Search Results

Search found 21111 results on 845 pages for 'null pointer'.

Page 769/845 | < Previous Page | 765 766 767 768 769 770 771 772 773 774 775 776  | Next Page >

  • LINQ und ArcObjects

    - by Marko Apfel
    LINQ und ArcObjects Motivation LINQ1 (language integrated query) ist eine Komponente des Microsoft .NET Frameworks seit der Version 3.5. Es erlaubt eine SQL-ähnliche Abfrage zu verschiedenen Datenquellen wie SQL, XML u.v.m. Wie SQL auch, bietet LINQ dazu eine deklarative Notation der Problemlösung - d.h. man muss nicht im Detail beschreiben wie eine Aufgabe, sondern was überhaupt zu lösen ist. Das befreit den Entwickler abfrageseitig von fehleranfälligen Iterator-Konstrukten. Ideal wäre es natürlich auf diese Möglichkeiten auch in der ArcObjects-Programmierung mit Features zugreifen zu können. Denkbar wäre dann folgendes Konstrukt: var largeFeatures = from feature in features where (feature.GetValue("SHAPE_Area").ToDouble() > 3000) select feature; bzw. dessen Äquivalent als Lambda-Expression: var largeFeatures = features.Where(feature => (feature.GetValue("SHAPE_Area").ToDouble() > 3000)); Dazu muss ein entsprechender Provider zu Verfügung stehen, der die entsprechende Iterator-Logik managt. Dies ist leichter als man auf den ersten Blick denkt - man muss nur die gewünschten Entitäten als IEnumerable<IFeature> liefern. (Anm.: nicht wundern - die Methoden GetValue() und ToDouble() habe ich nebenbei als Erweiterungsmethoden deklariert.) Im Hintergrund baut LINQ selbständig eine Zustandsmaschine (state machine)2 auf deren Ausführung verzögert ist (deferred execution)3 - d.h. dass erst beim tatsächlichen Anfordern von Entitäten (foreach, Count(), ToList(), ..) eine Instanziierung und Verarbeitung stattfindet, obwohl die Zuweisung schon an ganz anderer Stelle erfolgte. Insbesondere bei mehrfacher Iteration durch die Entitäten reibt man sich bei den ersten Debuggings verwundert die Augen wenn der Ausführungszeiger wie von Geisterhand wieder in die Iterator-Logik springt. Realisierung Eine ganz knappe Logik zum Konstruieren von IEnumerable<IFeature> lässt sich mittels Durchlaufen eines IFeatureCursor realisieren. Dazu werden die einzelnen Feature mit yield ausgegeben. Der einfachen Verwendung wegen, habe ich die Logik in eine Erweiterungsmethode GetFeatures() für IFeatureClass aufgenommen: public static IEnumerable GetFeatures(this IFeatureClass featureClass, IQueryFilter queryFilter, RecyclingPolicy policy) { IFeatureCursor featureCursor = featureClass.Search(queryFilter, RecyclingPolicy.Recycle == policy); IFeature feature; while (null != (feature = featureCursor.NextFeature())) { yield return feature; } //this is skipped in unit tests with cursor-mock if (Marshal.IsComObject(featureCursor)) { Marshal.ReleaseComObject(featureCursor); } } Damit kann man sich nun ganz einfach die IEnumerable<IFeature> erzeugen lassen: IEnumerable features = _featureClass.GetFeatures(RecyclingPolicy.DoNotRecycle); Etwas aufpassen muss man bei der Verwendung des "Recycling-Cursors". Nach einer verzögerten Ausführung darf im selben Kontext nicht erneut über die Features iteriert werden. In diesem Fall wird nämlich nur noch der Inhalt des letzten (recycelten) Features geliefert und alle Features sind innerhalb der Menge gleich. Kritisch würde daher das Konstrukt largeFeatures.ToList(). ForEach(feature => Debug.WriteLine(feature.OID)); weil ToList() schon einmal durch die Liste iteriert und der Cursor somit einmal durch die Features bewegt wurde. Die Erweiterungsmethode ForEach liefert dann immer dasselbe Feature. In derartigen Situationen darf also kein Cursor mit Recycling verwendet werden. Ein mehrfaches Ausführen von foreach ist hingegen kein Problem weil dafür jedes Mal die Zustandsmaschine neu instanziiert wird und somit der Cursor neu durchlaufen wird – das ist die oben schon erwähnte Magie. Ausblick Nun kann man auch einen Schritt weiter gehen und ganz eigene Implementierungen für die Schnittstelle IEnumerable<IFeature> in Angriff nehmen. Dazu müssen nur die Methode und das Property zum Zugriff auf den Enumerator ausprogrammiert werden. Im Enumerator selbst veranlasst man in der Reset()-Methode das erneute Ausführen der Suche – dazu übergibt man beispielsweise ein entsprechendes Delegate in den Konstruktur: new FeatureEnumerator( _featureClass, featureClass => featureClass.Search(_filter, isRecyclingCursor)); und ruft dieses beim Reset auf: public void Reset() {     _featureCursor = _resetCursor(_t); } Auf diese Art und Weise können Enumeratoren für völlig verschiedene Szenarien implementiert werden, die clientseitig restlos identisch nach obigen Schema verwendet werden. Damit verschmelzen Cursors, SelectionSets u.s.w. zu einer einzigen Materie und die Wiederverwendbarkeit von Code steigt immens. Obendrein lässt sich ein IEnumerable in automatisierten Unit-Tests sehr einfach mocken - ein großer Schritt in Richtung höherer Software-Qualität.4 Fazit Nichtsdestotrotz ist Vorsicht mit diesen Konstrukten in performance-relevante Abfragen geboten. Dadurch dass im Hintergrund eine Zustandsmaschine verwalten wird, entsteht einiges an Overhead dessen Verarbeitung zusätzliche Zeit kostet - ca. 20 bis 100 Prozent. Darüber hinaus ist auch das Arbeiten ohne Recycling schnell ein Performance-Gap. Allerdings ist deklarativer LINQ-Code viel eleganter, fehlerfreier und wartungsfreundlicher als das manuelle Iterieren, Vergleichen und Aufbauen einer Ergebnisliste. Der Code-Umfang verringert sich erfahrungsgemäß im Schnitt um 75 bis 90 Prozent! Dafür warte ich gerne ein paar Millisekunden länger. Wie so oft muss abgewogen werden zwischen Wartbarkeit und Performance - wobei für mich Wartbarkeit zunehmend an Priorität gewinnt. Zumeist ist sowieso nicht der Code sondern der Anwender die Bremse im Prozess. Demo-Quellcode support.esri.de   [1] Wikipedia: LINQ http://de.wikipedia.org/wiki/LINQ [2] Wikipedia: Zustandsmaschine http://de.wikipedia.org/wiki/Endlicher_Automat [3] Charlie Calverts Blog: LINQ and Deferred Execution http://blogs.msdn.com/b/charlie/archive/2007/12/09/deferred-execution.aspx [4] Clean Code Developer - gelber Grad/Automatisierte Unit Tests http://www.clean-code-developer.de/Gelber-Grad.ashx#Automatisierte_Unit_Tests_8

    Read the article

  • Use WLST to Delete All JMS Messages From a Destination

    - by james.bayer
    I got a question today about whether WebLogic Server has any tools to delete all messages from a JMS Queue.  It just so happens that the WLS Console has this capability already.  It’s available on the screen after the “Show Messages” button is clicked on a destination’s Monitoring tab as seen in the screen shot below. The console is great for something ad-hoc, but what if I want to automate this?  Well it just so happens that the console is just a weblogic application layered on top of the JMX Management interface.  If you look at the MBean Reference, you’ll find a JMSDestinationRuntimeMBean that includes the operation deleteMessages that takes a JMS Message Selector as an argument.  If you pass an empty string, that is essentially a wild card that matches all messages. Coding a stand-alone JMX client for this is kind of lame, so let’s do something more suitable to scripting.  In addition to the console, WebLogic Scripting Tool (WLST) based on Jython is another way to browse and invoke MBeans, so an equivalent interactive shell session to delete messages from a destination would looks like this: D:\Oracle\fmw11gr1ps3\user_projects\domains\hotspot_domain\bin>setDomainEnv.cmd D:\Oracle\fmw11gr1ps3\user_projects\domains\hotspot_domain>java weblogic.WLST   Initializing WebLogic Scripting Tool (WLST) ...   Welcome to WebLogic Server Administration Scripting Shell   Type help() for help on available commands   wls:/offline> connect('weblogic','welcome1','t3://localhost:7001') Connecting to t3://localhost:7001 with userid weblogic ... Successfully connected to Admin Server 'AdminServer' that belongs to domain 'hotspot_domain'.   Warning: An insecure protocol was used to connect to the server. To ensure on-the-wire security, the SSL port or Admin port should be used instead.   wls:/hotspot_domain/serverConfig> serverRuntime() Location changed to serverRuntime tree. This is a read-only tree with ServerRuntimeMBean as the root. For more help, use help(serverRuntime)   wls:/hotspot_domain/serverRuntime> cd('JMSRuntime/AdminServer.jms/JMSServers/JMSServer-0/Destinations/SystemModule-0!Queue-0') wls:/hotspot_domain/serverRuntime/JMSRuntime/AdminServer.jms/JMSServers/JMSServer-0/Destinations/SystemModule-0!Queue-0> ls() dr-- DurableSubscribers   -r-- BytesCurrentCount 0 -r-- BytesHighCount 174620 -r-- BytesPendingCount 0 -r-- BytesReceivedCount 253548 -r-- BytesThresholdTime 0 -r-- ConsumersCurrentCount 0 -r-- ConsumersHighCount 0 -r-- ConsumersTotalCount 0 -r-- ConsumptionPaused false -r-- ConsumptionPausedState Consumption-Enabled -r-- DestinationInfo javax.management.openmbean.CompositeDataSupport(compositeType=javax.management.openmbean.CompositeType(name=DestinationInfo,items=((itemName=ApplicationName,itemType=javax.management.openmbean.SimpleType(name=java.lang.String)),(itemName=ModuleName,itemType=javax.management.openmbean.SimpleType(name=java.lang.String)),(itemName openmbean.SimpleType(name=java.lang.Boolean)),(itemName=SerializedDestination,itemType=javax.management.openmbean.SimpleType(name=java.lang.String)),(itemName=ServerName,itemType=javax.management.openmbean.SimpleType(name=java.lang.String)),(itemName=Topic,itemType=javax.management.openmbean.SimpleType(name=java.lang.Boolean)),(itemName=VersionNumber,itemType=javax.management.op ule-0!Queue-0, Queue=true, SerializedDestination=rO0ABXNyACN3ZWJsb2dpYy5qbXMuY29tbW9uLkRlc3RpbmF0aW9uSW1wbFSmyJ1qZfv8DAAAeHB3kLZBABZTeXN0ZW1Nb2R1bGUtMCFRdWV1ZS0wAAtKTVNTZXJ2ZXItMAAOU3lzdGVtTW9kdWxlLTABAANBbGwCAlb6IS6T5qL/AAAACgEAC0FkbWluU2VydmVyAC2EGgJW+iEuk+ai/wAAAAsBAAtBZG1pblNlcnZlcgAthBoAAQAQX1dMU19BZG1pblNlcnZlcng=, ServerName=JMSServer-0, Topic=false, VersionNumber=1}) -r-- DestinationType Queue -r-- DurableSubscribers null -r-- InsertionPaused false -r-- InsertionPausedState Insertion-Enabled -r-- MessagesCurrentCount 0 -r-- MessagesDeletedCurrentCount 3 -r-- MessagesHighCount 2 -r-- MessagesMovedCurrentCount 0 -r-- MessagesPendingCount 0 -r-- MessagesReceivedCount 3 -r-- MessagesThresholdTime 0 -r-- Name SystemModule-0!Queue-0 -r-- Paused false -r-- ProductionPaused false -r-- ProductionPausedState Production-Enabled -r-- State advertised_in_cluster_jndi -r-- Type JMSDestinationRuntime   -r-x closeCursor Void : String(cursorHandle) -r-x deleteMessages Integer : String(selector) -r-x getCursorEndPosition Long : String(cursorHandle) -r-x getCursorSize Long : String(cursorHandle) -r-x getCursorStartPosition Long : String(cursorHandle) -r-x getItems javax.management.openmbean.CompositeData[] : String(cursorHandle),Long(start),Integer(count) -r-x getMessage javax.management.openmbean.CompositeData : String(cursorHandle),Long(messageHandle) -r-x getMessage javax.management.openmbean.CompositeData : String(cursorHandle),String(messageID) -r-x getMessage javax.management.openmbean.CompositeData : String(messageID) -r-x getMessages String : String(selector),Integer(timeout) -r-x getMessages String : String(selector),Integer(timeout),Integer(state) -r-x getNext javax.management.openmbean.CompositeData[] : String(cursorHandle),Integer(count) -r-x getPrevious javax.management.openmbean.CompositeData[] : String(cursorHandle),Integer(count) -r-x importMessages Void : javax.management.openmbean.CompositeData[],Boolean(replaceOnly) -r-x moveMessages Integer : String(java.lang.String),javax.management.openmbean.CompositeData,Integer(java.lang.Integer) -r-x moveMessages Integer : String(selector),javax.management.openmbean.CompositeData -r-x pause Void : -r-x pauseConsumption Void : -r-x pauseInsertion Void : -r-x pauseProduction Void : -r-x preDeregister Void : -r-x resume Void : -r-x resumeConsumption Void : -r-x resumeInsertion Void : -r-x resumeProduction Void : -r-x sort Long : String(cursorHandle),Long(start),String[](fields),Boolean[](ascending)   wls:/hotspot_domain/serverRuntime/JMSRuntime/AdminServer.jms/JMSServers/JMSServer-0/Destinations/SystemModule-0!Queue-0> cmo.deleteMessages('') 2 where the domain name is “hotspot_domain”, the JMS Server name is “JMSServer-0”, the Queue name is “Queue-0” and the System Module is named “SystemModule-0”.  To invoke the operation, I use the “cmo” object, which is the “Current Management Object” that represents the currently navigated to MBean.  The 2 indicates that two messages were deleted.  Combining this WLST code with a recent post by my colleague Steve that shows you how to use an encrypted file to store the authentication credentials, you could easily turn this into a secure automated script.  If you need help with that step, a long while back I blogged about some WLST basics.  Happy scripting.

