Search Results

Search found 2898 results on 116 pages for 'sum of digits'.

Page 76/116 | < Previous Page | 72 73 74 75 76 77 78 79 80 81 82 83  | Next Page >

  • How to reduce RAM consumption when my server is idle

    - by Julien Genestoux
    We use Slicehost, with 512MB instances. We run Ubuntu 9.10 on them. I installed a few packages, and I'm now trying to optimize RAM consumption before running anything on there. A simple ps gives me the list of running processes : # ps faux USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 2 0.0 0.0 0 0 ? S< Jan04 0:00 [kthreadd] root 3 0.0 0.0 0 0 ? S< Jan04 0:15 \_ [migration/0] root 4 0.0 0.0 0 0 ? S< Jan04 0:01 \_ [ksoftirqd/0] root 5 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [watchdog/0] root 6 0.0 0.0 0 0 ? S< Jan04 0:04 \_ [events/0] root 7 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [cpuset] root 8 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [khelper] root 9 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [async/mgr] root 10 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xenwatch] root 11 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xenbus] root 13 0.0 0.0 0 0 ? S< Jan04 0:02 \_ [migration/1] root 14 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [ksoftirqd/1] root 15 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [watchdog/1] root 16 0.0 0.0 0 0 ? S< Jan04 0:07 \_ [events/1] root 17 0.0 0.0 0 0 ? S< Jan04 0:02 \_ [migration/2] root 18 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [ksoftirqd/2] root 19 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [watchdog/2] root 20 0.0 0.0 0 0 ? R< Jan04 0:07 \_ [events/2] root 21 0.0 0.0 0 0 ? S< Jan04 0:04 \_ [migration/3] root 22 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [ksoftirqd/3] root 23 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [watchdog/3] root 24 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [events/3] root 25 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kintegrityd/0] root 26 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kintegrityd/1] root 27 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kintegrityd/2] root 28 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kintegrityd/3] root 29 0.0 0.0 0 0 ? S< Jan04 0:01 \_ [kblockd/0] root 30 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kblockd/1] root 31 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kblockd/2] root 32 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kblockd/3] root 33 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kseriod] root 34 0.0 0.0 0 0 ? S Jan04 0:00 \_ [khungtaskd] root 35 0.0 0.0 0 0 ? S Jan04 0:05 \_ [pdflush] root 36 0.0 0.0 0 0 ? S Jan04 0:06 \_ [pdflush] root 37 0.0 0.0 0 0 ? S< Jan04 1:02 \_ [kswapd0] root 38 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [aio/0] root 39 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [aio/1] root 40 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [aio/2] root 41 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [aio/3] root 42 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsIO] root 43 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsCommit] root 44 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsCommit] root 45 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsCommit] root 46 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsCommit] root 47 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsSync] root 48 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfs_mru_cache] root 49 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfslogd/0] root 50 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfslogd/1] root 51 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfslogd/2] root 52 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfslogd/3] root 53 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsdatad/0] root 54 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsdatad/1] root 55 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsdatad/2] root 56 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsdatad/3] root 57 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsconvertd/0] root 58 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsconvertd/1] root 59 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsconvertd/2] root 60 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsconvertd/3] root 61 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [glock_workqueue] root 62 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [glock_workqueue] root 63 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [glock_workqueue] root 64 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [glock_workqueue] root 65 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [delete_workqueu] root 66 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [delete_workqueu] root 67 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [delete_workqueu] root 68 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [delete_workqueu] root 69 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kslowd] root 70 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kslowd] root 71 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [crypto/0] root 72 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [crypto/1] root 73 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [crypto/2] root 74 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [crypto/3] root 77 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [net_accel/0] root 78 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [net_accel/1] root 79 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [net_accel/2] root 80 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [net_accel/3] root 81 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [sfc_netfront/0] root 82 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [sfc_netfront/1] root 83 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [sfc_netfront/2] root 84 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [sfc_netfront/3] root 310 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kstriped] root 315 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [ksnapd] root 1452 0.0 0.0 0 0 ? S< Jan04 4:31 \_ [kjournald] root 1 0.0 0.1 19292 948 ? Ss Jan04 0:15 /sbin/init root 1545 0.0 0.1 13164 1064 ? S Jan04 0:00 upstart-udev-bridge --daemon root 1547 0.0 0.1 17196 996 ? S<s Jan04 0:00 udevd --daemon root 1728 0.0 0.2 20284 1468 ? S< Jan04 0:00 \_ udevd --daemon root 1729 0.0 0.1 17192 792 ? S< Jan04 0:00 \_ udevd --daemon root 1881 0.0 0.0 8192 152 ? Ss Jan04 0:00 dd bs=1 if=/proc/kmsg of=/var/run/rsyslog/kmsg syslog 1884 0.0 0.2 185252 1200 ? Sl Jan04 1:00 rsyslogd -c4 103 1894 0.0 0.1 23328 700 ? Ss Jan04 1:08 dbus-daemon --system --fork root 2046 0.0 0.0 136 32 ? Ss Jan04 4:05 runsvdir -P /etc/service log: gems/custom_require.rb:31:in `require'??from /mnt/app/superfeedr-firehoser/current/script/component:52?/opt/ruby-enterprise/lib/ruby/si root 2055 0.0 0.0 112 32 ? Ss Jan04 0:00 \_ runsv chef-client root 2060 0.0 0.0 132 40 ? S Jan04 0:02 | \_ svlogd -tt ./main root 2056 0.0 0.0 112 28 ? Ss Jan04 0:20 \_ runsv superfeedr-firehoser_2 root 2059 0.0 0.0 132 40 ? S Jan04 0:29 | \_ svlogd /var/log/superfeedr-firehoser_2 root 2057 0.0 0.0 112 28 ? Ss Jan04 0:20 \_ runsv superfeedr-firehoser_1 root 2062 0.0 0.0 132 44 ? S Jan04 0:26 \_ svlogd /var/log/superfeedr-firehoser_1 root 2058 0.0 0.0 18708 316 ? Ss Jan04 0:01 cron root 2095 0.0 0.1 49072 764 ? Ss Jan04 0:06 /usr/sbin/sshd root 9832 0.0 0.5 78916 3500 ? Ss 00:37 0:00 \_ sshd: root@pts/0 root 9846 0.0 0.3 17900 2036 pts/0 Ss 00:37 0:00 \_ -bash root 10132 0.0 0.1 15020 1064 pts/0 R+ 09:51 0:00 \_ ps faux root 2180 0.0 0.0 5988 140 tty1 Ss+ Jan04 0:00 /sbin/getty -8 38400 tty1 root 27610 0.0 1.4 47060 8436 ? S Apr04 2:21 python /usr/sbin/denyhosts --daemon --purge --config=/etc/denyhosts.conf --config=/etc/denyhosts.conf root 22640 0.0 0.7 119244 4164 ? Ssl Apr05 0:05 /usr/sbin/console-kit-daemon root 10113 0.0 0.0 3904 316 ? Ss 09:46 0:00 /usr/sbin/collectdmon -P /var/run/collectdmon.pid -- -C /etc/collectd/collectd.conf root 10114 0.0 0.2 201084 1464 ? Sl 09:46 0:00 \_ collectd -C /etc/collectd/collectd.conf -f As you can see there is nothing serious here. If I sum up the RSS line on all this, I get the following : # ps -aeo rss | awk '{sum+=$1} END {print sum}' 30096 Which makes sense. However, I have a pretty big surprise when I do a free: # free total used free shared buffers cached Mem: 591180 343684 247496 0 25432 161256 -/+ buffers/cache: 156996 434184 Swap: 1048568 0 1048568 As you can see 60% of the available memory is already consumed... which leaves me with only 40% to run my own applications if I want to avoid swapping. Quite disapointing! 2 questions arise : Where is all this memory? How to take some of it back for my own apps?

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Working with Analytic Workflow Manager (AWM) - Part 8 Cube Metadata Analysis

