to be monitored, analyzed, and tuned. This guide describe the techniques used to monitor performance and the techniques for optimizing the performance of EPM components. Click to Download the EPM 11.1.1.3 Infrastructure Tuning Whitepaper (Right click or option-click the link and choose "Save As..." to download this file)

    Read the article

  • SQL Profiler: Read/Write units

    - by Ian Boyd
    i've picked a query out of SQL Server Profiler that says it took 1,497 reads: EventClass: SQL:BatchCompleted TextData: SELECT Transactions.... CPU: 406 Reads: 1497 Writes: 0 Duration: 406 So i've taken this query into Query Analyzer, so i may try to reduce the number of reads. But when i turn on SET STATISTICS IO ON to see the IO activity for the query, i get nowhere close to one thousand reads: Table Scan Count Logical Reads =================== ========== ============= FintracTransactions 4 20 LCDs 2 4 LCTs 2 4 FintracTransacti... 0 0 Users 1 2 MALs 0 0 Patrons 0 0 Shifts 1 2 Cages 1 1 Windows 1 3 Logins 1 3 Sessions 1 6 Transactions 1 7 Which if i do my math right, there is a total of 51 reads; not 1,497. So i assume Reads in SQL Profiler is an arbitrary metric. Does anyone know the conversion of SQL Server Profiler Reads to IO Reads? See also SQL Profiler CPU / duration unit Query Analyzer VS. Query Profiler Reads, Writes, and Duration Discrepencies

    Read the article

  • LINQ To objects: Quicker ideas?

    - by SDReyes
    Do you see a better approach to obtain and concatenate item.Number in a single string? Current: var numbers = new StringBuilder( ); // group is the result of a previous group by var basenumbers = group.Select( item => item.Number ); basenumbers.Aggregate ( numbers, ( res, element ) => res.AppendFormat( "{0:00}", element ) );

    Read the article

  • Refreshing imported MySQL data with MySQL for Excel

    - by Javier Rivera
    Welcome to another blog post from the MySQL for Excel Team. Today we're going to talk about a new feature included since MySQL for Excel 1.3.0, you can install the latest GA or maintenance version using the MySQL Installer or optionally you can download directly any GA or non-GA version from the MySQL Developer Zone.As some users suggested in our forums we should be maintaining the link between tables and Excel not only when editing data through the Edit MySQL Data option, but also when importing data via Import MySQL Data. Before 1.3.0 this process only provided you with an offline copy of the Table's data into Excel and you had no way to refresh that information from the DB later on. Now, with this new feature we'll show you how easy is to work with the latest available information at all times. This feature is transparent to you (it doesn't require additional steps to work as long as the users had the Create an Excel Table for the imported MySQL table data option enabled. To ensure you have this option checked, click over Advanced Options... after the Import Data dialog is displayed). The current blog post assumes you already know how to import data into excel, you could always take a look at our previous post How To - Guide to Importing Data from a MySQL Database to Excel using MySQL for Excel if you need further reference on that topic. After importing Data from a MySQL Table into Excel, you can refresh the data in 3 ways.1. Simply right click over the range of the imported data, to show the pop-up menu: Click over the Refresh button to obtain the latest copy of the data in the table. 2. Click the Refresh button on the Data ribbon: 3. Click the Refresh All button in the Data ribbon (beware this will refresh all Excel tables in the Workbook): Please take a note of a couple of details here, the first one is about the size of the table. If by the time you refresh the table new columns had been added to it, and you originally have imported all columns, the table will grow to the right. The same applies to rows, if the table has new rows and you did not limit the results , the table will grow to to the bottom of the sheet in Excel. The second detail you should take into account is this operation will overwrite any changes done to the cells after the table was originally imported or previously refreshed: Now with this new feature, imported data remains linked to the data source and is available to be updated at all times. It empowers the user to always be able to work with the latest version of the imported MySQL data. We hope you like this this new feature and give it a try! Remember that your feedback is very important for us, so drop us a message with your comments, suggestions for this or other features and follow us at our social media channels: MySQL on Windows (this) Blog: https://blogs.oracle.com/MySqlOnWindows/ MySQL for Excel forum: http://forums.mysql.com/list.php?172 Facebook: http://www.facebook.com/mysql YouTube channel: https://www.youtube.com/user/MySQLChannel Thanks!

    Read the article

  • Analyzing data from same tables in diferent db instances.