    Read the article

  • Windows 7 doesn't boot after Ubuntu install

    - by Omu
    I had windows 7 installed on my pc, then I installed Ubuntu 10.10/ During the installation process I have chosen to manually set my partitions: I set a 10GB drive for ubuntu root 1GB drive for swap and for boot drive I've chosen the one used by windows 7 Now I can boot ubuntu, I have the windows 7 option in the boot list, but when I choose Windows 7, it shows me a black screen for a second and returns back to boot screen. Boot Info Script 0.55 dated February 15th, 2010 ============================= Boot Info Summary: ============================== = Windows is installed in the MBR of /dev/sda sda1: _________________________________________________________________________ File system: ntfs Boot sector type: Grub 2 Boot sector info: Grub 2 is installed in the boot sector of sda1 and looks at sector 304908237 of the same hard drive for core.img, but core.img can not be found at this location. No errors found in the Boot Parameter Block. Operating System: Windows 7 Boot files/dirs: /bootmgr /Boot/BCD /Windows/System32/winload.exe sda2: _________________________________________________________________________ File system: ntfs Boot sector type: Windows XP Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files/dirs: sda3: _________________________________________________________________________ File system: Extended Partition Boot sector type: - Boot sector info: sda5: _________________________________________________________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Ubuntu 10.10 Boot files/dirs: /boot/grub/grub.cfg /etc/fstab /boot/grub/core.img sda4: _________________________________________________________________________ File system: swap Boot sector type: - Boot sector info: =========================== Drive/Partition Info: ============================= Drive: sda ___________________ _____________________________________________________ Disk /dev/sda: 160.0 GB, 160041885696 bytes 255 heads, 63 sectors/track, 19457 cylinders, total 312581808 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start End Size Id System /dev/sda1 * 63 62,894,474 62,894,412 7 HPFS/NTFS /dev/sda2 62,894,478 291,579,749 228,685,272 7 HPFS/NTFS /dev/sda3 291,579,811 309,157,937 17,578,127 5 Extended /dev/sda5 291,579,813 309,157,937 17,578,125 83 Linux /dev/sda4 309,159,936 312,580,095 3,420,160 82 Linux swap / Solaris blkid -c /dev/null: ____________________________________________________________ Device UUID TYPE LABEL /dev/sda1 1266BB2766BB0A8D ntfs /dev/sda2 BEDBF1147C76F703 ntfs DATA /dev/sda3: PTTYPE="dos" /dev/sda4 dd38226d-c7c9-4ae5-a726-6d18d34a22e4 swap /dev/sda5 e1dafd1c-f855-406b-8f9a-f9d527c70255 ext4 /dev/sda: PTTYPE="dos" ============================ "mount | grep ^/dev output: =========================== Device Mount_Point Type Options /dev/sda5 / ext4 (rw,errors=remount-ro,commit=0) =========================== sda5/boot/grub/grub.cfg: =========================== # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi set default="0" if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { insmod vbe insmod vga } insmod part_msdos insmod ext2 set root='(hd0,msdos5)' search --no-floppy --fs-uuid --set e1dafd1c-f855-406b-8f9a-f9d527c70255 if loadfont /usr/share/grub/unicode.pf2 ; then set gfxmode=640x480 load_video insmod gfxterm fi terminal_output gfxterm insmod part_msdos insmod ext2 set root='(hd0,msdos5)' search --no-floppy --fs-uuid --set e1dafd1c-f855-406b-8f9a-f9d527c70255 set locale_dir=($root)/boot/grub/locale set lang=en insmod gettext if [ "${recordfail}" = 1 ]; then set timeout=-1 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### menuentry 'Ubuntu, with Linux 2.6.35-22-generic' --class ubuntu --class gnu-linux --class gnu --class os { recordfail insmod part_msdos insmod ext2 set root='(hd0,msdos5)' search --no-floppy --fs-uuid --set e1dafd1c-f855-406b-8f9a-f9d527c70255 linux /boot/vmlinuz-2.6.35-22-generic root=UUID=e1dafd1c-f855-406b-8f9a-f9d527c70255 ro quiet splash initrd /boot/initrd.img-2.6.35-22-generic } menuentry 'Ubuntu, with Linux 2.6.35-22-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os { recordfail insmod part_msdos insmod ext2 set root='(hd0,msdos5)' search --no-floppy --fs-uuid --set e1dafd1c-f855-406b-8f9a-f9d527c70255 echo 'Loading Linux 2.6.35-22-generic ...' linux /boot/vmlinuz-2.6.35-22-generic root=UUID=e1dafd1c-f855-406b-8f9a-f9d527c70255 ro single echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-2.6.35-22-generic } ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { insmod part_msdos insmod ext2 set root='(hd0,msdos5)' search --no-floppy --fs-uuid --set e1dafd1c-f855-406b-8f9a-f9d527c70255 linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { insmod part_msdos insmod ext2 set root='(hd0,msdos5)' search --no-floppy --fs-uuid --set e1dafd1c-f855-406b-8f9a-f9d527c70255 linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### menuentry "Windows 7 (loader) (on /dev/sda1)" { insmod part_msdos insmod ntfs set root='(hd0,msdos1)' search --no-floppy --fs-uuid --set 1266bb2766bb0a8d chainloader +1 } ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### =============================== sda5/etc/fstab: =============================== # /etc/fstab: static file system information. # # Use 'blkid -o value -s UUID' to print the universally unique identifier # for a device; this may be used with UUID= as a more robust way to name # devices that works even if disks are added and removed. See fstab(5). # # proc /proc proc nodev,noexec,nosuid 0 0 /dev/sda5 / ext4 errors=remount-ro 0 1 # swap was on /dev/sda4 during installation UUID=dd38226d-c7c9-4ae5-a726-6d18d34a22e4 none swap sw 0 0 =================== sda5: Location of files loaded by Grub: =================== 156.1GB: boot/grub/core.img 156.3GB: boot/grub/grub.cfg 149.9GB: boot/initrd.img-2.6.35-22-generic 156.3GB: boot/vmlinuz-2.6.35-22-generic 149.9GB: initrd.img 156.3GB: vmlinuz

    Read the article

  • Inside the Concurrent Collections: ConcurrentDictionary

    - by Simon Cooper
    Using locks to implement a thread-safe collection is rather like using a sledgehammer - unsubtle, easy to understand, and tends to make any other tool redundant. Unlike the previous two collections I looked at, ConcurrentStack and ConcurrentQueue, ConcurrentDictionary uses locks quite heavily. However, it is careful to wield locks only where necessary to ensure that concurrency is maximised. This will, by necessity, be a higher-level look than my other posts in this series, as there is quite a lot of code and logic in ConcurrentDictionary. Therefore, I do recommend that you have ConcurrentDictionary open in a decompiler to have a look at all the details that I skip over. The problem with locks There's several things to bear in mind when using locks, as encapsulated by the lock keyword in C# and the System.Threading.Monitor class in .NET (if you're unsure as to what lock does in C#, I briefly covered it in my first post in the series): Locks block threads The most obvious problem is that threads waiting on a lock can't do any work at all. No preparatory work, no 'optimistic' work like in ConcurrentQueue and ConcurrentStack, nothing. It sits there, waiting to be unblocked. This is bad if you're trying to maximise concurrency. Locks are slow Whereas most of the methods on the Interlocked class can be compiled down to a single CPU instruction, ensuring atomicity at the hardware level, taking out a lock requires some heavy lifting by the CLR and the operating system. There's quite a bit of work required to take out a lock, block other threads, and wake them up again. If locks are used heavily, this impacts performance. Deadlocks When using locks there's always the possibility of a deadlock - two threads, each holding a lock, each trying to aquire the other's lock. Fortunately, this can be avoided with careful programming and structured lock-taking, as we'll see. So, it's important to minimise where locks are used to maximise the concurrency and performance of the collection. Implementation As you might expect, ConcurrentDictionary is similar in basic implementation to the non-concurrent Dictionary, which I studied in a previous post. I'll be using some concepts introduced there, so I recommend you have a quick read of it. So, if you were implementing a thread-safe dictionary, what would you do? The naive implementation is to simply have a single lock around all methods accessing the dictionary. This would work, but doesn't allow much concurrency. Fortunately, the bucketing used by Dictionary allows a simple but effective improvement to this - one lock per bucket. This allows different threads modifying different buckets to do so in parallel. Any thread making changes to the contents of a bucket takes the lock for that bucket, ensuring those changes are thread-safe. The method that maps each bucket to a lock is the GetBucketAndLockNo method: private void GetBucketAndLockNo( int hashcode, out int bucketNo, out int lockNo, int bucketCount) { // the bucket number is the hashcode (without the initial sign bit) // modulo the number of buckets bucketNo = (hashcode & 0x7fffffff) % bucketCount; // and the lock number is the bucket number modulo the number of locks lockNo = bucketNo % m_locks.Length; } However, this does require some changes to how the buckets are implemented. The 'implicit' linked list within a single backing array used by the non-concurrent Dictionary adds a dependency between separate buckets, as every bucket uses the same backing array. Instead, ConcurrentDictionary uses a strict linked list on each bucket: This ensures that each bucket is entirely separate from all other buckets; adding or removing an item from a bucket is independent to any changes to other buckets. Modifying the dictionary All the operations on the dictionary follow the same basic pattern: void AlterBucket(TKey key, ...) { int bucketNo, lockNo; 1: GetBucketAndLockNo( key.GetHashCode(), out bucketNo, out lockNo, m_buckets.Length); 2: lock (m_locks[lockNo]) { 3: Node headNode = m_buckets[bucketNo]; 4: Mutate the node linked list as appropriate } } For example, when adding another entry to the dictionary, you would iterate through the linked list to check whether the key exists already, and add the new entry as the head node. When removing items, you would find the entry to remove (if it exists), and remove the node from the linked list. Adding, updating, and removing items all follow this pattern. Performance issues There is a problem we have to address at this point. If the number of buckets in the dictionary is fixed in the constructor, then the performance will degrade from O(1) to O(n) when a large number of items are added to the dictionary. As more and more items get added to the linked lists in each bucket, the lookup operations will spend most of their time traversing a linear linked list. To fix this, the buckets array has to be resized once the number of items in each bucket has gone over a certain limit. (In ConcurrentDictionary this limit is when the size of the largest bucket is greater than the number of buckets for each lock. This check is done at the end of the TryAddInternal method.) Resizing the bucket array and re-hashing everything affects every bucket in the collection. Therefore, this operation needs to take out every lock in the collection. Taking out mutiple locks at once inevitably summons the spectre of the deadlock; two threads each hold a lock, and each trying to acquire the other lock. How can we eliminate this? Simple - ensure that threads never try to 'swap' locks in this fashion. When taking out multiple locks, always take them out in the same order, and always take out all the locks you need before starting to release them. In ConcurrentDictionary, this is controlled by the AcquireLocks, AcquireAllLocks and ReleaseLocks methods. Locks are always taken out and released in the order they are in the m_locks array, and locks are all released right at the end of the method in a finally block. At this point, it's worth pointing out that the locks array is never re-assigned, even when the buckets array is increased in size. The number of locks is fixed in the constructor by the concurrencyLevel parameter. This simplifies programming the locks; you don't have to check if the locks array has changed or been re-assigned before taking out a lock object. And you can be sure that when a thread takes out a lock, another thread isn't going to re-assign the lock array. This would create a new series of lock objects, thus allowing another thread to ignore the existing locks (and any threads controlling them), breaking thread-safety. Consequences of growing the array Just because we're using locks doesn't mean that race conditions aren't a problem. We can see this by looking at the GrowTable method. The operation of this method can be boiled down to: private void GrowTable(Node[] buckets) { try { 1: Acquire first lock in the locks array // this causes any other thread trying to take out // all the locks to block because the first lock in the array // is always the one taken out first // check if another thread has already resized the buckets array // while we were waiting to acquire the first lock 2: if (buckets != m_buckets) return; 3: Calculate the new size of the backing array 4: Node[] array = new array[size]; 5: Acquire all the remaining locks 6: Re-hash the contents of the existing buckets into array 7: m_buckets = array; } finally { 8: Release all locks } } As you can see, there's already a check for a race condition at step 2, for the case when the GrowTable method is called twice in quick succession on two separate threads. One will successfully resize the buckets array (blocking the second in the meantime), when the second thread is unblocked it'll see that the array has already been resized & exit without doing anything. There is another case we need to consider; looking back at the AlterBucket method above, consider the following situation: Thread 1 calls AlterBucket; step 1 is executed to get the bucket and lock numbers. Thread 2 calls GrowTable and executes steps 1-5; thread 1 is blocked when it tries to take out the lock in step 2. Thread 2 re-hashes everything, re-assigns the buckets array, and releases all the locks (steps 6-8). Thread 1 is unblocked and continues executing, but the calculated bucket and lock numbers are no longer valid. Between calculating the correct bucket and lock number and taking out the lock, another thread has changed where everything is. Not exactly thread-safe. Well, a similar problem was solved in ConcurrentStack and ConcurrentQueue by storing a local copy of the state, doing the necessary calculations, then checking if that state is still valid. We can use a similar idea here: void AlterBucket(TKey key, ...) { while (true) { Node[] buckets = m_buckets; int bucketNo, lockNo; GetBucketAndLockNo( key.GetHashCode(), out bucketNo, out lockNo, buckets.Length); lock (m_locks[lockNo]) { // if the state has changed, go back to the start if (buckets != m_buckets) continue; Node headNode = m_buckets[bucketNo]; Mutate the node linked list as appropriate } break; } } TryGetValue and GetEnumerator And so, finally, we get onto TryGetValue and GetEnumerator. I've left these to the end because, well, they don't actually use any locks. How can this be? Whenever you change a bucket, you need to take out the corresponding lock, yes? Indeed you do. However, it is important to note that TryGetValue and GetEnumerator don't actually change anything. Just as immutable objects are, by definition, thread-safe, read-only operations don't need to take out a lock because they don't change anything. All lockless methods can happily iterate through the buckets and linked lists without worrying about locking anything. However, this does put restrictions on how the other methods operate. Because there could be another thread in the middle of reading the dictionary at any time (even if a lock is taken out), the dictionary has to be in a valid state at all times. Every change to state has to be made visible to other threads in a single atomic operation (all relevant variables are marked volatile to help with this). This restriction ensures that whatever the reading threads are doing, they never read the dictionary in an invalid state (eg items that should be in the collection temporarily removed from the linked list, or reading a node that has had it's key & value removed before the node itself has been removed from the linked list). Fortunately, all the operations needed to change the dictionary can be done in that way. Bucket resizes are made visible when the new array is assigned back to the m_buckets variable. Any additions or modifications to a node are done by creating a new node, then splicing it into the existing list using a single variable assignment. Node removals are simply done by re-assigning the node's m_next pointer. Because the dictionary can be changed by another thread during execution of the lockless methods, the GetEnumerator method is liable to return dirty reads - changes made to the dictionary after GetEnumerator was called, but before the enumeration got to that point in the dictionary. It's worth listing at this point which methods are lockless, and which take out all the locks in the dictionary to ensure they get a consistent view of the dictionary: Lockless: TryGetValue GetEnumerator The indexer getter ContainsKey Takes out every lock (lockfull?): Count IsEmpty Keys Values CopyTo ToArray Concurrent principles That covers the overall implementation of ConcurrentDictionary. I haven't even begun to scratch the surface of this sophisticated collection. That I leave to you. However, we've looked at enough to be able to extract some useful principles for concurrent programming: Partitioning When using locks, the work is partitioned into independant chunks, each with its own lock. Each partition can then be modified concurrently to other partitions. Ordered lock-taking When a method does need to control the entire collection, locks are taken and released in a fixed order to prevent deadlocks. Lockless reads Read operations that don't care about dirty reads don't take out any lock; the rest of the collection is implemented so that any reading thread always has a consistent view of the collection. That leads us to the final collection in this little series - ConcurrentBag. Lacking a non-concurrent analogy, it is quite different to any other collection in the class libraries. Prepare your thinking hats!

    Read the article

  • Yet another blog about IValueConverter

    - by codingbloke
    After my previous blog on a Generic Boolean Value Converter I thought I might as well blog up another IValueConverter implementation that I use. The Generic Boolean Value Converter effectively converters an input which only has two possible values to one of two corresponding objects.  The next logical step would be to create a similar converter that can take an input which has multiple (but finite and discrete) values to one of multiple corresponding objects.  To put it more simply a Generic Enum Value Converter. Now we already have a tool that can help us in this area, the ResourceDictionary.  A simple IValueConverter implementation around it would create a StringToObjectConverter like so:- StringToObjectConverter using System; using System.Windows; using System.Windows.Data; using System.Linq; using System.Windows.Markup; namespace SilverlightApplication1 {     [ContentProperty("Items")]     public class StringToObjectConverter : IValueConverter     {         public ResourceDictionary Items { get; set; }         public string DefaultKey { get; set; }                  public StringToObjectConverter()         {             DefaultKey = "__default__";         }         public virtual object Convert(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture)         {             if (value != null && Items.Contains(value.ToString()))                 return Items[value.ToString()];             else                 return Items[DefaultKey];         }         public virtual object ConvertBack(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture)         {             return Items.FirstOrDefault(kvp => value.Equals(kvp.Value)).Key;         }     } } There are some things to note here.  The bulk of managing the relationship between an object instance and the related string key is handled by the Items property being an ResourceDictionary.  Also there is a catch all “__default__” key value which allows for only a subset of the possible input values to mapped to an object with the rest falling through to the default. We can then set one of these up in Xaml:-             <local:StringToObjectConverter x:Key="StatusToBrush">                 <ResourceDictionary>                     <SolidColorBrush Color="Red" x:Key="Overdue" />                     <SolidColorBrush Color="Orange" x:Key="Urgent" />                     <SolidColorBrush Color="Silver" x:Key="__default__" />                 </ResourceDictionary>             </local:StringToObjectConverter> You could well imagine that in the model being bound these key names would actually be members of an enum.  This still works due to the use of ToString in the Convert method.  Hence the only requirement for the incoming object is that it has a ToString implementation which generates a sensible string instead of simply the type name. I can’t imagine right now a scenario where this converter would be used in a TwoWay binding but there is no reason why it can’t.  I prefer to avoid leaving the ConvertBack throwing an exception if that can be be avoided.  Hence it just enumerates the KeyValuePair entries to find a value that matches and returns the key its mapped to. Ah but now my sense of balance is assaulted again.  Whilst StringToObjectConverter is quite happy to accept an enum type via the Convert method it returns a string from the ConvertBack method not the original input enum type that arrived in the Convert.  Now I could address this by complicating the ConvertBack method and examining the targetType parameter etc.  However I prefer to a different approach, deriving a new EnumToObjectConverter class instead. EnumToObjectConverter using System; namespace SilverlightApplication1 {     public class EnumToObjectConverter : StringToObjectConverter     {         public override object Convert(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture)         {             string key = Enum.GetName(value.GetType(), value);             return base.Convert(key, targetType, parameter, culture);         }         public override object ConvertBack(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture)         {             string key = (string)base.ConvertBack(value, typeof(String), parameter, culture);             return Enum.Parse(targetType, key, false);         }     } }   This is a more belts and braces solution with specific use of Enum.GetName and Enum.Parse.  Whilst its more explicit in that the a developer has to  choose to use it, it is only really necessary when using TwoWay binding, in OneWay binding the base StringToObjectConverter would serve just as well. The observant might note that there is actually no “Generic” aspect to this solution in the end.  The use of a ResourceDictionary eliminates the need for that.