    - by Mohan Ramanuja
    CUBE SIZEselect dbal.owner||'.'||substr(dbal.table_name,4) awname, sum(dbas.bytes)/1024/1024 as mb, dbas.tablespace_name from dba_lobs dbal, dba_segments dbas where dbal.column_name = 'AWLOB' and dbal.segment_name = dbas.segment_name group by dbal.owner, dbal.table_name, dbas.tablespace_name order by dbal.owner, dbal.table_name SESSION RESOURCES select vses.username||':'||vsst.sid username, vstt.name, max(vsst.value) valuefrom v$sesstat vsst, v$statname vstt, v$session vseswhere vstt.statistic# = vsst.statistic# and vsst.sid = vses.sid andVSES.USERNAME LIKE ('ATTRIBDW_OWN') ANDvstt.name in ('session pga memory', 'session pga memory max', 'session uga memory','session uga memory max', 'session cursor cache count', 'session cursor cache hits', 'session stored procedure space', 'opened cursors current', 'opened cursors cumulative') andvses.username is not null group by vsst.sid, vses.username, vstt.name order by vsst.sid, vses.username, vstt.name OLAP PGA USE select 'OLAP Pages Occupying: '|| round((((select sum(nvl(pool_size,1)) from v$aw_calc)) / (select value from v$pgastat where name = 'total PGA inuse')),2)*100||'%' info from dual union select 'Total PGA Inuse Size: '||value/1024||' KB' info from v$pgastat where name = 'total PGA inuse' union select 'Total OLAP Page Size: '|| round(sum(nvl(pool_size,1))/1024,0)||' KB' info from v$aw_calc order by info desc OLAP PGA USAGE PER USER select vs.username, vs.sid, round(pga_used_mem/1024/1024,2)||' MB' pga_used, round(pga_max_mem/1024/1024,2)||' MB' pga_max, round(pool_size/1024/1024,2)||' MB' olap_pp, round(100*(pool_hits-pool_misses)/pool_hits,2) || '%' olap_ratio from v$process vp, v$session vs, v$aw_calc va where session_id=vs.sid and addr = paddr CUBE LOADING SCRIPT REM The 'set define off' statement is needed only if running this script through SQLPlus.REM If you are using another tool to run this script, the line below may be commented out.set define offBEGIN  DBMS_CUBE.BUILD(    'VALIDATE  ATTRIBDW_OWN.CURRENCY USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.ACCOUNT USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.DATEDIM USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.CUSIP USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.ACCOUNTRETURN',    'CCCCC', -- refresh methodfalse, -- refresh after errors    0, -- parallelismtrue, -- atomic refreshtrue, -- automatic orderfalse); -- add dimensionsEND;/BEGIN  DBMS_CUBE.BUILD(    '  ATTRIBDW_OWN.CURRENCY USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.ACCOUNT USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.DATEDIM USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.CUSIP USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.ACCOUNTRETURN',    'CCCCC', -- refresh methodfalse, -- refresh after errors    0, -- parallelismtrue, -- atomic refreshtrue, -- automatic orderfalse); -- add dimensionsEND;/ VISUALIZATION OBJECT - AW$ATTRIBDW_OWN  CREATE TABLE "ATTRIBDW_OWN"."AW$ATTRIBDW_OWN"        (            "PS#"    NUMBER(10,0),            "GEN#"   NUMBER(10,0),            "EXTNUM" NUMBER(8,0),            "AWLOB" BLOB,            "OBJNAME"  VARCHAR2(256 BYTE),            "PARTNAME" VARCHAR2(256 BYTE)        )        PCTFREE 10 PCTUSED 40 INITRANS 4 MAXTRANS 255 STORAGE        (            BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT        )        TABLESPACE "ATTRIBDW_DATA" LOB        (            "AWLOB"        )        STORE AS SECUREFILE        (            TABLESPACE "ATTRIBDW_DATA" DISABLE STORAGE IN ROW CHUNK 8192 RETENTION MIN 1 CACHE NOCOMPRESS KEEP_DUPLICATES STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)        )        PARTITION BY RANGE        (            "GEN#"        )        SUBPARTITION BY HASH        (            "PS#",            "EXTNUM"        )        SUBPARTITIONS 8        (            PARTITION "PTN1" VALUES LESS THAN (1) PCTFREE 10 PCTUSED 40 INITRANS 4 MAXTRANS 255 STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" LOB ("AWLOB") STORE AS SECUREFILE ( TABLESPACE "ATTRIBDW_DATA" DISABLE STORAGE IN ROW CHUNK 8192 RETENTION MIN 1 CACHE READS LOGGING NOCOMPRESS KEEP_DUPLICATES STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)) ( SUBPARTITION "SYS_SUBP661" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP662" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP663" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP664" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP665" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION            "SYS_SUBP666" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP667" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP668" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" ) ,            PARTITION "PTNN" VALUES LESS THAN (MAXVALUE) PCTFREE 10 PCTUSED 40 INITRANS 4 MAXTRANS 255 STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" LOB ("AWLOB") STORE AS SECUREFILE ( TABLESPACE "ATTRIBDW_DATA" DISABLE STORAGE IN ROW CHUNK 8192 RETENTION MIN 1 CACHE NOCOMPRESS KEEP_DUPLICATES STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)) ( SUBPARTITION "SYS_SUBP669" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP670" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP671" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP672" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP673" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION            "SYS_SUBP674" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP675" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP676" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" )        ) ;CREATE UNIQUE INDEX "ATTRIBDW_OWN"."ATTRIBDW_OWN_I$" ON "ATTRIBDW_OWN"."AW$ATTRIBDW_OWN"    (        "PS#", "GEN#", "EXTNUM"    )    PCTFREE 10 INITRANS 4 MAXTRANS 255 COMPUTE STATISTICS STORAGE    (        INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT    )    TABLESPACE "ATTRIBDW_DATA" ;CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000406980C00004$$" ON "ATTRIBDW_OWN"."AW$ATTRIBDW_OWN"    (        PCTFREE 10 INITRANS 1 MAXTRANS 255 STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" LOCAL (PARTITION "SYS_IL_P711" PCTFREE 10 INITRANS 1 MAXTRANS 255 STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) ( SUBPARTITION "SYS_IL_SUBP695" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP696" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP697" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP698" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP699" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP700" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP701" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP702" TABLESPACE "ATTRIBDW_DATA" ) , PARTITION "SYS_IL_P712" PCTFREE 10 INITRANS 1 MAXTRANS 255 STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) ( SUBPARTITION "SYS_IL_SUBP703" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP704" TABLESPACE        "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP705" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP706" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP707" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP708" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP709" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP710" TABLESPACE "ATTRIBDW_DATA" ) ) PARALLEL (DEGREE 0 INSTANCES 0) ; CUBE BUILD LOG  CREATE TABLE "ATTRIBDW_OWN"."CUBE_BUILD_LOG"        (            "BUILD_ID"          NUMBER,            "SLAVE_NUMBER"      NUMBER,            "STATUS"            VARCHAR2(10 BYTE),            "COMMAND"           VARCHAR2(25 BYTE),            "BUILD_OBJECT"      VARCHAR2(30 BYTE),            "BUILD_OBJECT_TYPE" VARCHAR2(10 BYTE),            "OUTPUT" CLOB,            "AW"            VARCHAR2(30 BYTE),            "OWNER"         VARCHAR2(30 BYTE),            "PARTITION"     VARCHAR2(50 BYTE),            "SCHEDULER_JOB" VARCHAR2(100 BYTE),            "TIME" TIMESTAMP (6)WITH TIME ZONE,        "BUILD_SCRIPT" CLOB,        "BUILD_TYPE"            VARCHAR2(22 BYTE),        "COMMAND_DEPTH"         NUMBER(2,0),        "BUILD_SUB_OBJECT"      VARCHAR2(30 BYTE),        "REFRESH_METHOD"        VARCHAR2(1 BYTE),        "SEQ_NUMBER"            NUMBER,        "COMMAND_NUMBER"        NUMBER,        "IN_BRANCH"             NUMBER(1,0),        "COMMAND_STATUS_NUMBER" NUMBER,        "BUILD_NAME"            VARCHAR2(100 BYTE)        )        SEGMENT CREATION IMMEDIATE PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING STORAGE        (            INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT        )        TABLESPACE "ATTRIBDW_DATA" LOB        (            "OUTPUT"        )        STORE AS BASICFILE        (            TABLESPACE "ATTRIBDW_DATA" ENABLE STORAGE IN ROW CHUNK 8192 RETENTION NOCACHE LOGGING STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)        )        LOB        (            "BUILD_SCRIPT"        )        STORE AS BASICFILE        (            TABLESPACE "ATTRIBDW_DATA" ENABLE STORAGE IN ROW CHUNK 8192 RETENTION NOCACHE LOGGING STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)        ) ;CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000407294C00013$$" ON "ATTRIBDW_OWN"."CUBE_BUILD_LOG"    (        PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" PARALLEL (DEGREE 0 INSTANCES 0) ;CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000407294C00007$$" ON "ATTRIBDW_OWN"."CUBE_BUILD_LOG" ( PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" PARALLEL (DEGREE 0 INSTANCES 0) ; CUBE DIMENSION COMPILE  CREATE TABLE "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"        (            "ID"               NUMBER,            "SEQ_NUMBER"       NUMBER,            "ERROR#"           NUMBER(8,0) NOT NULL ENABLE,            "ERROR_MESSAGE"    VARCHAR2(2000 BYTE),            "DIMENSION"        VARCHAR2(100 BYTE),            "DIMENSION_MEMBER" VARCHAR2(100 BYTE),            "MEMBER_ANCESTOR"  VARCHAR2(100 BYTE),            "HIERARCHY1"       VARCHAR2(100 BYTE),            "HIERARCHY2"       VARCHAR2(100 BYTE),            "ERROR_CONTEXT" CLOB        )        SEGMENT CREATION DEFERRED PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING TABLESPACE "ATTRIBDW_DATA" LOB        (            "ERROR_CONTEXT"        )        STORE AS BASICFILE        (            TABLESPACE "ATTRIBDW_DATA" ENABLE STORAGE IN ROW CHUNK 8192 RETENTION NOCACHE LOGGING        ) ;COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."ID"IS    'Current operation ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."SEQ_NUMBER"IS    'Cube build log sequence number';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."ERROR#"IS    'Error number being reported';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."ERROR_MESSAGE"IS    'Error text being reported';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."DIMENSION"IS    'Name of dimension being compiled';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."DIMENSION_MEMBER"IS    'Problem dimension member';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."MEMBER_ANCESTOR"IS    'Problem dimension member''s parent';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."HIERARCHY1"IS    'First hierarchy involved in error';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."HIERARCHY2"IS    'Second hierarchy involved in error';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."ERROR_CONTEXT"IS    'Extra information for error';    COMMENT ON TABLE "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"IS    'Cube dimension compile log';CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000407307C00010$$" ON "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"    (        PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE( INITIAL 1048576 NEXT 1048576 MAXEXTENTS 2147483645) TABLESPACE "ATTRIBDW_DATA" PARALLEL (DEGREE 0 INSTANCES 0) ; CUBE OPERATING LOG  CREATE TABLE "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"        (            "INST_ID"    NUMBER NOT NULL ENABLE,            "SID"        NUMBER NOT NULL ENABLE,            "SERIAL#"    NUMBER NOT NULL ENABLE,            "USER#"      NUMBER NOT NULL ENABLE,            "SQL_ID"     VARCHAR2(13 BYTE),            "JOB"        NUMBER,            "ID"         NUMBER,            "PARENT_ID"  NUMBER,            "SEQ_NUMBER" NUMBER,            "TIME" TIMESTAMP (6)WITH TIME ZONE NOT NULL ENABLE,        "LOG_LEVEL"    NUMBER(4,0) NOT NULL ENABLE,        "DEPTH"        NUMBER(4,0),        "OPERATION"    VARCHAR2(15 BYTE) NOT NULL ENABLE,        "SUBOPERATION" VARCHAR2(20 BYTE),        "STATUS"       VARCHAR2(10 BYTE) NOT NULL ENABLE,        "NAME"         VARCHAR2(20 BYTE) NOT NULL ENABLE,        "VALUE"        VARCHAR2(4000 BYTE),        "DETAILS" CLOB        )        SEGMENT CREATION IMMEDIATE PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING STORAGE        (            INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT        )        TABLESPACE "ATTRIBDW_DATA" LOB        (            "DETAILS"        )        STORE AS BASICFILE        (            TABLESPACE "ATTRIBDW_DATA" ENABLE STORAGE IN ROW CHUNK 8192 RETENTION NOCACHE LOGGING STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)        ) ;COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."INST_ID"IS    'Instance ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."SID"IS    'Session ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."SERIAL#"IS    'Session serial#';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."USER#"IS    'User ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."SQL_ID"IS    'Executing SQL statement ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."JOB"IS    'Identifier of job';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."ID"IS    'Current operation ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."PARENT_ID"IS    'Parent operation ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."SEQ_NUMBER"IS    'Cube build log sequence number';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."TIME"IS    'Time of record';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."LOG_LEVEL"IS    'Verbosity level of record';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."DEPTH"IS    'Nesting depth of record';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."OPERATION"IS    'Current operation';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."SUBOPERATION"IS    'Current suboperation';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."STATUS"IS    'Status of current operation';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."NAME"IS    'Name of record';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."VALUE"IS    'Value of record';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."DETAILS"IS    'Extra information for record';    COMMENT ON TABLE "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"IS    'Cube operations log';CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000407301C00018$$" ON "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"    (        PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" PARALLEL (DEGREE 0 INSTANCES 0) ; CUBE REJECTED RECORDS CREATE TABLE "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"        (            "ID"            NUMBER,            "SEQ_NUMBER"    NUMBER,            "ERROR#"        NUMBER(8,0) NOT NULL ENABLE,            "ERROR_MESSAGE" VARCHAR2(2000 BYTE),            "RECORD#"       NUMBER(38,0),            "SOURCE_ROW" ROWID,            "REJECTED_RECORD" CLOB        )        SEGMENT CREATION IMMEDIATE PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING STORAGE        (            INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT        )        TABLESPACE "ATTRIBDW_DATA" LOB        (            "REJECTED_RECORD"        )        STORE AS BASICFILE        (            TABLESPACE "ATTRIBDW_DATA" ENABLE STORAGE IN ROW CHUNK 8192 RETENTION NOCACHE LOGGING STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)        ) ;COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."ID"IS    'Current operation ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."SEQ_NUMBER"IS    'Cube build log sequence number';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."ERROR#"IS    'Error number being reported';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."ERROR_MESSAGE"IS    'Error text being reported';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."RECORD#"IS    'Rejected record number';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."SOURCE_ROW"IS    'Rejected record''s ROWID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."REJECTED_RECORD"IS    'Rejected record copy';    COMMENT ON TABLE "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"IS    'Cube rejected records log';CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000407304C00007$$" ON "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"    (        PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" PARALLEL (DEGREE 0 INSTANCES 0) ;