    - by Oscar Reyes
    Short version: How can I map two columns from table A and B if they both have a common identifier which in turn may have two values in column C Lets say: A --- 1 , 2 B --- ? , 3 C ----- 45, 2 45, 3 Using table C I know that id 2 and 3 belong to the same item ( 45 ) and thus "?" in table B should be 1. What query could do something like that? EDIT Long version ommited. It was really boring/confusing EDIT I'm posting some output here. From this query: select distinct( rolein) , activityin from taskperformance@dm_prod where activityin in ( select activityin from activities@dm_prod where activityid in ( select activityid from activities@dm_prod where activityin in ( select distinct( activityin ) from taskperformance where rolein = 0 ) ) ) I have the following parts: select distinct( activityin ) from taskperformance where rolein = 0 Output: http://question1337216.pastebin.com/f5039557 select activityin from activities@dm_prod where activityid in ( select activityid from activities@dm_prod where activityin in ( select distinct( activityin ) from taskperformance where rolein = 0 ) ) Output: http://question1337216.pastebin.com/f6cef9393 And finally: select distinct( rolein) , activityin from taskperformance@dm_prod where activityin in ( select activityin from activities@dm_prod where activityid in ( select activityid from activities@dm_prod where activityin in ( select distinct( activityin ) from taskperformance where rolein = 0 ) ) ) Output: http://question1337216.pastebin.com/f346057bd Take for instace activityin 335 from first query ( from taskperformance B) . It is present in actvities from A. But is not in taskperformace in A ( but a the related activities: 92, 208, 335, 595 ) Are present in the result. The corresponding role in is: 1

    Read the article

  • Logging library for (c++) games

    - by Klaim
    I know a lot of logging libraries but didn't test a lot of them. (GoogleLog, Pantheios, the coming boost::log library...) In games, especially in remote multiplayer and multithreaded games, logging is vital to debugging, even if you remove all logs in the end. Let's say I'm making a PC game (not console) that needs logs (multiplayer and multithreaded and/or multiprocess) and I have good reasons for looking for a library for logging (like, I don't have time or I'm not confident in my ability to write one correctly for my case). Assuming that I need : performance ease of use (allow streaming or formating or something like that) reliable (don't leak or crash!) cross-platform (at least Windows, MacOSX, Linux/Ubuntu) Wich logging library would you recommand? Currently, I think that boost::log is the most flexible one (you can even log to remotely!), but have not good performance update: is for high performance, but isn't released yet. Pantheios is often cited but I don't have comparison points on performance and usage. I've used my own lib for a long time but I know it don't manage multithreading so it's a big problem, even if it's fast enough. Google Log seems interesting, I just need to test it but if you already have compared those libs and more, your advice might be of good use. Games are often performance demanding while complex to debug so it would be good to know logging libraries that, in our specific case, have clear advantages.

    Read the article

  • Extract wrong data from a frame in C?

    - by ipkiss
    I am writing a program that reads the data from the serial port on Linux. The data are sent by another device with the following frame format: |start | Command | Data | CRC | End | |0x02 | 0x41 | (0-127 octets) | | 0x03| ---------------------------------------------------- The Data field contains 127 octets as shown and octet 1,2 contains one type of data; octet 3,4 contains another data. I need to get these data. Because in C, one byte can only holds one character and in the start field of the frame, it is 0x02 which means STX which is 3 characters. So, in order to test my program, On the sender side, I construct an array as the frame formatted above like: char frame[254]; frame[0] = 0x02; // starting field frame[1] = 0x41; // command field which is character 'A' ..so on.. And, then On the receiver side, I take out the fields like: char result[254]; // read data read(result); printf("command = %c", result[1]); // get the command field of the frame // get other field's values the command field value (result[1]) is not character 'A'. I think, this because the first field value of the frame is 0x02 (STX) occupying 3 first places in the array frame and leading to the wrong results on the receiver side. How can I correct the issue or am I doing something wrong at the sender side? Thanks all. related questions: http://stackoverflow.com/questions/2500567/parse-and-read-data-frame-in-c http://stackoverflow.com/questions/2531779/clear-data-at-serial-port-in-linux-in-c