    Read the article

  • .NET Security Part 3

    - by Simon Cooper
    You write a security-related application that allows addins to be used. These addins (as dlls) can be downloaded from anywhere, and, if allowed to run full-trust, could open a security hole in your application. So you want to restrict what the addin dlls can do, using a sandboxed appdomain, as explained in my previous posts. But there needs to be an interaction between the code running in the sandbox and the code that created the sandbox, so the sandboxed code can control or react to things that happen in the controlling application. Sandboxed code needs to be able to call code outside the sandbox. Now, there are various methods of allowing cross-appdomain calls, the two main ones being .NET Remoting with MarshalByRefObject, and WCF named pipes. I’m not going to cover the details of setting up such mechanisms here, or which you should choose for your specific situation; there are plenty of blogs and tutorials covering such issues elsewhere. What I’m going to concentrate on here is the more general problem of running fully-trusted code within a sandbox, which is required in most methods of app-domain communication and control. Defining assemblies as fully-trusted In my last post, I mentioned that when you create a sandboxed appdomain, you can pass in a list of assembly strongnames that run as full-trust within the appdomain: // get the Assembly object for the assembly Assembly assemblyWithApi = ... // get the StrongName from the assembly's collection of evidence StrongName apiStrongName = assemblyWithApi.Evidence.GetHostEvidence<StrongName>(); // create the sandbox AppDomain sandbox = AppDomain.CreateDomain( "Sandbox", null, appDomainSetup, restrictedPerms, apiStrongName); Any assembly that is loaded into the sandbox with a strong name the same as one in the list of full-trust strong names is unconditionally given full-trust permissions within the sandbox, irregardless of permissions and sandbox setup. This is very powerful! You should only use this for assemblies that you trust as much as the code creating the sandbox. So now you have a class that you want the sandboxed code to call: // within assemblyWithApi public class MyApi { public static void MethodToDoThings() { ... } } // within the sandboxed dll public class UntrustedSandboxedClass { public void DodgyMethod() { ... MyApi.MethodToDoThings(); ... } } However, if you try to do this, you get quite an ugly exception: MethodAccessException: Attempt by security transparent method ‘UntrustedSandboxedClass.DodgyMethod()’ to access security critical method ‘MyApi.MethodToDoThings()’ failed. Security transparency, which I covered in my first post in the series, has entered the picture. Partially-trusted code runs at the Transparent security level, fully-trusted code runs at the Critical security level, and Transparent code cannot under any circumstances call Critical code. Security transparency and AllowPartiallyTrustedCallersAttribute So the solution is easy, right? Make MethodToDoThings SafeCritical, then the transparent code running in the sandbox can call the api: [SecuritySafeCritical] public static void MethodToDoThings() { ... } However, this doesn’t solve the problem. When you try again, exactly the same exception is thrown; MethodToDoThings is still running as Critical code. What’s going on? By default, a fully-trusted assembly always runs Critical code, irregardless of any security attributes on its types and methods. This is because it may not have been designed in a secure way when called from transparent code – as we’ll see in the next post, it is easy to open a security hole despite all the security protections .NET 4 offers. When exposing an assembly to be called from partially-trusted code, the entire assembly needs a security audit to decide what should be transparent, safe critical, or critical, and close any potential security holes. This is where AllowPartiallyTrustedCallersAttribute (APTCA) comes in. Without this attribute, fully-trusted assemblies run Critical code, and partially-trusted assemblies run Transparent code. When this attribute is applied to an assembly, it confirms that the assembly has had a full security audit, and it is safe to be called from untrusted code. All code in that assembly runs as Transparent, but SecurityCriticalAttribute and SecuritySafeCriticalAttribute can be applied to individual types and methods to make those run at the Critical or SafeCritical levels, with all the restrictions that entails. So, to allow the sandboxed assembly to call the full-trust API assembly, simply add APCTA to the API assembly: [assembly: AllowPartiallyTrustedCallers] and everything works as you expect. The sandboxed dll can call your API dll, and from there communicate with the rest of the application. Conclusion That’s the basics of running a full-trust assembly in a sandboxed appdomain, and allowing a sandboxed assembly to access it. The key is AllowPartiallyTrustedCallersAttribute, which is what lets partially-trusted code call a fully-trusted assembly. However, an assembly with APTCA applied to it means that you have run a full security audit of every type and member in the assembly. If you don’t, then you could inadvertently open a security hole. I’ll be looking at ways this can happen in my next post.

    Read the article

  • How to nest transactions nicely - &quot;begin transaction&quot; vs &quot;save transaction&quot; and SQL Server

    - by Brian Biales
    Do you write stored procedures that might be used by others?  And those others may or may not have already started a transaction?  And your SP does several things, but if any of them fail, you have to undo them all and return with a code indicating it failed? Well, I have written such code, and it wasn’t working right until I finally figured out how to handle the case when we are already in a transaction, as well as the case where the caller did not start a transaction.  When a problem occurred, my “ROLLBACK TRANSACTION” would roll back not just my nested transaction, but the caller’s transaction as well.  So when I tested the procedure stand-alone, it seemed to work fine, but when others used it, it would cause a problem if it had to rollback.  When something went wrong in my procedure, their entire transaction was rolled back.  This was not appreciated. Now, I knew one could "nest" transactions, but the technical documentation was very confusing.  And I still have not found the approach below documented anywhere.  So here is a very brief description of how I got it to work, I hope you find this helpful. My example is a stored procedure that must figure out on its own if the caller has started a transaction or not.  This can be done in SQL Server by checking the @@TRANCOUNT value.  If no BEGIN TRANSACTION has occurred yet, this will have a value of 0.  Any number greater than zero means that a transaction is in progress.  If there is no current transaction, my SP begins a transaction. But if a transaction is already in progress, my SP uses SAVE TRANSACTION and gives it a name.  SAVE TRANSACTION creates a “save point”.  Note that creating a save point has no effect on @@TRANCOUNT.  So my SP starts with something like this: DECLARE @startingTranCount int SET @startingTranCount = @@TRANCOUNT IF @startingTranCount > 0 SAVE TRANSACTION mySavePointName ELSE BEGIN TRANSACTION -- … Then, when ready to commit the changes, you only need to commit if we started the transaction ourselves: IF @startingTranCount = 0 COMMIT TRANSACTION And finally, to roll back just your changes so far: -- Roll back changes... IF @startingTranCount > 0 ROLLBACK TRANSACTION MySavePointName ELSE ROLLBACK TRANSACTION Here is some code that you can try that will demonstrate how the save points work inside a transaction. This sample code creates a temporary table, then executes selects and updates, documenting what is going on, then deletes the temporary table. if running in SQL Management Studio, set Query Results to: Text for best readability of the results. -- Create a temporary table to test with, we'll drop it at the end. CREATE TABLE #ATable( [Column_A] [varchar](5) NULL ) ON [PRIMARY] GO SET NOCOUNT ON -- Ensure just one row - delete all rows, add one DELETE #ATable -- Insert just one row INSERT INTO #ATable VALUES('000') SELECT 'Before TRANSACTION starts, value in table is: ' AS Note, * FROM #ATable SELECT @@trancount AS CurrentTrancount --insert into a values ('abc') UPDATE #ATable SET Column_A = 'abc' SELECT 'UPDATED without a TRANSACTION, value in table is: ' AS Note, * FROM #ATable BEGIN TRANSACTION SELECT 'BEGIN TRANSACTION, trancount is now ' AS Note, @@TRANCOUNT AS TranCount UPDATE #ATable SET Column_A = '123' SELECT 'Row updated inside TRANSACTION, value in table is: ' AS Note, * FROM #ATable SAVE TRANSACTION MySavepoint SELECT 'Save point MySavepoint created, transaction count now:' as Note, @@TRANCOUNT AS TranCount UPDATE #ATable SET Column_A = '456' SELECT 'Updated after MySavepoint created, value in table is: ' AS Note, * FROM #ATable SAVE TRANSACTION point2 SELECT 'Save point point2 created, transaction count now:' as Note, @@TRANCOUNT AS TranCount UPDATE #ATable SET Column_A = '789' SELECT 'Updated after point2 savepoint created, value in table is: ' AS Note, * FROM #ATable ROLLBACK TRANSACTION point2 SELECT 'Just rolled back savepoint "point2", value in table is: ' AS Note, * FROM #ATable ROLLBACK TRANSACTION MySavepoint SELECT 'Just rolled back savepoint "MySavepoint", value in table is: ' AS Note, * FROM #ATable SELECT 'Both save points were rolled back, transaction count still:' as Note, @@TRANCOUNT AS TranCount ROLLBACK TRANSACTION SELECT 'Just rolled back the entire transaction..., value in table is: ' AS Note, * FROM #ATable DROP TABLE #ATable The output should look like this: Note                                           Column_A ---------------------------------------------- -------- Before TRANSACTION starts, value in table is:  000 CurrentTrancount ---------------- 0 Note                                               Column_A -------------------------------------------------- -------- UPDATED without a TRANSACTION, value in table is:  abc Note                                 TranCount ------------------------------------ ----------- BEGIN TRANSACTION, trancount is now  1 Note                                                Column_A --------------------------------------------------- -------- Row updated inside TRANSACTION, value in table is:  123 Note                                                   TranCount ------------------------------------------------------ ----------- Save point MySavepoint created, transaction count now: 1 Note                                                   Column_A ------------------------------------------------------ -------- Updated after MySavepoint created, value in table is:  456 Note                                              TranCount ------------------------------------------------- ----------- Save point point2 created, transaction count now: 1 Note                                                        Column_A ----------------------------------------------------------- -------- Updated after point2 savepoint created, value in table is:  789 Note                                                     Column_A -------------------------------------------------------- -------- Just rolled back savepoint "point2", value in table is:  456 Note                                                          Column_A ------------------------------------------------------------- -------- Just rolled back savepoint "MySavepoint", value in table is:  123 Note                                                        TranCount ----------------------------------------------------------- ----------- Both save points were rolled back, transaction count still: 1 Note                                                            Column_A --------------------------------------------------------------- -------- Just rolled back the entire transaction..., value in table is:  abc

    Read the article

  • Blazing fast performance with RadGridView for WPF 4.0 and Entity Framework 4.0

    Just before our upcoming release of Q1 2010 SP1 (early next week), Ive decided to check how RadGridView for WPF will handle complex Entity Framework 4.0 query with almost 2 million records: public class MyDataContext{    IQueryable _Data;    public IQueryable Data    {        get        {            if (_Data == null)            {                var northwindEntities = new NorthwindEntities();                var queryable = from o in northwindEntities.Orders                               from od in northwindEntities.Order_Details                                select new                                {                                    od.OrderID,                                    od.ProductID,                                    od.UnitPrice,                                    od.Quantity,                                    od.Discount,                                    o.CustomerID,                                    o.EmployeeID,                                    o.OrderDate                                };                _Data = queryable.OrderBy(i => i.OrderID);            }             return _Data;        }    }} The grid is bound completely codeless in XAML using RadDataPager with PageSize set to 50: <Window x:Class="WpfApplication1.MainWindow" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation" Title="MainWindow" mc...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Shadow mapping with deffered shading for directional lights - shadow map projection problem

    - by Harry
    I'm trying to implement shadow mapping to my engine. I started with directional lights because they seemed to be the easiest one, but I was wrong :) I have implemented deferred shading and I retrieve position from depth. I think that there is the biggest problem but code looks ok for me. Now more about problem: Shadow map projected onto meshes looks bad scaled and translated and also some informations from shadow map texture aren't visible. You can see it on this screen: http://img5.imageshack.us/img5/2254/93dn.png Yelow frustum is light frustum and I have mixed shadow map preview and actual scene. As you can see shadows are in wrong place and shadow of cone and sphere aren't visible. Could you look at my codes and tell me where I have a mistake? // create shadow map if(!_shd)glGenTextures(1, &_shd); glBindTexture(GL_TEXTURE_2D, _shd); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, 1024, 1024, 0, GL_DEPTH_COMPONENT, GL_FLOAT,NULL); // shadow map size glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, _shd, 0); glDrawBuffer(GL_NONE); // setting camera Vector dire=Vector(0,0,1); ACamera.setLookAt(dire,Vector(0)); ACamera.setPerspectiveView(60.0f,1,0.1f,10.0f); // currently needed for proper frustum corners calculation Vector min(ACamera._point[0]),max(ACamera._point[0]); for(int i=0;i<8;i++){ max=Max(max,ACamera._point[i]); min=Min(min,ACamera._point[i]); } ACamera.setOrthogonalView(min.x,max.x,min.y,max.y,-max.z,-min.z); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, _s_buffer); // framebuffer for shadow map // rendering to depth buffer glBindFramebuffer(GL_DRAW_FRAMEBUFFER, _g_buffer); Shaders["DirLight"].set(true); Matrix4 bias; bias.x.set(0.5,0.0,0.0,0.0); bias.y.set(0.0,0.5,0.0,0.0); bias.z.set(0.0,0.0,0.5,0.0); bias.w.set(0.5,0.5,0.5,1.0); Shaders["DirLight"].set("textureMatrix",ACamera.matrix*Projection3D*bias); // order of multiplications are 100% correct, everything gives mi the same result as using glm glActiveTexture(GL_TEXTURE5); glBindTexture(GL_TEXTURE_2D,_shd); lightDir(dir); // light calculations Vertex Shader makes nothing related to shadow calculatons Pixel shader function which calculates if pixel is in shadow or not: float readShadowMap(vec3 eyeDir) { // retrieve depth of pixel float z = texture2D(depth, gl_FragCoord.xy/screen).z; vec3 pos = vec3(gl_FragCoord.xy/screen, z); // transform by the projection and view inverse vec4 worldSpace = inverse(View)*inverse(ProjectionMatrix)*vec4(pos*2-1,1); worldSpace /= worldSpace.w; vec4 coord=textureMatrix*worldSpace; float vis=1.0f; if(texture2D(shadow, coord.xy).z < coord.z-0.001)vis=0.2f; return vis; } I also have question about shadows specifically for directional light. Currently I always look at 0,0,0 position and in further implementation I have to move light frustum along to camera frustum. I've found how to do this here: http://www.gamedev.net/topic/505893-orthographic-projection-for-shadow-mapping/ but it doesn't give me what I want. Maybe because of problems mentioned above, but I want know your opinion. EDIT: vec4 worldSpace is position read from depht of the scene (not shadow map). Maybe I wasn't precise so I'll try quick explain what is what: View is camera view matrix, ProjectionMatrix is camera projection,. First I try to get world space position from depth map and then multiply it by textureMatrix which is light view *light projection*bias. Rest of code is the same as in many tutorials. I can't use vertex shader to make something like gl_Position=textureMatrix*gl_Vertex and get it interpolated in fragment shader because of deffered rendering use so I want get it from depht buffer. EDIT2: I also tried make it as in Coding Labs tutorial about Shadow Mapping with Deferred Rendering but unfortunately this either works wrong.