    Read the article

  • datagrid binding

    - by abcdd007
    using System; using System.Data; using System.Configuration; using System.Collections; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using System.Web.UI.HtmlControls; using System.Data.SqlClient; public partial class OrderMaster : System.Web.UI.Page { BLLOrderMaster objMaster = new BLLOrderMaster(); protected void Page_Load(object sender, EventArgs e) { if (!Page.IsPostBack) { SetInitialRow(); string OrderNumber = objMaster.SelectDetails().ToString(); if (OrderNumber != "") { txtOrderNo.Text = OrderNumber.ToString(); txtOrderDate.Focus(); } } } private void InsertEmptyRow() { DataTable dt = new DataTable(); DataRow dr = null; dt.Columns.Add(new DataColumn("ItemCode", typeof(string))); dt.Columns.Add(new DataColumn("Description", typeof(string))); dt.Columns.Add(new DataColumn("Unit", typeof(string))); dt.Columns.Add(new DataColumn("Qty", typeof(string))); dt.Columns.Add(new DataColumn("Rate", typeof(string))); dt.Columns.Add(new DataColumn("Disc", typeof(string))); dt.Columns.Add(new DataColumn("Amount", typeof(string))); for (int i = 0; i < 5; i++) { dr = dt.NewRow(); dr["ItemCode"] = string.Empty; dr["Description"] = string.Empty; dr["Unit"] = string.Empty; dr["Qty"] = string.Empty; dr["Rate"] = string.Empty; dr["Disc"] = string.Empty; dr["Amount"] = string.Empty; dt.Rows.Add(dr); } //GridView1.DataSource = dt; //GridView1.DataBind(); } private void SetInitialRow() { DataTable dt = new DataTable(); DataRow dr = null; dt.Columns.Add(new DataColumn("RowNumber", typeof(string))); dt.Columns.Add(new DataColumn("ItemCode", typeof(string))); dt.Columns.Add(new DataColumn("Description", typeof(string))); dt.Columns.Add(new DataColumn("Unit", typeof(string))); dt.Columns.Add(new DataColumn("Qty", typeof(string))); dt.Columns.Add(new DataColumn("Rate", typeof(string))); dt.Columns.Add(new DataColumn("Disc", typeof(string))); dt.Columns.Add(new DataColumn("Amount", typeof(string))); dr = dt.NewRow(); dr["RowNumber"] = 1; dr["ItemCode"] = string.Empty; dr["Description"] = string.Empty; dr["Unit"] = string.Empty; dr["Qty"] = string.Empty; dr["Rate"] = string.Empty; dr["Disc"] = string.Empty; dr["Amount"] = string.Empty; dt.Rows.Add(dr); //Store DataTable ViewState["OrderDetails"] = dt; Gridview1.DataSource = dt; Gridview1.DataBind(); } protected void AddNewRowToGrid() { int rowIndex = 0; if (ViewState["OrderDetails"] != null) { DataTable dtCurrentTable = (DataTable)ViewState["OrderDetails"]; DataRow drCurrentRow = null; if (dtCurrentTable.Rows.Count > 0) { for (int i = 1; i <= dtCurrentTable.Rows.Count; i++) { //extract the TextBox values TextBox box1 = (TextBox)Gridview1.Rows[rowIndex].Cells[1].FindControl("txtItemCode"); TextBox box2 = (TextBox)Gridview1.Rows[rowIndex].Cells[2].FindControl("txtdescription"); TextBox box3 = (TextBox)Gridview1.Rows[rowIndex].Cells[3].FindControl("txtunit"); TextBox box4 = (TextBox)Gridview1.Rows[rowIndex].Cells[4].FindControl("txtqty"); TextBox box5 = (TextBox)Gridview1.Rows[rowIndex].Cells[5].FindControl("txtRate"); TextBox box6 = (TextBox)Gridview1.Rows[rowIndex].Cells[6].FindControl("txtdisc"); TextBox box7 = (TextBox)Gridview1.Rows[rowIndex].Cells[7].FindControl("txtamount"); drCurrentRow = dtCurrentTable.NewRow(); drCurrentRow["RowNumber"] = i + 1; drCurrentRow["ItemCode"] = box1.Text; drCurrentRow["Description"] = box2.Text; drCurrentRow["Unit"] = box3.Text; drCurrentRow["Qty"] = box4.Text; drCurrentRow["Rate"] = box5.Text; drCurrentRow["Disc"] = box6.Text; drCurrentRow["Amount"] = box7.Text; rowIndex++; } //add new row to DataTable dtCurrentTable.Rows.Add(drCurrentRow); //Store the current data to ViewState ViewState["OrderDetails"] = dtCurrentTable; //Rebind the Grid with the current data Gridview1.DataSource = dtCurrentTable; Gridview1.DataBind(); } } else { // } //Set Previous Data on Postbacks SetPreviousData(); } private void SetPreviousData() { int rowIndex = 0; if (ViewState["OrderDetails"] != null) { DataTable dt = (DataTable)ViewState["OrderDetails"]; if (dt.Rows.Count > 0) { for (int i = 1; i < dt.Rows.Count; i++) { TextBox box1 = (TextBox)Gridview1.Rows[rowIndex].Cells[1].FindControl("txtItemCode"); TextBox box2 = (TextBox)Gridview1.Rows[rowIndex].Cells[2].FindControl("txtdescription"); TextBox box3 = (TextBox)Gridview1.Rows[rowIndex].Cells[3].FindControl("txtunit"); TextBox box4 = (TextBox)Gridview1.Rows[rowIndex].Cells[4].FindControl("txtqty"); TextBox box5 = (TextBox)Gridview1.Rows[rowIndex].Cells[5].FindControl("txtRate"); TextBox box6 = (TextBox)Gridview1.Rows[rowIndex].Cells[6].FindControl("txtdisc"); TextBox box7 = (TextBox)Gridview1.Rows[rowIndex].Cells[7].FindControl("txtamount"); box1.Text = dt.Rows[i]["ItemCode"].ToString(); box2.Text = dt.Rows[i]["Description"].ToString(); box3.Text = dt.Rows[i]["Unit"].ToString(); box4.Text = dt.Rows[i]["Qty"].ToString(); box5.Text = dt.Rows[i]["Rate"].ToString(); box6.Text = dt.Rows[i]["Disc"].ToString(); box7.Text = dt.Rows[i]["Amount"].ToString(); rowIndex++; } dt.AcceptChanges(); } ViewState["OrderDetails"] = dt; } } protected void BindOrderDetails() { DataTable dtOrderDetails = new DataTable(); if (ViewState["OrderDetails"] != null) { dtOrderDetails = (DataTable)ViewState["OrderDetails"]; } else { dtOrderDetails.Columns.Add(""); dtOrderDetails.Columns.Add(""); dtOrderDetails.Columns.Add(""); dtOrderDetails.Columns.Add(""); dtOrderDetails.Columns.Add(""); dtOrderDetails.Columns.Add(""); dtOrderDetails.AcceptChanges(); DataRow dr = dtOrderDetails.NewRow(); dtOrderDetails.Rows.Add(dr); ViewState["OrderDetails"] = dtOrderDetails; } if (dtOrderDetails != null) { Gridview1.DataSource = dtOrderDetails; Gridview1.DataBind(); if (Gridview1.Rows.Count > 0) { ((LinkButton)Gridview1.Rows[Gridview1.Rows.Count - 1].FindControl("btnDelete")).Visible = false; } } } protected void btnSave_Click(object sender, EventArgs e) { if (txtOrderDate.Text != "" && txtOrderNo.Text != "" && txtPartyName.Text != "" && txttotalAmount.Text !="") { BLLOrderMaster bllobj = new BLLOrderMaster(); DataTable dtdetails = new DataTable(); UpdateItemDetailRow(); dtdetails = (DataTable)ViewState["OrderDetails"]; SetValues(bllobj); int k = 0; k = bllobj.Insert_Update_Delete(1, bllobj, dtdetails); if (k > 0) { ScriptManager.RegisterStartupScript(this, this.GetType(), "Login Denied", "<Script>alert('Order Code Alraddy Exist');</Script>", false); } else { ScriptManager.RegisterStartupScript(this, this.GetType(), "Login Denied", "<Script>alert('Record Saved Successfully');</Script>", false); } dtdetails.Clear(); SetInitialRow(); txttotalAmount.Text = ""; txtOrderNo.Text = ""; txtPartyName.Text = ""; txtOrderDate.Text = ""; txttotalQty.Text = ""; string OrderNumber = objMaster.SelectDetails().ToString(); if (OrderNumber != "") { txtOrderNo.Text = OrderNumber.ToString(); txtOrderDate.Focus(); } } else { txtOrderNo.Text = ""; } } public void SetValues(BLLOrderMaster bllobj) { if (txtOrderNo.Text != null && txtOrderNo.Text.ToString() != "") { bllobj.OrNumber = Convert.ToInt16(txtOrderNo.Text); } if (txtOrderDate.Text != null && txtOrderDate.Text.ToString() != "") { bllobj.Date = DateTime.Parse(txtOrderDate.Text.ToString()).ToString("dd/MM/yyyy"); } if (txtPartyName.Text != null && txtPartyName.Text.ToString() != "") { bllobj.PartyName = txtPartyName.Text; } bllobj.TotalBillAmount = txttotalAmount.Text == "" ? 0 : int.Parse(txttotalAmount.Text); bllobj.TotalQty = txttotalQty.Text == "" ? 0 : int.Parse(txttotalQty.Text); } protected void txtdisc_TextChanged(object sender, EventArgs e) { double total = 0; double totalqty = 0; foreach (GridViewRow dgvr in Gridview1.Rows) { TextBox tb = (TextBox)dgvr.Cells[7].FindControl("txtamount"); double sum; if (double.TryParse(tb.Text.Trim(), out sum)) { total += sum; } TextBox tb1 = (TextBox)dgvr.Cells[4].FindControl("txtqty"); double qtysum; if (double.TryParse(tb1.Text.Trim(), out qtysum)) { totalqty += qtysum; } } txttotalAmount.Text = total.ToString(); txttotalQty.Text = totalqty.ToString(); AddNewRowToGrid(); Gridview1.TabIndex = 1; } public void UpdateItemDetailRow() { DataTable dt = new DataTable(); if (ViewState["OrderDetails"] != null) { dt = (DataTable)ViewState["OrderDetails"]; } if (dt.Rows.Count > 0) { for (int i = 0; i < Gridview1.Rows.Count; i++) { dt.Rows[i]["ItemCode"] = (Gridview1.Rows[i].FindControl("txtItemCode") as TextBox).Text.ToString(); if (dt.Rows[i]["ItemCode"].ToString() == "") { dt.Rows[i].Delete(); break; } else { dt.Rows[i]["Description"] = (Gridview1.Rows[i].FindControl("txtdescription") as TextBox).Text.ToString(); dt.Rows[i]["Unit"] = (Gridview1.Rows[i].FindControl("txtunit") as TextBox).Text.ToString(); dt.Rows[i]["Qty"] = (Gridview1.Rows[i].FindControl("txtqty") as TextBox).Text.ToString(); dt.Rows[i]["Rate"] = (Gridview1.Rows[i].FindControl("txtRate") as TextBox).Text.ToString(); dt.Rows[i]["Disc"] = (Gridview1.Rows[i].FindControl("txtdisc") as TextBox).Text.ToString(); dt.Rows[i]["Amount"] = (Gridview1.Rows[i].FindControl("txtamount") as TextBox).Text.ToString(); } } dt.AcceptChanges(); } ViewState["OrderDetails"] = dt; } }

