Search Results

Search found 45013 results on 1801 pages for 'example'.

Page 77/1801 | < Previous Page | 73 74 75 76 77 78 79 80 81 82 83 84  | Next Page >

  • Stop Google Analytics from appending hostname?

    - by Nick Q.
    I've come across an Analytics profile that is appending the rest of a URL to the end of a page's path. For example when looking at the page that exists at http://example.com/page I would expect to see /page but instead it shows me /page/http://example.com/. The profile has no filters applied to it, and until July was reporting as expected (/page), in July the site in question switched hosts (and absolutely nothing else, so I'm not sure that's the problem). The analytics code on the site is the standard Google Async code with a domain set. All other profiles for the site show /page as expected. Any ideas as to how I can get the profile to function as expected?

    Read the article

  • Can decoupling hurt maintainability in certain situations?

    - by Ceiling Gecko
    Can the fact that the business logic is mapped to interfaces instead of implementations actually hinder the maintenance of the application in certain situations? A naive example with the Java's Hibernate framework would be, that for example (provided I don't have the whole code-base in my head, the project structure is a mess and classes are named with arbitrary names) if I wish to see what's going on in a certain DAO, to see if it actually is doing what it's supposed to do, then instead of traversing backwards up the tree from the point where the data service is invoked (where the tree will end in an interface with no implementation details whatsoever apart from the signature) I have to for example go and look for a configuration XML file to see which class is mapped to said interface as the implementation before being able to access the actual implementation details. Are there any situations where having loose coupling can actually hurt maintainability?

    Read the article

  • Blender 2.6: How to Merge the Pros of Meshes and Surfaces

    - by fridojet
    there are two interesting kinds of objects: Meshes and Surfaces. Each of them offers very cool features. Object Type Specific Features Nice Features of Surfaces: (for example) They're as scalable as vector graphics (really nice!) You can build winding things real simply. Nice Features of Meshes: (for example) You can build organic things really good using the Sculpt Mode and a graphic tablet. You can use some special things like Physics. My Question There are things for which Surfaces are better and things for which Meshes are better. But how can I use both the best features of Surfaces and the best features of Meshes on one object at once? For example: How can I use Physics (like on Meshes) on lossless scalable objects (like Surfaces)? Thanks.

    Read the article

  • How to learn to translate real world problems to code?

    - by StudioWorks
    I'm kind of a beginner to Java and OOP and I didn't quite get the whole concept of seeing a real world problem and translating it to classes and code. For example, I was reading a book on UML and at the beginning the author takes the example of a tic tac toe game and says: "In this example, it's natural to see three classes: Board, Player and Position." Then, he creates the methods in each class and explains how they relate. What I can't understand is how he thought all this. So, where should I start to learn how to see a real world problem and then "translate" it into code?

    Read the article

  • The shortest licenses

    - by Darek Nedza
    What are the shortest licenses with aims for programmers/code. I have found only MIT that is page-long. What are other licenses that have approximately the same length or even shorter? Edit: Ok, length is not only criteria(I haven't expected one-line licenses, I have understaminate you people). I need easy to read and short licenses. It is meant for people who want to use my code not for lawyers who want to read long licenses. I am creating small codes to use by most people probably free of charge. I don't want useless information to be required, for example: what is X(for example: what is software, source code etc.) very specific information(for example: you can use it shop, opera, school... free of charge; but instead "use it everywhere but don't take money" Depending on type of code I would like to allow/disallow commercial usage.

    Read the article

  • Which countries have suitable laws for game development companies? [on hold]

    - by yoni0505
    Which countries are most suitable for game companies? By suitable I mean: Their laws let the business be more profitable. (for example: low taxes) Have less bureaucracy. (for example: creating a company, employment laws) Living there isn't expensive. (for example: rent and food prices) etc... In short - maximum revenue with minimum overhead. What other things do I have to consider when choosing the place to be in? Are there any articles about this subject? (I couldn't find any)

    Read the article

  • 10 Essential Tools for building ASP.NET Websites

    - by Stephen Walther
    I recently put together a simple public website created with ASP.NET for my company at Superexpert.com. I was surprised by the number of free tools that I ended up using to put together the website. Therefore, I thought it would be interesting to create a list of essential tools for building ASP.NET websites. These tools work equally well with both ASP.NET Web Forms and ASP.NET MVC. Performance Tools After reading Steve Souders two (very excellent) books on front-end website performance High Performance Web Sites and Even Faster Web Sites, I have been super sensitive to front-end website performance. According to Souders’ Performance Golden Rule: “Optimize front-end performance first, that's where 80% or more of the end-user response time is spent” You can use the tools below to reduce the size of the images, JavaScript files, and CSS files used by an ASP.NET application. 1. Sprite and Image Optimization Framework CSS sprites were first described in an article written for A List Apart entitled CSS sprites: Image Slicing’s Kiss of Death. When you use sprites, you combine multiple images used by a website into a single image. Next, you use CSS trickery to display particular sub-images from the combined image in a webpage. The primary advantage of sprites is that they reduce the number of requests required to display a webpage. Requesting a single large image is faster than requesting multiple small images. In general, the more resources – images, JavaScript files, CSS files – that must be moved across the wire, the slower your website. However, most people avoid using sprites because they require a lot of work. You need to combine all of the images and write just the right CSS rules to display the sub-images. The Microsoft Sprite and Image Optimization Framework enables you to avoid all of this work. The framework combines the images for you automatically. Furthermore, the framework includes an ASP.NET Web Forms control and an ASP.NET MVC helper that makes it easy to display the sub-images. You can download the Sprite and Image Optimization Framework from CodePlex at http://aspnet.codeplex.com/releases/view/50869. The Sprite and Image Optimization Framework was written by Morgan McClean who worked in the office next to mine at Microsoft. Morgan was a scary smart Intern from Canada and we discussed the Framework while he was building it (I was really excited to learn that he was working on it). Morgan added some great advanced features to this framework. For example, the Sprite and Image Optimization Framework supports something called image inlining. When you use image inlining, the actual image is stored in the CSS file. Here’s an example of what image inlining looks like: .Home_StephenWalther_small-jpg { width:75px; height:100px; background: url( GdBTUEAALGOfPtRkwAAACBjSFJNAACHDwAAjA8AAP1SAACBQAAAfXkAAOmLAAA85QAAGcxzPIV3AAAKL s+zNfREAAAAASUVORK5CYII=) no-repeat 0% 0%; } The actual image (in this case a picture of me that is displayed on the home page of the Superexpert.com website) is stored in the CSS file. If you visit the Superexpert.com website then very few separate images are downloaded. For example, all of the images with a red border in the screenshot below take advantage of CSS sprites: Unfortunately, there are some significant Gotchas that you need to be aware of when using the Sprite and Image Optimization Framework. There are workarounds for these Gotchas. I plan to write about these Gotchas and workarounds in a future blog entry. 2. Microsoft Ajax Minifier Whenever possible you should combine, minify, compress, and cache with a far future header all of your JavaScript and CSS files. The Microsoft Ajax Minifier makes it easy to minify JavaScript and CSS files. Don’t confuse minification and compression. You need to do both. According to Souders, you can reduce the size of a JavaScript file by an additional 20% (on average) by minifying a JavaScript file after you compress the file. When you minify a JavaScript or CSS file, you use various tricks to reduce the size of the file before you compress the file. For example, you can minify a JavaScript file by replacing long JavaScript variables names with short variables names and removing unnecessary white space and comments. You can minify a CSS file by doing such things as replacing long color names such as #ffffff with shorter equivalents such as #fff. The Microsoft Ajax Minifier was created by Microsoft employee Ron Logan. Internally, this tool was being used by several large Microsoft websites. We also used the tool heavily on the ASP.NET team. I convinced Ron to publish the tool on CodePlex so that everyone in the world could take advantage of it. You can download the tool from the ASP.NET Ajax website and read documentation for the tool here. I created the installer for the Microsoft Ajax Minifier. When creating the installer, I also created a Visual Studio build task to make it easy to minify all of your JavaScript and CSS files whenever you do a build within Visual Studio automatically. Read the Ajax Minifier Quick Start to learn how to configure the build task. 3. ySlow The ySlow tool is a free add-on for Firefox created by Yahoo that enables you to test the front-end of your website. For example, here are the current test results for the Superexpert.com website: The Superexpert.com website has an overall score of B (not perfect but not bad). The ySlow tool is not perfect. For example, the Superexpert.com website received a failing grade of F for not using a Content Delivery Network even though the website using the Microsoft Ajax Content Delivery Network for JavaScript files such as jQuery. Uptime After publishing a website live to the world, you want to ensure that the website does not encounter any issues and that it stays live. I use the following tools to monitor the Superexpert.com website now that it is live. 4. ELMAH ELMAH stands for Error Logging Modules and Handlers for ASP.NET. ELMAH enables you to record any errors that happen at your website so you can review them in the future. You can download ELMAH for free from the ELMAH project website. ELMAH works great with both ASP.NET Web Forms and ASP.NET MVC. You can configure ELMAH to store errors in a number of different stores including XML files, the Event Log, an Access database, a SQL database, an Oracle database, or in computer RAM. You also can configure ELMAH to email error messages to you when they happen. By default, you can access ELMAH by requesting the elmah.axd page from a website with ELMAH installed. Here’s what the elmah page looks like from the Superexpert.com website (this page is password-protected because secret information can be revealed in an error message): If you click on a particular error message, you can view the original Yellow Screen ASP.NET error message (even when the error message was never displayed to the actual user). I installed ELMAH by taking advantage of the new package manager for ASP.NET named NuGet (originally named NuPack). You can read the details about NuGet in the following blog entry by Scott Guthrie. You can download NuGet from CodePlex. 5. Pingdom I use Pingdom to verify that the Superexpert.com website is always up. You can sign up for Pingdom by visiting Pingdom.com. You can use Pingdom to monitor a single website for free. At the Pingdom website, you configure the frequency that your website gets pinged. I verify that the Superexpert.com website is up every 5 minutes. I have the Pingdom service verify that it can retrieve the string “Contact Us” from the website homepage. If your website goes down, you can configure Pingdom so that it sends an email, Twitter, SMS, or iPhone alert. I use the Pingdom iPhone app which looks like this: 6. Host Tracker If your website does go down then you need some way of determining whether it is a problem with your local network or if your website is down for everyone. I use a website named Host-Tracker.com to check how badly a website is down. Here’s what the Host-Tracker website displays for the Superexpert.com website when the website can be successfully pinged from everywhere in the world: Notice that Host-Tracker pinged the Superexpert.com website from 68 locations including Roubaix, France and Scranton, PA. Debugging I mean debugging in the broadest possible sense. I use the following tools when building a website to verify that I have not made a mistake. 7. HTML Spell Checker Why doesn’t Visual Studio have a built-in spell checker? Don’t know – I’ve always found this mysterious. Fortunately, however, a former member of the ASP.NET team wrote a free spell checker that you can use with your ASP.NET pages. I find a spell checker indispensible. It is easy to delude yourself that you are capable of perfect spelling. I’m always super embarrassed when I actually run the spell checking tool and discover all of my spelling mistakes. The fastest way to add the HTML Spell Checker extension to Visual Studio is to select the menu option Tools, Extension Manager within Visual Studio. Click on Online Gallery and search for HTML Spell Checker: 8. IIS SEO Toolkit If people cannot find your website through Google then you should not even bother to create it. Microsoft has a great extension for IIS named the IIS Search Engine Optimization Toolkit that you can use to identify issue with your website that would hurt its page rank. You also can use this tool to quickly create a sitemap for your website that you can submit to Google or Bing. You can even generate the sitemap for an ASP.NET MVC website. Here’s what the report overview for the Superexpert.com website looks like: Notice that the Sueprexpert.com website had plenty of violations. For example, there are 65 cases in which a page has a broken hyperlink. You can drill into these violations to identity the exact page and location where these violations occur. 9. LinqPad If your ASP.NET website accesses a database then you should be using LINQ to Entities with the Entity Framework. Using LINQ involves some magic. LINQ queries written in C# get converted into SQL queries for you. If you are not careful about how you write your LINQ queries, you could unintentionally build a really badly performing website. LinqPad is a free tool that enables you to experiment with your LINQ queries. It even works with Microsoft SQL CE 4 and Azure. You can use LinqPad to execute a LINQ to Entities query and see the results. You also can use it to see the resulting SQL that gets executed against the database: 10. .NET Reflector I use .NET Reflector daily. The .NET Reflector tool enables you to take any assembly and disassemble the assembly into C# or VB.NET code. You can use .NET Reflector to see the “Source Code” of an assembly even when you do not have the actual source code. You can download a free version of .NET Reflector from the Redgate website. I use .NET Reflector primarily to help me understand what code is doing internally. For example, I used .NET Reflector with the Sprite and Image Optimization Framework to better understand how the MVC Image helper works. Here’s part of the disassembled code from the Image helper class: Summary In this blog entry, I’ve discussed several of the tools that I used to create the Superexpert.com website. These are tools that I use to improve the performance, improve the SEO, verify the uptime, or debug the Superexpert.com website. All of the tools discussed in this blog entry are free. Furthermore, all of these tools work with both ASP.NET Web Forms and ASP.NET MVC. Let me know if there are any tools that you use daily when building ASP.NET websites.