    Read the article

  • How do I make my page respect h1 css addition? [migrated]

    - by Adobe
    I add h1 { margin-top:100px; } to the end of the css, but the page doesn't change. But if I add to the html of some h1: <h1 style="margin-top:100px;"><a class="toc-backref" href="#id4">KHotKeys</a><a class="headerlink" href="#khotkeys" title="Permalink to this headline">¶</a></h1> Then it does. I'm not css pro, and I guess the problem is somewhere in the css file. Here it is: div.clearer { clear: both; } /* -- relbar ---------------------------------------------------------------- */ div.related { width: 100%; font-size: 90%; } div.related h3 { display: none; } div.related ul { margin: 0; padding: 0 0 0 10px; list-style: none; } div.related li { display: inline; } div.related li.right { float: right; margin-right: 5px; } /* -- sidebar --------------------------------------------------------------- */ div.sphinxsidebarwrapper { padding: 10px 5px 0 10px; } div.sphinxsidebar { float: left; width: 230px; margin-left: -100%; font-size: 90%; } div.sphinxsidebar ul { list-style: none; } div.sphinxsidebar ul ul, div.sphinxsidebar ul.want-points { margin-left: 20px; list-style: square; } div.sphinxsidebar ul ul { margin-top: 0; margin-bottom: 0; } div.sphinxsidebar form { margin-top: 10px; } div.sphinxsidebar input { border: 1px solid #98dbcc; font-family: sans-serif; font-size: 1em; } div.sphinxsidebar input[type="text"] { width: 160px; } div.sphinxsidebar input[type="submit"] { width: 30px; } img { border: 0; } /* -- search page ----------------------------------------------------------- */ ul.search { margin: 10px 0 0 20px; padding: 0; } ul.search li { padding: 5px 0 5px 20px; background-image: url(file.png); background-repeat: no-repeat; background-position: 0 7px; } ul.search li a { font-weight: bold; } ul.search li div.context { color: #888; margin: 2px 0 0 30px; text-align: left; } ul.keywordmatches li.goodmatch a { font-weight: bold; } /* -- index page ------------------------------------------------------------ */ table.contentstable { width: 90%; } table.contentstable p.biglink { line-height: 150%; } a.biglink { font-size: 1.3em; } span.linkdescr { font-style: italic; padding-top: 5px; font-size: 90%; } /* -- general index --------------------------------------------------------- */ table.indextable { width: 100%; } table.indextable td { text-align: left; vertical-align: top; } table.indextable dl, table.indextable dd { margin-top: 0; margin-bottom: 0; } table.indextable tr.pcap { height: 10px; } table.indextable tr.cap { margin-top: 10px; background-color: #f2f2f2; } img.toggler { margin-right: 3px; margin-top: 3px; cursor: pointer; } div.modindex-jumpbox { border-top: 1px solid #ddd; border-bottom: 1px solid #ddd; margin: 1em 0 1em 0; padding: 0.4em; } div.genindex-jumpbox { border-top: 1px solid #ddd; border-bottom: 1px solid #ddd; margin: 1em 0 1em 0; padding: 0.4em; } /* -- general body styles --------------------------------------------------- */ a.headerlink { visibility: hidden; } h1:hover > a.headerlink, h2:hover > a.headerlink, h3:hover > a.headerlink, h4:hover > a.headerlink, h5:hover > a.headerlink, h6:hover > a.headerlink, dt:hover > a.headerlink { visibility: visible; } div.body p.caption { text-align: inherit; } div.body td { text-align: left; } .field-list ul { padding-left: 1em; } .first { margin-top: 0 !important; } p.rubric { margin-top: 30px; font-weight: bold; } img.align-left, .figure.align-left, object.align-left { clear: left; float: left; margin-right: 1em; } img.align-right, .figure.align-right, object.align-right { clear: right; float: right; margin-left: 1em; } img.align-center, .figure.align-center, object.align-center { display: block; margin-left: auto; margin-right: auto; } .align-left { text-align: left; } .align-center { text-align: center; } .align-right { text-align: right; } /* -- sidebars -------------------------------------------------------------- */ div.sidebar { margin: 0 0 0.5em 1em; border: 1px solid #ddb; padding: 7px 7px 0 7px; background-color: #ffe; width: 40%; float: right; } p.sidebar-title { font-weight: bold; } /* -- topics ---------------------------------------------------------------- */ div.topic { border: 1px solid #ccc; padding: 7px 7px 0 7px; margin: 10px 0 10px 0; } p.topic-title { font-size: 1.1em; font-weight: bold; margin-top: 10px; } /* -- admonitions ----------------------------------------------------------- */ div.admonition { margin-top: 10px; margin-bottom: 10px; padding: 7px; } div.admonition dt { font-weight: bold; } div.admonition dl { margin-bottom: 0; } p.admonition-title { margin: 0px 10px 5px 0px; font-weight: bold; } div.body p.centered { text-align: center; margin-top: 25px; } /* -- tables ---------------------------------------------------------------- */ table.docutils { border: 0; border-collapse: collapse; } table.docutils td, table.docutils th { padding: 1px 8px 1px 5px; border-top: 0; border-left: 0; border-right: 0; border-bottom: 1px solid #aaa; } table.field-list td, table.field-list th { border: 0 !important; } table.footnote td, table.footnote th { border: 0 !important; } th { text-align: left; padding-right: 5px; } table.citation { border-left: solid 1px gray; margin-left: 1px; } table.citation td { border-bottom: none; } /* -- other body styles ----------------------------------------------------- */ ol.arabic { list-style: decimal; } ol.loweralpha { list-style: lower-alpha; } ol.upperalpha { list-style: upper-alpha; } ol.lowerroman { list-style: lower-roman; } ol.upperroman { list-style: upper-roman; } dl { margin-bottom: 15px; } dd p { margin-top: 0px; } dd ul, dd table { margin-bottom: 10px; } dd { margin-top: 3px; margin-bottom: 10px; margin-left: 30px; } dt:target, .highlighted { background-color: #fbe54e; } dl.glossary dt { font-weight: bold; font-size: 1.1em; } .field-list ul { margin: 0; padding-left: 1em; } .field-list p { margin: 0; } .refcount { color: #060; } .optional { font-size: 1.3em; } .versionmodified { font-style: italic; } .system-message { background-color: #fda; padding: 5px; border: 3px solid red; } .footnote:target { background-color: #ffa; } .line-block { display: block; margin-top: 1em; margin-bottom: 1em; } .line-block .line-block { margin-top: 0; margin-bottom: 0; margin-left: 1.5em; } .guilabel, .menuselection { font-family: sans-serif; } .accelerator { text-decoration: underline; } .classifier { font-style: oblique; } /* -- code displays --------------------------------------------------------- */ pre { overflow: auto; overflow-y: hidden; /* fixes display issues on Chrome browsers */ } td.linenos pre { padding: 5px 0px; border: 0; background-color: transparent; color: #aaa; } table.highlighttable { margin-left: 0.5em; } table.highlighttable td { padding: 0 0.5em 0 0.5em; } tt.descname { background-color: transparent; font-weight: bold; font-size: 1.2em; } tt.descclassname { background-color: transparent; } tt.xref, a tt { background-color: transparent; font-weight: bold; } h1 tt, h2 tt, h3 tt, h4 tt, h5 tt, h6 tt { background-color: transparent; } .viewcode-link { float: right; } .viewcode-back { float: right; font-family: sans-serif; } div.viewcode-block:target { margin: -1px -10px; padding: 0 10px; } /* -- math display ---------------------------------------------------------- */ img.math { vertical-align: middle; } div.body div.math p { text-align: center; } span.eqno { float: right; } /* -- printout stylesheet --------------------------------------------------- */ @media print { div.document, div.documentwrapper, div.bodywrapper { margin: 0 !important; width: 100%; } div.sphinxsidebar, div.related, div.footer, #top-link { display: none; } } body { font-family: sans-serif; font-size: 100%; background-color: #11303d; color: #000; margin: 0; padding: 0; } div.document { background-color: #d4e9f7; } div.documentwrapper { float: left; width: 100%; } div.bodywrapper { margin: 0 0 0 230px; } div.body { background-color: #ffffff; color: #222222; padding: 0 20px 30px 20px; } div.footer { color: #ffffff; width: 100%; padding: 9px 0 9px 0; text-align: center; font-size: 75%; } div.footer a { color: #ffffff; text-decoration: underline; } div.related { background-color: #191a19; line-height: 30px; color: #ffffff; } div.related a { color: #ffffff; } div.sphinxsidebar { top: 30px; bottom: 60px; margin: 0; position: fixed; overflow: auto; height: auto; } div.sphinxsidebar h3 { font-family: 'Trebuchet MS', sans-serif; color: #3a3a3a; font-size: 1.4em; font-weight: normal; margin: 0; padding: 0; } div.sphinxsidebar h3 a { color: #3a3a3a; } div.sphinxsidebar h4 { font-family: 'Trebuchet MS', sans-serif; color: #3a3a3a; font-size: 1.3em; font-weight: normal; margin: 5px 0 0 0; padding: 0; } div.sphinxsidebar p { color: #3a3a3a; } div.sphinxsidebar p.topless { margin: 5px 10px 10px 10px; } div.sphinxsidebar ul { margin: 10px; padding: 0; color: #3a3a3a; } div.sphinxsidebar ul li { margin-top: .2em; } div.sphinxsidebar a { color: #3a8942; } div.sphinxsidebar input { border: 1px solid #3a8942; font-family: sans-serif; font-size: 1em; } /* -- body styles ----------------------------------------------------------- */ a { color: #355f7c; text-decoration: none; } a:hover { text-decoration: underline; } div.body p, div.body dd, div.body li { text-align: left; line-height: 130%; margin-top: 0px; margin-bottom: 0px; } div.body h1, div.body h2, div.body h3, div.body h4, div.body h5, div.body h6 { font-family: 'Trebuchet MS', sans-serif; background-color: #f2f2f2; font-weight: normal; color: #20435c; border-top: 2px solid #cccccc; border-bottom: 1px solid #cccccc; margin: 30px -20px 20px -20px; padding: 3px 0 3px 10px; } div.body h1 { margin-top: 0; font-size: 200%; } div.body h2 { font-size: 160%; } div.body h3 { font-size: 140%; padding-left: 20px; } div.body h4 { font-size: 120%; padding-left: 20px; } div.body h5 { font-size: 110%; padding-left: 20px; } div.body h6 { font-size: 100%; padding-left: 20px; } a.headerlink { color: #c60f0f; font-size: 0.8em; padding: 0 4px 0 4px; text-decoration: none; } a.headerlink:hover { background-color: #c60f0f; color: white; } div.body p, div.body dd, div.body li { text-align: left; line-height: 110%; } div.admonition p.admonition-title + p { display: inline; } div.note { background-color: #eee; border: 1px solid #ccc; } div.seealso { background-color: #ffc; border: 1px solid #ff6; } div.topic { background-color: #eee; } div.warning { background-color: #ffe4e4; border: 1px solid #f66; } p.admonition-title { display: inline; } p.admonition-title:after { content: ":"; } pre { padding: 0px; background-color: #ffffff; color: #000000; line-height: 120%; border: 0px solid #ffffff; border-left: none; border-right: none; white-space: pre-wrap; /* word-wrap: break-word; */ /* width:100px; */ } tt { background-color: #ecf0f3; padding: 0 1px 0 1px; font-size: 110%; } .warning tt { background: #efc2c2; } .note tt { background: #d6d6d6; } body { width:150%; }

    Read the article

  • Basic shadow mapping fails on NVIDIA card?

    - by James
    Recently I switched from an AMD Radeon HD 6870 card to an (MSI) NVIDIA GTX 670 for performance reasons. I found however that my implementation of shadow mapping in all my applications failed. In a very simple shadow POC project the problem appears to be that the scene being drawn never results in a draw to the depth map and as a result the entire depth map is just infinity, 1.0 (Reading directly from the depth component after draw (glReadPixels) shows every pixel is infinity (1.0), replacing the depth comparison in the shader with a comparison of the depth from the shadow map with 1.0 shadows the entire scene, and writing random values to the depth map and then not calling glClear(GL_DEPTH_BUFFER_BIT) results in a random noisy pattern on the scene elements - from which we can infer that the uploading of the depth texture and comparison within the shader are functioning perfectly.) Since the problem appears almost certainly to be in the depth render, this is the code for that: const int s_res = 1024; GLuint shadowMap_tex; GLuint shadowMap_prog; GLint sm_attr_coord3d; GLint sm_uniform_mvp; GLuint fbo_handle; GLuint renderBuffer; bool isMappingShad = false; //The scene consists of a plane with box above it GLfloat scene[] = { -10.0, 0.0, -10.0, 0.5, 0.0, 10.0, 0.0, -10.0, 1.0, 0.0, 10.0, 0.0, 10.0, 1.0, 0.5, -10.0, 0.0, -10.0, 0.5, 0.0, -10.0, 0.0, 10.0, 0.5, 0.5, 10.0, 0.0, 10.0, 1.0, 0.5, ... }; //Initialize the stuff used by the shadow map generator int initShadowMap() { //Initialize the shadowMap shader program if (create_program("shadow.v.glsl", "shadow.f.glsl", shadowMap_prog) != 1) return -1; const char* attribute_name = "coord3d"; sm_attr_coord3d = glGetAttribLocation(shadowMap_prog, attribute_name); if (sm_attr_coord3d == -1) { fprintf(stderr, "Could not bind attribute %s\n", attribute_name); return 0; } const char* uniform_name = "mvp"; sm_uniform_mvp = glGetUniformLocation(shadowMap_prog, uniform_name); if (sm_uniform_mvp == -1) { fprintf(stderr, "Could not bind uniform %s\n", uniform_name); return 0; } //Create a framebuffer glGenFramebuffers(1, &fbo_handle); glBindFramebuffer(GL_FRAMEBUFFER, fbo_handle); //Create render buffer glGenRenderbuffers(1, &renderBuffer); glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer); //Setup the shadow texture glGenTextures(1, &shadowMap_tex); glBindTexture(GL_TEXTURE_2D, shadowMap_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, s_res, s_res, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); return 0; } //Delete stuff void dnitShadowMap() { //Delete everything glDeleteFramebuffers(1, &fbo_handle); glDeleteRenderbuffers(1, &renderBuffer); glDeleteTextures(1, &shadowMap_tex); glDeleteProgram(shadowMap_prog); } int loadSMap() { //Bind MVP stuff glm::mat4 view = glm::lookAt(glm::vec3(10.0, 10.0, 5.0), glm::vec3(0.0, 0.0, 0.0), glm::vec3(0.0, 1.0, 0.0)); glm::mat4 projection = glm::ortho<float>(-10,10,-8,8,-10,40); glm::mat4 mvp = projection * view; glm::mat4 biasMatrix( 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); glm::mat4 lsMVP = biasMatrix * mvp; //Upload light source matrix to the main shader programs glUniformMatrix4fv(uniform_ls_mvp, 1, GL_FALSE, glm::value_ptr(lsMVP)); glUseProgram(shadowMap_prog); glUniformMatrix4fv(sm_uniform_mvp, 1, GL_FALSE, glm::value_ptr(mvp)); //Draw to the framebuffer (with depth buffer only draw) glBindFramebuffer(GL_FRAMEBUFFER, fbo_handle); glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer); glBindTexture(GL_TEXTURE_2D, shadowMap_tex); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, shadowMap_tex, 0); glDrawBuffer(GL_NONE); glReadBuffer(GL_NONE); GLenum result = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (GL_FRAMEBUFFER_COMPLETE != result) { printf("ERROR: Framebuffer is not complete.\n"); return -1; } //Draw shadow scene printf("Creating shadow buffers..\n"); int ticks = SDL_GetTicks(); glClear(GL_DEPTH_BUFFER_BIT); //Wipe the depth buffer glViewport(0, 0, s_res, s_res); isMappingShad = true; //DRAW glEnableVertexAttribArray(sm_attr_coord3d); glVertexAttribPointer(sm_attr_coord3d, 3, GL_FLOAT, GL_FALSE, 5*4, scene); glDrawArrays(GL_TRIANGLES, 0, 14*3); glDisableVertexAttribArray(sm_attr_coord3d); isMappingShad = false; glBindFramebuffer(GL_FRAMEBUFFER, 0); printf("Render Sbuf in %dms (GLerr: %d)\n", SDL_GetTicks() - ticks, glGetError()); return 0; } This is the full code for the POC shadow mapping project (C++) (Requires SDL 1.2, SDL-image 1.2, GLEW (1.5) and GLM development headers.) initShadowMap is called, followed by loadSMap, the scene is drawn from the camera POV and then dnitShadowMap is called. I followed this tutorial originally (Along with another more comprehensive tutorial which has disappeared as this guy re-configured his site but used to be here (404).) I've ensured that the scene is visible (as can be seen within the full project) to the light source (which uses an orthogonal projection matrix.) Shader utilities function fine in non-shadow-mapped projects. I should also note that at no point is the GL error state set. What am I doing wrong here and why did this not cause problems on my AMD card? (System: Ubuntu 12.04, Linux 3.2.0-49-generic, 64 bit, with the nvidia-experimental-310 driver package. All other games are functioning fine so it's most likely not a card/driver issue.)