    Read the article

  • XSLT 1.0 help with recursion logic

    - by DashaLuna
    Hello guys, I'm having troubles with the logic and would apprecite any help/tips. I have <Deposits> elements and <Receipts> elements. However there isn't any identification what receipt was paid toward what deposit. I am trying to update the <Deposits> elements with the following attributes: @DueAmont - the amount that is still due to pay @Status - whether it's paid, outstanding (partly paid) or due @ReceiptDate - the latest receipt's date that was paid towards this deposit Every deposit could be paid with one or more receipts. It also could happen, that 1 receipt could cover one or more deposits. For example. If there are 3 deposits: 500 100 450 That are paid with the following receipts: 200 100 250 I want to get the following info: Deposit 1 is fully paid (status=paid, dueAmount=0, receiptNum=3. Deposit 2 is partly paid (status=outstanding, dueAmount=50, receiptNum=3. Deposit 3 is not paid (status=due, dueAmount=450, receiptNum=NAN. I've added comments in the code explaining what I'm trying to do. I am staring at this code for the 3rd day now non stop - can't see what I'm doing wrong. Please could anyone help me with it? :) Thanks! Set up: $deposits - All the available deposits $receiptsAsc - All the available receipts sorted by their @ActionDate Code: <!-- Accumulate all the deposits with @Status, @DueAmount and @ReceiptDate attributes Provide all deposits, receipts and start with 1st receipt --> <xsl:variable name="depositsClassified"> <xsl:call-template name="classifyDeposits"> <xsl:with-param name="depositsAll" select="$deposits"/> <xsl:with-param name="receiptsAll" select="$receiptsAsc"/> <xsl:with-param name="receiptCount" select="'1'"/> </xsl:call-template> </xsl:variable> <!-- Recursive function to associate deposits' total amounts with overall receipts paid to determine whether a deposit is due, outstanding or paid. Also determine what's the due amount and latest receipt towards the deposit for each deposit --> <xsl:template name="classifyDeposits"> <xsl:param name="depositsAll"/> <xsl:param name="receiptsAll"/> <xsl:param name="receiptCount"/> <!-- If there are deposits to proceed --> <xsl:if test="$depositsAll"> <!-- Get the 1st deposit --> <xsl:variable name="deposit" select="$depositsAll[1]"/> <!-- Calculate the sum of all receipts up to and including currenly considered --> <xsl:variable name="receiptSum"> <xsl:choose> <xsl:when test="$receiptsAll"> <xsl:value-of select="sum($receiptsAll[position() &lt;= $receiptCount]/@ReceiptAmount)"/> </xsl:when> <xsl:otherwise>0</xsl:otherwise> </xsl:choose> </xsl:variable> <!-- Difference between deposit amount and sum of the receipts calculated above --> <xsl:variable name="diff" select="$deposit/@DepositTotalAmount - $receiptSum"/> <xsl:choose> <!-- Deposit isn't paid fully and there are more receipts/payments exist. So consider the same deposit, but take next receipt into calculation as well --> <xsl:when test="($diff &gt; 0) and ($receiptCount &lt; count($receiptsAll))"> <xsl:call-template name="classifyDeposits"> <xsl:with-param name="depositsAll" select="$depositsAll"/> <xsl:with-param name="receiptsAll" select="$receiptsAll"/> <xsl:with-param name="receiptCount" select="$receiptCount + 1"/> </xsl:call-template> </xsl:when> <!-- Deposit is paid or we ran out of receipts --> <xsl:otherwise> <!-- process the deposit. Determine its status and then update corresponding attributes --> <xsl:apply-templates select="$deposit" mode="defineDeposit"> <xsl:with-param name="diff" select="$diff"/> <xsl:with-param name="receiptNum" select="$receiptCount"/> </xsl:apply-templates> <!-- Recursively call the template with the rest of deposits excluding the first. Before hand update the @ReceiptsAmount. For the receipts before current it is now 0, for the current is what left in the $diff, and simply copy over receipts after current one. --> <xsl:variable name="receiptsUpdatedRTF"> <xsl:for-each select="$receiptsAll"> <xsl:choose> <!-- these receipts was fully accounted for the current deposit. Make them 0 --> <xsl:when test="position() &lt; $receiptCount"> <xsl:copy> <xsl:copy-of select="./@*"/> <xsl:attribute name="ReceiptAmount">0</xsl:attribute> </xsl:copy> </xsl:when> <!-- this receipt was partly/fully(in case $diff=0) accounted for the current deposit. Make it whatever is in $diff --> <xsl:when test="position() = $receiptCount"> <xsl:copy> <xsl:copy-of select="./@*"/> <xsl:attribute name="ReceiptAmount"> <xsl:value-of select="format-number($diff, '#.00;#.00')"/> </xsl:attribute> </xsl:copy> </xsl:when> <!-- these receipts weren't yet considered - copy them over --> <xsl:otherwise> <xsl:copy-of select="."/> </xsl:otherwise> </xsl:choose> </xsl:for-each> </xsl:variable> <xsl:variable name="receiptsUpdated" select="msxsl:node-set($receiptsUpdatedRTF)/Receipts"/> <!-- Recursive call for the next deposit. Starting counting receipts from the current one. --> <xsl:call-template name="classifyDeposits"> <xsl:with-param name="depositsAll" select="$deposits[position() != 1]"/> <xsl:with-param name="receiptsAll" select="$receiptsUpdated"/> <xsl:with-param name="receiptCount" select="$receiptCount"/> </xsl:call-template> </xsl:otherwise> </xsl:choose> </xsl:if> </xsl:template> <!-- Determine deposit's status and due amount --> <xsl:template match="MultiDeposits" mode="defineDeposit"> <xsl:param name="diff"/> <xsl:param name="receiptNum"/> <xsl:choose> <xsl:when test="$diff &lt;= 0"> <xsl:apply-templates select="." mode="addAttrs"> <xsl:with-param name="status" select="'paid'"/> <xsl:with-param name="dueAmount" select="'0'"/> <xsl:with-param name="receiptNum" select="$receiptNum"/> </xsl:apply-templates> </xsl:when> <xsl:when test="$diff = ./@DepositTotalAmount"> <xsl:apply-templates select="." mode="addAttrs"> <xsl:with-param name="status" select="'due'"/> <xsl:with-param name="dueAmount" select="$diff"/> </xsl:apply-templates> </xsl:when> <xsl:when test="$diff &lt; ./@DepositTotalAmount"> <xsl:apply-templates select="." mode="addAttrs"> <xsl:with-param name="status" select="'outstanding'"/> <xsl:with-param name="dueAmount" select="$diff"/> <xsl:with-param name="receiptNum" select="$receiptNum"/> </xsl:apply-templates> </xsl:when> <xsl:otherwise/> </xsl:choose> </xsl:template> <!-- Add new attributes (@Status, @DueAmount and @ReceiptDate) to the deposit element --> <xsl:template match="MultiDeposits" mode="addAttrs"> <xsl:param name="status"/> <xsl:param name="dueAmount"/> <xsl:param name="receiptNum" select="''"/> <xsl:copy> <xsl:copy-of select="./@*"/> <xsl:attribute name="Status"><xsl:value-of select="$status"/></xsl:attribute> <xsl:attribute name="DueAmount"><xsl:value-of select="$dueAmount"/></xsl:attribute> <xsl:if test="$receiptNum != ''"> <xsl:attribute name="ReceiptDate"> <xsl:value-of select="$receiptsAsc[position() = $receiptNum]/@ActionDate"/> </xsl:attribute> </xsl:if> <xsl:copy-of select="./*"/> </xsl:copy> </xsl:template>