    Read the article

  • C#/.NET Little Wonders: The Joy of Anonymous Types

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the .NET 3 Framework, Microsoft introduced the concept of anonymous types, which provide a way to create a quick, compiler-generated types at the point of instantiation.  These may seem trivial, but are very handy for concisely creating lightweight, strongly-typed objects containing only read-only properties that can be used within a given scope. Creating an Anonymous Type In short, an anonymous type is a reference type that derives directly from object and is defined by its set of properties base on their names, number, types, and order given at initialization.  In addition to just holding these properties, it is also given appropriate overridden implementations for Equals() and GetHashCode() that take into account all of the properties to correctly perform property comparisons and hashing.  Also overridden is an implementation of ToString() which makes it easy to display the contents of an anonymous type instance in a fairly concise manner. To construct an anonymous type instance, you use basically the same initialization syntax as with a regular type.  So, for example, if we wanted to create an anonymous type to represent a particular point, we could do this: 1: var point = new { X = 13, Y = 7 }; Note the similarity between anonymous type initialization and regular initialization.  The main difference is that the compiler generates the type name and the properties (as readonly) based on the names and order provided, and inferring their types from the expressions they are assigned to. It is key to remember that all of those factors (number, names, types, order of properties) determine the anonymous type.  This is important, because while these two instances share the same anonymous type: 1: // same names, types, and order 2: var point1 = new { X = 13, Y = 7 }; 3: var point2 = new { X = 5, Y = 0 }; These similar ones do not: 1: var point3 = new { Y = 3, X = 5 }; // different order 2: var point4 = new { X = 3, Y = 5.0 }; // different type for Y 3: var point5 = new {MyX = 3, MyY = 5 }; // different names 4: var point6 = new { X = 1, Y = 2, Z = 3 }; // different count Limitations on Property Initialization Expressions The expression for a property in an anonymous type initialization cannot be null (though it can evaluate to null) or an anonymous function.  For example, the following are illegal: 1: // Null can't be used directly. Null reference of what type? 2: var cantUseNull = new { Value = null }; 3:  4: // Anonymous methods cannot be used. 5: var cantUseAnonymousFxn = new { Value = () => Console.WriteLine(“Can’t.”) }; Note that the restriction on null is just that you can’t use it directly as the expression, because otherwise how would it be able to determine the type?  You can, however, use it indirectly assigning a null expression such as a typed variable with the value null, or by casting null to a specific type: 1: string str = null; 2: var fineIndirectly = new { Value = str }; 3: var fineCast = new { Value = (string)null }; All of the examples above name the properties explicitly, but you can also implicitly name properties if they are being set from a property, field, or variable.  In these cases, when a field, property, or variable is used alone, and you don’t specify a property name assigned to it, the new property will have the same name.  For example: 1: int variable = 42; 2:  3: // creates two properties named varriable and Now 4: var implicitProperties = new { variable, DateTime.Now }; Is the same type as: 1: var explicitProperties = new { variable = variable, Now = DateTime.Now }; But this only works if you are using an existing field, variable, or property directly as the expression.  If you use a more complex expression then the name cannot be inferred: 1: // can't infer the name variable from variable * 2, must name explicitly 2: var wontWork = new { variable * 2, DateTime.Now }; In the example above, since we typed variable * 2, it is no longer just a variable and thus we would have to assign the property a name explicitly. ToString() on Anonymous Types One of the more trivial overrides that an anonymous type provides you is a ToString() method that prints the value of the anonymous type instance in much the same format as it was initialized (except actual values instead of expressions as appropriate of course). For example, if you had: 1: var point = new { X = 13, Y = 42 }; And then print it out: 1: Console.WriteLine(point.ToString()); You will get: 1: { X = 13, Y = 42 } While this isn’t necessarily the most stunning feature of anonymous types, it can be handy for debugging or logging values in a fairly easy to read format. Comparing Anonymous Type Instances Because anonymous types automatically create appropriate overrides of Equals() and GetHashCode() based on the underlying properties, we can reliably compare two instances or get hash codes.  For example, if we had the following 3 points: 1: var point1 = new { X = 1, Y = 2 }; 2: var point2 = new { X = 1, Y = 2 }; 3: var point3 = new { Y = 2, X = 1 }; If we compare point1 and point2 we’ll see that Equals() returns true because they overridden version of Equals() sees that the types are the same (same number, names, types, and order of properties) and that the values are the same.   In addition, because all equal objects should have the same hash code, we’ll see that the hash codes evaluate to the same as well: 1: // true, same type, same values 2: Console.WriteLine(point1.Equals(point2)); 3:  4: // true, equal anonymous type instances always have same hash code 5: Console.WriteLine(point1.GetHashCode() == point2.GetHashCode()); However, if we compare point2 and point3 we get false.  Even though the names, types, and values of the properties are the same, the order is not, thus they are two different types and cannot be compared (and thus return false).  And, since they are not equal objects (even though they have the same value) there is a good chance their hash codes are different as well (though not guaranteed): 1: // false, different types 2: Console.WriteLine(point2.Equals(point3)); 3:  4: // quite possibly false (was false on my machine) 5: Console.WriteLine(point2.GetHashCode() == point3.GetHashCode()); Using Anonymous Types Now that we’ve created instances of anonymous types, let’s actually use them.  The property names (whether implicit or explicit) are used to access the individual properties of the anonymous type.  The main thing, once again, to keep in mind is that the properties are readonly, so you cannot assign the properties a new value (note: this does not mean that instances referred to by a property are immutable – for more information check out C#/.NET Fundamentals: Returning Data Immutably in a Mutable World). Thus, if we have the following anonymous type instance: 1: var point = new { X = 13, Y = 42 }; We can get the properties as you’d expect: 1: Console.WriteLine(“The point is: ({0},{1})”, point.X, point.Y); But we cannot alter the property values: 1: // compiler error, properties are readonly 2: point.X = 99; Further, since the anonymous type name is only known by the compiler, there is no easy way to pass anonymous type instances outside of a given scope.  The only real choices are to pass them as object or dynamic.  But really that is not the intention of using anonymous types.  If you find yourself needing to pass an anonymous type outside of a given scope, you should really consider making a POCO (Plain Old CLR Type – i.e. a class that contains just properties to hold data with little/no business logic) instead. Given that, why use them at all?  Couldn’t you always just create a POCO to represent every anonymous type you needed?  Sure you could, but then you might litter your solution with many small POCO classes that have very localized uses. It turns out this is the key to when to use anonymous types to your advantage: when you just need a lightweight type in a local context to store intermediate results, consider an anonymous type – but when that result is more long-lived and used outside of the current scope, consider a POCO instead. So what do we mean by intermediate results in a local context?  Well, a classic example would be filtering down results from a LINQ expression.  For example, let’s say we had a List<Transaction>, where Transaction is defined something like: 1: public class Transaction 2: { 3: public string UserId { get; set; } 4: public DateTime At { get; set; } 5: public decimal Amount { get; set; } 6: // … 7: } And let’s say we had this data in our List<Transaction>: 1: var transactions = new List<Transaction> 2: { 3: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = 2200.00m }, 4: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = -1100.00m }, 5: new Transaction { UserId = "Jim", At = DateTime.Now.AddDays(-1), Amount = 900.00m }, 6: new Transaction { UserId = "John", At = DateTime.Now.AddDays(-2), Amount = 300.00m }, 7: new Transaction { UserId = "John", At = DateTime.Now, Amount = -10.00m }, 8: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = 200.00m }, 9: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = -50.00m }, 10: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = -100.00m }, 11: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = 300.00m }, 12: }; So let’s say we wanted to get the transactions for each day for each user.  That is, for each day we’d want to see the transactions each user performed.  We could do this very simply with a nice LINQ expression, without the need of creating any POCOs: 1: // group the transactions based on an anonymous type with properties UserId and Date: 2: byUserAndDay = transactions 3: .GroupBy(tx => new { tx.UserId, tx.At.Date }) 4: .OrderBy(grp => grp.Key.Date) 5: .ThenBy(grp => grp.Key.UserId); Now, those of you who have attempted to use custom classes as a grouping type before (such as GroupBy(), Distinct(), etc.) may have discovered the hard way that LINQ gets a lot of its speed by utilizing not on Equals(), but also GetHashCode() on the type you are grouping by.  Thus, when you use custom types for these purposes, you generally end up having to write custom Equals() and GetHashCode() implementations or you won’t get the results you were expecting (the default implementations of Equals() and GetHashCode() are reference equality and reference identity based respectively). As we said before, it turns out that anonymous types already do these critical overrides for you.  This makes them even more convenient to use!  Instead of creating a small POCO to handle this grouping, and then having to implement a custom Equals() and GetHashCode() every time, we can just take advantage of the fact that anonymous types automatically override these methods with appropriate implementations that take into account the values of all of the properties. Now, we can look at our results: 1: foreach (var group in byUserAndDay) 2: { 3: // the group’s Key is an instance of our anonymous type 4: Console.WriteLine("{0} on {1:MM/dd/yyyy} did:", group.Key.UserId, group.Key.Date); 5:  6: // each grouping contains a sequence of the items. 7: foreach (var tx in group) 8: { 9: Console.WriteLine("\t{0}", tx.Amount); 10: } 11: } And see: 1: Jaime on 06/18/2012 did: 2: -100.00 3: 300.00 4:  5: John on 06/19/2012 did: 6: 300.00 7:  8: Jim on 06/20/2012 did: 9: 900.00 10:  11: Jane on 06/21/2012 did: 12: 200.00 13: -50.00 14:  15: Jim on 06/21/2012 did: 16: 2200.00 17: -1100.00 18:  19: John on 06/21/2012 did: 20: -10.00 Again, sure we could have just built a POCO to do this, given it an appropriate Equals() and GetHashCode() method, but that would have bloated our code with so many extra lines and been more difficult to maintain if the properties change.  Summary Anonymous types are one of those Little Wonders of the .NET language that are perfect at exactly that time when you need a temporary type to hold a set of properties together for an intermediate result.  While they are not very useful beyond the scope in which they are defined, they are excellent in LINQ expressions as a way to create and us intermediary values for further expressions and analysis. Anonymous types are defined by the compiler based on the number, type, names, and order of properties created, and they automatically implement appropriate Equals() and GetHashCode() overrides (as well as ToString()) which makes them ideal for LINQ expressions where you need to create a set of properties to group, evaluate, etc. Technorati Tags: C#,CSharp,.NET,Little Wonders,Anonymous Types,LINQ