    Read the article

  • Tip #13 java.io.File Surprises

    - by ByronNevins
    There is an assumption that I've seen in code many times that is totally wrong.  And this assumption can easily bite you.  The assumption is: File.getAbsolutePath and getAbsoluteFile return paths that are not relative.  Not true!  Sort of.  At least not in the way many people would assume.  All they do is make sure that the beginning of the path is absolute.  The rest of the path can be loaded with relative path elements.  What do you think the following code will print? public class Main {    public static void main(String[] args) {        try {            File f = new File("/temp/../temp/../temp/../");            File abs  = f.getAbsoluteFile();            File parent = abs.getParentFile();            System.out.println("Exists: " + f.exists());            System.out.println("Absolute Path: " + abs);            System.out.println("FileName: " + abs.getName());            System.out.printf("The Parent Directory of %s is %s\n", abs, parent);            System.out.printf("The CANONICAL Parent Directory of CANONICAL %s is %s\n",                        abs, abs.getCanonicalFile().getParent());            System.out.printf("The CANONICAL Parent Directory of ABSOLUTE %s is %s\n",                        abs, parent.getCanonicalFile());            System.out.println("Canonical Path: " + f.getCanonicalPath());        }        catch (IOException ex) {            System.out.println("Got an exception: " + ex);        }    }} Output: Exists: trueAbsolute Path: D:\temp\..\temp\..\temp\..FileName: ..The Parent Directory of D:\temp\..\temp\..\temp\.. is D:\temp\..\temp\..\tempThe CANONICAL Parent Directory of CANONICAL D:\temp\..\temp\..\temp\.. is nullThe CANONICAL Parent Directory of ABSOLUTE D:\temp\..\temp\..\temp\.. is D:\tempCanonical Path: D:\ Notice how it says that the parent of d:\ is d:\temp !!!The file, f, is really the root directory.  The parent is supposed to be null. I learned about this the hard way! getParentXXX simply hacks off the final item in the path. You can get totally unexpected results like the above. Easily. I filed a bug on this behavior a few years ago[1].   Recommendations: (1) Use getCanonical instead of getAbsolute.  There is a 1:1 mapping of files and canonical filenames.  I.e each file has one and only one canonical filename and it will definitely not have relative path elements in it.  There are an infinite number of absolute paths for each file. (2) To get the parent file for File f do the following instead of getParentFile: File parent = new File(f, ".."); [1] http://bt2ws.central.sun.com/CrPrint?id=6687287

    Read the article

  • Monitoring your WCF Web Apis with AppFabric

    - by cibrax
    The other day, Ron Jacobs made public a template in the Visual Studio Gallery for enabling monitoring capabilities to any existing WCF Http service hosted in Windows AppFabric. I thought it would be a cool idea to reuse some of that for doing the same thing on the new WCF Web Http stack. Windows AppFabric provides a dashboard that you can use to dig into some metrics about the services usage, such as number of calls, errors or information about different events during a service call. Those events not only include information about the WCF pipeline, but also custom events that any developer can inject and make sense for troubleshooting issues.      This monitoring capabilities can be enabled on any specific IIS virtual directory by using the AppFabric configuration tool or adding the following configuration sections to your existing web app, <system.serviceModel> <serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSiteBindingsEnabled="true" /> <diagnostics etwProviderId="3e99c707-3503-4f33-a62d-2289dfa40d41"> <endToEndTracing propagateActivity="true" messageFlowTracing="true" /> </diagnostics> <behaviors> <serviceBehaviors> <behavior name=""> <etwTracking profileName="EndToEndMonitoring Tracking Profile" /> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel>   <microsoft.applicationServer> <monitoring> <default enabled="true" connectionStringName="ApplicationServerMonitoringConnectionString" monitoringLevel="EndToEndMonitoring" /> </monitoring> </microsoft.applicationServer> Bad news is that none of the configuration above can be easily set on code by using the new configuration model for WCF Web stack.  A good thing is that you easily disable it in the configuration when you no longer need it, and also uses ETW, a general-purpose and high-speed tracing facility provided by the operating system (it’s part of the windows kernel). By adding that configuration section, AppFabric will start monitoring your service automatically and providing some basic event information about the service calls. You need some custom code for injecting custom events in the monitoring data. What I did here is to copy and refactor the “WCFUserEventProvider” class provided as sample in the Ron’s template to make it more TDD friendly when using IoC. I created a simple interface “ILogger” that any service (or resource) can use to inject custom events or monitoring information in the AppFabric database. public interface ILogger { bool WriteError(string name, string format, params object[] args); bool WriteWarning(string name, string format, params object[] args); bool WriteInformation(string name, string format, params object[] args); } The “WCFUserEventProvider” class implements this interface by making possible to send the events to the AppFabric monitoring database. The service or resource implementation can receive an “ILogger” as part of the constructor. [ServiceContract] [Export] public class OrderResource { IOrderRepository repository; ILogger logger;   [ImportingConstructor] public OrderResource(IOrderRepository repository, ILogger logger) { this.repository = repository; this.logger = logger; }   [WebGet(UriTemplate = "{id}")] public Order Get(string id, HttpResponseMessage response) { var order = this.repository.All.FirstOrDefault(o => o.OrderId == int.Parse(id, CultureInfo.InvariantCulture)); if (order == null) { response.StatusCode = HttpStatusCode.NotFound; response.Content = new StringContent("Order not found"); }   this.logger.WriteInformation("Order Requested", "Order Id {0}", id);   return order; } } The example above uses “MEF” as IoC for injecting a repository and the logger implementation into the service. You can also see how the logger is used to write an information event in the monitoring database. The following image illustrates how the custom event is injected and the information becomes available for any user in the dashboard. An issue that you might run into and I hope the WCF and AppFabric teams fixed soon is that any WCF service that uses friendly URLs with ASP.NET routing does not get listed as a available service in the WCF services tab in the AppFabric console. The complete example is available to download from here.

    Read the article

  • MySQL for Excel 1.1.0 GA has been released

    - by Javier Treviño
    The MySQL Windows Experience Team is proud to announce the release of MySQL for Excel version 1.1.0 GA, one of our newest products contained in the MySQL Installer suite. You can download it from our official Downloads page at http://dev.mysql.com/downloads/installer/. The 1.1.0 release of MySQL for Excel introduces the following features: Edit MySQL Data. Edit MySQL Data This may be the coolest feature so far; users will be able to edit the data in a MySQL table using MS Excel in a very friendly and intuitive way.  Edit Data supports inserting new rows, deleting existing rows and updating existing data as easy as playing with data in an Excel’s spreadsheet and pushing changes back to the server.  Also this version contains the following bug fixes: Enabled the following checkboxes in the Append Data's Advanced Options dialog and added code in the Append Data dialog to use the checkboxes as follows: Automatically store the column mapping for the given table     If checked the current mapping will be stored automatically after clicking the Append button if the append operation is successful and there is no mapping for the current connection.schema.table already; the new mapping is stored with a proposed name of Mapping. Reload stored column mapping for the selected table automatically     If checked the first Stored Mapping found where all column names in the source grid match all column names in the target grid is automatically selected and applied when the Append Data dialog is loaded. Fixed code in Append Data that applies a stored column mapping to skip target columns where the associated mapping is empty (saved as a -1). Enclosed the Add-In's startup code in a try-catch block in order to log any possible error thrown during startup; and added information messages to the log at the beginning of the Add-In's startup code and at the end of the shutdown code.  Also changed the wrapper method that calls the MySQLUtility to write messages to the log to make logging easier, thus changed the log call throughout all the code that contains a try-catch block. Added code to the main wix configuration file to check if a newer version is already installed and if so abort the installation Fixed code to refresh the Import Procedure Form's preview grid's data source to repaint its contents every time the Call button is pressed. Added code to re-pull connections after connections are migrated from Excel to Workbench. Fixed code so when the Append Data's Automatic Mapping is performed any subsequent change on a mapping resets the mapping to a Manual Mapping. Added code to the InfoDialog class to set the button text to "Show Details" or "Hide Details" depending on the status of the Details text container. Fixed a GUID in the main wix configuration file so now previous versions are uninstalled during a new installation. Added an option to the Export Data's Advanced Options dialog to remove columns with no data, by default the Export Dialog will only flag those columns as Excluded. Added code to display a warning and paint a column red if the column name in the Export Data dialog is not set, display a warning if the table name is not set, and stack warnings but not display them if a column is Excluded, warnings are displayed normally for columns if they are not Excluded anymore.  Added code to prevent the Append and Export of Data if more than 1 selection is made (selecting more than 1 area holding the Ctrl key while selecting Excel cells). Fixed problem that prevented MySQL for Excel from loading when Display settings in Windows 7 is set to Adjust to Best Performance (Oracle bug 14521405 - UNHANDLED EXCEPTION IS THROWN WHEN LOADING MYSQL FOR EXCEL). Fixed code that renames the auto-generated Primary Key column when the Table name changes since it was not detecting if a column with the same name already existed in the table. The column duplication was not actually happening, it looked that way because the automatically generated PK column was not detecting a column had that same name. Fixed code in Export Data dialog to always set an empty string instead of null to the MySQLDataColumn properties that stores MySQL data types (MySQLDataType, RowsFrom1stDataType and RowsFrom2ndDataType). Added code to display a warning and color red a column which Data Type has not been set by the user or has been manually cleared. Added code to output to the application log exception messages consistently in all places where exceptions are catched. A series of blog posts explaining the new Edit MySQL Data feature and the other existing features are coming in this blog. You can access the MySQL for Excel documentation at http://dev.mysql.com/doc/refman/5.5/en/mysql-for-excel.html You can also post questions on our MySQL for Excel forum found at http://forums.mysql.com/. You can also post questions on our MySQL for Excel forum found at http://forums.mysql.com/. Enjoy and thanks for the support!

    Read the article

  • Kendo UI Mobile with Knockout for Master-Detail Views

    - by Steve Michelotti
    Lately I’ve been playing with Kendo UI Mobile to build iPhone apps. It’s similar to jQuery Mobile in that they are both HTML5/JavaScript based frameworks for buildings mobile apps. The primary thing that drew me to investigate Kendo UI was its innate ability to adaptively render a native looking app based on detecting the device it’s currently running on. In other words, it will render to look like a native iPhone app if it’s running on an iPhone and it will render to look like a native Droid app if it’s running on a Droid. This is in contrast to jQuery Mobile which looks the same on all devices and, therefore, it can never quite look native for whatever device it’s running on. My first impressions of Kendo UI were great. Using HTML5 data-* attributes to define “roles” for UI elements is easy, the rendering looked great, and the basic navigation was simple and intuitive. However, I ran into major confusion when trying to figure out how to “correctly” build master-detail views. Since I was already very family with KnockoutJS, I set out to use that framework in conjunction with Kendo UI Mobile to build the following simple scenario: I wanted to have a simple “Task Manager” application where my first screen just showed a list of tasks like this:   Then clicking on a specific task would navigate to a detail screen that would show all details of the specific task that was selected:   Basic navigation between views in Kendo UI is simple. The href of an <a> tag just needs to specify a hash tag followed by the ID of the view to navigate to as shown in this jsFiddle (notice the href of the <a> tag matches the id of the second view):   Direct link to jsFiddle: here. That is all well and good but the problem I encountered was: how to pass data between the views? Specifically, I need the detail view to display all the details of whichever task was selected. If I was doing this with my typical technique with KnockoutJS, I know exactly what I would do. First I would create a view model that had my collection of tasks and a property for the currently selected task like this: 1: function ViewModel() { 2: var self = this; 3: self.tasks = ko.observableArray(data); 4: self.selectedTask = ko.observable(null); 5: } Then I would bind my list of tasks to the unordered list - I would attach a “click” handler to each item (each <li> in the unordered list) so that it would select the “selectedTask” for the view model. The problem I found is this approach simply wouldn’t work for Kendo UI Mobile. It completely ignored the click handlers that I was trying to attach to the <a> tags – it just wanted to look at the href (at least that’s what I observed). But if I can’t intercept this, then *how* can I pass data or any context to the next view? The only thing I was able to find in the Kendo documentation is that you can pass query string arguments on the view name you’re specifying in the href. This enabled me to do the following: Specify the task ID in each href – something like this: <a href=”#taskDetail?id=3></a> Attach an “init method” (via the “data-show” attribute on the details view) that runs whenever the view is activated Inside this “init method”, grab the task ID passed from the query string to look up the item from my view model’s list of tasks in order to set the selected task I was able to get all that working with about 20 lines of JavaScript as shown in this jsFiddle. If you click on the Results tab, you can navigate between views and see the the detail screen is correctly binding to the selected item:   Direct link to jsFiddle: here.   With all that being done, I was very happy to get it working with the behavior I wanted. However, I have no idea if that is the “correct” way to do it or if there is a “better” way to do it. I know that Kendo UI comes with its own data binding framework but my preference is to be able to use (the well-documented) KnockoutJS since I’m already familiar with that framework rather than having to learn yet another new framework. While I think my solution above is probably “acceptable”, there are still a couple of things that bug me about it. First, it seems odd that I have to loop through my items to *find* my selected item based on the ID that was passed on the query string - normally, with Knockout I can just refer directly to my selected item from where it was used. Second, it didn’t feel exactly right that I had to rely on the “data-show” method of the details view to set my context – normally with Knockout, I could just attach a click handler to the <a> tag that was actually clicked by the user in order to set the “selected item.” I’m not sure if I’m being too picky. I know there are many people that have *way* more expertise in Kendo UI compared to me – I’d be curious to know if there are better ways to achieve the same results.

    Read the article

  • C# async and actors

    - by Alex.Davies
    If you read my last post about async, you might be wondering what drove me to write such odd code in the first place. The short answer is that .NET Demon is written using NAct Actors. Actors are an old idea, which I believe deserve a renaissance under C# 5. The idea is to isolate each stateful object so that only one thread has access to its state at any point in time. That much should be familiar, it's equivalent to traditional lock-based synchronization. The different part is that actors pass "messages" to each other rather than calling a method and waiting for it to return. By doing that, each thread can only ever be holding one lock. This completely eliminates deadlocks, my least favourite concurrency problem. Most people who use actors take this quite literally, and there are plenty of frameworks which help you to create message classes and loops which can receive the messages, inspect what type of message they are, and process them accordingly. But I write C# for a reason. Do I really have to choose between using actors and everything I love about object orientation in C#? Type safety Interfaces Inheritance Generics As it turns out, no. You don't need to choose between messages and method calls. A method call makes a perfectly good message, as long as you don't wait for it to return. This is where asynchonous methods come in. I have used NAct for a while to wrap my objects in a proxy layer. As long as I followed the rule that methods must always return void, NAct queued up the call for later, and immediately released my thread. When I needed to get information out of other actors, I could use EventHandlers and callbacks (continuation passing style, for any CS geeks reading), and NAct would call me back in my isolated thread without blocking the actor that raised the event. Using callbacks looks horrible though. To remind you: m_BuildControl.FilterEnabledForBuilding(    projects,    enabledProjects = m_OutOfDateProjectFinder.FilterNeedsBuilding(        enabledProjects,             newDirtyProjects =             {                 ....... Which is why I'm really happy that NAct now supports async methods. Now, methods are allowed to return Task rather than just void. I can await those methods, and C# 5 will turn the rest of my method into a continuation for me. NAct will run the other method in the other actor's context, but will make sure that when my method resumes, we're back in my context. Neither actor was ever blocked waiting for the other one. Apart from when they were actually busy doing something, they were responsive to concurrent messages from other sources. To be fair, you could use async methods with lock statements to achieve exactly the same thing, but it's ugly. Here's a realistic example of an object that has a queue of data that gets passed to another object to be processed: class QueueProcessor {    private readonly ItemProcessor m_ItemProcessor = ...     private readonly object m_Sync = new object();    private Queue<object> m_DataQueue = ...    private List<object> m_Results = ...     public async Task ProcessOne() {         object data = null;         lock (m_Sync)         {             data = m_DataQueue.Dequeue();         }         var processedData = await m_ItemProcessor.ProcessData(data); lock (m_Sync)         {             m_Results.Add(processedData);         }     } } We needed to write two lock blocks, one to get the data to process, one to store the result. The worrying part is how easily we could have forgotten one of the locks. Compare that to the version using NAct: class QueueProcessorActor : IActor { private readonly ItemProcessor m_ItemProcessor = ... private Queue<object> m_DataQueue = ... private List<object> m_Results = ... public async Task ProcessOne()     {         // We are an actor, it's always thread-safe to access our private fields         var data = m_DataQueue.Dequeue();         var processedData = await m_ItemProcessor.ProcessData(data);         m_Results.Add(processedData);     } } You don't have to explicitly lock anywhere, NAct ensures that your code will only ever run on one thread, because it's an actor. Either way, async is definitely better than traditional synchronous code. Here's a diagram of what a typical synchronous implementation might do: The left side shows what is running on the thread that has the lock required to access the QueueProcessor's data. The red section is where that lock is held, but doesn't need to be. Contrast that with the async version we wrote above: Here, the lock is released in the middle. The QueueProcessor is free to do something else. Most importantly, even if the ItemProcessor sometimes calls the QueueProcessor, they can never deadlock waiting for each other. So I thoroughly recommend you use async for all code that has to wait a while for things. And if you find yourself writing lots of lock statements, think about using actors as well. Using actors and async together really takes the misery out of concurrent programming.

    Read the article

  • Introducing jLight &ndash; Talking to the DOM using Silverlight and jQuery.