    Read the article

  • Alright, I'm still stuck on this homework problem. C++

    - by Josh
    Okay, the past few days I have been trying to get some input on my programs. Well I decided to scrap them for the most part and try again. So once again, I'm in need of help. For the first program I'm trying to fix, it needs to show the sum of SEVEN numbers. Well, I'm trying to change is so that I don't need the mem[##] = ####. I just want the user to be able to input the numbers and the program run from there and go through my switch loop. And have some kind of display..saying like the sum is?.. Here's my code so far. #include <iostream> #include <iomanip> #include <ios> using namespace std; int main() { const int READ = 10; const int WRITE = 11; const int LOAD = 20; const int STORE = 21; const int ADD = 30; const int SUBTRACT = 31; const int DIVIDE = 32; const int MULTIPLY = 33; const int BRANCH = 40; const int BRANCHNEG = 41; const int BRANCHZERO = 42; const int HALT = 43; int mem[100] = {0}; //Making it 100, since simpletron contains a 100 word mem. int operation; //taking the rest of these variables straight out of the book seeing as how they were italisized. int operand; int accum = 0; // the special register is starting at 0 int counter; for ( counter=0; counter < 100; counter++) mem[counter] = 0; // This is for part a, it will take in positive variables in //a sent-controlled loop and compute + print their sum. Variables from example in text. mem[0] = 1009; mem[1] = 1109; mem[2] = 2010; mem[3] = 2111; mem[4] = 2011; mem[5] = 3100; mem[6] = 2113; mem[7] = 1113; mem[8] = 4300; counter = 0; //Makes the variable counter start at 0. while(true) { operand = mem[ counter ]%100; // Finds the op codes from the limit on the mem (100) operation = mem[ counter ]/100; //using a switch loop to set up the loops for the cases switch ( operation ){ case READ: //reads a variable into a word from loc. Enter in -1 to exit cout <<"\n Input a positive variable: "; cin >> mem[ operand ]; counter++; break; case WRITE: // takes a word from location cout << "\n\nThe content at location " << operand << " is " << mem[operand]; counter++; break; case LOAD:// loads accum = mem[ operand ];counter++; break; case STORE: //stores mem[ operand ] = accum;counter++; break; case ADD: //adds accum += mem[operand];counter++; break; case SUBTRACT: // subtracts accum-= mem[ operand ];counter++; break; case DIVIDE: //divides accum /=(mem[ operand ]);counter++; break; case MULTIPLY: // multiplies accum*= mem [ operand ];counter++; break; case BRANCH: // Branches to location counter = operand; break; case BRANCHNEG: //branches if acc. is < 0 if (accum < 0) counter = operand; else counter++; break; case BRANCHZERO: //branches if acc = 0 if (accum == 0) counter = operand; else counter++; break; case HALT: // Program ends break; } } return 0; } part B int main() { const int READ = 10; const int WRITE = 11; const int LOAD = 20; const int STORE = 21; const int ADD = 30; const int SUBTRACT = 31; const int DIVIDE = 32; const int MULTIPLY = 33; const int BRANCH = 40; const int BRANCHNEG = 41; const int BRANCHZERO = 41; const int HALT = 43; int mem[100] = {0}; int operation; int operand; int accum = 0; int pos = 0; int j; mem[22] = 7; // loop 7 times mem[25] = 1; // increment by 1 mem[00] = 4306; mem[01] = 2303; mem[02] = 3402; mem[03] = 6410; mem[04] = 3412; mem[05] = 2111; mem[06] = 2002; mem[07] = 2312; mem[08] = 4210; mem[09] = 2109; mem[10] = 4001; mem[11] = 2015; mem[12] = 3212; mem[13] = 2116; mem[14] = 1101; mem[15] = 1116; mem[16] = 4300; j = 0; while ( true ) { operand = memory[ j ]%100; // Finds the op codes from the limit on the memory (100) operation = memory[ j ]/100; //using a switch loop to set up the loops for the cases switch ( operation ){ case 1: //reads a variable into a word from loc. Enter in -1 to exit cout <<"\n enter #: "; cin >> memory[ operand ]; break; case 2: // takes a word from location cout << "\n\nThe content at location " << operand << "is " << memory[operand]; break; case 3:// loads accum = memory[ operand ]; break; case 4: //stores memory[ operand ] = accum; break; case 5: //adds accum += mem[operand];; break; case 6: // subtracts accum-= memory[ operand ]; break; case 7: //divides accum /=(memory[ operand ]); break; case 8: // multiplies accum*= memory [ operand ]; break; case 9: // Branches to location j = operand; break; case 10: //branches if acc. is < 0 break; case 11: //branches if acc = 0 if (accum == 0) j = operand; break; case 12: // Program ends exit(0); break; } j++; } return 0; }

    Read the article

  • How to get nested chain of objects in Linq and MVC2 application?

    - by Anders Svensson
    I am getting all confused about how to solve this problem in Linq. I have a working solution, but the code to do it is way too complicated and circular I think: I have a timesheet application in MVC 2. I want to query the database that has the following tables (simplified): Project Task TimeSegment The relationships are as follows: A project can have many tasks and a task can have many timesegments. I need to be able to query this in different ways. An example is this: A View is a report that will show a list of projects in a table. Each project's tasks will be listed followed by a Sum of the number of hours worked on that task. The timesegment object is what holds the hours. Here's the View: <%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Report.Master" Inherits="System.Web.Mvc.ViewPage<Tidrapportering.ViewModels.MonthlyReportViewModel>" %> <asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server"> Månadsrapport </asp:Content> <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> <h1> Månadsrapport</h1> <div style="margin-top: 20px;"> <span style="font-weight: bold">Kund: </span> <%: Model.Customer.CustomerName %> </div> <div style="margin-bottom: 20px"> <span style="font-weight: bold">Period: </span> <%: Model.StartDate %> - <%: Model.EndDate %> </div> <div style="margin-bottom: 20px"> <span style="font-weight: bold">Underlag för: </span> <%: Model.Employee %> </div> <table class="mainTable"> <tr> <th style="width: 25%"> Projekt </th> <th> Specifikation </th> </tr> <% foreach (var project in Model.Projects) { %> <tr> <td style="vertical-align: top; padding-top: 10pt; width: 25%"> <%:project.ProjectName %> </td> <td> <table class="detailsTable"> <tr> <th> Aktivitet </th> <th> Timmar </th> <th> Ex moms </th> </tr> <% foreach (var task in project.CurrentTasks) {%> <tr class="taskrow"> <td class="task" style="width: 40%"> <%: task.TaskName %> </td> <td style="width: 30%"> <%: task.TaskHours.ToString()%> </td> <td style="width: 30%"> <%: String.Format("{0:C}", task.Cost)%> </td> </tr> <% } %> </table> </td> </tr> <% } %> </table> <table class="summaryTable"> <tr> <td style="width: 25%"> </td> <td> <table style="width: 100%"> <tr> <td style="width: 40%"> Totalt: </td> <td style="width: 30%"> <%: Model.TotalHours.ToString() %> </td> <td style="width: 30%"> <%: String.Format("{0:C}", Model.TotalCost)%> </td> </tr> </table> </td> </tr> </table> <div class="price"> <table> <tr> <td>Moms: </td> <td style="padding-left: 15px;"> <%: String.Format("{0:C}", Model.VAT)%> </td> </tr> <tr> <td>Att betala: </td> <td style="padding-left: 15px;"> <%: String.Format("{0:C}", Model.TotalCostAndVAT)%> </td> </tr> </table> </div> </asp:Content> Here's the action method: [HttpPost] public ActionResult MonthlyReports(FormCollection collection) { MonthlyReportViewModel vm = new MonthlyReportViewModel(); vm.StartDate = collection["StartDate"]; vm.EndDate = collection["EndDate"]; int customerId = Int32.Parse(collection["Customers"]); List<TimeSegment> allTimeSegments = GetTimeSegments(customerId, vm.StartDate, vm.EndDate); vm.Projects = GetProjects(allTimeSegments); vm.Employee = "Alla"; vm.Customer = _repository.GetCustomer(customerId); vm.TotalCost = vm.Projects.SelectMany(project => project.CurrentTasks).Sum(task => task.Cost); //Corresponds to above foreach vm.TotalHours = vm.Projects.SelectMany(project => project.CurrentTasks).Sum(task => task.TaskHours); vm.TotalCostAndVAT = vm.TotalCost * 1.25; vm.VAT = vm.TotalCost * 0.25; return View("MonthlyReport", vm); } And the "helper" methods: public List<TimeSegment> GetTimeSegments(int customerId, string startdate, string enddate) { var timeSegments = _repository.TimeSegments .Where(timeSegment => timeSegment.Customer.CustomerId == customerId) .Where(timeSegment => timeSegment.DateObject.Date >= DateTime.Parse(startdate) && timeSegment.DateObject.Date <= DateTime.Parse(enddate)); return timeSegments.ToList(); } public List<Project> GetProjects(List<TimeSegment> timeSegments) { var projectGroups = from timeSegment in timeSegments group timeSegment by timeSegment.Task into g group g by g.Key.Project into pg select new { Project = pg.Key, Tasks = pg.Key.Tasks }; List<Project> projectList = new List<Project>(); foreach (var group in projectGroups) { Project p = group.Project; foreach (var task in p.Tasks) { task.CurrentTimeSegments = timeSegments.Where(ts => ts.TaskId == task.TaskId).ToList(); p.CurrentTasks.Add(task); } projectList.Add(p); } return projectList; } Again, as I mentioned, this works, but of course is really complex and I get confused myself just looking at it even now that I'm coding it. I sense there must be a much easier way to achieve what I want. Basically you can tell from the View what I want to achieve: I want to get a collection of projects. Each project should have it's associated collection of tasks. And each task should have it's associated collection of timesegments for the specified date period. Note that the projects and tasks selected must also only be the projects and tasks that have the timesegments for this period. I don't want all projects and tasks that have no timesegments within this period. It seems the group by Linq query beginning the GetProjects() method sort of achieves this (if extended to have the conditions for date and so on), but I can't return this and pass it to the view, because it is an anonymous object. I also tried creating a specific type in such a query, but couldn't wrap my head around that either... I hope there is something I'm missing and there is some easier way to achieve this, because I need to be able to do several other different queries as well eventually. I also don't really like the way I solved it with the "CurrentTimeSegments" properties and so on. These properties don't really exist on the model objects in the first place, I added them in partial classes to have somewhere to put the filtered results for each part of the nested object chain... Any ideas?