    Read the article

  • Currency Conversion in Oracle BI applications

    - by Saurabh Verma
    Authored by Vijay Aggarwal and Hichem Sellami A typical data warehouse contains Star and/or Snowflake schema, made up of Dimensions and Facts. The facts store various numerical information including amounts. Example; Order Amount, Invoice Amount etc. With the true global nature of business now-a-days, the end-users want to view the reports in their own currency or in global/common currency as defined by their business. This presents a unique opportunity in BI to provide the amounts in converted rates either by pre-storing or by doing on-the-fly conversions while displaying the reports to the users. Source Systems OBIA caters to various source systems like EBS, PSFT, Sebl, JDE, Fusion etc. Each source has its own unique and intricate ways of defining and storing currency data, doing currency conversions and presenting to the OLTP users. For example; EBS stores conversion rates between currencies which can be classified by conversion rates, like Corporate rate, Spot rate, Period rate etc. Siebel stores exchange rates by conversion rates like Daily. EBS/Fusion stores the conversion rates for each day, where as PSFT/Siebel store for a range of days. PSFT has Rate Multiplication Factor and Rate Division Factor and we need to calculate the Rate based on them, where as other Source systems store the Currency Exchange Rate directly. OBIA Design The data consolidation from various disparate source systems, poses the challenge to conform various currencies, rate types, exchange rates etc., and designing the best way to present the amounts to the users without affecting the performance. When consolidating the data for reporting in OBIA, we have designed the mechanisms in the Common Dimension, to allow users to report based on their required currencies. OBIA Facts store amounts in various currencies: Document Currency: This is the currency of the actual transaction. For a multinational company, this can be in various currencies. Local Currency: This is the base currency in which the accounting entries are recorded by the business. This is generally defined in the Ledger of the company. Global Currencies: OBIA provides five Global Currencies. Three are used across all modules. The last two are for CRM only. A Global currency is very useful when creating reports where the data is viewed enterprise-wide. Example; a US based multinational would want to see the reports in USD. The company will choose USD as one of the global currencies. OBIA allows users to define up-to five global currencies during the initial implementation. The term Currency Preference is used to designate the set of values: Document Currency, Local Currency, Global Currency 1, Global Currency 2, Global Currency 3; which are shared among all modules. There are four more currency preferences, specific to certain modules: Global Currency 4 (aka CRM Currency) and Global Currency 5 which are used in CRM; and Project Currency and Contract Currency, used in Project Analytics. When choosing Local Currency for Currency preference, the data will show in the currency of the Ledger (or Business Unit) in the prompt. So it is important to select one Ledger or Business Unit when viewing data in Local Currency. More on this can be found in the section: Toggling Currency Preferences in the Dashboard. Design Logic When extracting the fact data, the OOTB mappings extract and load the document amount, and the local amount in target tables. It also loads the exchange rates required to convert the document amount into the corresponding global amounts. If the source system only provides the document amount in the transaction, the extract mapping does a lookup to get the Local currency code, and the Local exchange rate. The Load mapping then uses the local currency code and rate to derive the local amount. The load mapping also fetches the Global Currencies and looks up the corresponding exchange rates. The lookup of exchange rates is done via the Exchange Rate Dimension provided as a Common/Conforming Dimension in OBIA. The Exchange Rate Dimension stores the exchange rates between various currencies for a date range and Rate Type. Two physical tables W_EXCH_RATE_G and W_GLOBAL_EXCH_RATE_G are used to provide the lookups and conversions between currencies. The data is loaded from the source system’s Ledger tables. W_EXCH_RATE_G stores the exchange rates between currencies with a date range. On the other hand, W_GLOBAL_EXCH_RATE_G stores the currency conversions between the document currency and the pre-defined five Global Currencies for each day. Based on the requirements, the fact mappings can decide and use one or both tables to do the conversion. Currency design in OBIA also taps into the MLS and Domain architecture, thus allowing the users to map the currencies to a universal Domain during the implementation time. This is especially important for companies deploying and using OBIA with multiple source adapters. Some Gotchas to Look for It is necessary to think through the currencies during the initial implementation. 1) Identify various types of currencies that are used by your business. Understand what will be your Local (or Base) and Documentation currency. Identify various global currencies that your users will want to look at the reports. This will be based on the global nature of your business. Changes to these currencies later in the project, while permitted, but may cause Full data loads and hence lost time. 2) If the user has a multi source system make sure that the Global Currencies and Global Rate Types chosen in Configuration Manager do have the corresponding source specific counterparts. In other words, make sure for every DW specific value chosen for Currency Code or Rate Type, there is a source Domain mapping already done. Technical Section This section will briefly mention the technical scenarios employed in the OBIA adaptors to extract data from each source system. In OBIA, we have two main tables which store the Currency Rate information as explained in previous sections. W_EXCH_RATE_G and W_GLOBAL_EXCH_RATE_G are the two tables. W_EXCH_RATE_G stores all the Currency Conversions present in the source system. It captures data for a Date Range. W_GLOBAL_EXCH_RATE_G has Global Currency Conversions stored at a Daily level. However the challenge here is to store all the 5 Global Currency Exchange Rates in a single record for each From Currency. Let’s voyage further into the Source System Extraction logic for each of these tables and understand the flow briefly. EBS: In EBS, we have Currency Data stored in GL_DAILY_RATES table. As the name indicates GL_DAILY_RATES EBS table has data at a daily level. However in our warehouse we store the data with a Date Range and insert a new range record only when the Exchange Rate changes for a particular From Currency, To Currency and Rate Type. Below are the main logical steps that we employ in this process. (Incremental Flow only) – Cleanup the data in W_EXCH_RATE_G. Delete the records which have Start Date > minimum conversion date Update the End Date of the existing records. Compress the daily data from GL_DAILY_RATES table into Range Records. Incremental map uses $$XRATE_UPD_NUM_DAY as an extra parameter. Generate Previous Rate, Previous Date and Next Date for each of the Daily record from the OLTP. Filter out the records which have Conversion Rate same as Previous Rates or if the Conversion Date lies within a single day range. Mark the records as ‘Keep’ and ‘Filter’ and also get the final End Date for the single Range record (Unique Combination of From Date, To Date, Rate and Conversion Date). Filter the records marked as ‘Filter’ in the INFA map. The above steps will load W_EXCH_RATE_GS. Step 0 updates/deletes W_EXCH_RATE_G directly. SIL map will then insert/update the GS data into W_EXCH_RATE_G. These steps convert the daily records in GL_DAILY_RATES to Range records in W_EXCH_RATE_G. We do not need such special logic for loading W_GLOBAL_EXCH_RATE_G. This is a table where we store data at a Daily Granular Level. However we need to pivot the data because the data present in multiple rows in source tables needs to be stored in different columns of the same row in DW. We use GROUP BY and CASE logic to achieve this. Fusion: Fusion has extraction logic very similar to EBS. The only difference is that the Cleanup logic that was mentioned in step 0 above does not use $$XRATE_UPD_NUM_DAY parameter. In Fusion we bring all the Exchange Rates in Incremental as well and do the cleanup. The SIL then takes care of Insert/Updates accordingly. PeopleSoft:PeopleSoft does not have From Date and To Date explicitly in the Source tables. Let’s look at an example. Please note that this is achieved from PS1 onwards only. 1 Jan 2010 – USD to INR – 45 31 Jan 2010 – USD to INR – 46 PSFT stores records in above fashion. This means that Exchange Rate of 45 for USD to INR is applicable for 1 Jan 2010 to 30 Jan 2010. We need to store data in this fashion in DW. Also PSFT has Exchange Rate stored as RATE_MULT and RATE_DIV. We need to do a RATE_MULT/RATE_DIV to get the correct Exchange Rate. We generate From Date and To Date while extracting data from source and this has certain assumptions: If a record gets updated/inserted in the source, it will be extracted in incremental. Also if this updated/inserted record is between other dates, then we also extract the preceding and succeeding records (based on dates) of this record. This is required because we need to generate a range record and we have 3 records whose ranges have changed. Taking the same example as above, if there is a new record which gets inserted on 15 Jan 2010; the new ranges are 1 Jan to 14 Jan, 15 Jan to 30 Jan and 31 Jan to Next available date. Even though 1 Jan record and 31 Jan have not changed, we will still extract them because the range is affected. Similar logic is used for Global Exchange Rate Extraction. We create the Range records and get it into a Temporary table. Then we join to Day Dimension, create individual records and pivot the data to get the 5 Global Exchange Rates for each From Currency, Date and Rate Type. Siebel: Siebel Facts are dependent on Global Exchange Rates heavily and almost none of them really use individual Exchange Rates. In other words, W_GLOBAL_EXCH_RATE_G is the main table used in Siebel from PS1 release onwards. As of January 2002, the Euro Triangulation method for converting between currencies belonging to EMU members is not needed for present and future currency exchanges. However, the method is still available in Siebel applications, as are the old currencies, so that historical data can be maintained accurately. The following description applies only to historical data needing conversion prior to the 2002 switch to the Euro for the EMU member countries. If a country is a member of the European Monetary Union (EMU), you should convert its currency to other currencies through the Euro. This is called triangulation, and it is used whenever either currency being converted has EMU Triangulation checked. Due to this, there are multiple extraction flows in SEBL ie. EUR to EMU, EUR to NonEMU, EUR to DMC and so on. We load W_EXCH_RATE_G through multiple flows with these data. This has been kept same as previous versions of OBIA. W_GLOBAL_EXCH_RATE_G being a new table does not have such needs. However SEBL does not have From Date and To Date columns in the Source tables similar to PSFT. We use similar extraction logic as explained in PSFT section for SEBL as well. What if all 5 Global Currencies configured are same? As mentioned in previous sections, from PS1 onwards we store Global Exchange Rates in W_GLOBAL_EXCH_RATE_G table. The extraction logic for this table involves Pivoting data from multiple rows into a single row with 5 Global Exchange Rates in 5 columns. As mentioned in previous sections, we use CASE and GROUP BY functions to achieve this. This approach poses a unique problem when all the 5 Global Currencies Chosen are same. For example – If the user configures all 5 Global Currencies as ‘USD’ then the extract logic will not be able to generate a record for From Currency=USD. This is because, not all Source Systems will have a USD->USD conversion record. We have _Generated mappings to take care of this case. We generate a record with Conversion Rate=1 for such cases. Reusable Lookups Before PS1, we had a Mapplet for Currency Conversions. In PS1, we only have reusable Lookups- LKP_W_EXCH_RATE_G and LKP_W_GLOBAL_EXCH_RATE_G. These lookups have another layer of logic so that all the lookup conditions are met when they are used in various Fact Mappings. Any user who would want to do a LKP on W_EXCH_RATE_G or W_GLOBAL_EXCH_RATE_G should and must use these Lookups. A direct join or Lookup on the tables might lead to wrong data being returned. Changing Currency preferences in the Dashboard: In the 796x series, all amount metrics in OBIA were showing the Global1 amount. The customer needed to change the metric definitions to show them in another Currency preference. Project Analytics started supporting currency preferences since 7.9.6 release though, and it published a Tech note for other module customers to add toggling between currency preferences to the solution. List of Currency Preferences Starting from 11.1.1.x release, the BI Platform added a new feature to support multiple currencies. The new session variable (PREFERRED_CURRENCY) is populated through a newly introduced currency prompt. This prompt can take its values from the xml file: userpref_currencies_OBIA.xml, which is hosted in the BI Server installation folder, under :< home>\instances\instance1\config\OracleBIPresentationServicesComponent\coreapplication_obips1\userpref_currencies.xml This file contains the list of currency preferences, like“Local Currency”, “Global Currency 1”,…which customers can also rename to give them more meaningful business names. There are two options for showing the list of currency preferences to the user in the dashboard: Static and Dynamic. In Static mode, all users will see the full list as in the user preference currencies file. In the Dynamic mode, the list shown in the currency prompt drop down is a result of a dynamic query specified in the same file. Customers can build some security into the rpd, so the list of currency preferences will be based on the user roles…BI Applications built a subject area: “Dynamic Currency Preference” to run this query, and give every user only the list of currency preferences required by his application roles. Adding Currency to an Amount Field When the user selects one of the items from the currency prompt, all the amounts in that page will show in the Currency corresponding to that preference. For example, if the user selects “Global Currency1” from the prompt, all data will be showing in Global Currency 1 as specified in the Configuration Manager. If the user select “Local Currency”, all amount fields will show in the Currency of the Business Unit selected in the BU filter of the same page. If there is no particular Business Unit selected in that filter, and the data selected by the query contains amounts in more than one currency (for example one BU has USD as a functional currency, the other has EUR as functional currency), then subtotals will not be available (cannot add USD and EUR amounts in one field), and depending on the set up (see next paragraph), the user may receive an error. There are two ways to add the Currency field to an amount metric: In the form of currency code, like USD, EUR…For this the user needs to add the field “Apps Common Currency Code” to the report. This field is in every subject area, usually under the table “Currency Tag” or “Currency Code”… In the form of currency symbol ($ for USD, € for EUR,…) For this, the user needs to format the amount metrics in the report as a currency column, by specifying the currency tag column in the Column Properties option in Column Actions drop down list. Typically this column should be the “BI Common Currency Code” available in every subject area. Select Column Properties option in the Edit list of a metric. In the Data Format tab, select Custom as Treat Number As. Enter the following syntax under Custom Number Format: [$:currencyTagColumn=Subjectarea.table.column] Where Column is the “BI Common Currency Code” defined to take the currency code value based on the currency preference chosen by the user in the Currency preference prompt.