    - by Timmy Kokke
    Introduction With the recent news about Silverlight on the Windows Phone and all the great Out-Of-Browser features in the upcoming Silverlight 4 you almost forget Silverlight is a browser plugin. It most often runs in a web browser and often as a control. In many cases you need to communicate with the browser to get information about textboxes, events or details about the browser itself. To do this you can use JavaScript from Silverlight. Although Silverlight works the same on every browser, JavaScript does not and it won’t be long before problems arise. To overcome differences in browser I like to use jQuery. The only downside of doing this is that there’s a lot more code needed that you would normally use when you write jQuery in JavaScript. Lately, I had to catch changes is the browser scrollbar and act to the new position. I also had to move the scrollbar when the user dragged around in the Silverlight application. With jQuery it was peanuts to get and set the right attributes, but I found that I had to write a lot of code on Silverlight side.  With a few refactoring I had a separated out the plumbing into a new class and could call only a few methods on that to get the same thing done. The idea for jLight was born. jLight vs. jQuery The main purpose of jLight is to take the ease of use of jQuery and bring it into Silverlight for handling DOM interaction. For example, to change the text color of a DIV to red, in jQuery you would write: jQuery("div").css("color","red"); In jLight the same thing looks like so: jQuery.Select("div").Css("color","red");   Another example. To change the offset in of the last SPAN you could write this in jQuery : jQuery("span:last").offset({left : 10, top : 100});   In jLight this would do the same: jQuery.Select("span:last").Offset(new {left = 10, top = 100 });   Callbacks Nothing too special so far. To get the same thing done using the “normal” HtmlPage.Window.Eval, it wouldn’t require too much effort. But to wire up a handler for events from the browser it’s a whole different story. Normally you need to register ScriptMembers, ScriptableTypes or write some code in JavaScript. jLight takes care of the plumbing and provide you with an simple interface in the same way jQuery would. If you would like to handle the scroll event of the BODY of your html page, you’ll have to bind the event using jQuery and have a function call back to a registered function in Silverlight. In the example below I assume there’s a method “SomeMethod” and it is registered as a ScriptableObject as “RegisteredFromSilverlight” from Silverlight.   jQuery("body:first").scroll(function() { var sl = document.getElementbyId("SilverlightControl"); sl.content.RegisteredFromSilverlight.SomeMethod($(this)); });       Using jLight  in Silverlight the code would be even simpler. The registration of RegisteredFromSilverlight  as ScriptableObject can be omitted.  Besides that, you don’t have to write any JavaScript or evaluate strings with JavaScript.   jQuery.Select("body:first").scroll(SomeMethod);   Lambdas Using a lambda in Silverlight can make it even simpler.  Each is the jQuery equivalent of foreach in C#. It calls a function for every element found by jQuery. In this example all INPUT elements of the text type are selected. The FromObject method is used to create a jQueryObject from an object containing a ScriptObject. The Val method from jQuery is used to get the value of the INPUT elements.   jQuery.Select("input:text").Each((element, index) => { textBox1.Text += jQueryObject.FromObject(element).Val(); return null; });   Ajax One thing jQuery is often used for is making Ajax calls. Making calls to services to external services can be done from Silverlight, but as easy as using jQuery. As an example I would like to show how jLight does this. Below is the entire code behind. It searches my name on twitter and shows the result. This example can be found in the source of the project. The GetJson method passes a Silverlight JsonValue to a callback. This callback instantiates Twit objects and adds them to a ListBox called TwitList.   public partial class DemoPage2 : UserControl { public DemoPage2() { InitializeComponent(); jQuery.Load(); }   private void CallButton_Click(object sender, RoutedEventArgs e) { jQuery.GetJson("http://search.twitter.com/search.json?lang=en&q=sorskoot", Done); }   private void Done(JsonValue arg) { var tweets = new List<Twit>(); foreach (JsonObject result in arg["results"]) { tweets.Add(new Twit() { Text = (string)result["text"], Image = (string)result["profile_image_url"], User = (string)result["from_user"] } ); } TwitList.ItemsSource = tweets; } }   public class Twit { public string User { get; set; } public string Image { get; set; } public string Text { get; set; } }   Conclusion Although jLight is still in development it can be used already.There isn’t much documentation yet, but if you know jQuery jLight isn’t very hard to use.  If you would like to try it, please let me know what you think and report any problems you run in to. jLight can be found at:   http://jlight.codeplex.com

    Read the article

  • Removing Duplicate Data From SQL Query Output For Display On A Web Page [migrated]

    - by doubleJ
    I had asked a similar question on stackoverflow but didn't really get anywhere. This page shows the output that I'm currently getting from my MSSQL server. I have a table of venue information (name, address, etc...) that our events happen on. Separately, I have a table of the actual events that are scheduled (an event may happen multiple times in one day and/or over multiple days). I join those tables with this query: <?php try { $dbh = new PDO("sqlsrv:Server=localhost;Database=Sermons", "", ""); $dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION); $sql = "SELECT TOP (100) PERCENT dbo.TblSermon.Day, dbo.TblSermon.Date, dbo.TblSermon.Time, dbo.TblSermon.Speaker, dbo.TblSermon.Series, dbo.TblSermon.Sarasota, dbo.TblSermon.NonFlc, dbo.TblJoinSermonLocation.MeetingName, dbo.TblLocation.Location, dbo.TblLocation.Pastors, dbo.TblLocation.Address, dbo.TblLocation.City, dbo.TblLocation.State, dbo.TblLocation.Zip, dbo.TblLocation.Country, dbo.TblLocation.Phone, dbo.TblLocation.Email, dbo.TblLocation.WebAddress FROM dbo.TblLocation RIGHT OUTER JOIN dbo.TblJoinSermonLocation ON dbo.TblLocation.ID = dbo.TblJoinSermonLocation.Location RIGHT OUTER JOIN dbo.TblSermon ON dbo.TblJoinSermonLocation.Sermon = dbo.TblSermon.ID WHERE (dbo.TblSermon.Date >= { fn NOW() }) ORDER BY dbo.TblSermon.Date, dbo.TblSermon.Time"; $stmt = $dbh->prepare($sql); $stmt->execute(); $stmt->setFetchMode(PDO::FETCH_ASSOC); foreach ($stmt as $row) { echo "<pre>"; print_r($row); echo "</pre>"; } unset($row); $dbh = null; } catch(PDOException $e) { echo $e->getMessage(); } ?> So, as it loops through the query results, it creates an array for each record and ends up like this: Array ( [Day] => Tuesday [Date] => 2012-10-30 00:00:00.000 [Time] => 07:00 PM [Speaker] => Keith Moore [Location] => The Ark Church [Pastors] => Alan & Joy Clayton [Address] => 450 Humble Tank Rd. [City] => Conroe [State] => TX [Zip] => 77305.0 [Phone] => (936) 756-1988 [Email] => [email protected] [WebAddress] => http://www.thearkchurch.org ) Array ( [Day] => Wednesday [Date] => 2012-10-31 00:00:00.000 [Time] => 07:00 PM [Speaker] => Keith Moore [Location] => The Ark Church [Pastors] => Alan & Joy Clayton [Address] => 450 Humble Tank Rd. [City] => Conroe [State] => TX [Zip] => 77305.0 [Phone] => (936) 756-1988 [Email] => [email protected] [WebAddress] => http://www.thearkchurch.org ) Array ( [Day] => Tuesday [Date] => 2012-11-06 00:00:00.000 [Time] => 07:00 PM [Speaker] => Keith Moore [Location] => Fellowship Of Faith Christian Center [Pastors] => Michael & Joan Kalstrup [Address] => 18999 Hwy. 59 [City] => Oakland [State] => IA [Zip] => 51560.0 [Phone] => (712) 482-3455 [Email] => [email protected] [WebAddress] => http://www.fellowshipoffaith.cc ) Array ( [Day] => Wednesday [Date] => 2012-11-14 00:00:00.000 [Time] => 07:00 PM [Speaker] => Keith Moore [Location] => Faith Family Church [Pastors] => Michael & Barbara Cameneti [Address] => 8200 Freedom Ave NW [City] => Canton [State] => OH [Zip] => 44720.0 [Phone] => (330) 492-0925 [Email] => [WebAddress] => http://www.myfaithfamily.com ) As you can see, The Ark Church and its associated contact information is duplicated, so when I work with those arrays and output them to the page, I see a bunch of duplicate content. I'd like to remove the duplicate information so that I get results similar to this: The Ark Church Alan & Joy Clayton 450 Humble Tank Rd. Conroe, TX 77305 (936) 756-1988 [email protected] http://www.thearkchurch.org Meetings: Tuesday, 2012-10-30 07:00 PM Wednesday, 2012-10-31 07:00 PM Fellowship Of Faith Christian Center Michael & Joan Kalstrup 18999 Hwy. 59 Oakland, IA 51560 (712) 482-3455 [email protected] http://www.fellowshipoffaith.cc Meetings: Tuesday, 2012-11-06 07:00 PM Faith Family Church Michael & Barbara Cameneti 8200 Freedom Ave NW Canton, OH 44720 (330) 492-0925 http://www.myfaithfamily.com Meetings: Wednesday, 2012-11-14 07:00 PM It doesn't necessarily have to end up like that (I'm not looking for code specific for these results, but a concept of how to not show the duplicated information). I'm assuming that an additional foreach or while will do it, but I haven't figured out any logic that says <?php if ($location == $previouslocation) echo ""; ?>.

    Read the article

  • Adventures in Windows 8: Understanding and debugging design time data in Expression Blend

    - by Laurent Bugnion
    One of my favorite features in Expression Blend is the ability to attach a Visual Studio debugger to Blend. First let’s start by answering the question: why exactly do you want to do that? Note: If you are familiar with the creation and usage of design time data, feel free to scroll down to the paragraph titled “When design time data fails”. Creating design time data for your app When a designer works on an app, he needs to see something to design. For “static” UI such as buttons, backgrounds, etc, the user interface elements are going to show up in Blend just fine. If however the data is fetched dynamically from a service (web, database, etc) or created dynamically, most probably Blend is going to show just an empty element. The classical way to design at that stage is to run the application, navigate to the screen that is under construction (which can involve delays, need to log in, etc…), to measure what is on the screen (colors, margins, width and height, etc) using various tools, going back to Blend, editing the properties of the elements, running again, etc. Obviously this is not ideal. The solution is to create design time data. For more information about the creation of design time data by mocking services, you can refer to two talks of mine “Deep dive MVVM” and “MVVM Applied From Silverlight to Windows Phone to Windows 8”. The source code for these talks is here and here. Design time data in MVVM Light One of the main reasons why I developed MVVM Light is to facilitate the creation of design time data. To illustrate this, let’s create a new MVVM Light application in Visual Studio. Install MVVM Light from here: http://mvvmlight.codeplex.com (use the MSI in the Download section). After installing, make sure to read the Readme that opens up in your favorite browser, you will need one more step to install the Project Templates. Start Visual Studio 2012. Create a new MvvmLight (Win8) app. Run the application. You will see a string showing “Welcome to MVVM Light”. In the Solution explorer, right click on MainPage.xaml and select Open in Blend. Now you should see “Welcome to MVVM Light [Design]” What happens here is that Expression Blend runs different code at design time than the application runs at runtime. To do this, we use design-time detection (as explained in a previous article) and use that information to initialize a different data service at design time. To understand this better, open the ViewModelLocator.cs file in the ViewModel folder and see how the DesignDataService is used at design time, while the DataService is used at runtime. In a real-life applicationm, DataService would be used to connect to a web service, for instance. When design time data fails Sometimes however, the creation of design time data fails. It can be very difficult to understand exactly what is happening. Expression Blend is not giving a lot of information about what happened. Thankfully, we can use a trick: Attaching a debugger to Expression Blend and debug the design time code. In WPF and Silverlight (including Windows Phone 7), you could simply attach the debugger to Blend.exe (using the “Managed (v4.5, v4.0) code” option even for Silverlight!!) In Windows 8 however, things are just a bit different. This is because the designer that renders the actual representation of the Windows 8 app runs in its own process. Let’s illustrate that: Open the file DesignDataService in the Design folder. Modify the GetData method to look like this: public void GetData(Action<DataItem, Exception> callback) { throw new Exception(); // Use this to create design time data var item = new DataItem("Welcome to MVVM Light [design]"); callback(item, null); } Go to Blend and build the application. The build succeeds, but now the page is empty. The creation of the design time data failed, but we don’t get a warning message. We need to investigate what’s wrong. Close MainPage.xaml Go to Visual Studio and select the menu Debug, Attach to Process. Update: Make sure that you select “Managed (v4.5, v4.0) code” in the “Attach to” field. Find the process named XDesProc.exe. You should have at least two, one for the Visual Studio 2012 designer surface, and one for Expression Blend. Unfortunately in this screen it is not obvious which is which. Let’s find out in the Task Manager. Press Ctrl-Alt-Del and select Task Manager Go to the Details tab and sort the processes by name. Find the one that says “Blend for Microsoft Visual Studio 2012 XAML UI Designer” and write down the process ID. Go back to the Attach to Process dialog in Visual Studio. sort the processes by ID and attach the debugger to the correct instance of XDesProc.exe. Open the MainViewModel (in the ViewModel folder) Place a breakpoint on the first line of the MainViewModel constructor. Go to Blend and open the MainPage.xaml again. At this point, the debugger breaks in Visual Studio and you can execute your code step by step. Simply step inside the dataservice call, and find the exception that you had placed there. Visual Studio gives you additional information which helps you to solve the issue. More info and Conclusion I want to thank the amazing people on the Expression Blend team for being very fast in guiding me in that matter and encouraging me to blog about it. More information about the XDesProc.exe process can be found here. I had to work on a Windows 8 app for a few days without design time data because of an Exception thrown somewhere in the code, and it was really painful. With the debugger, finding the issue was a simple matter of stepping into the code until it threw the exception.   Laurent Bugnion (GalaSoft) Subscribe | Twitter | Facebook | Flickr | LinkedIn