    Read the article

  • Paying by Cash

    - by David Dorf
    I'll grant you paying by cash in the context of stores isn't particularly interesting, but in my quest to try new payment methods I decided to pay by cash at an online store. Using a credit card means I have to hoist myself off the couch, find the card, and enter all those digits. Google Checkout certainly makes that task easier by storing my credit card information, but what happens to all those people that don't have a credit card? What about the ones that are afraid to use credit cards over the internet. There are three main options for cash payment, not all of which are accepted by every merchant. The most popular is PayPal. The issue I have with them is that returns and disputes have to be handled with PayPal, not the merchant. I once used PayPal at a shady online store and lost my money. Yeah, my bad but they wouldn't help me at all. PayPal was purchased by eBay in 2002. BillMeLater is best for larger purchases, because at checkout they actually run a credit check to make sure you're credit worthy. Assuming you are, they pay the merchant on your behalf and mail you a bill, which you better pay quickly or interest will start to accrue. That's nice for the merchant because they get paid right away, and I presume there's no charge-backs. BillMeLater was purchased by eBay in 2008. Last night I tried eBillMe for the first time. After checkout, they send you a bill via email and expect you to pay either via online banking (they provide the instructions to set everything up) or walk-in locations across the US (typically banks). The process was quick and easy. The merchant doesn't ship the product until the bill is paid, so there's a day or two delay. For the merchant there are no charge-backs, and the fees are less than credit cards. For the shopper, they provide buyer protection similar to that offered by credit cards, and 1% cashback on purchases. Once the online bill-pay is setup, its easy to reuse in the future. Seems like a win-win for merchants and shoppers.

    Read the article

  • New regular expression features in PCRE 8.34 and 8.35

    - by Jan Goyvaerts
    PCRE 8.34 adds some new regex features and changes the behavior of a few to make it better compatible with the latest versions of Perl. There are no changes to the regex syntax in PCRE 8.35. \o{377} is now an octal escape just like \377. This syntax was first introduced in Perl 5.12. It avoids any confusion between octal escapes and backreferences. It also allows octal numbers beyond 377 to be used. E.g. \o{400} is the same as \x{100}. If you have any reason to use octal escapes instead of hexadecimal escapes then you should definitely use the new syntax. Because of this change, \o is now an error when it doesn’t form a valid octal escape. Previously \o was a literal o and \o{377} was a sequence of 337 o‘s. In free-spacing mode, whitespace between a quantifier and the ? that makes it lazy or the + that makes it possessive is now ignored. In Perl this has always been the case. In PCRE 8.33 and prior, whitespace ended a quantifier and any following ? or + was seen as a second quantifier and thus an error. The shorthand \s now matches the vertical tab character in addition to the other whitespace characters it previously matched. Perl 5.18 made the same change. Many other regex flavors have always included the vertical tab in \s, just like POSIX has always included it in [[:space:]]. Names of capturing groups are no longer allowed to start with a digit. This has always been the case in Perl since named groups were added to Perl 5.10. PCRE 8.33 and prior even allowed group names to consist entirely of digits. [[:<:]] and [[::]] are now treated as POSIX-style word boundaries. They match at the start and the end of a word. Though they use similar syntax, these have nothing to do with POSIX character classes and cannot be used inside character classes. Perl does not support POSIX word boundaries. The same changes affect PHP 5.5.10 (and later) and R 3.0.3 (and later) as they have been updated to use PCRE 8.34. RegexBuddy and RegexMagic have been updated to support the latest versions of PCRE, PHP, and R. Older versions that were previously supported are still supported, so you can compare or convert your regular expressions between the latest versions of PCRE, PHP, and R and whichever version you were using previously.

    Read the article

  • Mathematica Programming Language&ndash;An Introduction

    - by JoshReuben
    The Mathematica http://www.wolfram.com/mathematica/ programming model consists of a kernel computation engine (or grid of such engines) and a front-end of notebook instances that communicate with the kernel throughout a session. The programming model of Mathematica is incredibly rich & powerful – besides numeric calculations, it supports symbols (eg Pi, I, E) and control flow logic.   obviously I could use this as a simple calculator: 5 * 10 --> 50 but this language is much more than that!   for example, I could use control flow logic & setup a simple infinite loop: x=1; While [x>0, x=x,x+1] Different brackets have different purposes: square brackets for function arguments:  Cos[x] round brackets for grouping: (1+2)*3 curly brackets for lists: {1,2,3,4} The power of Mathematica (as opposed to say Matlab) is that it gives exact symbolic answers instead of a rounded numeric approximation (unless you request it):   Mathematica lets you define scoped variables (symbols): a=1; b=2; c=a+b --> 5 these variables can contain symbolic values – you can think of these as partially computed functions:   use Clear[x] or Remove[x] to zero or dereference a variable.   To compute a numerical approximation to n significant digits (default n=6), use N[x,n] or the //N prefix: Pi //N -->3.14159 N[Pi,50] --> 3.1415926535897932384626433832795028841971693993751 The kernel uses % to reference the lastcalculation result, %% the 2nd last, %%% the 3rd last etc –> clearer statements: eg instead of: Sqrt[Pi+Sqrt[Sqrt[Pi+Sqrt[Pi]]] do: Sqrt[Pi]; Sqrt[Pi+%]; Sqrt[Pi+%] The help system supports wildcards, so I can search for functions like so: ?Inv* Mathematica supports some very powerful programming constructs and a rich function library that allow you to do things that you would have to write allot of code for in a language like C++.   the Factor function – factorization: Factor[x^3 – 6*x^2 +11x – 6] --> (-3+x) (-2+x) (-1+x)   the Solve function – find the roots of an equation: Solve[x^3 – 2x + 1 == 0] -->   the Expand function – express (1+x)^10 in polynomial form: Expand[(1+x)^10] --> 1+10x+45x^2+120x^3+210x^4+252x^5+210x^6+120x^7+45x^8+10x^9+x^10 the Prime function – what is the 1000th prime? Prime[1000] -->7919 Mathematica also has some powerful graphics capabilities:   the Plot function – plot the graph of y=Sin x in a single period: Plot[Sin[x], {x,0,2*Pi}] you can also plot 3D surfaces of functions using Plot3D function

    Read the article

  • Gawker Passwords

    - by Nick Harrison
    There has been much news about the hack of the Gawker web sites. There has even been an analysis of the common passwords found. This list is embarrassing in many ways. The most common password was "123456". The second most common password was "password". Much has also been written providing advice on how to create good passwords. This article provides some interesting advice, none of which should be taken. Anyone reading my blog, probably already knows the importance of strong passwords, so I am not going to reiterate the reasons here. My target audience is more the folks defining password complexity requirements. A user cannot come up with a strong password, if we have complexity requirements that don't make sense. With that in mind, here are a few guidelines:  Long Passwords Insist on long passwords. In some cases, you may need to change to allow a long password. I have seen many places that cap passwords at 8 characters. Passwords need to be at least 8 characters minimal. Consider how much stronger the passwords would be if you double the length. Passwords that are 15-20 characters will be that much harder to crack. There is no need to have limit passwords to 8 characters. Don't Require Special Characters Many complexity rules will require that your password include a capital letter, a lower case letter, a number, and one of the "special" characters, the shits above the number keys. The problem with such rules is that the resulting passwords are harder to remember. It also means that you will have a smaller set of characters in the resulting passwords. If you must include one of the 9 digits and one of the 9 "special" characters, then you have dramatically reduced the character set that will make up the final password. Two characters will be one of 10 possible values instead of one of 70. Two additional characters will be one of 26 possible characters instead of a 70 character potential character set. If you limit passwords to 8 characters, you are left with only 7 characters having the full set of 70 potential values. With these character restrictions in place, there are 1.6 x1012 possible passwords. Without these special character restrictions, but allowing numbers and special characters, you get a total of 5.76x1014 possible passwords. Even if you only allowed upper and lower case characters, you will still have 2.18X1014 passwords. You can do the math any number of ways, requiring special characters will always weaken passwords. Now imagine the number of passwords when you require more than 8 characters.  If you are responsible for defining complexity rules, I urge you to take these guidelines into account. What other guidelines do you follow?

    Read the article

  • How to pad number with leading zero with C#

    - by Jalpesh P. Vadgama
    Recently I was working with a project where I was in need to format a number in such a way which can apply leading zero for particular format.  So after doing such R and D I have found a great way to apply this leading zero format. I was having need that I need to pad number in 5 digit format. So following is a table in which format I need my leading zero format. 1-> 00001 20->00020 300->00300 4000->04000 50000->5000 So in the above example you can see that 1 will become 00001 and 20 will become 00200 format so on. So to display an integer value in decimal format I have applied interger.Tostring(String) method where I have passed “Dn” as the value of the format parameter, where n represents the minimum length of the string. So if we pass 5 it will have padding up to 5 digits. So let’s create a simple console application and see how its works. Following is a code for that. using System; namespace LeadingZero { class Program { static void Main(string[] args) { int a = 1; int b = 20; int c = 300; int d = 4000; int e = 50000; Console.WriteLine(string.Format("{0}------>{1}",a,a.ToString("D5"))); Console.WriteLine(string.Format("{0}------>{1}", b, b.ToString("D5"))); Console.WriteLine(string.Format("{0}------>{1}", c, c.ToString("D5"))); Console.WriteLine(string.Format("{0}------>{1}", d, d.ToString("D5"))); Console.WriteLine(string.Format("{0}------>{1}", e, e.ToString("D5"))); Console.ReadKey(); } } } As you can see in the above code I have use string.Format function to display value of integer and after using integer value’s  ToString method. Now Let’s run the console application and following is the output as expected. Here you can see the integer number are converted into the exact output that we requires. That’s it you can see it’s very easy. We have written code in nice clean way and without writing any extra code or loop. Hope you liked it. Stay tuned for more.. Till than happy programming.