    Read the article

  • JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue

    - by John-Brown.Evans
    JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue .c21_2{vertical-align:top;width:487.3pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c15_2{vertical-align:top;width:487.3pt;border-style:solid;border-color:#ffffff;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c0_2{padding-left:0pt;direction:ltr;margin-left:36pt} .c20_2{list-style-type:circle;margin:0;padding:0} .c10_2{list-style-type:disc;margin:0;padding:0} .c6_2{background-color:#ffffff} .c17_2{padding-left:0pt;margin-left:72pt} .c3_2{line-height:1.0;direction:ltr} .c1_2{font-size:10pt;font-family:"Courier New"} .c16_2{color:#1155cc;text-decoration:underline} .c13_2{color:inherit;text-decoration:inherit} .c7_2{background-color:#ffff00} .c9_2{border-collapse:collapse} .c2_2{font-family:"Courier New"} .c18_2{font-size:18pt} .c5_2{font-weight:bold} .c19_2{color:#ff0000} .c12_2{background-color:#f3f3f3;border-style:solid;border-color:#000000;border-width:1pt;} .c14_2{font-size:24pt} .c8_2{direction:ltr;background-color:#ffffff} .c11_2{font-style:italic} .c4_2{height:11pt} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt}.subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} This post is the second in a series of JMS articles which demonstrate how to use JMS queues in a SOA context. In the previous post JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g I showed you how to create a JMS queue and its dependent objects in WebLogic Server. In this article, we will use a sample program to write a message to that queue. Please review the previous post if you have not created those objects yet, as they will be required later in this example. The previous post also includes useful background information and links to the Oracle documentation for addional research. The following post in this series will show how to read the message from the queue again. 1. Source code The following java code will be used to write a message to the JMS queue. It is based on a sample program provided with the WebLogic Server installation. The sample is not installed by default, but needs to be installed manually using the WebLogic Server Custom Installation option, together with many, other useful samples. You can either copy-paste the following code into your editor, or install all the samples. The knowledge base article in My Oracle Support: How To Install WebLogic Server and JMS Samples in WLS 10.3.x (Doc ID 1499719.1) describes how to install the samples. QueueSend.java package examples.jms.queue; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Hashtable; import javax.jms.*; import javax.naming.Context; import javax.naming.InitialContext; import javax.naming.NamingException; /** This example shows how to establish a connection * and send messages to the JMS queue. The classes in this * package operate on the same JMS queue. Run the classes together to * witness messages being sent and received, and to browse the queue * for messages. The class is used to send messages to the queue. * * @author Copyright (c) 1999-2005 by BEA Systems, Inc. All Rights Reserved. */ public class QueueSend { // Defines the JNDI context factory. public final static String JNDI_FACTORY="weblogic.jndi.WLInitialContextFactory"; // Defines the JMS context factory. public final static String JMS_FACTORY="jms/TestConnectionFactory"; // Defines the queue. public final static String QUEUE="jms/TestJMSQueue"; private QueueConnectionFactory qconFactory; private QueueConnection qcon; private QueueSession qsession; private QueueSender qsender; private Queue queue; private TextMessage msg; /** * Creates all the necessary objects for sending * messages to a JMS queue. * * @param ctx JNDI initial context * @param queueName name of queue * @exception NamingException if operation cannot be performed * @exception JMSException if JMS fails to initialize due to internal error */ public void init(Context ctx, String queueName) throws NamingException, JMSException { qconFactory = (QueueConnectionFactory) ctx.lookup(JMS_FACTORY); qcon = qconFactory.createQueueConnection(); qsession = qcon.createQueueSession(false, Session.AUTO_ACKNOWLEDGE); queue = (Queue) ctx.lookup(queueName); qsender = qsession.createSender(queue); msg = qsession.createTextMessage(); qcon.start(); } /** * Sends a message to a JMS queue. * * @param message message to be sent * @exception JMSException if JMS fails to send message due to internal error */ public void send(String message) throws JMSException { msg.setText(message); qsender.send(msg); } /** * Closes JMS objects. * @exception JMSException if JMS fails to close objects due to internal error */ public void close() throws JMSException { qsender.close(); qsession.close(); qcon.close(); } /** main() method. * * @param args WebLogic Server URL * @exception Exception if operation fails */ public static void main(String[] args) throws Exception { if (args.length != 1) { System.out.println("Usage: java examples.jms.queue.QueueSend WebLogicURL"); return; } InitialContext ic = getInitialContext(args[0]); QueueSend qs = new QueueSend(); qs.init(ic, QUEUE); readAndSend(qs); qs.close(); } private static void readAndSend(QueueSend qs) throws IOException, JMSException { BufferedReader msgStream = new BufferedReader(new InputStreamReader(System.in)); String line=null; boolean quitNow = false; do { System.out.print("Enter message (\"quit\" to quit): \n"); line = msgStream.readLine(); if (line != null && line.trim().length() != 0) { qs.send(line); System.out.println("JMS Message Sent: "+line+"\n"); quitNow = line.equalsIgnoreCase("quit"); } } while (! quitNow); } private static InitialContext getInitialContext(String url) throws NamingException { Hashtable env = new Hashtable(); env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY); env.put(Context.PROVIDER_URL, url); return new InitialContext(env); } } 2. How to Use This Class 2.1 From the file system on UNIX/Linux Log in to a machine with a WebLogic installation and create a directory to contain the source and code matching the package name, e.g. $HOME/examples/jms/queue. Copy the above QueueSend.java file to this directory. Set the CLASSPATH and environment to match the WebLogic server environment. Go to $MIDDLEWARE_HOME/user_projects/domains/base_domain/bin  and execute . ./setDomainEnv.sh Collect the following information required to run the script: The JNDI name of a JMS queue to use In the Weblogic server console > Services > Messaging > JMS Modules > (Module name, e.g. TestJMSModule) > (JMS queue name, e.g. TestJMSQueue)Select the queue and note its JNDI name, e.g. jms/TestJMSQueue The JNDI name of a connection factory to connect to the queue Follow the same path as above to get the connection factory for the above queue, e.g. TestConnectionFactory and its JNDI namee.g. jms/TestConnectionFactory The URL and port of the WebLogic server running the above queue Check the JMS server for the above queue and the managed server it is targeted to, for example soa_server1. Now find the port this managed server is listening on, by looking at its entry under Environment > Servers in the WLS console, e.g. 8001 The URL for the server to be given to the QueueSend program in this example will therefore be t3://host.domain:8001 e.g. t3://jbevans-lx.de.oracle.com:8001 Edit QueueSend.java and enter the above queue name and connection factory respectively under ...public final static String  JMS_FACTORY=" jms/TestConnectionFactory "; ... public final static String QUEUE=" jms/TestJMSQueue "; ... Compile QueueSend.java using javac QueueSend.java Go to the source’s top-level directory and execute it using java examples.jms.queue.QueueSend t3://jbevans-lx.de.oracle.com:8001 This will prompt for a text input or “quit” to end. In the WLS console, go to the queue and select Monitoring to confirm that a new message was written to the queue. 2.2 From JDeveloper Create a new application in JDeveloper, called, for example JMSTests. When prompted for a project name, enter QueueSend and select Java as the technology Default Package = examples.jms.queue (but you can enter anything here as you will overwrite it in the code later). Leave the other values at their defaults. Press Finish Create a new Java class called QueueSend and use the default values This will create a file called QueueSend.java. Open QueueSend.java, if it is not already open and replace all its contents with the QueueSend java code listed above Some lines might have warnings due to unfound objects. These are due to missing libraries in the JDeveloper project. Add the following libraries to the JDeveloper project: right-click the QueueSend  project in the navigation menu and select Libraries and Classpath , then Add JAR/Directory  Go to the folder containing the JDeveloper installation and find/choose the file javax.jms_1.1.1.jar , e.g. at D:\oracle\jdev11116\modules\javax.jms_1.1.1.jar Do the same for the weblogic.jar file located, for example in D:\oracle\jdev11116\wlserver_10.3\server\lib\weblogic.jar Now you should be able to compile the project, for example by selecting the Make or Rebuild icons   If you try to execute the project, you will get a usage message, as it requires a parameter pointing to the WLS installation containing the JMS queue, for example t3://jbevans-lx.de.oracle.com:8001 . You can automatically pass this parameter to the program from JDeveloper by editing the project’s Run/Debug/Profile. Select the project properties, select Run/Debug/Profile and edit the Default run configuration and add the connection parameter to the Program Arguments field If you execute it again, you will see that it has passed the parameter to the start command If you get a ClassNotFoundException for the class weblogic.jndi.WLInitialContextFactory , then check that the weblogic.jar file was correctly added to the project in one of the earlier steps above. Set the values of JMS_FACTORY and QUEUE the same way as described above in the description of how to use this from a Linux file system, i.e. ...public final static String  JMS_FACTORY=" jms/TestConnectionFactory "; ... public final static String QUEUE=" jms/TestJMSQueue "; ... You need to make one more change to the project. If you execute it now, it will prompt for the payload for the JMS message, but you won’t be able to enter it by default in JDeveloper. You need to enable program input for the project first. Select the project’s properties, then Tool Settings, then check the Allow Program Input checkbox at the bottom and Save. Now when you execute the project, you will get a text entry field at the bottom into which you can enter the payload. You can enter multiple messages until you enter “quit”, which will cause the program to stop. The following screen shot shows the TestJMSQueue’s Monitoring page, after a message was sent to the queue: This concludes the sample. In the following post I will show you how to read the message from the queue again.