    Read the article

  • LIMBO fails on startup with Internal errors - invalid parameters received

    - by user61262
    I installed LIMBO from the Humble Bundle V and as far as I am aware, this has wine packaged with it (I also installed the latest from the repo's in case is was because of that). However the game doesn't even start and fails with the message: Wine Program Error Internal errors - invalid parameters received. Is there a way to log the error or does anyone know why this happens? This question was asked previously but it seems to have disappeared. My Graphics cards is a Geforece GT 250 Cheers ice. [edit: Wine outputs the following error: wine /opt/limbo/support/limbo/drive_c/Program\ Files/limbo/limbo.exe fixme:system:SystemParametersInfoW Unimplemented action: 59 (SPI_SETSTICKYKEYS) fixme:system:SystemParametersInfoW Unimplemented action: 53 (SPI_SETTOGGLEKEYS) fixme:system:SystemParametersInfoW Unimplemented action: 51 (SPI_SETFILTERKEYS) fixme:win:EnumDisplayDevicesW ((null),0,0x32f580,0x00000000), stub! err:x11settings:X11DRV_ChangeDisplaySettingsEx No matching mode found 1920x1080x32 @60! (XRandR) err:xrandr:X11DRV_XRandR_SetCurrentMode Resolution change not successful -- perhaps display has changed? wine: Unhandled page fault on read access to 0x00000000 at address 0x48213e (thread 0009), starting debugger... The debugger has the following output: Unhandled exception: page fault on read access to 0x00000000 in 32-bit code (0x0048213e). Register dump: CS:0073 SS:007b DS:007b ES:007b FS:0033 GS:003b EIP:0048213e ESP:0032f9f4 EBP:0037cdd0 EFLAGS:00010202( R- -- I - - - ) EAX:00000000 EBX:00000000 ECX:00000000 EDX:0037cf4c ESI:0037cda8 EDI:0037cdcc Stack dump: 0x0032f9f4: 0037cda8 0034c708 7bc35120 00000000 0x0032fa04: 0037cda8 0032fa38 0079fc58 00000000 0x0032fa14: 0048b7d4 00000001 0037cdcc 00000001 0x0032fa24: 00000780 00000438 0034c620 00000000 0x0032fa34: 0034c708 0032fa78 007a04e2 00000002 0x0032fa44: 0048c4bc 00000780 00000438 0037cda8 Backtrace: =>0 0x0048213e in limbo (+0x8213e) (0x0037cdd0) 0x0048213e: movl 0x0(%eax),%edx Modules: Module Address Debug info Name (103 modules) PE 400000- 926000 Export limbo PE 10000000-101ff000 Deferred d3dx9_43 ELF 79bb3000-7b800000 Deferred libnvidia-glcore.so.295.53 ELF 7b800000-7ba15000 Deferred kernel32<elf> \-PE 7b810000-7ba15000 \ kernel32 ELF 7bc00000-7bcc3000 Deferred ntdll<elf> \-PE 7bc10000-7bcc3000 \ ntdll ELF 7bf00000-7bf04000 Deferred <wine-loader> ELF 7d7e0000-7d7e4000 Deferred libnvidia-tls.so.295.53 ELF 7d7e4000-7d8bc000 Deferred libgl.so.1 ELF 7d9d0000-7d9d9000 Deferred librt.so.1 ELF 7d9d9000-7d9de000 Deferred libgpg-error.so.0 ELF 7d9de000-7d9f6000 Deferred libresolv.so.2 ELF 7d9f6000-7d9fa000 Deferred libkeyutils.so.1 ELF 7d9fa000-7da43000 Deferred libdbus-1.so.3 ELF 7da43000-7da55000 Deferred libp11-kit.so.0 ELF 7da55000-7dada000 Deferred libgcrypt.so.11 ELF 7dada000-7daec000 Deferred libtasn1.so.3 ELF 7daec000-7daf5000 Deferred libkrb5support.so.0 ELF 7daf5000-7dafa000 Deferred libcom_err.so.2 ELF 7dafa000-7db22000 Deferred libk5crypto.so.3 ELF 7db22000-7dbf1000 Deferred libkrb5.so.3 ELF 7dbf1000-7dc03000 Deferred libavahi-client.so.3 ELF 7dc03000-7dc11000 Deferred libavahi-common.so.3 ELF 7dc11000-7dcd5000 Deferred libgnutls.so.26 ELF 7dcd5000-7dd13000 Deferred libgssapi_krb5.so.2 ELF 7dd13000-7dd66000 Deferred libcups.so.2 ELF 7dd94000-7ddc8000 Deferred uxtheme<elf> \-PE 7dda0000-7ddc8000 \ uxtheme ELF 7ddc8000-7ddd3000 Deferred libxcursor.so.1 ELF 7ddd4000-7dde7000 Deferred gnome-keyring-pkcs11.so ELF 7de47000-7de4d000 Deferred libxfixes.so.3 ELF 7deac000-7ded6000 Deferred libexpat.so.1 ELF 7ded6000-7df0a000 Deferred libfontconfig.so.1 ELF 7df0a000-7df1a000 Deferred libxi.so.6 ELF 7df1a000-7df1e000 Deferred libxcomposite.so.1 ELF 7df1e000-7df27000 Deferred libxrandr.so.2 ELF 7df27000-7df31000 Deferred libxrender.so.1 ELF 7df31000-7df37000 Deferred libxxf86vm.so.1 ELF 7df37000-7df3b000 Deferred libxinerama.so.1 ELF 7df3b000-7df5d000 Deferred imm32<elf> \-PE 7df40000-7df5d000 \ imm32 ELF 7df5d000-7df64000 Deferred libxdmcp.so.6 ELF 7df64000-7df85000 Deferred libxcb.so.1 ELF 7df85000-7df9f000 Deferred libice.so.6 ELF 7df9f000-7e0d3000 Deferred libx11.so.6 ELF 7e0d3000-7e0e5000 Deferred libxext.so.6 ELF 7e0e5000-7e178000 Deferred winex11<elf> \-PE 7e0f0000-7e178000 \ winex11 ELF 7e178000-7e18e000 Deferred libz.so.1 ELF 7e18e000-7e228000 Deferred libfreetype.so.6 ELF 7e228000-7e247000 Deferred libtinfo.so.5 ELF 7e247000-7e269000 Deferred libncurses.so.5 ELF 7e27d000-7e292000 Deferred xinput1_3<elf> \-PE 7e280000-7e292000 \ xinput1_3 ELF 7e292000-7e2a6000 Deferred psapi<elf> \-PE 7e2a0000-7e2a6000 \ psapi ELF 7e2a6000-7e304000 Deferred dbghelp<elf> \-PE 7e2b0000-7e304000 \ dbghelp ELF 7e304000-7e391000 Deferred msvcrt<elf> \-PE 7e320000-7e391000 \ msvcrt ELF 7e391000-7e4c5000 Deferred wined3d<elf> \-PE 7e3a0000-7e4c5000 \ wined3d ELF 7e4c5000-7e4fe000 Deferred d3d9<elf> \-PE 7e4d0000-7e4fe000 \ d3d9 ELF 7e4fe000-7e573000 Deferred rpcrt4<elf> \-PE 7e510000-7e573000 \ rpcrt4 ELF 7e573000-7e67b000 Deferred ole32<elf> \-PE 7e590000-7e67b000 \ ole32 ELF 7e67b000-7e697000 Deferred dinput8<elf> \-PE 7e680000-7e697000 \ dinput8 ELF 7e697000-7e6d1000 Deferred winspool<elf> \-PE 7e6a0000-7e6d1000 \ winspool ELF 7e6d1000-7e7c9000 Deferred comctl32<elf> \-PE 7e6e0000-7e7c9000 \ comctl32 ELF 7e7c9000-7e833000 Deferred shlwapi<elf> \-PE 7e7e0000-7e833000 \ shlwapi ELF 7e833000-7ea44000 Deferred shell32<elf> \-PE 7e840000-7ea44000 \ shell32 ELF 7ea44000-7eb23000 Deferred comdlg32<elf> \-PE 7ea50000-7eb23000 \ comdlg32 ELF 7eb23000-7eb3c000 Deferred version<elf> \-PE 7eb30000-7eb3c000 \ version ELF 7eb3c000-7eb9c000 Deferred advapi32<elf> \-PE 7eb50000-7eb9c000 \ advapi32 ELF 7eb9c000-7ec59000 Deferred gdi32<elf> \-PE 7ebb0000-7ec59000 \ gdi32 ELF 7ec59000-7ed99000 Deferred user32<elf> \-PE 7ec70000-7ed99000 \ user32 ELF 7ef99000-7efa6000 Deferred libnss_files.so.2 ELF 7efa6000-7efc0000 Deferred libnsl.so.1 ELF 7efc0000-7efec000 Deferred libm.so.6 ELF 7efee000-7eff4000 Deferred libuuid.so.1 ELF 7eff4000-7f000000 Deferred libnss_nis.so.2 ELF b7411000-b7415000 Deferred libxau.so.6 ELF b7415000-b741e000 Deferred libnss_compat.so.2 ELF b741f000-b7424000 Deferred libdl.so.2 ELF b7424000-b75ca000 Deferred libc.so.6 ELF b75cb000-b75e6000 Deferred libpthread.so.0 ELF b75e9000-b75f2000 Deferred libsm.so.6 ELF b75fa000-b773c000 Dwarf libwine.so.1 ELF b773e000-b7760000 Deferred ld-linux.so.2 ELF b7760000-b7761000 Deferred [vdso].so Threads: process tid prio (all id:s are in hex) 00000008 (D) Z:\opt\limbo\support\limbo\drive_c\Program Files\limbo\limbo.exe 00000009 0 <== 0000000e services.exe 00000020 0 0000001f 0 00000019 0 00000018 0 00000017 0 00000015 0 00000010 0 0000000f 0 00000012 winedevice.exe 0000001d 0 0000001a 0 00000014 0 00000013 0 0000001b plugplay.exe 00000021 0 0000001e 0 0000001c 0 00000022 explorer.exe 00000023 0 System information: Wine build: wine-1.4 Platform: i386 Host system: Linux Host version: 3.2.0-24-generic-pae

    Read the article

  • Why do my 512x512 bitmaps look jaggy on Android OpenGL?

    - by Milo Mordaunt
    This is sort of driving me nuts, I've googled and googled and tried everything I can think of, but my sprites still look super blurry and super jaggy. Example: Here: https://docs.google.com/open?id=0Bx9Gbwnv9Hd2TmpiZkFycUNmRTA If you click through to the actual full size image you should see what I mean, it's like it's taking and average of every 5*5 pixels or something, the background looks really blurry and blocky, but the ball is the worst. The clouds look all right for some reason, probably because they're mostly transparent. I know the pngs aren't top notch themselves but hey, I'm no artist! I would imagine it's a problem with either: a. How the pngs are made example sprite (512x512): https://docs.google.com/open?id=0Bx9Gbwnv9Hd2a2RRQlJiQTFJUEE b. How my Matrices work This is the relevant parts of the renderer: public void onDrawFrame(GL10 unused) { if(world != null) { dt = System.currentTimeMillis() - endTime; world.update( (float) dt); // Redraw background color GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT); Matrix.setIdentityM(mvMatrix, 0); Matrix.translateM(mvMatrix, 0, 0f, 0f, 0f); world.draw(mvMatrix, mProjMatrix); endTime = System.currentTimeMillis(); } else { Log.d(TAG, "There is no world...."); } } public void onSurfaceChanged(GL10 unused, int width, int height) { GLES20.glViewport(0, 0, width, height); Matrix.orthoM(mProjMatrix, 0, 0, width /2, 0, height /2, -1.f, 1.f); } And this is what each Quad does when draw is called: public void draw(float[] mvMatrix, float[] pMatrix) { Matrix.setIdentityM(mMatrix, 0); Matrix.setIdentityM(mvMatrix, 0); Matrix.translateM(mMatrix, 0, xPos, yPos, 0.f); Matrix.multiplyMM(mvMatrix, 0, mvMatrix, 0, mMatrix, 0); Matrix.scaleM(mvMatrix, 0, scale, scale, 0f); Matrix.rotateM(mvMatrix, 0, angle, 0f, 0f, -1f); GLES20.glUseProgram(mProgram); posAttr = GLES20.glGetAttribLocation(mProgram, "vPosition"); texAttr = GLES20.glGetAttribLocation(mProgram, "aTexCo"); uSampler = GLES20.glGetUniformLocation(mProgram, "uSampler"); int alphaHandle = GLES20.glGetUniformLocation(mProgram, "alpha"); GLES20.glVertexAttribPointer(posAttr, COORDS_PER_VERTEX, GLES20.GL_FLOAT, false, 0, vertexBuffer); GLES20.glVertexAttribPointer(texAttr, 2, GLES20.GL_FLOAT, false, 0, texCoBuffer); GLES20.glEnableVertexAttribArray(posAttr); GLES20.glEnableVertexAttribArray(texAttr); GLES20.glActiveTexture(GLES20.GL_TEXTURE0); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, texture); GLES20.glUniform1i(uSampler, 0); GLES20.glUniform1f(alphaHandle, alpha); mMVMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVMatrix"); mPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uPMatrix"); GLES20.glUniformMatrix4fv(mMVMatrixHandle, 1, false, mvMatrix, 0); GLES20.glUniformMatrix4fv(mPMatrixHandle, 1, false, pMatrix, 0); GLES20.glDrawElements(GLES20.GL_TRIANGLE_STRIP, 4, GLES20.GL_UNSIGNED_SHORT, indicesBuffer); GLES20.glDisableVertexAttribArray(posAttr); GLES20.glDisableVertexAttribArray(texAttr); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0); } c. How my texture loading/blending/shaders setup works Here is the renderer setup: public void onSurfaceCreated(GL10 unused, EGLConfig config) { // Set the background frame color GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f); GLES20.glDisable(GLES20.GL_DEPTH_TEST); GLES20.glDepthMask(false); GLES20.glBlendFunc(GLES20.GL_ONE, GLES20.GL_ONE_MINUS_SRC_ALPHA); GLES20.glEnable(GLES20.GL_BLEND); GLES20.glEnable(GLES20.GL_DITHER); } Here is the vertex shader: attribute vec4 vPosition; attribute vec2 aTexCo; varying vec2 vTexCo; uniform mat4 uMVMatrix; uniform mat4 uPMatrix; void main() { gl_Position = uPMatrix * uMVMatrix * vPosition; vTexCo = aTexCo; } And here's the fragment shader: precision mediump float; uniform sampler2D uSampler; uniform vec4 vColor; varying vec2 vTexCo; varying float alpha; void main() { vec4 color = texture2D(uSampler, vec2(vTexCo)); gl_FragColor = color; if(gl_FragColor.a == 0.0) { "discard; } } This is how textures are loaded: private int loadTexture(int rescource) { int[] texture = new int[1]; BitmapFactory.Options opts = new BitmapFactory.Options(); opts.inScaled = false; Bitmap temp = BitmapFactory.decodeResource(context.getResources(), rescource, opts); GLES20.glGenTextures(1, texture, 0); GLES20.glActiveTexture(GLES20.GL_TEXTURE0); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, texture[0]); GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_LINEAR); GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_LINEAR); GLUtils.texImage2D(GLES20.GL_TEXTURE_2D, 0, temp, 0); GLES20.glGenerateMipmap(GLES20.GL_TEXTURE_2D); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0); temp.recycle(); return texture[0]; } I'm sure I'm doing about 20,000 things wrong, so I'm really sorry if the problem is blindingly obvious... The test device is a Galaxy Note, running a JellyBean custom ROM, if that matters at all. So the screen resolution is 1280x800, which means... The background is 1024x1024, so yeah it might be a little blurry, but shouldn't be made of lego. Thank you so much, any answer at all would be appreciated.

    Read the article

  • How To Get Web Site Thumbnail Image In ASP.NET

    - by SAMIR BHOGAYTA
    Overview One very common requirement of many web applications is to display a thumbnail image of a web site. A typical example is to provide a link to a dynamic website displaying its current thumbnail image, or displaying images of websites with their links as a result of search (I love to see it on Google). Microsoft .NET Framework 2.0 makes it quite easier to do it in a ASP.NET application. Background In order to generate image of a web page, first we need to load the web page to get their html code, and then this html needs to be rendered in a web browser. After that, a screen shot can be taken easily. I think there is no easier way to do this. Before .NET framework 2.0 it was quite difficult to use a web browser in C# or VB.NET because we either have to use COM+ interoperability or third party controls which becomes headache later. WebBrowser control in .NET framework 2.0 In .NET framework 2.0 we have a new Windows Forms WebBrowser control which is a wrapper around old shwdoc.dll. All you really need to do is to drop a WebBrowser control from your Toolbox on your form in .NET framework 2.0. If you have not used WebBrowser control yet, it's quite easy to use and very consistent with other Windows Forms controls. Some important methods of WebBrowser control are. public bool GoBack(); public bool GoForward(); public void GoHome(); public void GoSearch(); public void Navigate(Uri url); public void DrawToBitmap(Bitmap bitmap, Rectangle targetBounds); These methods are self explanatory with their names like Navigate function which redirects browser to provided URL. It also has a number of useful overloads. The DrawToBitmap (inherited from Control) draws the current image of WebBrowser to the provided bitmap. Using WebBrowser control in ASP.NET 2.0 The Solution Let's start to implement the solution which we discussed above. First we will define a static method to get the web site thumbnail image. public static Bitmap GetWebSiteThumbnail(string Url, int BrowserWidth, int BrowserHeight, int ThumbnailWidth, int ThumbnailHeight) { WebsiteThumbnailImage thumbnailGenerator = new WebsiteThumbnailImage(Url, BrowserWidth, BrowserHeight, ThumbnailWidth, ThumbnailHeight); return thumbnailGenerator.GenerateWebSiteThumbnailImage(); } The WebsiteThumbnailImage class will have a public method named GenerateWebSiteThumbnailImage which will generate the website thumbnail image in a separate STA thread and wait for the thread to exit. In this case, I decided to Join method of Thread class to block the initial calling thread until the bitmap is actually available, and then return the generated web site thumbnail. public Bitmap GenerateWebSiteThumbnailImage() { Thread m_thread = new Thread(new ThreadStart(_GenerateWebSiteThumbnailImage)); m_thread.SetApartmentState(ApartmentState.STA); m_thread.Start(); m_thread.Join(); return m_Bitmap; } The _GenerateWebSiteThumbnailImage will create a WebBrowser control object and navigate to the provided Url. We also register for the DocumentCompleted event of the web browser control to take screen shot of the web page. To pass the flow to the other controls we need to perform a method call to Application.DoEvents(); and wait for the completion of the navigation until the browser state changes to Complete in a loop. private void _GenerateWebSiteThumbnailImage() { WebBrowser m_WebBrowser = new WebBrowser(); m_WebBrowser.ScrollBarsEnabled = false; m_WebBrowser.Navigate(m_Url); m_WebBrowser.DocumentCompleted += new WebBrowserDocument CompletedEventHandler(WebBrowser_DocumentCompleted); while (m_WebBrowser.ReadyState != WebBrowserReadyState.Complete) Application.DoEvents(); m_WebBrowser.Dispose(); } The DocumentCompleted event will be fired when the navigation is completed and the browser is ready for screen shot. We will get screen shot using DrawToBitmap method as described previously which will return the bitmap of the web browser. Then the thumbnail image is generated using GetThumbnailImage method of Bitmap class passing it the required thumbnail image width and height. private void WebBrowser_DocumentCompleted(object sender, WebBrowserDocumentCompletedEventArgs e) { WebBrowser m_WebBrowser = (WebBrowser)sender; m_WebBrowser.ClientSize = new Size(this.m_BrowserWidth, this.m_BrowserHeight); m_WebBrowser.ScrollBarsEnabled = false; m_Bitmap = new Bitmap(m_WebBrowser.Bounds.Width, m_WebBrowser.Bounds.Height); m_WebBrowser.BringToFront(); m_WebBrowser.DrawToBitmap(m_Bitmap, m_WebBrowser.Bounds); m_Bitmap = (Bitmap)m_Bitmap.GetThumbnailImage(m_ThumbnailWidth, m_ThumbnailHeight, null, IntPtr.Zero); } One more example here : http://www.codeproject.com/KB/aspnet/Website_URL_Screenshot.aspx