    Read the article

  • Ghost team foundation build controllers

    - by Martin Hinshelwood
    Quite often after an upgrade there are things left over. Most of the time they are easy to delete, but sometimes it takes a little effort. Even rarer are those times when something just will not go away no matter how much you try. We have had a ghost team build controller hanging around for a while now, and it had defeated my best efforts to get rid of it. The build controller was from our old TFS server from before our TFS 2010 beta 2 upgrade and was really starting to annoy me. Every time I try to delete it I get the message: Controller cannot be deleted because there are build in progress -Manage Build Controller dialog   Figure: Deleting a ghost controller does not always work. I ended up checking all of our 172 Team Projects for the build that was queued, but did not find anything. Jim Lamb pointed me to the “tbl_BuildQueue” table in the team Project Collection database and sure enough there was the nasty little beggar. Figure: The ghost build was easily spotted Adam Cogan asked me: “Why did you suspect this one?” Well, there are a number of things that led me to suspect it: QueueId is very low: Look at the other items, they are in the thousands not single digits ControllerId: I know there is only one legitimate controller, and I am assuming that 6 relates to “zzUnicorn” DefinitionId: This is a very low number and I looked it up in “tbl_BuildDefinition” and it did not exist QueueTime: As we did not upgrade to TFS 2010 until late 2009 a date of 2008 for a queued build is very suspect Status: A status of 2 means that it is still queued This build must have been queued long ago when we were using TFS 2008, probably a beta, and it never got cleaned up. As controllers are new in TFS 2010 it would have created the “zzUnicorn” controller to handle any build servers that already exist. I had previously deleted the Agent, but leaving the controller just looks untidy. Now that the ghost build has been identified there are two options: Delete the row I would not recommend ever deleting anything from the database to achieve something in TFS. It is really not supported. Set the Status to cancelled (Recommended) This is the best option as TFS will then clean it up itself So I set the Status of this build to 2 (cancelled) and sure enough it disappeared after a couple of minutes and I was then able to then delete the “zzUnicorn” controller. Figure: Almost completely clean Now all I have to do is get rid of that untidy “zzBunyip” agent, but that will require rewriting one of our build scripts which will have to wait for now.   Technorati Tags: ALM,TFBS,TFS 2010

    Read the article

  • Binary on the Coat of Arms of the Governor General of Canada

    - by user132636
    Can you help me further this investigation? Here is about 10% of the work I have done on it. I present it only to see if there are any truly curious people among you. I made a video a few weeks ago showing some strange things about the Governor General's Coat of Arms and the binary on it. Today, I noticed something kinda cool and thought I would share. Here is the binary as it appears on the COA: 110010111001001010100100111010011 As DEC: 6830770643 (this is easily found on the web) Take a close look at that number. What do you notice about it? It has a few interesting features, but here is the one no one has pointed out... Split it down the middle and you have 68307 70643. The first digit is double the value of the last digit. The second digit is double the second last digit. The third digit is half of the third to last digit. And the middle ones are even or neutral. At first, I thought of it as energy. ++-nnnn+-- But actually you can create something else with it using the values. 221000211. See how that works. You may be asking why that is significant. Bare with me. I know 99% are rolling their eyes. 221000211 as base3 gives you this as binary: 100011101000111 100011101000111 as HEX is 4747, which converts to "GG". Initials of Governor General. GG.ca is his website. When you convert to base 33 (there are 33 digits in the original code) you get "GOV" Interesting? :D There is a lot more to it. I'll continue to show some strange coincidences if anyone is interested. Sorry if I am not explaining this correctly. By now you have probably figured out that I have no background in this. Which is why I am here. Thank you.

    Read the article

  • Windows Phone 7 Development Updates &ndash; March 8th 2011

    - by Nikita Polyakov
    Here are the latest update from the Windows Phone 7 Developer Worlds that went live this month. Here are some of the latest numbers: Windows Phone Marketplace currently offers more than 9,000 quality apps and games and enjoys a base of over 32,000 registered developers, delivering an average of 100 new apps every day. There have been over 1 million downloads of the developers tools for Windows Phone 7. Trial version help you sell more Trials result in higher sales by the numbers: Users like trials  - paid apps with trial functionality are downloaded 70 times more than paid apps that don’t Nearly 1 out of 10 trial apps downloaded convert to a purchase and generate 10 times more revenue on average than paid apps that don’t include trial functionality. Trial downloads convert to paid downloads quickly. More than half of trial downloads that convert to a sale do so within the 1st 24 hours of trial download, and mostly within 2 hours of trial download. Microsoft Ad Control is gaining traction By the numbers - ad supported Windows Phone 7 apps are: Roughly ¼ of all registered U.S. WP7 developers have downloaded the free Ad SDK for Silverlight and XNA Of ad funded apps, over 95 percent use the free Microsoft Advertising Ad Control Monthly impressions from our Ad Exchange has continued to grow by double digits – impressions increased by 376 percent since January Ad Control, the first wave of “How Do I” videos are now available on MSDN: Create an Ad in a Windows Phone 7 XNA Game App Register Ad-Enabled Windows Phone 7 Apps Measure Ad Performance of Windows Phone 7 Apps Boarder International App submission for Free Apps through Yalla Apps As of today you can start submitting your free applications in developer markets that are currently not covered by Microsoft. To submit your Free application if you DO NOT belong to one of the Marketplace supported countries, go to: Yalla Apps Marketplace Policy Updates: Free App Marketplace Submission upped to 100 and other news Microsoft has been revisiting a few of our Marketplace policies based on feedback from developers to reduce friction and cost, word for word: 1. We have raised the limit on the number of certifications that can be performed for FREE apps at no cost to the registered developer from five to 100. This was a common request from developers which we are glad to implement after building alternate methods to ensure that users can find and download high quality apps. 2. We have converted policy 5.6 - related to the inclusion of contact information for support - from a mandatory to an optional policy. This is still a strongly recommended best practice, but we recognized and responded to developer feedback that this policy was creating excessive drag on the certification process for developers without commensurate user benefit for all apps. 3. We also understand the desire for clarification with regard to our policy on applications distributed under open source licenses.  The Marketplace Application Provider Agreement (APA) already permits applications under the BSD, MIT, Apache Software License 2.0 and Microsoft Public License.  We plan to update the APA shortly to clarify that we also permit applications under the Eclipse Public License, the Mozilla Public License and other, similar licenses and we continue to explore the possibility of accommodating additional OSS licenses. Enjoy and happy coding! Official Blog Post for reference.

    Read the article

  • Are there any drawbacks to the Major.Minor.YMDD.Build version strategy?

    - by Chu
    I'm trying to come up with a good version strategy to fit our specific needs. We've proposed settling on this and I wanted to ask the question to see if anyone's experience would suggest avoiding this or altering it in any way. Here's our proposal: Versions are released in this format: MAJOR.MINOR.YMDD.BN. Here it is broken out: MAJOR & MINOR are typical; we'll increase MINOR when we feel code and new feature sets warrants it; once every few months most likely. MAJOR will increase ~yearly. YMDD: Y will be the last digit of the current year, so "1" for 2011, "2" for 2012, etc. A non-padded month will be used to keep the number smaller (9 instead of 09 for example). DD of course is the day, padded with a zero for days under 10. BN: BN is the build number and increases by one anytime we make a change to a branch of the code represented by the build, for example: If were to make a build today, our release would be version 5.0.1707.1. I release to QA today and 3 days from now QA finds that a change broke the save functionality on a page. Instead of me changing our current development code, I'd go back to the code that I used to create version 5.0.1707.1, make the fix there, then increase the BN portion of the version and would then re-release 5.0.1707.2 back to QA. In short, anytime a change is made to a branched version that isn't the active dev branch, we'd use the original version number and increase only the BN portion (even if the change happened 3 days, 3 weeks or 3 months from the initial release of that version). Anytime we make a new release from our Active dev branch, we'd come up with a new version based on the M/D of the release using the outlined strategy. We do this once every 2-3 weeks. Are there holes or pitfalls with this? If so, what are they? Thanks EDIT To clarify one point that I didn't get out very well - Oct/Nov/Dec will be two digits, it's only the year that won't be. So 9 for Sept, 10 for Oct, 11 for Nov, etc.

    Read the article

  • Good Customer Service Example

    - by MightyZot
    Here’s another good customer service example for you! My wife purchased a Galaxy last week and she loves the phone.  She asked me to add it to our AT&T Microcell last night. I purchased the AT&T Microcell a couple of years ago, because cell signal out where I live sucks! Since microcells are managed on the AT&T web site, I went to the site and tried to sign in. Naturally, having not managed that microcell in a couple of years…and much to my chagrin…I discovered that I didn’t know my password OR my user ID. So, I decided to call and see if I could get my account reset that late in the day (we’re talking last night, so it was well after 7pm.) I called the technical support line, touched the appropriate numbers to navigate to microcell support, turned on my speaker phone, and prepared for the long wait. After about 45 seconds I was delighted to hear “Jeffrey” break in and ask what he could help me with. I explained that I have not managed my microcell for some time and had forgotten the user name and password.  “No problem”, he replied, and he asked me for the line I used to register the microcell. After confirming the last four digits of my IMEI number, he asked me for my wife’s number. I gave him my wife’s number and he said, “I’ve taken care of it Mr Pope. Just have her reboot her phone and you should see your microcell.” We rebooted her phone, it connected to the microcell, and voila, she was online! “Is there anything else I can help you with while I’ve got you on the line”, he said. “Nope”, I replied. “Ok, have a great night.” What made this a great customer service experience for me was that “Jeffrey” didn’t stop at giving me my user account and password, which I would probably forget anyway after setting up my wife’s new phone. Instead, he solved the real problem for me – adding my wife’s new phone to my microcell. Great job Jeffrey!