    Read the article

  • Calculating the Size (in Bytes and MB) of a Oracle Coherence Cache

    - by Ricardo Ferreira
    The concept and usage of data grids are becoming very popular in this days since this type of technology are evolving very fast with some cool lead products like Oracle Coherence. Once for a while, developers need an programmatic way to calculate the total size of a specific cache that are residing in the data grid. In this post, I will show how to accomplish this using Oracle Coherence API. This example has been tested with 3.6, 3.7 and 3.7.1 versions of Oracle Coherence. To start the development of this example, you need to create a POJO ("Plain Old Java Object") that represents a data structure that will hold user data. This data structure will also create an internal fat so I call that should increase considerably the size of each instance in the heap memory. Create a Java class named "Person" as shown in the listing below. package com.oracle.coherence.domain; import java.io.Serializable; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Random; @SuppressWarnings("serial") public class Person implements Serializable { private String firstName; private String lastName; private List<Object> fat; private String email; public Person() { generateFat(); } public Person(String firstName, String lastName, String email) { setFirstName(firstName); setLastName(lastName); setEmail(email); generateFat(); } private void generateFat() { fat = new ArrayList<Object>(); Random random = new Random(); for (int i = 0; i < random.nextInt(18000); i++) { HashMap<Long, Double> internalFat = new HashMap<Long, Double>(); for (int j = 0; j < random.nextInt(10000); j++) { internalFat.put(random.nextLong(), random.nextDouble()); } fat.add(internalFat); } } public String getFirstName() { return firstName; } public void setFirstName(String firstName) { this.firstName = firstName; } public String getLastName() { return lastName; } public void setLastName(String lastName) { this.lastName = lastName; } public String getEmail() { return email; } public void setEmail(String email) { this.email = email; } } Now let's create a Java program that will start a data grid into Coherence and will create a cache named "People", that will hold people instances with sequential integer keys. Each person created in this program will trigger the execution of a custom constructor created in the People class that instantiates an internal fat (the random amount of data generated to increase the size of the object) for each person. Create a Java class named "CreatePeopleCacheAndPopulateWithData" as shown in the listing below. package com.oracle.coherence.demo; import com.oracle.coherence.domain.Person; import com.tangosol.net.CacheFactory; import com.tangosol.net.NamedCache; public class CreatePeopleCacheAndPopulateWithData { public static void main(String[] args) { // Asks Coherence for a new cache named "People"... NamedCache people = CacheFactory.getCache("People"); // Creates three people that will be putted into the data grid. Each person // generates an internal fat that should increase its size in terms of bytes... Person pessoa1 = new Person("Ricardo", "Ferreira", "[email protected]"); Person pessoa2 = new Person("Vitor", "Ferreira", "[email protected]"); Person pessoa3 = new Person("Vivian", "Ferreira", "[email protected]"); // Insert three people at the data grid... people.put(1, pessoa1); people.put(2, pessoa2); people.put(3, pessoa3); // Waits for 5 minutes until the user runs the Java program // that calculates the total size of the people cache... try { System.out.println("---> Waiting for 5 minutes for the cache size calculation..."); Thread.sleep(300000); } catch (InterruptedException ie) { ie.printStackTrace(); } } } Finally, let's create a Java program that, using the Coherence API and JMX, will calculate the total size of each cache that the data grid is currently managing. The approach used in this example was retrieve every cache that the data grid are currently managing, but if you are interested on an specific cache, the same approach can be used, you should only filter witch cache will be looked for. Create a Java class named "CalculateTheSizeOfPeopleCache" as shown in the listing below. package com.oracle.coherence.demo; import java.text.DecimalFormat; import java.util.Map; import java.util.Set; import java.util.TreeMap; import javax.management.MBeanServer; import javax.management.MBeanServerFactory; import javax.management.ObjectName; import com.tangosol.net.CacheFactory; public class CalculateTheSizeOfPeopleCache { @SuppressWarnings({ "unchecked", "rawtypes" }) private void run() throws Exception { // Enable JMX support in this Coherence data grid session... System.setProperty("tangosol.coherence.management", "all"); // Create a sample cache just to access the data grid... CacheFactory.getCache(MBeanServerFactory.class.getName()); // Gets the JMX server from Coherence data grid... MBeanServer jmxServer = getJMXServer(); // Creates a internal data structure that would maintain // the statistics from each cache in the data grid... Map cacheList = new TreeMap(); Set jmxObjectList = jmxServer.queryNames(new ObjectName("Coherence:type=Cache,*"), null); for (Object jmxObject : jmxObjectList) { ObjectName jmxObjectName = (ObjectName) jmxObject; String cacheName = jmxObjectName.getKeyProperty("name"); if (cacheName.equals(MBeanServerFactory.class.getName())) { continue; } else { cacheList.put(cacheName, new Statistics(cacheName)); } } // Updates the internal data structure with statistic data // retrieved from caches inside the in-memory data grid... Set<String> cacheNames = cacheList.keySet(); for (String cacheName : cacheNames) { Set resultSet = jmxServer.queryNames( new ObjectName("Coherence:type=Cache,name=" + cacheName + ",*"), null); for (Object resultSetRef : resultSet) { ObjectName objectName = (ObjectName) resultSetRef; if (objectName.getKeyProperty("tier").equals("back")) { int unit = (Integer) jmxServer.getAttribute(objectName, "Units"); int size = (Integer) jmxServer.getAttribute(objectName, "Size"); Statistics statistics = (Statistics) cacheList.get(cacheName); statistics.incrementUnit(unit); statistics.incrementSize(size); cacheList.put(cacheName, statistics); } } } // Finally... print the objects from the internal data // structure that represents the statistics from caches... cacheNames = cacheList.keySet(); for (String cacheName : cacheNames) { Statistics estatisticas = (Statistics) cacheList.get(cacheName); System.out.println(estatisticas); } } public MBeanServer getJMXServer() { MBeanServer jmxServer = null; for (Object jmxServerRef : MBeanServerFactory.findMBeanServer(null)) { jmxServer = (MBeanServer) jmxServerRef; if (jmxServer.getDefaultDomain().equals(DEFAULT_DOMAIN) || DEFAULT_DOMAIN.length() == 0) { break; } jmxServer = null; } if (jmxServer == null) { jmxServer = MBeanServerFactory.createMBeanServer(DEFAULT_DOMAIN); } return jmxServer; } private class Statistics { private long unit; private long size; private String cacheName; public Statistics(String cacheName) { this.cacheName = cacheName; } public void incrementUnit(long unit) { this.unit += unit; } public void incrementSize(long size) { this.size += size; } public long getUnit() { return unit; } public long getSize() { return size; } public double getUnitInMB() { return unit / (1024.0 * 1024.0); } public double getAverageSize() { return size == 0 ? 0 : unit / size; } public String toString() { StringBuffer sb = new StringBuffer(); sb.append("\nCache Statistics of '").append(cacheName).append("':\n"); sb.append(" - Total Entries of Cache -----> " + getSize()).append("\n"); sb.append(" - Used Memory (Bytes) --------> " + getUnit()).append("\n"); sb.append(" - Used Memory (MB) -----------> " + FORMAT.format(getUnitInMB())).append("\n"); sb.append(" - Object Average Size --------> " + FORMAT.format(getAverageSize())).append("\n"); return sb.toString(); } } public static void main(String[] args) throws Exception { new CalculateTheSizeOfPeopleCache().run(); } public static final DecimalFormat FORMAT = new DecimalFormat("###.###"); public static final String DEFAULT_DOMAIN = ""; public static final String DOMAIN_NAME = "Coherence"; } I've commented the overall example so, I don't think that you should get into trouble to understand it. Basically we are dealing with JMX. The first thing to do is enable JMX support for the Coherence client (ie, an JVM that will only retrieve values from the data grid and will not integrate the cluster) application. This can be done very easily using the runtime "tangosol.coherence.management" system property. Consult the Coherence documentation for JMX to understand the possible values that could be applied. The program creates an in memory data structure that holds a custom class created called "Statistics". This class represents the information that we are interested to see, which in this case are the size in bytes and in MB of the caches. An instance of this class is created for each cache that are currently managed by the data grid. Using JMX specific methods, we retrieve the information that are relevant for calculate the total size of the caches. To test this example, you should execute first the CreatePeopleCacheAndPopulateWithData.java program and after the CreatePeopleCacheAndPopulateWithData.java program. The results in the console should be something like this: 2012-06-23 13:29:31.188/4.970 Oracle Coherence 3.6.0.4 <Info> (thread=Main Thread, member=n/a): Loaded operational configuration from "jar:file:/E:/Oracle/Middleware/oepe_11gR1PS4/workspace/calcular-tamanho-cache-coherence/lib/coherence.jar!/tangosol-coherence.xml" 2012-06-23 13:29:31.219/5.001 Oracle Coherence 3.6.0.4 <Info> (thread=Main Thread, member=n/a): Loaded operational overrides from "jar:file:/E:/Oracle/Middleware/oepe_11gR1PS4/workspace/calcular-tamanho-cache-coherence/lib/coherence.jar!/tangosol-coherence-override-dev.xml" 2012-06-23 13:29:31.219/5.001 Oracle Coherence 3.6.0.4 <D5> (thread=Main Thread, member=n/a): Optional configuration override "/tangosol-coherence-override.xml" is not specified 2012-06-23 13:29:31.266/5.048 Oracle Coherence 3.6.0.4 <D5> (thread=Main Thread, member=n/a): Optional configuration override "/custom-mbeans.xml" is not specified Oracle Coherence Version 3.6.0.4 Build 19111 Grid Edition: Development mode Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. 2012-06-23 13:29:33.156/6.938 Oracle Coherence GE 3.6.0.4 <Info> (thread=Main Thread, member=n/a): Loaded Reporter configuration from "jar:file:/E:/Oracle/Middleware/oepe_11gR1PS4/workspace/calcular-tamanho-cache-coherence/lib/coherence.jar!/reports/report-group.xml" 2012-06-23 13:29:33.500/7.282 Oracle Coherence GE 3.6.0.4 <Info> (thread=Main Thread, member=n/a): Loaded cache configuration from "jar:file:/E:/Oracle/Middleware/oepe_11gR1PS4/workspace/calcular-tamanho-cache-coherence/lib/coherence.jar!/coherence-cache-config.xml" 2012-06-23 13:29:35.391/9.173 Oracle Coherence GE 3.6.0.4 <D4> (thread=Main Thread, member=n/a): TCMP bound to /192.168.177.133:8090 using SystemSocketProvider 2012-06-23 13:29:37.062/10.844 Oracle Coherence GE 3.6.0.4 <Info> (thread=Cluster, member=n/a): This Member(Id=2, Timestamp=2012-06-23 13:29:36.899, Address=192.168.177.133:8090, MachineId=55685, Location=process:244, Role=Oracle, Edition=Grid Edition, Mode=Development, CpuCount=2, SocketCount=2) joined cluster "cluster:0xC4DB" with senior Member(Id=1, Timestamp=2012-06-23 13:29:14.031, Address=192.168.177.133:8088, MachineId=55685, Location=process:1128, Role=CreatePeopleCacheAndPopulateWith, Edition=Grid Edition, Mode=Development, CpuCount=2, SocketCount=2) 2012-06-23 13:29:37.172/10.954 Oracle Coherence GE 3.6.0.4 <D5> (thread=Cluster, member=n/a): Member 1 joined Service Cluster with senior member 1 2012-06-23 13:29:37.188/10.970 Oracle Coherence GE 3.6.0.4 <D5> (thread=Cluster, member=n/a): Member 1 joined Service Management with senior member 1 2012-06-23 13:29:37.188/10.970 Oracle Coherence GE 3.6.0.4 <D5> (thread=Cluster, member=n/a): Member 1 joined Service DistributedCache with senior member 1 2012-06-23 13:29:37.188/10.970 Oracle Coherence GE 3.6.0.4 <Info> (thread=Main Thread, member=n/a): Started cluster Name=cluster:0xC4DB Group{Address=224.3.6.0, Port=36000, TTL=4} MasterMemberSet ( ThisMember=Member(Id=2, Timestamp=2012-06-23 13:29:36.899, Address=192.168.177.133:8090, MachineId=55685, Location=process:244, Role=Oracle) OldestMember=Member(Id=1, Timestamp=2012-06-23 13:29:14.031, Address=192.168.177.133:8088, MachineId=55685, Location=process:1128, Role=CreatePeopleCacheAndPopulateWith) ActualMemberSet=MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2012-06-23 13:29:14.031, Address=192.168.177.133:8088, MachineId=55685, Location=process:1128, Role=CreatePeopleCacheAndPopulateWith) Member(Id=2, Timestamp=2012-06-23 13:29:36.899, Address=192.168.177.133:8090, MachineId=55685, Location=process:244, Role=Oracle) ) RecycleMillis=1200000 RecycleSet=MemberSet(Size=0, BitSetCount=0 ) ) TcpRing{Connections=[1]} IpMonitor{AddressListSize=0} 2012-06-23 13:29:37.891/11.673 Oracle Coherence GE 3.6.0.4 <D5> (thread=Invocation:Management, member=2): Service Management joined the cluster with senior service member 1 2012-06-23 13:29:39.203/12.985 Oracle Coherence GE 3.6.0.4 <D5> (thread=DistributedCache, member=2): Service DistributedCache joined the cluster with senior service member 1 2012-06-23 13:29:39.297/13.079 Oracle Coherence GE 3.6.0.4 <D4> (thread=DistributedCache, member=2): Asking member 1 for 128 primary partitions Cache Statistics of 'People': - Total Entries of Cache -----> 3 - Used Memory (Bytes) --------> 883920 - Used Memory (MB) -----------> 0.843 - Object Average Size --------> 294640 I hope that this post could save you some time when calculate the total size of Coherence cache became a requirement for your high scalable system using data grids. See you!