    Read the article

  • C#/.NET Little Wonders &ndash; Cross Calling Constructors

    - by James Michael Hare
    Just a small post today, it’s the final iteration before our release and things are crazy here!  This is another little tidbit that I love using, and it should be fairly common knowledge, yet I’ve noticed many times that less experienced developers tend to have redundant constructor code when they overload their constructors. The Problem – repetitive code is less maintainable Let’s say you were designing a messaging system, and so you want to create a class to represent the properties for a Receiver, so perhaps you design a ReceiverProperties class to represent this collection of properties. Perhaps, you decide to make ReceiverProperties immutable, and so you have several constructors that you can use for alternative construction: 1: // Constructs a set of receiver properties. 2: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable, bool isBuffered) 3: { 4: ReceiverType = receiverType; 5: Source = source; 6: IsDurable = isDurable; 7: IsBuffered = isBuffered; 8: } 9: 10: // Constructs a set of receiver properties with buffering on by default. 11: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable) 12: { 13: ReceiverType = receiverType; 14: Source = source; 15: IsDurable = isDurable; 16: IsBuffered = true; 17: } 18:  19: // Constructs a set of receiver properties with buffering on and durability off. 20: public ReceiverProperties(ReceiverType receiverType, string source) 21: { 22: ReceiverType = receiverType; 23: Source = source; 24: IsDurable = false; 25: IsBuffered = true; 26: } Note: keep in mind this is just a simple example for illustration, and in same cases default parameters can also help clean this up, but they have issues of their own. While strictly speaking, there is nothing wrong with this code, logically, it suffers from maintainability flaws.  Consider what happens if you add a new property to the class?  You have to remember to guarantee that it is set appropriately in every constructor call. This can cause subtle bugs and becomes even uglier when the constructors do more complex logic, error handling, or there are numerous potential overloads (especially if you can’t easily see them all on one screen’s height). The Solution – cross-calling constructors I’d wager nearly everyone knows how to call your base class’s constructor, but you can also cross-call to one of the constructors in the same class by using the this keyword in the same way you use base to call a base constructor. 1: // Constructs a set of receiver properties. 2: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable, bool isBuffered) 3: { 4: ReceiverType = receiverType; 5: Source = source; 6: IsDurable = isDurable; 7: IsBuffered = isBuffered; 8: } 9: 10: // Constructs a set of receiver properties with buffering on by default. 11: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable) 12: : this(receiverType, source, isDurable, true) 13: { 14: } 15:  16: // Constructs a set of receiver properties with buffering on and durability off. 17: public ReceiverProperties(ReceiverType receiverType, string source) 18: : this(receiverType, source, false, true) 19: { 20: } Notice, there is much less code.  In addition, the code you have has no repetitive logic.  You can define the main constructor that takes all arguments, and the remaining constructors with defaults simply cross-call the main constructor, passing in the defaults. Yes, in some cases default parameters can ease some of this for you, but default parameters only work for compile-time constants (null, string and number literals).  For example, if you were creating a TradingDataAdapter that relied on an implementation of ITradingDao which is the data access object to retreive records from the database, you might want two constructors: one that takes an ITradingDao reference, and a default constructor which constructs a specific ITradingDao for ease of use: 1: public TradingDataAdapter(ITradingDao dao) 2: { 3: _tradingDao = dao; 4:  5: // other constructor logic 6: } 7:  8: public TradingDataAdapter() 9: { 10: _tradingDao = new SqlTradingDao(); 11:  12: // same constructor logic as above 13: }   As you can see, this isn’t something we can solve with a default parameter, but we could with cross-calling constructors: 1: public TradingDataAdapter(ITradingDao dao) 2: { 3: _tradingDao = dao; 4:  5: // other constructor logic 6: } 7:  8: public TradingDataAdapter() 9: : this(new SqlTradingDao()) 10: { 11: }   So in cases like this where you have constructors with non compiler-time constant defaults, default parameters can’t help you and cross-calling constructors is one of your best options. Summary When you have just one constructor doing the job of initializing the class, you can consolidate all your logic and error-handling in one place, thus ensuring that your behavior will be consistent across the constructor calls. This makes the code more maintainable and even easier to read.  There will be some cases where cross-calling constructors may be sub-optimal or not possible (if, for example, the overloaded constructors take completely different types and are not just “defaulting” behaviors). You can also use default parameters, of course, but default parameter behavior in a class hierarchy can be problematic (default values are not inherited and in fact can differ) so sometimes multiple constructors are actually preferable. Regardless of why you may need to have multiple constructors, consider cross-calling where you can to reduce redundant logic and clean up the code.   Technorati Tags: C#,.NET,Little Wonders

    Read the article

  • Blank screen after installing nvidia restricted driver

    - by LaMinifalda
    I have a new machine with a MSI N560GTX Ti Twin Frozr II/OC graphic card and MSI PH67A-C43 (B3) main board. If i install the current nvidia restricted driver and reboot the machine on Natty (64-bit), then i only get a black screen after reboot and my system does not respond. I can´t see the login screen. On nvidia web page i saw that the current driver is 270.41.06. Is that driver used as current driver? Btw, i am an ubuntu/linux beginner and therefore not very familiar with ubuntu. What can i do to solve the black screen problem? EDIT: Setting the nomodeset parameter does not solve the problem. After ubuntu start, first i see the ubuntu logo, then strange pixels and at the end the black screen. HELP! EDIT2: Thank you, but setting the "video=vesa:off gfxpayload=text" parameters do no solve the problem too. Same result as in last edit. HELP. I would like to see Unity. This is my grub: GRUB_DEFAULT=0 GRUB_HIDDEN_TIMEOUT=0 GRUB_HIDDEN_TIMEOUT_QUIET=true GRUB_TIMEOUT=10 GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` GRUB_CMDLINE_LINUX_DEFAULT="video=vesa:off gfxpayload=text nomodeset quiet splash" GRUB_CMDLINE_LINUX=" vga=794" EDIT3: I dont know if it is important. If this edit is unnecessary and helpless I will delete it. There are some log files (Xorg.0.log - Xorg.4.log). I dont know how these log files relate to each other. Please, check the errors listed below. In Xorg.1.log I see the following error: [ 20.603] (EE) Failed to initialize GLX extension (ComIatible NVIDIA X driver not found) In Xorg.2.log I see the following error: [ 25.971] (II) Loading /usr/lib/xorg/modules/libfb.so [ 25.971] (**) NVIDIA(0): Depth 24, (--) framebuffer bpp 32 [ 25.971] (==) NVIDIA(0): RGB weight 888 [ 25.971] (==) NVIDIA(0): Default visual is TrueColor [ 25.971] (==) NVIDIA(0): Using gamma correction (1.0, 1.0, 1.0) [ 26.077] (EE) NVIDIA(0): Failed to initialize the NVIDIA GPU at PCI:1:0:0. Please [ 26.078] (EE) NVIDIA(0): check your system's kernel log for additional error [ 26.078] (EE) NVIDIA(0): messages and refer to Chapter 8: Common Problems in the [ 26.078] (EE) NVIDIA(0): README for additional information. [ 26.078] (EE) NVIDIA(0): Failed to initialize the NVIDIA graphics device! [ 26.078] (II) UnloadModule: "nvidia" [ 26.078] (II) Unloading nvidia [ 26.078] (II) UnloadModule: "wfb" [ 26.078] (II) Unloading wfb [ 26.078] (II) UnloadModule: "fb" [ 26.078] (II) Unloading fb [ 26.078] (EE) Screen(s) found, but none have a usable configuration. [ 26.078] Fatal server error: [ 26.078] no screens found [ 26.078] Please consult the The X.Org Found [...] In Xorg.4.log I see the following errors: [ 15.437] (**) NVIDIA(0): Depth 24, (--) framebuffer bpp 32 [ 15.437] (==) NVIDIA(0): RGB weight 888 [ 15.437] (==) NVIDIA(0): Default visual is TrueColor [ 15.437] (==) NVIDIA(0): Using gamma correction (1.0, 1.0, 1.0) [ 15.703] (II) NVIDIA(0): NVIDIA GPU GeForce GTX 560 Ti (GF114) at PCI:1:0:0 (GPU-0) [ 15.703] (--) NVIDIA(0): Memory: 1048576 kBytes [ 15.703] (--) NVIDIA(0): VideoBIOS: 70.24.11.00.00 [ 15.703] (II) NVIDIA(0): Detected PCI Express Link width: 16X [ 15.703] (--) NVIDIA(0): Interlaced video modes are supported on this GPU [ 15.703] (--) NVIDIA(0): Connected display device(s) on GeForce GTX 560 Ti at [ 15.703] (--) NVIDIA(0): PCI:1:0:0 [ 15.703] (--) NVIDIA(0): none [ 15.706] (EE) NVIDIA(0): No display devices found for this X screen. [ 15.943] (II) UnloadModule: "nvidia" [ 15.943] (II) Unloading nvidia [ 15.943] (II) UnloadModule: "wfb" [ 15.943] (II) Unloading wfb [ 15.943] (II) UnloadModule: "fb" [ 15.943] (II) Unloading fb [ 15.943] (EE) Screen(s) found, but none have a usable configuration. [ 15.943] Fatal server error: [ 15.943] no screens found EDIT4 There was a file /etc/X11/xorg.conf. As fossfreedom suggested I executed sudo mv /etc/X11/xorg.conf /etc/X11/xorg.conf.backup However, there is still the black screen after reboot. EDIT5 Neutro's advice (reinstalling the headers) did not solve the problem, too. :-( Any further help is appreciated! EDIT6 I just installed driver 173.xxx. After reboot the system shows me only "Checking battery state". Just for information. I will google the problem, but help is also appreciated! ;-) EDIT7 When using the free driver (Ubuntu says that the free driver is in use and activated), Xorg.0.log shows the following errors: [ 9.267] (II) LoadModule: "nouveau" [ 9.267] (II) Loading /usr/lib/xorg/modules/drivers/nouveau_drv.so [ 9.267] (II) Module nouveau: vendor="X.Org Foundation" [ 9.267] compiled for 1.10.0, module version = 0.0.16 [ 9.267] Module class: X.Org Video Driver [ 9.267] ABI class: X.Org Video Driver, version 10.0 [ 9.267] (II) LoadModule: "nv" [ 9.267] (WW) Warning, couldn't open module nv [ 9.267] (II) UnloadModule: "nv" [ 9.267] (II) Unloading nv [ 9.267] (EE) Failed to load module "nv" (module does not exist, 0) [ 9.267] (II) LoadModule: "vesa" [...] [ 9.399] drmOpenDevice: node name is /dev/dri/card14 [ 9.402] drmOpenDevice: node name is /dev/dri/card15 [ 9.406] (EE) [drm] failed to open device [ 9.406] (II) Loading /usr/lib/xorg/modules/drivers/vesa_drv.so [ 9.406] (WW) Falling back to old probe method for fbdev [ 9.406] (II) Loading sub module "fbdevhw" [ 9.406] (II) LoadModule: "fbdevhw" EDIT8 In the meanwhile i tried to install WIN7 64 bit on my machine. As a result i got a BSOD after installing the nvidia driver. :-) For this reason i sent my new machine back to the hardware reseller. I will inform you as soon as i have a new system. Thank you all for the great help and support. EDIT9 In the meanwhile I have a complete new system with "only" a MSI N460GTX Hawk, but more RAM. The system works perfect. :-) The original N560GTX had a hardware defect. Is is possible to close this question? THX!

    Read the article

  • Functional Adaptation

    - by Charles Courchaine
    In real life and OO programming we’re often faced with using adapters, DVI to VGA, 1/4” to 1/8” audio connections, 110V to 220V, wrapping an incompatible interface with a new one, and so on.  Where the adapter pattern is generally considered for interfaces and classes a similar technique can be applied to method signatures.  To be fair, this adaptation is generally used to reduce the number of parameters but I’m sure there are other clever possibilities to be had.  As Jan questioned in the last post, how can we use a common method to execute an action if the action has a differing number of parameters, going back to the greeting example it was suggested having an AddName method that takes a first and last name as parameters.  This is exactly what we’ll address in this post. Let’s set the stage with some review and some code changes.  First, our method that handles the setup/tear-down infrastructure for our WCF service: 1: private static TResult ExecuteGreetingFunc<TResult>(Func<IGreeting, TResult> theGreetingFunc) 2: { 3: IGreeting aGreetingService = null; 4: try 5: { 6: aGreetingService = GetGreetingChannel(); 7: return theGreetingFunc(aGreetingService); 8: } 9: finally 10: { 11: CloseWCFChannel((IChannel)aGreetingService); 12: } 13: } Our original AddName method: 1: private static string AddName(string theName) 2: { 3: return ExecuteGreetingFunc<string>(theGreetingService => theGreetingService.AddName(theName)); 4: } Our new AddName method: 1: private static int AddName(string firstName, string lastName) 2: { 3: return ExecuteGreetingFunc<int>(theGreetingService => theGreetingService.AddName(firstName, lastName)); 4: } Let’s change the AddName method, just a little bit more for this example and have it take the greeting service as a parameter. 1: private static int AddName(IGreeting greetingService, string firstName, string lastName) 2: { 3: return greetingService.AddName(firstName, lastName); 4: } The new signature of AddName using the Func delegate is now Func<IGreeting, string, string, int>, which can’t be used with ExecuteGreetingFunc as is because it expects Func<IGreeting, TResult>.  Somehow we have to eliminate the two string parameters before we can use this with our existing method.  This is where we need to adapt AddName to match what ExecuteGreetingFunc expects, and we’ll do so in the following progression. 1: Func<IGreeting, string, string, int> -> Func<IGreeting, string, int> 2: Func<IGreeting, string, int> -> Func<IGreeting, int>   For the first step, we’ll create a method using the lambda syntax that will “eliminate” the last name parameter: 1: string lastNameToAdd = "Smith"; 2: //Func<IGreeting, string, string, int> -> Func<IGreeting, string, int> 3: Func<IGreeting, string, int> addName = (greetingService, firstName) => AddName(greetingService, firstName, lastNameToAdd); The new addName method gets us one step close to the signature we need.  Let’s say we’re going to call this in a loop to add several names, we’ll take the final step from Func<IGreeting, string, int> -> Func<IGreeting, int> in line as a lambda passed to ExecuteGreetingFunc like so: 1: List<string> firstNames = new List<string>() { "Bob", "John" }; 2: int aID; 3: foreach (string firstName in firstNames) 4: { 5: //Func<IGreeting, string, int> -> Func<IGreeting, int> 6: aID = ExecuteGreetingFunc<int>(greetingService => addName(greetingService, firstName)); 7: Console.WriteLine(GetGreeting(aID)); 8: } If for some reason you needed to break out the lambda on line 6 you could replace it with 1: aID = ExecuteGreetingFunc<int>(ApplyAddName(addName, firstName)); and use this method: 1: private static Func<IGreeting, int> ApplyAddName(Func<IGreeting, string, int> addName, string lastName) 2: { 3: return greetingService => addName(greetingService, lastName); 4: } Splitting out a lambda into its own method is useful both in this style of coding as well as LINQ queries to improve the debugging experience.  It is not strictly necessary to break apart the steps & functions as was shown above; the lambda in line 6 (of the foreach example) could include both the last name and first name instead of being composed of two functions.  The process demonstrated above is one of partially applying functions, this could have also been done with Currying (also see Dustin Campbell’s excellent post on Currying for the canonical curried add example).  Matthew Podwysocki also has some good posts explaining both Currying and partial application and a follow up post that further clarifies the difference between Currying and partial application.  In either technique the ultimate goal is to reduce the number of parameters passed to a function.  Currying makes it a single parameter passed at each step, where partial application allows one to use multiple parameters at a time as we’ve done here.  This technique isn’t for everyone or every problem, but can be extremely handy when you need to adapt a call to something you don’t control.

    Read the article

< Previous Page | 765 766 767 768 769 770 771 772 773 774 775 776  | Next Page >