    Read the article

  • Measure load of ubuntu server

    - by user84471
    I have Ubuntu server and apache2 installed on it. I want to benchmark it using ab tool from another machine. I want to know how measure load of this program. In top is showing this: top - 06:02:19 up 3 min, 2 users, load average: 0.28, 0.26, 0.12 Tasks: 94 total, 2 running, 92 sleeping, 0 stopped, 0 zombie Cpu(s): 67.2%us, 5.5%sy, 0.0%ni, 26.3%id, 0.5%wa, 0.0%hi, 0.5%si, 0.0%st Mem: 499320k total, 342028k used, 157292k free, 42504k buffers Swap: 514044k total, 0k used, 514044k free, 71388k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1521 www-data 20 0 49180 22m 4144 S 23 4.6 0:00.68 apache2 1520 www-data 20 0 49180 22m 4152 S 22 4.6 0:00.66 apache2 1124 www-data 20 0 49180 22m 4152 S 22 4.6 0:00.70 apache2 1519 www-data 20 0 49180 22m 4152 S 20 4.6 0:00.70 apache2 1525 www-data 20 0 49180 22m 4144 S 16 4.6 0:00.47 apache2 1123 www-data 20 0 49168 22m 4152 S 9 4.6 0:00.78 apache2 1125 www-data 20 0 49168 22m 4152 S 9 4.6 0:00.77 apache2 1126 www-data 20 0 49168 22m 4152 S 9 4.6 0:00.73 apache2 1127 www-data 20 0 49168 22m 4152 S 9 4.6 0:00.74 apache2 1523 www-data 20 0 42896 14m 3388 R 5 3.1 0:00.14 apache2 1038 whoopsie 20 0 24476 3720 2856 S 0 0.7 0:00.01 whoopsie 1089 root 20 0 34060 6988 3640 S 0 1.4 0:00.05 apache2 1338 ubuntu 20 0 2832 1192 944 S 0 0.2 0:00.30 top 1417 ubuntu 20 0 9652 1456 824 S 0 0.3 0:00.02 sshd 1 root 20 0 3540 1876 1248 S 0 0.4 0:00.83 init 2 root 20 0 0 0 0 S 0 0.0 0:00.00 kthreadd 3 root 20 0 0 0 0 S 0 0.0 0:00.03 ksoftirqd/0 4 root 20 0 0 0 0 S 0 0.0 0:00.00 kworker/0:0 5 root 20 0 0 0 0 S 0 0.0 0:00.48 kworker/u:0 6 root RT 0 0 0 0 S 0 0.0 0:00.00 migration/0 7 root RT 0 0 0 0 S 0 0.0 0:00.00 watchdog/0 8 root RT 0 0 0 0 S 0 0.0 0:00.00 migration/1 9 root 20 0 0 0 0 S 0 0.0 0:00.00 kworker/1:0 10 root 20 0 0 0 0 S 0 0.0 0:00.01 ksoftirqd/1 11 root 20 0 0 0 0 S 0 0.0 0:00.17 kworker/0:1 12 root RT 0 0 0 0 S 0 0.0 0:00.00 watchdog/1 13 root 0 -20 0 0 0 S 0 0.0 0:00.00 cpuset 14 root 0 -20 0 0 0 S 0 0.0 0:00.00 khelper 15 root 20 0 0 0 0 S 0 0.0 0:00.00 kdevtmpfs 16 root 0 -20 0 0 0 S 0 0.0 0:00.00 netns 17 root 20 0 0 0 0 S 0 0.0 0:00.32 kworker/u:1 18 root 20 0 0 0 0 S 0 0.0 0:00.00 sync_supers 19 root 20 0 0 0 0 S 0 0.0 0:00.00 bdi-default 20 root 0 -20 0 0 0 S 0 0.0 0:00.00 kintegrityd 21 root 0 -20 0 0 0 S 0 0.0 0:00.00 kblockd 22 root 0 -20 0 0 0 S 0 0.0 0:00.00 ata_sff 23 root 20 0 0 0 0 S 0 0.0 0:00.00 khubd So its difficult to do it without any script or program. How can I do this?

    Read the article

  • Free eBook with SQL Server performance tips and nuggets

    - by Claire Brooking
    I’ve often found that the kind of tips that turn out to be helpful are the ones that encourage me to make a small step outside of a routine. No dramatic changes – just a quick suggestion that changes an approach. As a languages student at university, one of the best I spotted came from outside the lecture halls and ended up saving me time (and lots of huffing and puffing) – the use of a rainbow of sticky notes for well-used pages and letter categories in my dictionary. Simple, but armed with a heavy dictionary that could double up as a step stool, those markers were surprisingly handy. When the Simple-Talk editors told me about a book they were planning that would give a series of tips for developers on how to improve database performance, we all agreed it needed to contain a good range of pointers for big-hitter performance topics. But we wanted to include some of the smaller, time-saving nuggets too. We hope we’ve struck a good balance. The 45 Database Performance Tips eBook covers different tips to help you avoid code that saps performance, whether that’s the ‘gotchas’ to be aware of when using Object to Relational Mapping (ORM) tools, or what to be aware of for indexes, database design, and T-SQL. The eBook is also available to download with SQL Prompt from Red Gate. We often hear that it’s the productivity-boosting side of SQL Prompt that makes it useful for everyday coding. So when a member of the SQL Prompt team mentioned an idea to make the most of tab history, a new feature in SQL Prompt 6 for SQL Server Management Studio, we were intrigued. Now SQL Prompt can save tabs we have been working on in SSMS as a way to maintain an active template for queries we often recycle. When we need to reuse the same code again, we search for our saved tab (and we can also customize its name to speed up the search) to get started. We hope you find the eBook helpful, and as always on Simple-Talk, we’d love to hear from you too. If you have a performance tip for SQL Server you’d like to share, email Melanie on the Simple-Talk team ([email protected]) and we’ll publish a collection in a follow-up post.

    Read the article

< Previous Page | 72 73 74 75 76 77 78 79 80 81 82 83  | Next Page >