    Read the article

  • Creating ASP.NET MVC Negotiated Content Results

    - by Rick Strahl
    In a recent ASP.NET MVC application I’m involved with, we had a late in the process request to handle Content Negotiation: Returning output based on the HTTP Accept header of the incoming HTTP request. This is standard behavior in ASP.NET Web API but ASP.NET MVC doesn’t support this functionality directly out of the box. Another reason this came up in discussion is last week’s announcements of ASP.NET vNext, which seems to indicate that ASP.NET Web API is not going to be ported to the cloud version of vNext, but rather be replaced by a combined version of MVC and Web API. While it’s not clear what new API features will show up in this new framework, it’s pretty clear that the ASP.NET MVC style syntax will be the new standard for all the new combined HTTP processing framework. Why negotiated Content? Content negotiation is one of the key features of Web API even though it’s such a relatively simple thing. But it’s also something that’s missing in MVC and once you get used to automatically having your content returned based on Accept headers it’s hard to go back to manually having to create separate methods for different output types as you’ve had to with Microsoft server technologies all along (yes, yes I know other frameworks – including my own – have done this for years but for in the box features this is relatively new from Web API). As a quick review,  Accept Header content negotiation works off the request’s HTTP Accept header:POST http://localhost/mydailydosha/Editable/NegotiateContent HTTP/1.1 Content-Type: application/json Accept: application/json Host: localhost Content-Length: 76 Pragma: no-cache { ElementId: "header", PageName: "TestPage", Text: "This is a nice header" } If I make this request I would expect to get back a JSON result based on my application/json Accept header. To request XML  I‘d just change the accept header:Accept: text/xml and now I’d expect the response to come back as XML. Now this only works with media types that the server can process. In my case here I need to handle JSON, XML, HTML (using Views) and Plain Text. HTML results might need more than just a data return – you also probably need to specify a View to render the data into either by specifying the view explicitly or by using some sort of convention that can automatically locate a view to match. Today ASP.NET MVC doesn’t support this sort of automatic content switching out of the box. Unfortunately, in my application scenario we have an application that started out primarily with an AJAX backend that was implemented with JSON only. So there are lots of JSON results like this:[Route("Customers")] public ActionResult GetCustomers() { return Json(repo.GetCustomers(),JsonRequestBehavior.AllowGet); } These work fine, but they are of course JSON specific. Then a couple of weeks ago, a requirement came in that an old desktop application needs to also consume this API and it has to use XML to do it because there’s no JSON parser available for it. Ooops – stuck with JSON in this case. While it would have been easy to add XML specific methods I figured it’s easier to add basic content negotiation. And that’s what I show in this post. Missteps – IResultFilter, IActionFilter My first attempt at this was to use IResultFilter or IActionFilter which look like they would be ideal to modify result content after it’s been generated using OnResultExecuted() or OnActionExecuted(). Filters are great because they can look globally at all controller methods or individual methods that are marked up with the Filter’s attribute. But it turns out these filters don’t work for raw POCO result values from Action methods. What we wanted to do for API calls is get back to using plain .NET types as results rather than result actions. That is  you write a method that doesn’t return an ActionResult, but a standard .NET type like this:public Customer UpdateCustomer(Customer cust) { … do stuff to customer :-) return cust; } Unfortunately both OnResultExecuted and OnActionExecuted receive an MVC ContentResult instance from the POCO object. MVC basically takes any non-ActionResult return value and turns it into a ContentResult by converting the value using .ToString(). Ugh. The ContentResult itself doesn’t contain the original value, which is lost AFAIK with no way to retrieve it. So there’s no way to access the raw customer object in the example above. Bummer. Creating a NegotiatedResult This leaves mucking around with custom ActionResults. ActionResults are MVC’s standard way to return action method results – you basically specify that you would like to render your result in a specific format. Common ActionResults are ViewResults (ie. View(vn,model)), JsonResult, RedirectResult etc. They work and are fairly effective and work fairly well for testing as well as it’s the ‘standard’ interface to return results from actions. The problem with the this is mainly that you’re explicitly saying that you want a specific result output type. This works well for many things, but sometimes you do want your result to be negotiated. My first crack at this solution here is to create a simple ActionResult subclass that looks at the Accept header and based on that writes the output. I need to support JSON and XML content and HTML as well as text – so effectively 4 media types: application/json, text/xml, text/html and text/plain. Everything else is passed through as ContentResult – which effecively returns whatever .ToString() returns. Here’s what the NegotiatedResult usage looks like:public ActionResult GetCustomers() { return new NegotiatedResult(repo.GetCustomers()); } public ActionResult GetCustomer(int id) { return new NegotiatedResult("Show", repo.GetCustomer(id)); } There are two overloads of this method – one that returns just the raw result value and a second version that accepts an optional view name. The second version returns the Razor view specified only if text/html is requested – otherwise the raw data is returned. This is useful in applications where you have an HTML front end that can also double as an API interface endpoint that’s using the same model data you send to the View. For the application I mentioned above this was another actual use-case we needed to address so this was a welcome side effect of creating a custom ActionResult. There’s also an extension method that directly attaches a Negotiated() method to the controller using the same syntax:public ActionResult GetCustomers() { return this.Negotiated(repo.GetCustomers()); } public ActionResult GetCustomer(int id) { return this.Negotiated("Show",repo.GetCustomer(id)); } Using either of these mechanisms now allows you to return JSON, XML, HTML or plain text results depending on the Accept header sent. Send application/json you get just the Customer JSON data. Ditto for text/xml and XML data. Pass text/html for the Accept header and the "Show.cshtml" Razor view is rendered passing the result model data producing final HTML output. While this isn’t as clean as passing just POCO objects back as I had intended originally, this approach fits better with how MVC action methods are intended to be used and we get the bonus of being able to specify a View to render (optionally) for HTML. How does it work An ActionResult implementation is pretty straightforward. You inherit from ActionResult and implement the ExecuteResult method to send your output to the ASP.NET output stream. ActionFilters are an easy way to effectively do post processing on ASP.NET MVC controller actions just before the content is sent to the output stream, assuming your specific action result was used. Here’s the full code to the NegotiatedResult class (you can also check it out on GitHub):/// <summary> /// Returns a content negotiated result based on the Accept header. /// Minimal implementation that works with JSON and XML content, /// can also optionally return a view with HTML. /// </summary> /// <example> /// // model data only /// public ActionResult GetCustomers() /// { /// return new NegotiatedResult(repo.Customers.OrderBy( c=> c.Company) ) /// } /// // optional view for HTML /// public ActionResult GetCustomers() /// { /// return new NegotiatedResult("List", repo.Customers.OrderBy( c=> c.Company) ) /// } /// </example> public class NegotiatedResult : ActionResult { /// <summary> /// Data stored to be 'serialized'. Public /// so it's potentially accessible in filters. /// </summary> public object Data { get; set; } /// <summary> /// Optional name of the HTML view to be rendered /// for HTML responses /// </summary> public string ViewName { get; set; } public static bool FormatOutput { get; set; } static NegotiatedResult() { FormatOutput = HttpContext.Current.IsDebuggingEnabled; } /// <summary> /// Pass in data to serialize /// </summary> /// <param name="data">Data to serialize</param> public NegotiatedResult(object data) { Data = data; } /// <summary> /// Pass in data and an optional view for HTML views /// </summary> /// <param name="data"></param> /// <param name="viewName"></param> public NegotiatedResult(string viewName, object data) { Data = data; ViewName = viewName; } public override void ExecuteResult(ControllerContext context) { if (context == null) throw new ArgumentNullException("context"); HttpResponseBase response = context.HttpContext.Response; HttpRequestBase request = context.HttpContext.Request; // Look for specific content types if (request.AcceptTypes.Contains("text/html")) { response.ContentType = "text/html"; if (!string.IsNullOrEmpty(ViewName)) { var viewData = context.Controller.ViewData; viewData.Model = Data; var viewResult = new ViewResult { ViewName = ViewName, MasterName = null, ViewData = viewData, TempData = context.Controller.TempData, ViewEngineCollection = ((Controller)context.Controller).ViewEngineCollection }; viewResult.ExecuteResult(context.Controller.ControllerContext); } else response.Write(Data); } else if (request.AcceptTypes.Contains("text/plain")) { response.ContentType = "text/plain"; response.Write(Data); } else if (request.AcceptTypes.Contains("application/json")) { using (JsonTextWriter writer = new JsonTextWriter(response.Output)) { var settings = new JsonSerializerSettings(); if (FormatOutput) settings.Formatting = Newtonsoft.Json.Formatting.Indented; JsonSerializer serializer = JsonSerializer.Create(settings); serializer.Serialize(writer, Data); writer.Flush(); } } else if (request.AcceptTypes.Contains("text/xml")) { response.ContentType = "text/xml"; if (Data != null) { using (var writer = new XmlTextWriter(response.OutputStream, new UTF8Encoding())) { if (FormatOutput) writer.Formatting = System.Xml.Formatting.Indented; XmlSerializer serializer = new XmlSerializer(Data.GetType()); serializer.Serialize(writer, Data); writer.Flush(); } } } else { // just write data as a plain string response.Write(Data); } } } /// <summary> /// Extends Controller with Negotiated() ActionResult that does /// basic content negotiation based on the Accept header. /// </summary> public static class NegotiatedResultExtensions { /// <summary> /// Return content-negotiated content of the data based on Accept header. /// Supports: /// application/json - using JSON.NET /// text/xml - Xml as XmlSerializer XML /// text/html - as text, or an optional View /// text/plain - as text /// </summary> /// <param name="controller"></param> /// <param name="data">Data to return</param> /// <returns>serialized data</returns> /// <example> /// public ActionResult GetCustomers() /// { /// return this.Negotiated( repo.Customers.OrderBy( c=> c.Company) ) /// } /// </example> public static NegotiatedResult Negotiated(this Controller controller, object data) { return new NegotiatedResult(data); } /// <summary> /// Return content-negotiated content of the data based on Accept header. /// Supports: /// application/json - using JSON.NET /// text/xml - Xml as XmlSerializer XML /// text/html - as text, or an optional View /// text/plain - as text /// </summary> /// <param name="controller"></param> /// <param name="viewName">Name of the View to when Accept is text/html</param> /// /// <param name="data">Data to return</param> /// <returns>serialized data</returns> /// <example> /// public ActionResult GetCustomers() /// { /// return this.Negotiated("List", repo.Customers.OrderBy( c=> c.Company) ) /// } /// </example> public static NegotiatedResult Negotiated(this Controller controller, string viewName, object data) { return new NegotiatedResult(viewName, data); } } Output Generation – JSON and XML Generating output for XML and JSON is simple – you use the desired serializer and off you go. Using XmlSerializer and JSON.NET it’s just a handful of lines each to generate serialized output directly into the HTTP output stream. Please note this implementation uses JSON.NET for its JSON generation rather than the default JavaScriptSerializer that MVC uses which I feel is an additional bonus to implementing this custom action. I’d already been using a custom JsonNetResult class previously, but now this is just rolled into this custom ActionResult. Just keep in mind that JSON.NET outputs slightly different JSON for certain things like collections for example, so behavior may change. One addition to this implementation might be a flag to allow switching the JSON serializer. Html View Generation Html View generation actually turned out to be easier than anticipated. Initially I used my generic ASP.NET ViewRenderer Class that can render MVC views from any ASP.NET application. However it turns out since we are executing inside of an active MVC request there’s an easier way: We can simply create a custom ViewResult and populate its members and then execute it. The code in text/html handling code that renders the view is simply this:response.ContentType = "text/html"; if (!string.IsNullOrEmpty(ViewName)) { var viewData = context.Controller.ViewData; viewData.Model = Data; var viewResult = new ViewResult { ViewName = ViewName, MasterName = null, ViewData = viewData, TempData = context.Controller.TempData, ViewEngineCollection = ((Controller)context.Controller).ViewEngineCollection }; viewResult.ExecuteResult(context.Controller.ControllerContext); } else response.Write(Data); which is a neat and easy way to render a Razor view assuming you have an active controller that’s ready for rendering. Sweet – dependency removed which makes this class self-contained without any external dependencies other than JSON.NET. Summary While this isn’t exactly a new topic, it’s the first time I’ve actually delved into this with MVC. I’ve been doing content negotiation with Web API and prior to that with my REST library. This is the first time it’s come up as an issue in MVC. But as I have worked through this I find that having a way to specify both HTML Views *and* JSON and XML results from a single controller certainly is appealing to me in many situations as we are in this particular application returning identical data models for each of these operations. Rendering content negotiated views is something that I hope ASP.NET vNext will provide natively in the combined MVC and WebAPI model, but we’ll see how this actually will be implemented. In the meantime having a custom ActionResult that provides this functionality is a workable and easily adaptable way of handling this going forward. Whatever ends up happening in ASP.NET vNext the abstraction can probably be changed to support the native features of the future. Anyway I hope some of you found this useful if not for direct integration then as insight into some of the rendering logic that MVC uses to get output into the HTTP stream… Related Resources Latest Version of NegotiatedResult.cs on GitHub Understanding Action Controllers Rendering ASP.NET Views To String© Rick Strahl, West Wind Technologies, 2005-2014Posted in MVC  ASP.NET  HTTP   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • Challenge 19 – An Explanation of a Query

    - by Dave Ballantyne
    I have received a number of requests for an explanation of my winning query of TSQL Challenge 19. This involved traversing a hierarchy of employees and rolling a count of orders from subordinates up to superiors. The first concept I shall address is the hierarchyId , which is constructed within the CTE called cteTree.   cteTree is a recursive cte that will expand the parent-child hierarchy of the personnel in the table @emp.  One useful feature with a recursive cte is that data can be ‘passed’ from the parent to the child data.  The hierarchyId column is similar to the hierarchyId data type that was introduced in SQL Server 2008 and represents the position of the person within the organisation. Let us start with a simplistic example Albert manages Bob and Eddie.  Bob manages Carl and Dave. The hierarchyId will represent each person’s position in this relationship in a single field.  In this simple example we could append the userID together into a varchar field as detailed below. This will enable us to select a branch of the tree by filtering using Where hierarchyId  ‘1,2%’ to select Bob and all his subordinates.  Naturally, this is not comprehensive enough to provide a full solution, but as opposed to concatenating the Id’s together into a varchar datatyped column, we can apply the same theory to a varbinary.  By CASTing the ID’s into a datatype of varbinary(4) ,4 is used as 4 bytes of data are used to store an integer and building a hierarchyId  from those.  For example: The important point to bear in mind for later in the query is that the binary data generated is 'byte order comparable'. ie We can ORDER a dataset with it and the resulting data, will be in the order required. Now, would probably be a good time to download the example file and, after the cte ‘cteTree’, uncomment the line ‘select * from cteTree’.  Mark this and all prior code and execute.  This will show you how this theory directly relates to the actual challenge data.  The only deviation from the above, is that instead of using the ID of an employee, I have used the row_number() ranking function to order each level by LastName,Firstname.  This enables me to order by the HierarchyId in the final result set so that the result set is in the required order. Your output should be something like the below.  Notice also the ‘Level’ Column that contains the depth that the employee is within the tree.  I would encourage you to ‘play’ with the query, change the order in the row_number() or the length of the cast in the hierarchyId to see how that effects the outcome.  The next cte, ‘cteTreeWithOrderCount’, is a join between cteTree and the @ord table, and COUNT’s the number of orders per employee.  A LEFT JOIN is employed here to account for the occasion where an employee has made no sales.   Executing a ‘Select * from cteTreeWithOrderCount’ will return the result set as below.  The order here is unimportant as this is only a staging point of the data and only the final result set in a cte chain needs an Order by clause, unless TOP is utilised. cteExplode joins the above result set to the tally table (Nums) for Level Occurances.  So, if level is 2 then 2 rows are required.  This is done to expand the dataset, to create a new column (PathInc), which is the (n+1) integers contained within the heirarchyid.  For example, with the data for Robert King as given above, the below 3 rows will be returned. From this you can see that the pathinc column now contains the values for Andrew Fuller and Steven Buchanan who are Robert King’s superiors within the tree.    Finally cteSumUp, sums the orders for each person and their subordinates using the PathInc generated above, and the final select does the final simple mathematics and filters to restrict the result set to only the ‘original’ row per employee.

    Read the article

  • FluentPath: a fluent wrapper around System.IO

    - by Bertrand Le Roy
    .NET is now more than eight years old, and some of its APIs got old with more grace than others. System.IO in particular has always been a little awkward. It’s mostly static method calls (Path.*, Directory.*, etc.) and some stateful classes (DirectoryInfo, FileInfo). In these APIs, paths are plain strings. Since .NET v1, lots of good things happened to C#: lambda expressions, extension methods, optional parameters to name just a few. Outside of .NET, other interesting things happened as well. For example, you might have heard about this JavaScript library that had some success introducing a fluent API to handle the hierarchical structure of the HTML DOM. You know? jQuery. Knowing all that, every time I need to use the stuff in System.IO, I cringe. So I thought I’d just build a more modern wrapper around it. I used a fluent API based on an essentially immutable Path type and an enumeration of such path objects. To achieve the fluent style, a healthy dose of lambda expressions is being used to act on the objects. Without further ado, here’s an example of what you can do with the new API. In that example, I’m using a Media Center extension that wants all video files to be in their own folder. For that, I need a small tool that creates directories for each video file and moves the files in there. Here’s the code for it: Path.Get(args[0]) .Select(p => p.Extension == ".avi" || p.Extension == ".m4v" || p.Extension == ".wmv" || p.Extension == ".mp4" || p.Extension == ".dvr-ms" || p.Extension == ".mpg" || p.Extension == ".mkv") .CreateDirectory(p => p.Parent .Combine(p.FileNameWithoutExtension)) .Previous() .Move(p => p.Parent .Combine(p.FileNameWithoutExtension) .Combine(p.FileName)); This code creates a Path object pointing at the path pointed to by the first command line argument of my executable. It then selects all video files. After that, it creates directories that have the same names as each of the files, but without their extension. The result of that operation is the set of created directories. We can now get back to the previous set using the Previous method, and finally we can move each of the files in the set to the corresponding freshly created directory, whose name is the combination of the parent directory and the filename without extension. The new fluent path library covers a fair part of what’s in System.IO in a single, convenient API. Check it out, I hope you’ll enjoy it. Suggestions are more than welcome. For example, should I make this its own project on CodePlex or is this informal style just OK? Anything missing that you’d like to see? Is there a specific example you’d like to see expressed with the new API? Bugs? The code can be downloaded from here (this is under a new BSD license): http://weblogs.asp.net/blogs/bleroy/Samples/FluentPath.zip

    Read the article

  • Optional Parameters and Named Arguments in C# 4 (and a cool scenario w/ ASP.NET MVC 2)