    Read the article

  • MatheMagics - Guess My Age Method 1

    - by PointsToShare
    © 2011 By: Dov Trietsch. All rights reserved MatheMagic – Guess My Age – Method 1 The Mathemagician stands on the stage and asks an adult to do the following: ·         Do the next few steps on your calculator, or the calculator in your phone, or even on a piece of paper. ·         Do it silently! Don’t tell me the results until I ask for them directly ·         Compute a single digit multiple of 9 – any one of 9, 18, 27, … all the way to 81, will do. ·         Now multiply your age by 10 ·         Subtract the 9 multiple from this number. ·         Tell me the result. Notice that I don’t know which multiple of 9 you subtracted from 10 times your age. I will nonetheless immediately tell you what your age is. How do I do this? Let’s do the algebra. 10X – 9Y = 10X – 10Y + Y = 10(X – Y) + Y Now remember, you asked an adult, so his/her age is a two digit number (maybe even 3 digits), thus reducing it by the single digit multiplied by nine is still positive – the lowest is can be is 100 – 81 which yields 19. Now make two numbers out of the result. The last digit and the number before it. This number is X – Y or the age minus the single digit you selected. The last digit is this very single digit. This is always so regardless of the digit you selected. So… Add tis digit to the other number and you get back the age! Q.E.D Example: I am 76 years old and here is what happens when I do the steps 76 x 10 = 760 760 – 18 = 742 made of 74 and 2. My age is 74 + 2 760 – 81 = 679 made of 67 and 9. My age is 67 + 9 A note to the socially aware mathemagician – it is safer to do it with a man. The chances of a veracious answer are much, much higher! The trick may be accomplished on any 2 or 3 digit number, not just one’s age, but if you want to know your date’s age, it’s a good way to elicit it. That’s All Folks PS for more Ageless “Age” mathemagics go to www.mgsltns.com/games.htm and also here: http://geekswithblogs.net/PointsToShare/archive/2011/11/15/mathemagics---guess-my-age---method-2.aspx

    Read the article

  • HOWTO: Disable complex password policy on Hyper-V Server 2008?

    - by Ian Boyd
    How do you disable the password complexity requirements on a Microsoft Hyper-V Server 2008 R2? Keep in mind that when you log into the server, the only UI you have is: And you cannot run gpedit.msc: C:\Users\Administrator>gpedit.msc 'gpedit.msc' is not recognized as an internal or external command, operable program or batch file. because there are no .msc snap-ins installed with Microsoft Hyper-V Server 2008 R2. The problem comes when you're trying to add an account to the server, so you can manage it, but it doesn't like most passwords: And, predictably, typing NET HELPMSG 2245 gives you The password does not meet the password policy requirements. Check the minimum p assword length, password complexity and password history requirements. i hoped it would have been a friendly user experience, and either: offered to disable the password policy tell me how to disable the password policy tell me how to check the minimum password length, password complexity and password history requirements. Password Complexity Requirements The Microsoft's default password complexity for Server Core is: Passwords cannot contain the user’s account name or parts of the user’s full name that exceed two consecutive characters. Passwords must be at least six characters in length. Passwords must contain characters from three of the following four categories: 1.English uppercase characters (A through Z). 2.English lowercase characters (a through z). 3.Base 10 digits (0 through 9). 4.Non-alphabetic characters (for example, !, $, #, %). External links Technet Forums: Hyper-V Server disable complex passwords Technet: Passwords must meet complexity requirements of the installed password filter Update: 2k views? So many people keep coming coming to it: up-vote it!

    Read the article

  • Time machine disk icon on boot disk

    - by Ben Lings
    The icon for Macintosh HD (my boot disk) shows as a Time Machine disk. There is a file .com.apple.timemachine.supported in the root of the disk. If I delete the file and restart the computer, the icon goes back to a normal HD icon. However, the .com.apple.timemachine.supported file is recreated at some point on boot because when I log in again, the file has been recreated. If then reboot again, the icon goes back to being a Time Machine one. Any ideas about what is creating this file and why? More importantly - how can I get it to stop? It looks like something thinks the boot disk should be a Time Machine volume, but what? Console.app shows the following messages at approximately hourly intervals: 19/01/2010 19:23:54 /System/Library/CoreServices/backupd[7459] Starting standard backup 19/01/2010 19:23:54 /System/Library/CoreServices/backupd[7459] Cookie file is not readable or does not exist at path: /.<12 hex digits of MAC address for en0> 19/01/2010 19:23:54 /System/Library/CoreServices/backupd[7459] Volume at path / does not appear to be the correct backup volume for this computer. (Cookies do not match) 19/01/2010 19:23:59 /System/Library/CoreServices/backupd[7459] Backup failed with error: 18 Other possibly relevant information: The boot HD isn't the original - the original failed so this is a SuperDuper'd clone of the original drive. I used to use the same disk for a SuperDuper clone as for Time Machine. These are the same same symptoms as this and this.

    Read the article

  • Evaluate a Munin graph defined in munin.conf

    - by Ztyx
    Hi, I have defined an additional graph (in Munin, munin.conf) that calculates the total size of my MySQL database. The index and data sizes are extracted from an external plugin. The definition looks like this: [...] [Database;my.host.com] address my.host.com use_node_name yes dbsize.update no dbsize.graph_args --base 1024 -l 0 dbsize.graph_title Total database size dbsize.graph_vlabel bytes dbsize.graph_category mysql dbsize.graph_info The total database size. dbsize.graph_order the_sum dbsize.the_sum.sum \ my.host.com:mysql_size.index \ my.host.com:mysql_size.datas dbsize.the_sum.label data+index dbsize.the_sum.type GAUGE dbsize.the_sum.min 0 [...] Now, is it possible to extract the current value of this graph? Running # munin-run dbsize or # munin-run my.host.com:dbsize does not seem to work.

    Read the article

  • Where to learn how to replicate an Excel template?

    - by Rosarch
    This Excel template is really cool. There are a lot of things in it I don't know how to do, such as: Having header rows that "stick" to the top even when you scroll down Slider on the first page changes where the chart pulls its data from Functions seem to be referring to named ranges in tables, like =SUM([nov]). Where do those names come from? Clicking "back to overview" on the "Budget" page returns you to the "Dashboard" page The number under "starting balance" of the top right corner of "Budget" changes when you change cell C5 On "Budget", each cell in the first column of each table has a drop-down menu for text, which seems to come from the "Setup" page The background isn't just plain white, but when I try to format paint it onto a new sheet, nothing happens If you know how any of these effects are achieved, I'm definitely curious. But I guess the main point of my question is where I can go to answer these questions for myself. Are templates explained anywhere?

    Read the article

  • How to build the rpm package with SHA-256 checksum for files?

    - by larrycai
    In standard alone RHEL 6.4 rpm build environment, the rpm packages is generated with SHA-256 check sum, which is gotten by command rpm -qp --dump xxx.rpm [user@redhat64 abc]$ rpm -qp --dump package/rpm/abc-1.0.1-1.x86_64.rpm .. /opt/company/abc/abc/1.0.1-1/bin/start.sh 507 1398338016 d8820685b6446ee36a85cc1f7387d14537d6f8bf5ce4c5a4ccd2f70e9066c859 0100750 user abcc 0 .. While if it is build in docker environment (still RHEL6.4) the checksum is md5 UPDATE Use Ubuntu 14.04 as docker server, Redhat6.4 is the container inside [user@c1cbdf51d189 abc]$ rpm -qp --dump package/rpm/abc-1.0.1-1.x86_64.rpm .. /opt/company/abc/abc/1.0.1-1/bin/start.sh 507 1401952578 f229759944ba77c3c8ba2982c55bbe70 0100750 user abcc 0 .. If I checked the real file, the file is the same [user@c1cbdf51d189 1.0.1-1]$ sha256sum bin/start.sh d8820685b6446ee36a85cc1f7387d14537d6f8bf5ce4c5a4ccd2f70e9066c859 bin/start.sh [user@c1cbdf51d189 1.0.1-1]$ md5sum bin/start.sh f229759944ba77c3c8ba2982c55bbe70 bin/start.sh How I configure rpmbuild to let generated rpm file is SHA-256 based ?

    Read the article

  • Win7 to Win7 Remote Desktop Not working, Xp to 7 working fine

    - by vlad b.
    Hello, I have a small home network and recently i tried to enable remote desktop for one of the pc's. I have a mix of Windows 7, Windows Vista and Xp runing alongside ubuntu, centos and others (some virtual, some real). I have a few Windows 7 pc`s that can be connected to using remote desktop from inside and outside the network (port redirects on routers, etc, etc) and some Xp ones. The trouble is when i tried to do the same thing to a Win7 laptop i discovered i can't connect to it from another win7 pc inside the home network. To sum it up Working: xp -- win7 not working: win7 -- win7 What i tried - disable and enable remote desktop (my computer - remote settings) - removing and adding users to the remote settings window - adding a new user to the machine, administrator or 'normal' user - checking the firewall settings on the machine and set 'allow' to remote desktop for both 'home/work' and 'public'networks Any tips on what should i do next? It displays ' .. secure connection' and after that the window with 'Your security credentials did not work' and it lets me try again with another user/password..

    Read the article

  • How to activate Win XP from Windows 7 compatibility mode on MacOS Parallels 5

    - by Ben Hammond
    I am running Parallels Desktop 5.0.9344 for Mac. I am running Mac OS 10.6.3 10D2094 I have bought a retail copy of Window 7 professional specifically because I need the XP compatibility. Windows 7 is installed and working. I have problems with the XP activation Windows7 'Virtual PC' does not run under Parallels (strange error about Server Execution failed 0x80080005). I have used the Parallels Transporter to convert the "Windows XP Mode Base.vhd" file into a parallels Virtual Machine. This copy of XP now starts normally, however it records itself as unregistered. There was a KEY.txt file in the same directory as the .vhd file; although this file contains a valid-looking activation key, it does not appear to activate the instance of XP. I have also tried to enter the Win7 activation key; this does not work either. I have tried calling the two phone numbers; an automated system asked me to enter 56 digits through the telephone and then accused me of being a pirate. I believe it may be possible to install Win7 via Bootcamp, start WinXP under Virtual PC, activate it and then import this activated .vhd into Parallels; but that seems a long way round, and is far from certain. What can I do to get WinXP running under Mac Parallels Desktop ?

    Read the article

< Previous Page | 72 73 74 75 76 77 78 79 80 81 82 83  | Next Page >