    - by ScottGu
    [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] This is the seventeenth in a series of blog posts I’m doing on the upcoming VS 2010 and .NET 4 release. Today’s post covers two new language feature being added to C# 4.0 – optional parameters and named arguments – as well as a cool way you can take advantage of optional parameters (both in VB and C#) with ASP.NET MVC 2. Optional Parameters in C# 4.0 C# 4.0 now supports using optional parameters with methods, constructors, and indexers (note: VB has supported optional parameters for awhile). Parameters are optional when a default value is specified as part of a declaration.  For example, the method below takes two parameters – a “category” string parameter, and a “pageIndex” integer parameter.  The “pageIndex” parameter has a default value of 0, and as such is an optional parameter: When calling the above method we can explicitly pass two parameters to it: Or we can omit passing the second optional parameter – in which case the default value of 0 will be passed:   Note that VS 2010’s Intellisense indicates when a parameter is optional, as well as what its default value is when statement completion is displayed: Named Arguments and Optional Parameters in C# 4.0 C# 4.0 also now supports the concept of “named arguments”.  This allows you to explicitly name an argument you are passing to a method – instead of just identifying it by argument position.  For example, I could write the code below to explicitly identify the second argument passed to the GetProductsByCategory method by name (making its usage a little more explicit): Named arguments come in very useful when a method supports multiple optional parameters, and you want to specify which arguments you are passing.  For example, below we have a method DoSomething that takes two optional parameters: We could use named arguments to call the above method in any of the below ways: Because both parameters are optional, in cases where only one (or zero) parameters is specified then the default value for any non-specified arguments is passed. ASP.NET MVC 2 and Optional Parameters One nice usage scenario where we can now take advantage of the optional parameter support of VB and C# is with ASP.NET MVC 2’s input binding support to Action methods on Controller classes. For example, consider a scenario where we want to map URLs like “Products/Browse/Beverages” or “Products/Browse/Deserts” to a controller action method.  We could do this by writing a URL routing rule that maps the URLs to a method like so: We could then optionally use a “page” querystring value to indicate whether or not the results displayed by the Browse method should be paged – and if so which page of the results should be displayed.  For example: /Products/Browse/Beverages?page=2. With ASP.NET MVC 1 you would typically handle this scenario by adding a “page” parameter to the action method and make it a nullable int (which means it will be null if the “page” querystring value is not present).  You could then write code like below to convert the nullable int to an int – and assign it a default value if it was not present in the querystring: With ASP.NET MVC 2 you can now take advantage of the optional parameter support in VB and C# to express this behavior more concisely and clearly.  Simply declare the action method parameter as an optional parameter with a default value: C# VB If the “page” value is present in the querystring (e.g. /Products/Browse/Beverages?page=22) then it will be passed to the action method as an integer.  If the “page” value is not in the querystring (e.g. /Products/Browse/Beverages) then the default value of 0 will be passed to the action method.  This makes the code a little more concise and readable. Summary There are a bunch of great new language features coming to both C# and VB with VS 2010.  The above two features (optional parameters and named parameters) are but two of them.  I’ll blog about more in the weeks and months ahead. If you are looking for a good book that summarizes all the language features in C# (including C# 4.0), as well provides a nice summary of the core .NET class libraries, you might also want to check out the newly released C# 4.0 in a Nutshell book from O’Reilly: It does a very nice job of packing a lot of content in an easy to search and find samples format. Hope this helps, Scott

    Read the article

  • Grouping data in LINQ with the help of group keyword

    - by vik20000in
    While working with any kind of advanced query grouping is a very important factor. Grouping helps in executing special function like sum, max average etc to be performed on certain groups of data inside the date result set. Grouping is done with the help of the Group method. Below is an example of the basic group functionality.     int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };         var numberGroups =         from num in numbers         group num by num % 5 into numGroup         select new { Remainder = numGroup.Key, Numbers = numGroup };  In the above example we have grouped the values based on the reminder left over when divided by 5. First we are grouping the values based on the reminder when divided by 5 into the numgroup variable.  numGroup.Key gives the value of the key on which the grouping has been applied. And the numGroup itself contains all the records that are contained in that group. Below is another example to explain the same. string[] words = { "blueberry", "abacus", "banana", "apple", "cheese" };         var wordGroups =         from num in words         group num by num[0] into grp         select new { FirstLetter = grp.Key, Words = grp }; In the above example we are grouping the value with the first character of the string (num[0]). Just like the order operator the group by clause also allows us to write our own logic for the Equal comparison (That means we can group Item by ignoring case also by writing out own implementation). For this we need to pass an object that implements the IEqualityComparer<string> interface. Below is an example. public class AnagramEqualityComparer : IEqualityComparer<string> {     public bool Equals(string x, string y) {         return getCanonicalString(x) == getCanonicalString(y);     }      public int GetHashCode(string obj) {         return getCanonicalString(obj).GetHashCode();     }         private string getCanonicalString(string word) {         char[] wordChars = word.ToCharArray();         Array.Sort<char>(wordChars);         return new string(wordChars);     } }  string[] anagrams = {"from   ", " salt", " earn", "  last   ", " near "}; var orderGroups = anagrams.GroupBy(w => w.Trim(), new AnagramEqualityComparer()); Vikram  

    Read the article

  • Running ODI 11gR1 Standalone Agent as a Windows Service

    - by fx.nicolas
    ODI 11gR1 introduces the capability to use OPMN to start and protect agent processes as services. Setting up the OPMN agent is covered in the following post and extensively in the ODI Installation Guide. Unfortunately, OPMN is not installed along with ODI, and ODI 10g users who are really at ease with the old Java Wrapper are a little bit puzzled by OPMN, and ask: "How can I simply set up the agent as a service?". Well... although the Tanuki Service Wrapper is no longer available for free, and the agentservice.bat script lost, you can switch to another service wrapper for the same result. For example, Yet Another Java Service Wrapper (YAJSW) is a good candidate. To configure a standalone agent with YAJSW: download YAJSW Uncompress the zip to a folder (called %YAJSW% in this example) Configure, start and test your standalone agent. Make sure that this agent is loaded with all the required libraries and drivers, as the service will not load dynamically the drivers added subsequently in the /drivers directory. Retrieve the PID of the agent process: Open Task Manager. Select View Select Columns Select the PID (Process Identifier) column, then click OK In the list of processes, find the java.exe process corresponding to your agent, and note its PID. Open a command line prompt in %YAJSW%/bat and run: genConfig.bat <your_pid> This command generates a wrapper configuration file for the agent. This file is called %YAJSW%/conf/wrapper.conf. Stop your agent. Edit the wrapper.conf file and modify the configuration of your service. For example, modify the display name and description of the service as shown in the example below. Important: Make sure to escape the commas in the ODI encoded passwords with a backslash! In the example below, the ODI_SUPERVISOR_ENCODED_PASS contained a comma character which had to be prefixed with a backslash. # Title to use when running as a console wrapper.console.title=\"AGENT\" #******************************************************************** # Wrapper Windows Service and Posix Daemon Properties #******************************************************************** # Name of the service wrapper.ntservice.name=AGENT_113 # Display name of the service wrapper.ntservice.displayname=ODI Agent # Description of the service wrapper.ntservice.description=Oracle Data Integrator Agent 11gR3 (11.1.1.3.0) ... # Escape the comma in the password with a backslash. wrapper.app.parameter.7 = -ODI_SUPERVISOR_ENCODED_PASS=fJya.vR5kvNcu9TtV\,jVZEt Execute your wrapped agent as console by calling in the command line prompt: runConsole.bat Check that your agent is running, and test it again.This command starts the agent with the configuration but does not install it yet as a service. To Install the agent as service call installService.bat From that point, you can view, start and stop the agent via the windows services. Et voilà ! Two final notes: - To modify the agent configuration, you must uninstall/reinstall the service. For this purpose, run the uninstallService.bat to uninstall it and play again the process above. - To be able to uninstall the agent service, you should keep a backup of the wrapper.conf file. This is particularly important when starting several services with the wrapper.

    Read the article

  • OWB 11gR2 - Find and Search Metadata in Designer

    - by David Allan
    Here are some tools and techniques for finding objects, specifically in the design repository. There are ways of navigating and collating objects that are useful for day to day development and build-time usage - this includes features out of the box and utilities constructed on top. There are a variety of techniques to navigate and find objects in the repository, the first 3 are out of the box, the 4th is an expert utility. Navigating by the tree, grouping by project and module - ok if you are aware of the exact module/folder that objects reside in. The structure panel is a useful way of finding parts of an object, especially when large rather than using the canvas. In large scale projects it helps to have accelerators (either find or collections below). Advanced find to search by name - 11gR2 included a find capability specifically for large scale projects. There were improvements in both the tree search and the object editors (including highlighting in mapping for example). So you can now do regular expression based search and quickly navigate to objects within a repository. Collections - logically organize your objects into virtual folders by shortcutting the actual objects. This is useful for a range of things since all the OWB services operate on collections too (export/import, validation, deployment). See the post here for new collection functionality in 11gR2. Reports for searching by type, updated on, updated by etc. Useful for activities such as periodic incremental actions (deploy all mappings changed in the past week). The report style view is useful since I can quickly see who changed what and when. You can see all the audit details for objects within each objects property inspector, but its useful to just get all objects changed today or example, all objects changed since my last build etc. This utility combines both UI extensions via experts and the public views on the repository. In the figure to the right you see the contextual option 'Object Search' which invokes the utility, you can see I have quite a number of modules within my project. Figure out all the potential objects which have been changed is not simple. The utility is an expert which provides this kind of search capability. The utility provides a report of the objects in the design repository which satisfy some filter criteria. The type of criteria includes; objects updated in the last n days optionally filter the objects updated by user filter the user by project and by type (table/mappings etc.) The search dialog appears with these options, you can multi-select the object types, so for example you can select TABLE and MAPPING. Its also possible to search across projects if need be. If you have multiple users using the repository you can define the OWB user name in the 'Updated by' property to restrict the report to just that user also. Finally there is a search name that will be used for some of the options such as building a collection - this name is used for the collection to be built. In the example I have done, I've just searched my project for all process flows and mappings that users have updated in the last 7 days. The results of the query are returned in a table containing the object names, types, full path and audit details. The columns are sort-able, you can sort the results by name, type, path etc. One of the cool things here, is that you can then perform operations on these objects - such as edit them, export single selection or entire results to MDL, create a collection from the results (now you have a saved set of references in the repository, you could do deploy/export etc.), create a deployment script from the results...or even add in your own ideas! You see from this that you can do bulk operations on sets of objects based on search results. So for example selecting the 'Build Collection' option creates a collection with all of the objects from my search, you can subsequently deploy/generate/maintain this collection of objects. Under the hood of the expert if just basic OMB commands from the product and the use of the public views on the design repository. You can see how easy it is to build up macro-like capabilities that will help you do day-to-day as well as build like tasks on sets of objects.

    Read the article

  • Big Data – Basics of Big Data Analytics – Day 18 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the various components in Big Data Story. In this article we will understand what are the various analytics tasks we try to achieve with the Big Data and the list of the important tools in Big Data Story. When you have plenty of the data around you what is the first thing which comes to your mind? “What do all these data means?” Exactly – the same thought comes to my mind as well. I always wanted to know what all the data means and what meaningful information I can receive out of it. Most of the Big Data projects are built to retrieve various intelligence all this data contains within it. Let us take example of Facebook. When I look at my friends list of Facebook, I always want to ask many questions such as - On which date my maximum friends have a birthday? What is the most favorite film of my most of the friends so I can talk about it and engage them? What is the most liked placed to travel my friends? Which is the most disliked cousin for my friends in India and USA so when they travel, I do not take them there. There are many more questions I can think of. This illustrates that how important it is to have analysis of Big Data. Here are few of the kind of analysis listed which you can use with Big Data. Slicing and Dicing: This means breaking down your data into smaller set and understanding them one set at a time. This also helps to present various information in a variety of different user digestible ways. For example if you have data related to movies, you can use different slide and dice data in various formats like actors, movie length etc. Real Time Monitoring: This is very crucial in social media when there are any events happening and you wanted to measure the impact at the time when the event is happening. For example, if you are using twitter when there is a football match, you can watch what fans are talking about football match on twitter when the event is happening. Anomaly Predication and Modeling: If the business is running normal it is alright but if there are signs of trouble, everyone wants to know them early on the hand. Big Data analysis of various patterns can be very much helpful to predict future. Though it may not be always accurate but certain hints and signals can be very helpful. For example, lots of data can help conclude that if there is lots of rain it can increase the sell of umbrella. Text and Unstructured Data Analysis: unstructured data are now getting norm in the new world and they are a big part of the Big Data revolution. It is very important that we Extract, Transform and Load the unstructured data and make meaningful data out of it. For example, analysis of lots of images, one can predict that people like to use certain colors in certain months in their cloths. Big Data Analytics Solutions There are many different Big Data Analystics Solutions out in the market. It is impossible to list all of them so I will list a few of them over here. Tableau – This has to be one of the most popular visualization tools out in the big data market. SAS – A high performance analytics and infrastructure company IBM and Oracle – They have a range of tools for Big Data Analysis Tomorrow In tomorrow’s blog post we will discuss about very important components of the Big Data Ecosystem – Data Scientist. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • What information must never appear in logs?

    - by MainMa
    I'm about to write the company guidelines about what must never appear in logs (trace of an application). In fact, some developers try to include as many information as possible in trace, making it risky to store those logs, and extremely dangerous to submit them, especially when the customer doesn't know this information is stored, because she never cared about this and never read documentation and/or warning messages. For example, when dealing with files, some developers are tempted to trace the names of the files. For example before appending file name to a directory, if we trace everything on error, it will be easy to notice for example that the appended name is too long, and that the bug in the code was to forget to check for the length of the concatenated string. It is helpful, but this is sensitive data, and must never appear in logs. In the same way: Passwords, IP addresses and network information (MAC address, host name, etc.)¹, Database accesses, Direct input from user and stored business data must never appear in trace. So what other types of information must be banished from the logs? Are there any guidelines already written which I can use? ¹ Obviously, I'm not talking about things as IIS or Apache logs. What I'm talking about is the sort of information which is collected with the only intent to debug the application itself, not to trace the activity of untrusted entities. Edit: Thank you for your answers and your comments. Since my question is not too precise, I'll try to answer the questions asked in the comments: What I'm doing with the logs? The logs of the application may be stored in memory, which means either in plain on hard disk on localhost, in a database, again in plain, or in Windows Events. In every case, the concern is that those sources may not be safe enough. For example, when a customer runs an application and this application stores logs in plain text file in temp directory, anybody who has a physical access to the PC can read those logs. The logs of the application may also be sent through internet. For example, if a customer has an issue with an application, we can ask her to run this application in full-trace mode and to send us the log file. Also, some application may sent automatically the crash report to us (and even if there are warnings about sensitive data, in most cases customers don't read them). Am I talking about specific fields? No. I'm working on general business applications only, so the only sensitive data is business data. There is nothing related to health or other fields covered by specific regulations. But thank you to talk about that, I probably should take a look about those fields for some clues about what I can include in guidelines. Isn't it easier to encrypt the data? No. It would make every application much more difficult, especially if we want to use C# diagnostics and TraceSource. It would also require to manage authorizations, which is not the easiest think to do. Finally, if we are talking about the logs submitted to us from a customer, we must be able to read the logs, but without having access to sensitive data. So technically, it's easier to never include sensitive information in logs at all and to never care about how and where those logs are stored.

    Read the article

  • what differs a computer scientist/software engineer to regular people who learn programming language and APIs?

    - by Amumu
    In University, we learn and reinvent the wheel a lot to truly learn the programming concepts. For example, we may learn assembly language to understand, what happens inside the box, and how the system operates, when we execute our code. This helps understanding higher level concepts deeper. For example, memory management like in C is just an abstraction of manually managed memory contents and addresses. The problem is, when we're going to work, usually productivity is required more. I could program my own containers, or string class, or date/time (using POSIX with C system call) to do the job, but then, it would take much longer time to use existing STL or Boost library, which abstract all of those thing and very easy to use. This leads to an issue, that a regular person doesn't need to get through all the low level/under the hood stuffs, who learns only one programming language and using language-related APIs. These people may eventually compete with the mainstream graduates from computer science or software engineer and call themselves programmers. At first, I don't think it's valid to call them programmers. I used to think, a real programmer needs to understand the computer deeply (but not at the electronic level). But then I changed my mind. After all, they get the job done and satisfy all the test criteria (logic, performance, security...), and in business environment, who cares if you're an expert and understand how computer works or not. You may get behind the "amateurs" if you spend to much time learning about how things work inside. It is totally valid for those people to call themselves programmers. This makes me confuse. So, after all, programming should be considered an universal skill? Does programming language and concepts matter or the problems we solve matter? For example, many C/C++ vs Java and other high level language, one of the main reason is because C/C++ features performance, as well as accessing low level facility. One of the main reason (in my opinion), is coding in C/C++ seems complex, so people feel good about it (not trolling anyone, just my observation, and my experience as well. Try to google "C hacker syndrome"). While Java on the other hand, made for simplifying programming tasks to help developers concentrate on solving their problems. Based on Java rationale, if the programing language keeps evolve, one day everyone can map their logic directly with natural language. Everyone can program. On that day, maybe real programmers are mathematicians, who could perform most complex logic (including business logic and academic logic) without worrying about installing/configuring compiler, IDEs? What's our job as a computer scientist/software engineer? To solve computer specific problems or to solve problems in general? For example, take a look at this exame: http://cm.baylor.edu/ICPCWiki/attach/Problem%20Resources/2010WorldFinalProblemSet.pdf . The example requires only basic knowledge about the programming language, but focus more on problem solving with the language. In sum, what differs a computer scientist/software engineer to regular people who learn programming language and APIs? A mathematician can be considered a programmer, if he is good enough to use programming language to implement his formula. Can we programmer do this? Probably not for most of us, since we specialize about computer, not math. An electronic engineer, who learns how to use C to program for his devices, can be considered a programmer. If the programming languages keep being simplified, may one day the software engineers, who implements business logic and create softwares, be obsolete? (Not for computer scientist though, since many of the CS topics are scientific, and science won't change, but technology will).

    Read the article

  • Is there a theory for "transactional" sequences of failing and no-fail actions?

    - by Ross Bencina
    My question is about writing transaction-like functions that execute sequences of actions, some of which may fail. It is related to the general C++ principle "destructors can't throw," no-fail property, and maybe also with multi-phase transactions or exception safety. However, I'm thinking about it in language-neutral terms. My concern is with correctly designing error handling in C++ functions that must be reliable. I would like to know what the concepts below are called so that I can learn more about them. I'm sorry that I can't ask the question more directly. Since I don't know this area I have provided an example to explain my question. The question is at the end. Here goes: Consider a sequence of steps or actions executed sequentially, where actions belong to one of two classes: those that always succeed, and those that may fail. In the examples below: S stands for an action that always succeeds (called "no-fail" in some settings). F stands for an action that may fail (for example, it might fail to allocate memory or do I/O that could fail). Consider a sequences of actions (executed sequentially from left to right): S->S->S->S Since each action in the sequence above succeeds, the whole sequence succeeds. On the other hand, the following sequence may fail because the last action may fail: S->S->S->F So, claim: a sequence has the no-fail (S) property if and only if all of its actions are no-fail. Now, I'm interested in action sequences that form "atomic transactions", with "failure atomicity," i.e. where either the whole sequence completes successfully, or there is no effect. I.e. if some action fails, the earlier ones must be rolled back. This requires that any successfully executed actions prior to a failing action must always be able to be rolled back. Consider the sequence: S->S->S->F S<-S<-S In the example above, the first row is the forward path of the transaction, and the second row are inverse actions (executed from right to left) that can be used to roll back if the final top row actions fails. It seems to me that for a transaction to support failure atomicity, the following invariant must hold: Claim: To support failure atomicity (either completion or complete roll-back on failure) all actions preceding the latest failable (F) action on the forward path (marked * in the example below) must have no-fail (S) inverses. The following is an example of a sequence that supports failure atomicity: * S->F->F->F S<-S<-S Further, if we want the transaction to be able to attempt cancellation mid-way through, but still guarantee either full completion or full rollback then we need the following property: Claim: To support failure atomicity and cancellation mid-way through execution, in the face of errors in the inverse (cancellation) path, all actions following the earliest failable (F) inverse on the reverse path (marked *) must be no-fail (S). F->F->F->S->S S<-S<-F<-F * I believe that these two conditions guarantee that an abortable/cancelable transaction will never get "stuck". My questions are: What is the study and theory of these properties called? are my claims correct? and what else is there to know? UPDATE 1: Updated terminology: what I previously called "robustness" is called atomicity in the database literature. UPDATE 2: Added explicit reference to failure atomicity, which seems to be a thing.

    Read the article

  • Why do I need two Instances in Windows Azure?

    - by BuckWoody
    Windows Azure as a Platform as a Service (PaaS) means that there are various components you can use in it to solve a problem: Compute “Roles” - Computers running an OS and optionally IIS - you can have more than one "Instance" of a given Role Storage - Blobs, Tables and Queues for Storage Other Services - Things like the Service Bus, Azure Connection Services, SQL Azure and Caching It’s important to understand that some of these services are Stateless and others maintain State. Stateless means (at least in this case) that a system might disappear from one physical location and appear elsewhere. You can think of this as a cashier at the front of a store. If you’re in line, a cashier might take his break, and another person might replace him. As long as the order proceeds, you as the customer aren’t really affected except for the few seconds it takes to change them out. The cashier function in this example is stateless. The Compute Role Instances in Windows Azure are Stateless. To upgrade hardware, because of a fault or many other reasons, a Compute Role's Instance might stop on one physical server, and another will pick it up. This is done through the controlling fabric that Windows Azure uses to manage the systems. It’s important to note that storage in Azure does maintain State. Your data will not simply disappear - it is maintained - in fact, it’s maintained three times in a single datacenter and all those copies are replicated to another for safety. Going back to our example, storage is similar to the cash register itself. Even though a cashier leaves, the record of your payment is maintained. So if a Compute Role Instance can disappear and re-appear, the things running on that first Instance would stop working. If you wrote your code in a Stateless way, then another Role Instance simply re-starts that transaction and keeps working, just like the other cashier in the example. But if you only have one Instance of a Role, then when the Role Instance is re-started, or when you need to upgrade your own code, you can face downtime, since there’s only one. That means you should deploy at least two of each Role Instance not only for scale to handle load, but so that the first “cashier” has someone to replace them when they disappear. It’s not just a good idea - to gain the Service Level Agreement (SLA) for our uptime in Azure it’s a requirement. We point this out right in the Management Portal when you deploy the application: (Click to enlarge) When you deploy a Role Instance you can also set the “Upgrade Domain”. Placing Roles on separate Upgrade Domains means that you have a continuous service whenever you upgrade (more on upgrades in another post) - the process looks like this for two Roles. This example covers the scenario for upgrade, so you have four roles total - One Web and one Worker running the "older" code, and one of each running the new code. In all those Roles you want at least two instances, and this example shows that you're covered for High Availability and upgrade paths: The take-away is this - always plan for forward-facing Roles to have at least two copies. For Worker Roles that do background processing, there are ways to architect around this number, but it does affect the SLA if you have only one.

    Read the article

  • How do you formulate the Domain Model in Domain Driven Design properly (Bounded Contexts, Domains)?

    - by lko
    Say you have a few applications which deal with a few different Core Domains. The examples are made up and it's hard to put a real example with meaningful data together (concisely). In Domain Driven Design (DDD) when you start looking at Bounded Contexts and Domains/Sub Domains, it says that a Bounded Context is a "phase" in a lifecycle. An example of Context here would be within an ecommerce system. Although you could model this as a single system, it would also warrant splitting into separate Contexts. Each of these areas within the application have their own Ubiquitous Language, their own Model, and a way to talk to other Bounded Contexts to obtain the information they need. The Core, Sub, and Generic Domains are the area of expertise and can be numerous in complex applications. Say there is a long process dealing with an Entity for example a Book in a core domain. Now looking at the Bounded Contexts there can be a number of phases in the books life-cycle. Say outline, creation, correction, publish, sale phases. Now imagine a second core domain, perhaps a store domain. The publisher has its own branch of stores to sell books. The store can have a number of Bounded Contexts (life-cycle phases) for example a "Stock" or "Inventory" context. In the first domain there is probably a Book database table with basically just an ID to track the different book Entities in the different life-cycles. Now suppose you have 10+ supporting domains e.g. Users, Catalogs, Inventory, .. (hard to think of relevant examples). For example a DomainModel for the Book Outline phase, the Creation phase, Correction phase, Publish phase, Sale phase. Then for the Store core domain it probably has a number of life-cycle phases. public class BookId : Entity { public long Id { get; set; } } In the creation phase (Bounded Context) the book could be a simple class. public class Book : BookId { public string Title { get; set; } public List<string> Chapters { get; set; } //... } Whereas in the publish phase (Bounded Context) it would have all the text, release date etc. public class Book : BookId { public DateTime ReleaseDate { get; set; } //... } The immediate benefit I can see in separating by "life-cycle phase" is that it's a great way to separate business logic so there aren't mammoth all-encompassing Entities nor Domain Services. A problem I have is figuring out how to concretely define the rules to the physical layout of the Domain Model. A. Does the Domain Model get "modeled" so there are as many bounded contexts (separate projects etc.) as there are life-cycle phases across the core domains in a complex application? Edit: Answer to A. Yes, according to the answer by Alexey Zimarev there should be an entire "Domain" for each bounded context. B. Is the Domain Model typically arranged by Bounded Contexts (or Domains, or both)? Edit: Answer to B. Each Bounded Context should have its own complete "Domain" (Service/Entities/VO's/Repositories) C. Does it mean there can easily be 10's of "segregated" Domain Models and multiple projects can use it (the Entities/Value Objects)? Edit: Answer to C. There is a complete "Domain" for each Bounded Context and the Domain Model (Entity/VO layer/project) isn't "used" by the other Bounded Contexts directly, only via chosen paths (i.e. via Domain Events). The part that I am trying to figure out is how the Domain Model is actually implemented once you start to figure out your Bounded Contexts and Core/Sub Domains, particularly in complex applications. The goal is to establish the definitions which can help to separate Entities between the Bounded Contexts and Domains.

    Read the article

< Previous Page | 73 74 75 76 77 78 79 80 81 82 83 84  | Next Page >